Title: Geneza skalnych miast na płaskowyżach piaskowcowych = The origin of ‘rock cities’ on sandstone plateaus


Duszyński, Filip. Autor ; Migoń, Piotr. Autor

Date issued/created:


Resource Type:



Przegląd Geograficzny T. 90 z. 3 (2018)



Place of publishing:



24 cm


‘Rock cities’ – a geomorphological term widely used in Czechia, but hardly formalised elsewhere – are spectacular rock-cut landscapes consisting of closelyspaced residual rock blocks separated by narrow intersecting corridors, imparting an overall visual resemblance to an urban landscape. The heights of the rock blocks in question – as compared with the floors of the corridors and passages – may reach many tens of metres. These landforms are known in a wide range of lithologies, including limestones, dolomites, conglomerates, tuffs and granites; but they are particularly well developed in regularly jointed sandstones which support a plateau and cuesta morphology. Typical geomorphic settings of rock cities are marginal parts of plateaus, backslopes of cuesta ridges and top parts of residual hills (mesas). Examples of sandstone rock cities from south-west Poland include the mesa of Szczeliniec Wielki and the plateau of Skalniak (the socalled Błędne Skały rock labyrinth, Dziedziniec), whereas they are even better represented in the adjacent part of Czechia (at the Adršpach and Teplice ‘Rock Cities’ and Ostaš). Further rock cities can be found in northern Czechia, within an extensive tableland built of Upper Cretaceous sedimentary formations, chiefly sandstones, and then in Saxony, Germany. The origin and evolution of the ‘rock cities’ are primarily controlled by structure, i.e. the pattern of discontinuities within the rock mass. These, preferentially eroded due to mechanical weakness, turn into ‘streets’, and into ‘squares’ at their intersections. However, the rock mass itself has to be strong enough to support steep to vertical rock faces, and in sandstones the strength is the combined result of wide joint spacing in certain sandstone variants and the presence of surface crusts of chemical and biochemical origin. The latter prevent steady grain-by-grain disintegration. A wide range of processes are thus involved in the formation of sandstone ‘rock cities’, including surface and subsurface weathering (including silica dissolution), mass movements of different types, underground erosion (piping), and subordinately fluvial erosion and aeolian abrasion. Despite these being spectacular landscapes, very few models of long-term evolution of ‘rock city’ and ruiniform relief have been presented in the literature, and it is anyway unlikely that any one scenario would apply to all situations. Rather, ‘rock cities’ are most probably examples of geomorphological convergence.


1. Adamovič J., Mikuláš R., Cílek V., 2006, Sandstone districts of the Bohemian Paradise: emergence of a romantic landscape, Geolines, 21, s. 1–100.
2. Adamovič J., Mikuláš R., Cílek V., 2010, Atlas pískovcových skalnych měst České a Slovenské republiky: Geologie a geomorfologie, Academia, Praha.
3. Alexandrowicz Z., 1970, Skałki piaskowcowe w okolicach Ciężkowic nad Białą, Ochrona Przyrody, 35, 281–335.
4. Balatka B., Loučková J., Sládek J., 1969, Vývoj pískovcového réliefu české tabule na přikladu Polomených hor, Rozprávy ČSAV, ř. MPV, 79, 5, s. 1–39.
5. Brice-o H.O., Schubert C., 1990, Geomorphology of the Gran Sabana, Guyana Shield, southeastern Venezuela, Geomorphology, 3, s. 125–141. https://doi.org/10.1016/0169-555X(90)90041-N
6. Bruthans J., Soukup J., Světlík D., Schweigstillová J., Mayo A., 2012, Zpevnené povrchy puklin v kvádrovém pískovci a jejich role pri vzniku skalních mest, Zprávy o geologických výzkumech v roce 2012 (B), s. 109–115.
7. Busche D., Sponholz B., 1992, Morphological and micromorphological aspects ofthe sandstone karst of eastern Niger, Zeitschrift für Geomorphologie, Supplement-Band, 85, s. 1–18.
8. Cílek V., Williams R., Osborne A., Migoń P., Mikuláš R., 2007, The origin and development of sandstone landforms, [w:] H. Härtel, V. Cílek, T. Herben, A. Jackson, R. Williams (red.), Sandstone Landscapes, Academia, Praha, s. 34–43.
9. Cunningham F.F., 1971, The Silent City of Rocks, a bornhardt landscape in the Cotterell Range, South Idaho, Zeitschrift für Geomorphologie N.F., 15, s. 404–429.
10. Czeppe Z., 1949, Labirynt skalny na szczycie Gór Stołowych, Wierchy, 19, s. 44–57.
11. Czeppe Z., 1952, Z morfologii Gór Stołowych, Ochrona Przyrody, 20, s. 236–252.
12. De Melo M.S., Coimbra A.M., 1999, Ruiniform relief in sandstones: the example of Vila Velha, Carboniferous of the Parana Basin, Southern Brazil, Acta Geologica Hispanica, 31, 4, s. 25–40.
13. Della Fávera, J.C., 1999, Parque Nacional Sete Cidades, Piauí, [w:] C. Schobbenhaus, D.A. Campos, E.T. Queiroz, M. Winge, M. Berbert-Born (red.), Sítios Geológicos e Paleontológicos do Brasil (dostęp z: http://sigep.cprm.gov.br/sitio025/sitio025.htm; 2017‑02‑17).
14. Demek J., 1987, Obecna geomorfologie, Academia, Praha.
15. Dixon, J.C., 2010, Canyonlands and arches: windows on landscapes in the American Southwest, [w:] P. Migoń (red.), Geomorphological Landscapes of the World, Springer, Dordrecht, s. 39–47.
16. Dumanowski B., 1961, Zagadnienie rozwoju stoku na przykładzie Gór Stołowych, Czasopismo Geograficzne, 32, s. 311–324.
17. Duszyński F., Migoń P., 2017, Zespół skalny Dziedzińca na płaskowyżu Skalniaka w Górach Stołowych, Przyroda Sudetów, 20, s. 199–218.
18. Duszyński F., Migoń P., Kasprzak M., 2016, Underground erosion and sand removal from a sandstone tableland, Stołowe Mountains, SW Poland, Catena, 147, s. 1–15. https://doi.org/10.1016/j.catena.2016.06.032
19. Fairbridge R.W. (red.), 1968, Encyclopedia of Geomorphology, Reinhold, New York.
20. Filippi M., 2018, Bruthans J., Řihošek J., Slavík M., Adamovič J., Mašín D., 2018, Arcades: Products of stress-controlled and discontinuity-related weathering. Earth-Science Reviews, 180, s. 159–184. https://doi.org/10.1016/j.earscirev.2018.03.012
21. Ford D.C., Williams P.W., 2007, Karst Hydrogeology and Geomorphology, Wiley, Chichester. https://doi.org/10.1002/9781118684986
22. Goudie A. (red.), 2004, Encyclopedia of Geomorphology, Routledge, London.
23. Goudie A., Migoń P., Allison R.J., Rosser N., 2002, Sandstone geomorphology of the Al Quwayra area of south Jordan, Zeitschrift für Geomorphologie, 46 (3), s. 365–390. https://doi.org/10.1127/zfg/46/2002/365
24. Grimes K., 2012, Surface karst features of the Judbarra/Gregory National Park, Northern Territory, Australia, Helictite, 41, s. 15–36.
25. Howard, A.D., Kochel, R.C., 1988, Introduction to cuesta landforms and sapping processes on the Colorado Plateau, [w:] A.D. Howard, R.C. Kochel, M.E. Holt (red.), Sapping Features of the Colorado Plateau. A Comparative Planetary Geology Field Guide, NASA Scientific and Technical Information Division, Washington DC, s. 6–56.
26. Jaroszewski W., Marks L., Radomski A., 1985, Słownik geologii dynamicznej, Wydawnictwa Geologiczne, Warszawa.
27. Jennings J.N., 1983, Sandstone pseudokarst or karst?, [w:] R.W. Young, G.C. Nanson (red.), Aspects of Australian Sandstone Landscapes, University of Wollongong, Wollongong, s. 21–30.
28. Jerzykiewicz T., 1968, Uwagi o orientacji i genezie ciosu w skałach górnokredowych niecki śródsudeckiej, Geologia Sudetica, 4, s. 465–478.
29. Klimaszewski M., 1981, Geomorfologia, PWN, Warszawa.
30. Lehmann H., 1970, Über "Verzauberte Städte" (ciudades encantadas, villes de rocher) und ähnliche "Naturspiele" in Carbonatgesteinen Südwesteuropas, [w:] Sitzungberichte der Wissenschaftlichen Gesellschaft an der Johann-Wolfgang-Goethe-Universität, 8 (1969), 2 (przedruk w: Beiträge zur Karstmorphologie, Erdkundlicher Wissen, 86, Franz Steiner Verlag, Stuttgart, s. 213–244).
31. Lohman S.W., 1974, The geologic story of the Canyonlands National Park, U.S. Geological Survey Bulletin, 1327, s. 1–126.
32. Mainguet M., 1972, Les Modélé des grès, Institute Géographique National, Paris.
33. Martini J.E.J., 1979, Karst in Black Reef Quartzite near Kaapsehoop, Eastern Transvaal. Annals of the South African Geological Survey, 13, s. 115–128.
34. Mertlík J., Adamovič J., 2016, Bohemian Paradise: sandstone landscapes in the foreland of a major fault, [w:] T. Pánek, J. Hradecký (red.), Landscapes and Landforms of the Czech Republic, Springer, Switzerland, s. 195–208.
35. Michniewicz A., Jancewicz K., Różycka M., Migoń P., 2016, Rzeźba granitowa skalnego miasta Starościńskich Skał w Rudawach Janowickich (Sudety Zachodnie), Landform Analysis, 31, 17–33. https://doi.org/10.12657/landfana.031.002
36. Migoń P., 2006, Geomorfologia, PWN, Warszawa.
37. Migoń P., Duszyński F., Goudie A., 2017, Rock cities and ruiniform relief: Forms – processes – terminology, Earth-Science Reviews, 171, s. 78–104. https://doi.org/10.1016/j.earscirev.2017.05.012
38. Migoń P., Kasprzak M., 2015, Analiza rzeźby stoliwa Szczelińca Wielkiego w Górach Stołowych na podstawie numerycznego modelu terenu z danych LiDAR, Przegląd Geograficzny, 87, 1, s. 27–52. https://doi.org/10.7163/PrzG.2015.1.2
39. Migoń P., Zwiernik M., 2006, Strukturalne uwarunkowania rzeźby północno-wschodniego progu Gór Stołowych, Przegląd Geograficzny, 78, s. 319–338.
40. Millar S.W.S., 2007, Late-Pleistocene slope evolution using characteristics of rock cities in Western New York, USA, Zeitschrift für Geomorphologie, 51, Supplement-Band 1, s. 57–67.
41. Mueller J.E., Twidale C.R., 1988, Geomorphic development of City of Rocks, Grant County, New Mexico, New Mexico Geology, 10, s. 73–79.
42. Peng H., Ren F., Pan Z., 2015, A review of Danxia landforms in China, Zeitschrift für Geomorphologie, 59, Suppl. 1, s. 19–33. https://doi.org/10.1127/zfg_suppl/2015/S-00173
43. Piccini L., 1995, Karst in siliceous rocks: karst landforms and caves in the Ayuán-tepui (Est. Bolivar, Venezuela), International Journal of Speleology, 24, s. 2–13. https://doi.org/10.5038/1827-806X.24.1.2
44. Piccini L., Mecchia M., 2009, Solution weathering rate and origin of karst landforms and caves in the quartzite of Auyan-tepui (Gran Sabana, Venezuela), Geomorphology, 106, s. 15–25. https://doi.org/10.1016/j.geomorph.2008.09.019
45. Placek A., 2006, Młotek Schmidta w badaniach geomorfologicznych – ewaluacja i przykłady zastosowania, Czasopismo Geograficzne, 77, s. 182–205.
46. Placek A., 2011, Rzeźba strukturalna Sudetów w świetle wyników pomiarów wytrzymałości skał i analiz numerycznego modelu wysokości, Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego, 16.
47. Pulina M., 1999, Kras. Formy i procesy, Wydawnictwo Uniwersytetu Śląskiego, Katowice.
48. Pulinowa M.Z., 1989, Rzeźba Gór Stołowych, Prace Uniwersytetu Śląskiego w Katowicach, 1008.
49. Remisz J., 2007, Strukturalne uwarunkowania rzeźby południowego progu Gór Stołowych, Przyroda Sudetów, 10, s. 253–268.
50. Robinson D.A., 2007, Geomorphology of the inland sandstone cliffs of Southeast England, [w:] H. Härtel, V. Cílek, T. Herben, A. Jackson, R. Williams (red.), Sandstone Landscapes, Academia, Praha, s. 44–51.
51. Robinson D.A., Williams R.B.G., 1994, Sandstone weathering and landforms in Britain and Europe, [w:] D.A. Robinson, R.B.G. Williams (red.), Rock Weathering and Landform Evolution, Wiley, Chichester, s. 371–391.
52. Rogaliński J., Słowiok G., 1958, Rzeźba Gór Stołowych w świetle teorii pedyplanacji, Czasopismo Geograficzne, 29, s. 473–496.
53. Rubin J., Balatka B. (red.), 1986, Atlas skalních, zemních a půdních tvarů, Academia, Praha.
54. Rybář J., Stemberk J., Hartvich F., 2006, Slope failures around the rock castle Drábské Světničky, Czech Republic, Acta Geodyn. Geomater., 3 (4), s. 51–65.
55. Sauro F., 2014, Structural and lithological guidance on speleogenesis in quartzsandstone: evidence of the arenisation process, Geomorphology, 226, s. 106–123. https://doi.org/10.1016/j.geomorph.2014.07.033
56. Silva Mutzenberg D., Barros Correa A.C., Azevêdo Tavares B., Cisneiros D., 2015, Serra da Capivara National Park: ruinform landscapes on the Parnaiba Cuesta, [w:] B.C. Vieira, A.A. Rodrigues Salgado, L.J. Cordeiro Santos (red.), Landscapes and Landforms of Brazil, Springer, Dordrecht, s. 253–263.
57. Slavík M., Bruthans J., Filippi M., Schweigstillová J., Falteisek L., Řihošek J., 2017, Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion, Geomorphology, 278, s. 298–313. https://doi.org/10.1016/j.geomorph.2016.09.040
58. Svoboda J. (red.), 1983, Encyklopedický slovník geologických věd, Academia, Praha.
59. Traczyk A., 2009, Problemy klasyfikacji grubofrakcyjnych pokryw stokowych, [w:] A. Kostrzewski, R. Paluszkiewicz (red.), Geneza, litologia i stratygrafia utworów czwartorzędowych, t. V, UAM, Poznań, s. 569–578.
60. Vařilová Z., 2016, Elbe Sandstones, [w:] T. Pánek, J. Hradecký (red.), Landscapes and Landforms of the Czech Republic, Springer, Switzerland, s. 123–137.
61. Viles H., Pentecost A., 1994, Problems in assessing the weathering action of lichens with an example of epiliths on sandstone, [w:] D.A. Robinson, R.B.G. Williams (red.), Rock Weathering and Landform Evolution, Wiley, Chichester, s. 99–116.
62. Vítek J., 1979, Pseudokrasové tvary v křídových pískovcích severovýchodních Čech, Rozprávy ČSAV, ř. MPV, 89, 4, s. 1–57.
63. Vítek J., 2016, Adršpach-Teplice Rocks and Broumov Cliffs – large sandstone rock cities in the Central Europe, [w:] T. Pánek, J. Hradecký (red.), Landscapes and Landforms of the Czech Republic, Springer, Switzerland, s. 209–220.
64. Walczak W., 1963, Geneza form skalnych na północno-wschodniej krawędzi Gór Stołowych, Acta Universitatis Wratislaviensis, 9, Studia Geograficzne, 1, s. 191–200.
65. Whittow J., 1984, Dictionary of Physical Geography, Penguin, London.
66. Wojewoda J., 1997, Upper Cretaceous littoral-to-shelf succession in the Intrasudetic Basin and Nysa Trough, Sudety Mts. [w:] J. Wojewoda (red.), Obszary źródłowe: zapis w osadach, Wind, Wrocław, s. 81–96.
67. Wray R.A.L., 1997, Quartzite dissolution: karst or pseudokarst?, Cave Karst Sci., 24 (2), s. 81–86.
68. Wray R.A.L., 2009, Phreatic drainage conduits within quartz sandstone: evidence from the Jurassic Precipice Sandstone, Carnarvon Range, Queensland, Australia, Geomorphology 110, s. 203–211. https://doi.org/10.1016/j.geomorph.2009.04.007
69. Young R.W., 1986, Tower Karst in sandstone: Bungle Bungle massif, northwestern Australia, Zeitschrift für Geomorphologie N.F., 30, s. 189–202.
70. Young R.W., 1987, Sandstone landforms of the tropical East Kimberley region, Journal of Geology, 95, 205–218. https://doi.org/10.1086/629120
71. Young R.W., 1988, Quartz etching and sandstone karst: examples from the east Kimberleys, northwestern Australia, Zeitschrift für Geomorphologie, 32, s. 409–423.
72. Young R.W., Wray R.A.L., Young A.R.M., 2009, Sandstone Landforms, Cambridge University Press, Cambridge.
73. Young R.W., Wray R.A.L., 2015, Rock control in sandstone geomorphology: a tribute to Eiju Yatsu with some Australian examples, Zeitschrift für Geomorphologie, 59, Supplement-Band 1, s. 3–17.
74. Zerboni, A., Perego, A., Cremaschi, M., 2015, Geomorphological map of the Tadrart Acacus massif and the Erg Uan Kasa (Libyan Central Sahara), Journal of Maps 11, s. 772–787. https://doi.org/10.1080/17445647.2014.955891


Przegląd Geograficzny





Start page:


End page:



File size 4,1 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:67597 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2018.3.1


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY-SA 4.0 license

Terms of use:

Copyright-protected material. [CC BY-SA 4.0] May be used within the scope specified in Creative Commons Attribution BY-SA 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.



This page uses 'cookies'. More information