Kowalska, Anna : Autor ; Wolski, Jacek (1971– ) : Autor ; Affek, Andrzej Norbert : Autor ; Regulska, Edyta : Autor ; Roo-Zielińska, Ewa (1948– ) : Autor
Przegląd Geograficzny T. 93 z. 3 (2021)
The aim of this work was to review the latest literature in terms of the use of phytosociological relevés (vegetation plots) in research on the natural environment. The systematic review included 321 articles published in 2010‑2021 in the most renowned journals (indexed in the Web of Science Core Collection with a score ≥100 according to the 2021 list of journals of the Poland’s Ministry of Education and Science). The research questions were: in which fields of science and practice, for what purposes and on what spatial scales the phytosociological relevés are currently used. After initial review, the articles were divided into 10 thematic groups: 1) classification of plant communities, 2) methodological studies, 3) relationship between vegetation and other elements of the environment, 4) occurrence of invasive plant species, 5) indicative role of vegetation, 6) plant communities as habitats for animals, 7) human footprint on vegetation, 8) long-term vegetation changes, 9) combining phytosociological methods with remote sensing methods, 10) social studies. The results showed that phytosociological relevés, as the method to investigate vegetation developed in the first decades of the 20th century, are still widely used in many regions of the world. The most numerous thematic group comprised articles that show how habitat conditions impact the distribution and diversity of plant species and their communities, while the least numerous – studies combining natural and social research. The vast majority of research was dedicated to environmental problems, although social and economic aspects were also present. These were both theoretical and methodological works, as well as detailed studies, which resulted in the formation of recommendations and practical guidelines for nature protection or spatial planning. Recently, relevés have been rarely used solely to distinguish and characterise plant communities, as originally intended by those who invented this method. However, thanks to modern statistical and computer tools, more and more attempts are being made to create automatic classifications with the use of artificial intelligence, e.g. neural networks. The geographic scope was usually restricted to one country (local and regional – 241 articles) or to two or more bordering countries (47). Continental (19) and global (7) studies are less common and studies within Europe prevail. It is because the discussed method was developed and is best known in Europe (Franco-Swiss Phytosociological School), and its dissemination throughout the world is only an evidence of its universality and efficiency. The recent larger-scale studies became possible mainly due to the development of transnational vegetation databases, e.g. the widely utilised European Vegetation Database – EVA.
Aavik, T., & Liira, J. (2010). Quantifying the effect of organic farming, field boundary type and land‑scape structure on the vegetation of field boundaries. Agriculture, Ecosystems and Environment, 135(3), 178‑186. https://doi.org/10.1016/j.agee.2009.09.005
Abadie, J., Dupouey, J.L., Salvaudon, A., Gachet, S., Videau, N., Avon, C., Dumont, J., Tatoni, T., & Bergès, L. (2021). Historical ecology of Mediterranean forests: Land use legacies on current understorey plants differ with time since abandonment and former agricultural use. Journal of Vegetation Science, 32, e12860. https://doi.org/10.1111/jvs.12860
Affeld, K., Wiser, S.K., Payton, I.J., & de Cáceres, M. (2018). Using classification assignment rules to assess land-use change impacts on forest biodiversity at local-to-national scales. Forest Ecosystems, 5(13). https://doi.org/10.1186/s40663‑017‑0121-z
Alessi, N., Wellstein, C., Rocchini, D., Midolo, G., Oeggl, K., & Zerbe, S. (2021). Surface tradeoffs and elevational shifts at the largest italian glacier: A thirty-years time series of remotely-sensed images. Remote Sensing, 13(1), 1‑14. https://doi.org/10.3390/rs13010134
Alexander, C., Moeslund, J.E., Bøcher, P.K., Arge, L., & Svenning, J.C. (2013). Airborne laser scanner (LiDAR) proxies for understory light conditions. Remote Sensing of Environment, 134, 152‑161. https://doi.org/10.1016/j.rse.2013.02.028
Avon, C., Bergès, L., & Dupouey, J.-L. (2015). Landscape effects on plants in forests: Large-scale context determines local plant response. Landscape and Urban Planning, 144, 65‑73. https://dx.doi.org/10.1016/j.landurbplan.2015.07.016
Axmanová, I., Tichý, L., Fajmonová, Z., Hájková, P., Hettenbergerová, E., Li, C.-F., Merunková, K., Nejezchlebová, M., Otýpková, Z., Vymazalová, M., & Zelený, D. (2012). Estimation of herbaceous biomass from species composition and cover. Applied Vegetation Science, 15(4), 580‑589. https://doi.org/10.1111/j.1654‑109X.2012.01191.x
Baraloto, C., Alverga, P., Baéz Quispe, S., Barnes, G., Bejar Chura, N., Brasil da Silva, I., Castro, W., da Souza, H., de Souza Moll, I., del Alcazar Chilo, J., Duenas Linares, H., Garate Quispe, J., Kenji, D., Medeiros, H., Murphy, S., Rockwell, C.A., Shenkin, A., Silveira, M., Southworth, J., …& Perz, S. (2014). Trade-offs among forest value components in community forests of south‑western Amazonia. Ecology and Society, 19(4), 56. https://doi.org/10.5751/ES-06911‑190456
Bazzichetto, M., Malavasi, M., Acosta, A.T.R., & Carranza, M.L. (2016). How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecological Indicators, 71, 618‑626. https://doi.org/10.1016/j.ecolind.2016.07.044
Becker-Scarpitta, A., Vissault, S., & Vellend, M. (2019). Four decades of plant community change along a continental gradient of warming. Global Change Biology, 25(5), 1629‑1641. https://doi.org/10.1111/gcb.14568
Becker, T., Spanka, J., Schröder, L., & Leuschner, C. (2017). Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Applied Vegetation Science, 20(2), 304‑313. https://doi.org/10.1111/avsc.12282
de Bello, F., Fibich, P., Zelený, D., Kopecký, M., Mudrák, O., Chytrý, M., Pyšek, P., Wild, J., Michalcová, D., Sádlo, J., Šmilauer, P., Lepš, J., & Päertel, M. (2016). Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 6(12), 4088‑4101. https://doi.org/10.1002/ece3.2169
Braun-Blanquet, J. (1921). Prinzipien einer Systematik der Pflanzengesellschaften auf floristischen Grundlage. Jahrbuch der St. Gallischen Naturwissenschaftlichen Gesellschaft, 57, 305‑351.
Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde. Wien-New York: Springer-Verlag.
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S.M., … & Jandt, U. (2018). Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 12(2), 1906‑1917. https://doi.org/10.1038/s41559‑018‑0699‑8
Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S.M., Chytrý, M., … & Zverev, A. (2019). sPlot - A new tool for global vegetation analyses. Journal of Vegetation Science, 30(2), 161‑186. https://doi.org/10.1111/jvs.12710
Bruschi, P., Mancini, M., Mattioli, E., Morganti, M., & Signorini, M.A. (2014). Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of Ethnobiology and Ethnomedicine, 10(1), 59. https://doi.org/10.1186/1746‑4269‑10‑59
de Cáceres, M., Font, X., & Oliva, F. (2010). The management of vegetation classifications with fuzzy clustering. Journal of Vegetation Science, 21(6), 1138‑1151. https://doi.org/10.1111/j.1654‑1103.2010.01211.x
Campbell, A., & Wang, Y. (2019). High spatial resolution remote sensing for salt marsh mapping and change analysis at fire Island national seashore. Remote Sensing, 11(9), 1107. https://doi.org/10.3390/rs11091107
Cano-Ortiz, A., Musarella, C.M., Piñar Fuentes, J.C., Pinto Gomes, C.J., Quinto-Canas, R., del Río, S., & Cano, E. (2021). Indicative Value of the Dominant Plant Species for a Rapid Evaluation of the Nutritional Value of Soils. Agronomy, 11(1), 1. https://dx.doi.org/10.3390/agronomy11010001
Carboni, M., Santoro, R., & Acosta, A.T.R. (2010). Are some communities of the coastal dune zonation more susceptible to alien plant invasion? Journal of Plant Ecology, 3(2), 139‑147. https://doi.org/10.1093/jpe/rtp037
Carboni, M., Santoro, R., & Acosta, A.T.R. (2011). Dealing with scarce data to understand how environmental gradients and propagule pressure shape fine-scale alien distribution patterns on coastal dunes. Journal of Vegetation Science, 22(5), 751‑765. https://doi.org/10.1111/j.1654‑1103.2011.01303.x
Čepelová, B., & Münzbergová, Z. (2012). Factors determining the plant species diversity and species composition in a suburban landscape. Landscape and Urban Planning, 106(4), 336‑346. https://doi.org/10.1016/j.landurbplan.2012.04.008
Chollet, S., Bergman, C., Gaston, A.J., & Martin, J.-L. (2014). Long-term consequences of invasive deer on songbird communities: Going from bad to worse? Biological Invasions, 17(2), 777‑790. https://doi.org/10.1007/s10530‑014‑0768‑0
Chytrý, M., Wild, J., Pyšek, P., Jarošik, V., Dendoncker, N., Reginster, I., Pino, J., Maskell, L.C., Vilà, M., Pergl, J., Kühn, I., Spangenberg, J.H., & Settele, J. (2012). Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography, 21(1), 75‑87. https://doi.org/10.1111/j.1466‑8238.2010.00573.x
Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., … & Yamalov, S. (2016). European Vegetation Archive (EVA): An integrated database of European vegetation plots. Applied Vegetation Science, 19(1), 173‑180. https://doi.org/10.1111/avsc.12191
Chytrý, M., Tichý, L., Hennekens, S.M., Knollová, I., Janssen, J.A.M., Rodwell, J.S., … & Schaminée,J.H.J. (2020). EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 23(4), 648‑675. https://doi.org/10.1111/avsc.12519
Das, A.A., John, R., & Anand, M. (2017). Does structural connectivity influence tree species distributions and abundance in a naturally discontinuous tropical forest formation? Journal of Vegetation Science, 28(1), 7‑18. https://doi.org/10.1111/jvs.12474
Dedieu, J.P., Carlson, B.Z., Bigot, S., Sirguey, P., Vionnet, V., & Choler, P. (2016). On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sensing, 8(6), 481. https://doi.org/10.3390/rs8060481
de Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellen, M., … & Verheyen, K. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18561‑18565. https://doi.org/10.1073/pnas.1311190110
Dengler, J., Jansen, F., Glöeckler, F., Peet, R.K., de Cáceres, M., Chytrý, M., Ewald, J., Oldeland, J., Lopez-Gonzalez, G., Finckh, M., Mucina, L., Rodwell, J.S., Schaminée, J.H.J., & Spencer, N. (2011). The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 22(4), 582‑597. https://doi.org/10.1111/j.1654‑1103.2011.01265.x
Dirnböck, T., Grandin, U., Bernhardt-Römermann, M., Beudert, B., Canullo, R., Forsius, M., Grabner, M.T., Holmberg, M., Kleemola, S., Lundin, L., Mirtl, M., Neumann, M., Pompei, E., Salemaa, M., Starlinger, F., Staszewski, T., & Uziębło, A.K. (2014). Forest floor vegetation response to nitrogen deposition in Europe. Global Change Biology, 20(2), 429‑440. https://doi.org/10.1111/gcb.12440
Divíšek, J., Hájek, M., Jamrichová, E., Petr, L., Večeřa, M., Tichý, L., Willner, W., & Horsák, M. (2020). Holocene matters: Landscape history accounts for current species richness of vascular plants in forests and grasslands of eastern Central Europe. Journal of Biogeography, 47(3), 721‑735. https://doi.org/10.1111/jbi.13787
Douda, J., Boublík, K., Slezák, M., Biurrun, I., Nociar, J., Havrdová, A., … & Zimmermann, N.E. (2016). Vegetation classification and biogeography of European floodplain forests and alder carrs. Applied Vegetation Science, 19(1), 147‑163. https://doi.org/10.1111/avsc.12201
Dyderski, M.K., & Jagodziński, A.M. (2019). Context-Dependence of Urban Forest Vegetation Invasion Level and Alien Species' Ecological Success. Forests, 10(1), 26. https://doi.org/10.3390/f10010026
Dzwonko, Z. (2007). Przewodnik do badań fitosocjologicznych. Vademecum Geobotanicum. Poznań-Kraków: Wydawnictwo Sorus.
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18. Göttingen.
El-Sheikh, M.A., Thomas, J., Alfarhan, A.H., Alatar, A.A., Mayandy, S., Hennekens, S.M., Schaminee, J.H.J., Mucina, L., & Alansari, A.M. (2016). SaudiVeg ecoinformatics: Aims, current status and perspectives. Saudi Journal of Biological Sciences, 24(2), 389‑398. https://dx.doi.org/10.1016/j.sjbs.2016.02.012
Feilhauer, H., Somers, B., & van der Linden, S. (2017). Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability. Ecological Indicators, 73, 825‑833. https://doi.org/10.1016/j.ecolind.2016.11.003
Fischer, A., Fischer, H.S., Kopecký, M., Macek, M., & Wild, J. (2015). Small changes in species composition despite stand-replacing bark beetle outbreak in Picea abies mountain forests. Canadian Journal of Forest Research, 45(9), 1164‑1171. https://doi.org/10.1139/cjfr-2014‑0474
Florens, F.B.V., Baider, C., Seegoolam, N.B., Zmanay, Z., & Strasberg, D. (2017). Long-term declines of native trees in an oceanic island's tropical forests invaded by alien plants. Applied Vegetation Science, 20(1), 94‑105. https://doi.org/10.1111/avsc.12273
Gégout, J.-C., & Coudun, Ch. (2012). The right relevé in the right vegetation unit: a new typicality index to reproduce expert judgement with an automatic classification programme. Journal of Vegetation Science, 23(1), 24‑32. https://doi.org/10.1111/j.1654‑1103.2011.01337.x
Gentili, R., Casati, E., Ferrario, A., Monti, A., Montagnani, C., Caronni, S., & Citterio, S. (2020). Vegetation cover and biodiversity levels are driven by backfilling material in quarry restoration. Catena, 195, 104839. https://doi.org/10.1016/j.catena.2020.104839
Gholizadeh, H., Naqinezhad, A., & Chytrý, M. (2020). Classification of the Hyrcanian forest vegetation, Northern Iran. Applied Vegetation Science, 23(1), 107‑126. https://doi.org/10.1111/avsc.12469
Gilardelli, F., Sgorbati, S., Armiraglio, S., Citterio, S., & Gentili, R. (2015). Ecological Filtering and Plant Traits Variation Across Quarry Geomorphological Surfaces: Implication for Restoration. Environmental Management, 55(5), 1147‑1159. https://doi.org/10.1007/s00267‑015‑0450-z
Gilardelli, F., Sgorbati, S., Citterio, S., & Gentili, R. (2016). Restoring Limestone Quarries: Hayseed, Commercial Seed Mixture or Spontaneous Succession? Land Degradation and Development, 27(2), 316‑324. https://doi.org/10.1002/ldr.2244
Giorgis, M.A., Cingolani, A.M., Tecco, P.A., Cabido, M., Poca, M., & von Wehrden, H. (2016). Testing alien plant distribution and habitat invasibility in mountain ecosystems: growth form matters. Biological Invasions, 18(7), 2017‑2028. https://doi.org/10.1007/s10530‑016‑1148‑8
Govaert, S., Meeussen, C., Vanneste, T., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.O., Heinken, T., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Perring, M.P., Ponette, Q., Plue, J., Selvi, F., Spicher, F., … & de Frenne, P. (2020). Edge influence on understorey plant communities depends on forest management. Journal of Vegetation Science, 31(2), 281‑292. https://doi.org/10.1111/jvs.12844
Güler, B., Jentsch, A., Apostolova, I., Bartha, S., Bloor, J.M.G., Campetella, G., Canullo, R., Házi, J., Kreyling, J., Pottier, J., Szabó, G., Terziyska, T., Uğurlu, E., Wellstein, C., Zimmermann, Z., & Dengler, J. (2016). How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses. Journal of Vegetation Science, 27(4), 692‑703. https://doi.org/10.1111/jvs.12411
Harris, R.B., Wenying, W., Badinqiuying, Smith, A.T., & Bedunah, D.J. (2015). Herbivory and competition of Tibetan steppe vegetation in winter pasture: Effects of livestock exclosure and plateau pika reduction. PLoS One, 10(7), e0132897. https://doi.org/10.1371/journal.pone.0132897
Hédl, R., Bernhardt-Römermann, M., Grytnes, J.A., Jurasinski, G., & Ewald, J. (2017). Resurvey of historical vegetation plots: a tool for understanding long-term dynamics of plant communities. Applied Vegetation Science, 20(2), 161‑163. https://doi.org/10.1111/avsc.12307Hédl, R., Bernhardt-Römermann, M., Grytnes, J.A., Jurasinski, G., & Ewald, J. (2017). Resurvey of historical vegetation plots: a tool for understanding long-term dynamics of plant communities. Applied Vegetation Science, 20(2), 161‑163. https://doi.org/10.1111/avsc.12307
Hemp, A., & Hemp, C. (2018). Broken bridges: The isolation of Kilimanjaro's ecosystem. Global Change Biology, 24(8), 3499‑3507. https://doi.org/10.1111/gcb.14078
Herbich, J. (red.). (2004). Poradniki ochrony siedlisk i gatunków Natura 2000 - podręcznik metodyczny. Warszawa: Ministerstwo Środowiska.
Hernández, H.J., & Villaseñor, N.R. (2018). Twelve-year change in tree diversity and spatial segregation in the Mediterranean city of Santiago, Chile. Urban Forestry and Urban Greening, 29, 10‑18. https://doi.org/10.1016/j.ufug.2017.10.017
Höft, A., Müller, J., & Gerowitt, B. (2010). Vegetation indicators for grazing activities on grassland to be implemented in outcome-oriented agri-environmental payment schemes in North-East Germany. Ecological Indicators, 10(3), 719‑726. https://doi.org/10.1016/j.ecolind.2009.12.001
Hrivnák, R., Slezák, M., Jarčuška, B., Jarolímek, I., & Kochjarová, J. (2015). Native and alien plant species richness response to soil nitrogen and phosphorus in temperate floodplain and swamp forests. Forests, 6(10), 3501‑3513. https://doi.org/10.3390/f6103501
Janišová, M., Michalcová, D., Bacaro, G., & Ghisla, A. (2013). Landscape effects on diversity of semi-natural grasslands. Agriculture Ecosystems & Environment, 182, 47‑58. https://doi.org/10.1016/j.agee.2013.05.022
Jansen, F., Ewald, J., & Zerbe, S. (2011). Ecological preferences of alien plant species in North-Eastern Germany. Biological Invasions, 13(12), 2691‑2701. https://doi.org/10.1007/s10530‑011‑9939‑4
Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J.C., Willner, W., Gégout, J.C., Agrillo, E., Campos, J.A., Jandt, U., Kącki, Z., Šilc, U., Slezák, M., Tichý, L., Tsiripidis, I., Turtureanu, P.D., Ujházyová, M., & Wohlgemuth, T. (2018). History and environment shape species pools and community diversity in European beech forests. Nature Ecology & Evolution, 2(3), 483‑490. https://doi.org/10.1038/s41559‑017‑0462‑6
Jorgenson, J.C., Ver Hoef, J.M., & Jorgenson, A.M.T. (2010). Long-term recovery patterns of arctic tundra after winter seismic exploration. Ecological Applications, 20(1), 205‑221. https://doi.org/10.1890/08‑1856.1
Junsongduang, A., Balslev, H., Inta, A., Jampeetong, A., & Wangpakapattanawong, P. (2013). Medicinal plants from swidden fallows and sacred forest of the Karen and the Lawa in Thailand. Journal of Ethnobiology and Ethnomedicine, 9(1), 4. https://doi.org/10.1186/1746‑4269‑9-44
Kalníková, V., Chytrý, K., Biţa-Nicolae, C., Bracco, F., Font, X., Iakushenko, D., … & Chytrý, M. (2021). Vegetation of the European mountain river gravel bars: A formalized classification. Applied Vegetation Science, 24(1), e12542. https://doi.org/10.1111/avsc.12542
Kalusová, V., Chytrý, M., Peet, R.K., & Wentworth, T.R. (2015). Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology, 96(12), 3363‑3373. https://doi.org/10.1890/15‑0021.1
Kapfer, J., Hédl, R., Jurasinski, G., Kopecký, M., Schei, F.H., & Grytnes, J.A. (2017). Resurveying historical vegetation data - opportunities and challenges. Applied Vegetation Science, 20(2), 164‑171. https://doi.org/10.1111/avsc.12269
Karlsen, S.R., Jepsen, J.U., Odland, A., Ims, R.A., & Elvebakk, A. (2013). Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia, 173(3), 859‑870. https://doi.org/10.1007/s00442‑013‑2648‑1
Kącki, Z., & Śliwiński, M. (2012). The Polish Vegetation Database: Structure, resources and development. Acta Societatis Botanicorum Poloniae, 81(2), 75‑79. https://doi.org/10.5586/asbp.2012.014
Keim, J.L., DeWitt, P.D., Fitzpatrick, J.J., & Jenni, N.S. (2016). Estimating plant abundance using inflated beta distributions: Applied learnings from a lichen-caribou ecosystem. Ecology and Evolution, 7(2), 486‑493. https://doi.org/10.1002/ece3.2625
Kidron, G.J. (2016). Goat trampling affects plant establishment, runoff and sediment yields over crusted dunes. Hydrological Processes, 30(13), 2237‑2246. https://doi.org/10.1002/hyp.10794
Kirby, K.J., Goldberg, E.A., Isted, R., Perry, S.C., & Thomas, R.C. (2016). Long-term changes in the tree and shrub layers of a British nature reserve and their relevance for woodland conservation management. Journal for Nature Conservation, 31, 51‑60. https://doi.org/10.1016/j.jnc.2016.03.004
Koide, D., Yoshida, K., Daehler, C.C., & Mueller-Dombois, D. (2017). An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai'i. Journal of Vegetation Science, 28(5), 939‑950. https://doi.org/10.1111/jvs.12549
Kopecký, M., & Macek, M. (2015). Vegetation resurvey is robust to plot location uncertainty. Diversity and Distributions, 21(3), 322‑330. https://doi.org/10.1111/ddi.12299
Kuhn, E., & Gégout, J.C. (2019). Highlighting declines of cold-demanding plant species in lowlands under climate warming. Ecography, 42(1), 36‑44. https://doi.org/10.1111/ecog.03469
Kusumoto, B., Villalobos, F., Shiono, T., & Kubota, Y. (2019). Reconciling Darwin's naturalization and pre‐adaptation hypotheses: An inference from phylogenetic fields of exotic plants in Japan. Journal of Biogeography, 46(11), 2597‑2608. https://doi.org/10.1111/jbi.13683
Landucci, F., Šumberová, K., Tichý, L., Hennekens, S., Aunina, L., Biță-Nicolae, C., … & Chytrý, M. (2020). Classification of the European marsh vegetation (Phragmito-Magnocaricetea) to the association level. Applied Vegetation Science, 23(2), 297‑316. https://doi.org/10.1111/avsc.12484
Langford, Z., Kumar, J., Hoffman, F.M., Norby, R.J., Wullschleger, S.D., Sloan, V.L., & Iversen, C.M. (2016). Mapping Arctic plant functional type distributions in the Barrow environmental observatory using World View-2 and LiDAR datasets. Remote Sensing, 8(9), 733. https://doi.org/10.3390/rs8090733
Laumonier, Y., & Nasi, R. (2018). The last natural seasonal forests of Indonesia: Implications for forest management and conservation. Applied Vegetation Science, 21(3), 461‑476. https://doi.org/10.1111/avsc.12377
Leck, M.A. (2013). Dispersal potential of a tidal river and colonization of a created tidal freshwater marsh. AoB PLANTS, 5, pls050. https://doi.org/10.1093/aobpla/pls050
Lenoir, J., Gégout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N.E., Dullinger, S., Pauli, H., Willner, W., Grytnes, J.A., Virtanen, R., & Svenning, J.C. (2010). Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges. PLoS One, 5(12), e15734. https://doi.org/10.1371/journal.pone.0015734
Leßmeister, A., Bernhardt-Römermann, M., Schumann, K., Thiombiano, A., Wittig, R., & Hahn, K. (2019). Vegetation changes over the past two decades in a West African savanna ecosystem. Applied Vegetation Science, 22(2), 230‑242. https://doi.org/10.1111/avsc.12428
Lewis, R.J., Szava-Kovats, R., & Päertel, M. (2016). Estimating dark diversity and species pools: an empirical assessment of two methods. Methods in Ecology and Evolution, 7(1), 104‑113. https://doi.org/10.1111/2041‑210X.12443
Li, C.F., Chytrý, M., Zelený, D., Chen, M.Y., Chen, T.Y., Chiou, C.R., … & Hsieh, C.F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16(4), 698‑719. https://doi.org/10.1111/avsc.12025
Liendo, D., Biurrun, I., Campos, J.A., García‐Mijangos, I., & Pearman, P.B. (2021). Effects of disturbance and alien plants on the phylogenetic structure of riverine communities. Journal of Vegetation Science, 32(1), 1‑11. https://doi.org/10.1111/jvs.12933
Locke, D.H., Avolio, M., Trammel, T., Roy Chowdhury, R., Morgan Grove, J., Rogan, J., Martin, D.G., Bettez, N., Cavender-Bares, J., Groffman, P.M., Hall, S.J., Heffernan, J.B., Hobbie, S.E., Larson, K.L., Morse, J.L., Neill, C., Ogden, L.A., O'Neil-Dunne, J.P.M., Pataki, D., … & Wheeler, M.M. (2018). A multi-city comparison of front and backyard differences in plant species diversity and nitrogen cycling in residential landscapes. Landscape and Urban Planning, 178, 102‑111. https://doi.org/10.1016/j.landurbplan.2018.05.030
Macander, M.J., Palm, E.C., Frost, G.V., Herriges, J.D., Nelson, P.R., Roland, C., Russell, K.L.M., Suitor, M.J., Bentzen, T.W., Joly, K.S., Goetz, J., & Hebblewhite, M. (2020). Lichen cover mapping for caribou ranges in interior Alaska and Yukon. Environmental Research Letters, 15(5), e055001. https://doi.org/10.1088/1748‑9326/ab6d38
Malavasi, M., Carboni, M., Cutini, M., Carranza, M.L., & Acosta, A.T.R. (2014). Landscape fragmentation, land-use legacy and propagule pressure promote plant invasion on coastal dunes: a patch-based approach. Landscape Ecology, 29(9), 1541‑1550. https://doi.org/10.1007/s10980‑014‑0074‑3
Máliš, F., Ujházy, K., Vodálová, A., Barka, I., Čaboun, V., & Sitková, Z. (2012). The impact of Norway spruce planting on herb vegetation in the mountain beech forests on two bedrock types. European Journal of Forest Research, 131(5), 1551‑1569. https://doi.org/10.1007/s10342‑012‑0624‑7
Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K., & Stevens, C.J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biology, 16(2), 671‑679. https://doi.org/10.1111/j.1365‑2486.2009.02022.x
de Mattia, F., Gentili, R., Bruni, I., Galimberti, A., Sgorbati, S., Casiraghi, M., & Labra, M. (2012). A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Botanical Journal of the Linnean Society, 169(3), 518‑529. https://doi.org/10.1111/j.1095‑8339.2012.01251.x
Matuszkiewicz, W., Faliński, J.B., Kostrowicki, A.S., Matuszkiewicz, J.M., Olaczek, R., & Wojterski, T. (red.). (1995). Potencjalna roślinność naturalna Polski. Mapa przeglądowa 1: 300 000. Warszawa: Instytut Geografii i Przestrzennego Zagospodarowania PAN. Pobrane z: https://www.igipz.pan.pl/Roslinnosc-potencjalna-zgik.html (10.05.2021).
Mccune, J.L., & Vellend, M. (2013). Gains in native species promote biotic homogenization over four decades in a human-dominated landscape. Journal of Ecology, 101(6), 1542‑1551. https://doi.org/10.1111/1365‑2745.12156
McNellie, M.J., Oliver, I., & Gibbons, P. (2015). Pitfalls and possible solutions for using geo-referenced site data to inform vegetation models. Ecological Informatics, 30, 230‑234. https://dx.doi.org/10.1016/j.ecoinf.2015.05.012
Meek, C.S., Richardson, D.M., & Mucina, L. (2010). A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation, 143(1), 156‑164. https://doi.org/10.1016/j.biocon.2009.09.021
Meier, E.S., & Hofer, G. (2016). Effects of plot size and their spatial arrangement on estimates of alpha, beta and gamma diversity of plants in alpine grassland. Alpine Botany, 126(2), 167‑176. https://doi.org/10.1007/s00035‑016‑0171‑9
Metsoja, J.A., Neuenkamp, L., Pihu, S., Vellak, K., Kalwij, J.M., & Zobel, M. (2012). Restoration of flooded meadows in Estonia - vegetation changes and management indicators. Applied Vegetation Science, 15(2), 231‑244. https://doi.org/10.1111/j.1654‑109X.2011.01171.x
Meyer, S., Bergmeier, E., Becker, T., Wesche, K., Krause, B., & Leuschner, C. (2015). Detecting longterm losses at the plant community level - arable fields in Germany revisited. Applied Vegetation Science, 18(3), 432‑442. https://doi.org/10.1111/avsc.12168
Michalcová, D., Lvončik, S., Chytrý, M., & Hajek, O. (2011). Bias in vegetation databases? A comparison of stratified-random and preferential sampling. Journal of Vegetation Science, 22(2), 281‑291. https://doi.org/10.1111/j.1654‑1103.2010.01249.x
Mitchell, R.J., Hewison, R.L., Fielding, D.A., Fisher, J.M., Gilbert, D.J., Hurskainen, S., … & Riach, D. (2018). Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland. Environmental Pollution, 235, 956‑964. https://doi.org/10.1016/j.envpol.2017.12.086
Moravcová, L., Pyšek, P., Jarošík, V., & Pergl, J. (2015). Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species. PLoS One, 10(4), e0123634. https://doi.org/10.1371/journal.pone.0123634
Möst, L., Hothorn, T., Müller, J., & Heurich, M. (2015). Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. Forest Ecology and Management, 338, 46‑56. https://doi.org/10.1016/j.foreco.2014.11.015
Navrátilová, J., Hájek, M., Navrátil, J., Hájková, P., & Frazier, R.J. (2017). Convergence and impoverishment of fen communities in a eutrophicated agricultural landscape of the Czech Republic. Applied Vegetation Science, 20(2), 225‑235. https://doi.org/10.1111/avsc.12298
Olleck, M., Reger, B., & Ewald, J. (2020). Plant indicators for Folic Histosols in mountain forests of the Calcareous Alps. Applied Vegetation Science, 23(2), 285‑296. https://doi.org/10.1111/avsc.12470
Paczoski, J. (1896). Życie gromadne roślin. Wszechświat, 28, 443‑446.
Peterka, T., Hájek, M., Jiroušek, M., Jiménez-Alfaro, B., Aunina, L., Bergamini, A., … & Chytrý, M. (2017). Formalized classification of European fen vegetation at the alliance level. Applied Vegetation Science, 20(1), 124‑142. https://doi.org/10.1111/avsc.12271
Peterka, T., Syrovátka, V., Dítě, D., Hájková, P., Hrubanová, M., Jiroušek, M., Plesková, Z., Singh, P., Šímová, A., Šmerdová, E., & Hájek, M. (2020). Is variable plot size a serious constraint in broadscale vegetation studies? A case study on fens. Journal of Vegetation Science, 31(4), 594‑605. https://doi.org/10.1111/jvs.12885
Pfeifer, M., Kor, L., Nilus, R., Turner, E., Cusack, J., Lysenko, I., Khoo, M., Chey, V.K., Chung, A.C., & Ewers, R.M. (2016). Mapping the structure of Borneo's tropical forests across a degradation gradient. Remote Sensing of Environment, 176, 84‑97. https://doi.org/10.1016/j.rse.2016.01.014
Pielech, R., Zając, K., Kadej, M., Malicki, M., Malkiewicz, A., & Tarnawski, D. (2017). Ellenberg's indicator values support prediction of suitable habitat for pre-diapause larvae of endangered butterfly Euphydryas aurinia. PLoS One, 12(6), e0179026. https://doi.org/10.1371/journal.pone.0179026
van Raamsdonk, L.W.D., Ozinga, W.A., Hoogenboom, L.A.P., Mulder, P.P.J., Mol, J.G.J., Groot, M.J., van der Fels-Klerxde, H.J., & Nijs, M. (2015). Exposure assessment of cattle via roughages to plants producing compounds of concern. Food Chemistry, 189, 27‑37. https://doi.org/10.1016/j.foodchem.2015.02.050
Raduła, M.W., Szymura, T.H., Szymura, M., Swacha, G., & Kącki, Z. (2020). Effect of environmental gradients, habitat continuity and spatial structure on vascular plant species richness in semi-natural grasslands. Agriculture, Ecosystems and Environment, 300, 106974. https://doi.org/10.1016/j.agee.2020.106974
Räsänen, A., Aurela, M., Juutinen, S., Kumpula, T., Lohila, A., Penttilä, T., & Virtanen, T. (2020). Detecting northern peatland vegetation patterns at ultra-high spatial resolution. Remote Sensing in Ecology and Conservation, 6(4), 457‑471. https://doi.org/10.1002/rse2.140
Räsänen, A., & Virtanen, T. (2019). Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sensing of Environment, 230, 111207. https://doi.org/10.1016/j.rse.2019.05.026
Rédei, T., Szitár, K., Czúcz, B., Barabás, S., Lellei-Kovács, E., Pándi, I., Somay, L., & Csecserits, A. (2014). Weak evidence of long-term extinction debt in Pannonian dry sand grasslands. Agriculture, Ecosystems and Environment, 182, 137‑143. https://doi.org/10.1016/j.agee.2013.07.016
Revermann, R., Finckh, M., Stellmes, M., Strohbach, B.J., Frantz, D., & Oldeland, J. (2016). Linking land surface phenology and vegetation-plot databases to model terrestrial plant α-diversity of the okavango basin. Remote Sensing, 8(5), 370. https://doi.org/10.3390/rs8050370
Riibak, K., Reitalu, T., Tamme, R., Helm, A., Gerhold, P., Znamenskiy, S., Bengtsson, K., Rosén, E., Prentice, H.C., & Pärtel, M. (2015). Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography, 38(7), 713‑721. https://doi.org/10.1111/ecog.01312
Roo-Zielińska, E. (2014). Wskaźniki ekologiczne zespołów roślinnych Polski. Warszawa: Wydawnictwo Akademickie Sedno.
Rozbrojová, Z., & Hájek, M. (2010). Can tissue element concentration patterns at the individual species level indicate the factors underlying vegetation gradients in wetlands? Journal of Vegetation Science, 21(2), 355‑363. https://doi.org/10.1111/j.1654‑1103.2009.01149.x
Sandel, B., Monnet, A.-C., & Vorontsova, M. (2016). Multidimensional structure of grass functional traits among species and assemblages. Journal of Vegetation Science, 27(5), 1047‑1060. https://doi.org/10.1111/jvs.12422
Savage, J., & Vellend, M. (2015). Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography, 38(6), 546‑555. https://doi.org/10.1111/ecog.01131
Schoolmaster, D.R., Stagg, C.L., Sharp, L.A., McGinnis, T.E. Wood, B., & Piazza, S.C. (2018). Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana. Ecosystems, 21(7), 1335‑1347. https://doi.org/10.1007/s10021‑018‑0223‑7
Schulz, H.M., Li, C.F., Thies, B., Chang, S.C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12(2), e0172663. https://doi.org/10.1371/journal.pone.0172663
Sheppard, C.S., Carboni, M., Essl, F., Seebens, H., & Thuiller, W. (2018). It takes one to know one: Similarity to resident alien species increases establishment success of new invaders. Diversity and Distributions, 24(5), 680‑691. https://doi.org/10.1111/ddi.12708
Shevtsova, I., Heim, B., Kruse, S., Schröder, J., Troeva, E.I., Pestryakova, L.A., Zakharov, E.S., & Herzschuh, U. (2020). Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environmental Research Letters, 15(8), 85006. https://doi.org/10.1088/1748‑9326/ab9059
Shirima, D.D., Pfeifer, M., Platts, P.J., Totland, Ø., & Moe, S.R. (2015). Interactions between canopy structure and herbaceous biomass along environmental gradients in moist forest and dry miombo woodland of Tanzania. PLoS One, 10(11), e0142784. https://doi.org/10.1371/journal.pone.0142784
Slingsby, J.A., Merow, C., Aiello-Lammens, M., Allsopp, N., Hall, S., Mollmann, H.K., … & Franklin, J. (2017). Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proceedings of the National Academy of Sciences, 114(18), 4697‑4702. https://doi.org/10.6084/m9.figshare.4737358
Song, C., Nigatu, L., Beneye, Y., Abdulahi, A., Zhang, L., & Wu, D. (2018). Mapping the vegetation of the Lake Tana basin, Ethiopia, using Google Earth images. Earth System Science Data, 10(4), 2033‑2041. https://doi.org/10.5194/essd-10‑2033‑2018
St-Denis, A., Kneeshaw, D., & Messier, C. (2018). Effect of predation, competition, and facilitation on tree survival and growth in abandoned fields: Towards precision restoration. Forests, 9(11), 692. https://doi.org/10.3390/f9110692
Sterk, M., Gort, G., Klimkowska, A., van Ruijven, J., van Teeffelen, A.J.A., & Wamelink, G.W.W. (2013). Assess ecosystem resilience: Linking response and effect traits to environmental variability. Ecological Indicators, 30, 21‑27. http://dx.doi.org/10.1016/j.ecolind.2013.02.001
Stevens, J.T., Miller, J.E.D., & Fornwalt, P.J. (2019). Fire severity and changing composition of forest understory plant communities. Journal of Vegetation Science, 30(6), 1099‑1109. https://doi.org/10.1111/jvs.12796
Stewart, L., Alsos, I.G., Bay, C., Breen, A.L., Brochmann, C., Boulanger-Lapointe, N., Broennimann, O., Bültmann, H., Bøcher, P.K., Damgaard, C., Daniëls, F.J.A., Ehrich, D., Eidesen, P.B., Guisan, A., Jónsdóttir, I.S., Lenoir, J., le Roux, P.C., Lévesque, E., Luoto, M., Nabe-Nielsen, J., Schönswetter, P., Tribsch, A., Tveraabak, L.U., Virtanen, R., Walker, D.A., Westergaard, K.B., Yoccoz, N.G., Svenning, J.C., Wisz, M., Schmidt, N.M., & Pellissier, L. (2018). The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 25(4), 430‑442. https://doi.org/10.1111/geb.12424
Stumpf, F., Schneider, M.K., Keller, A., Mayr, A., Rentschler, T., Meuli, R.G., Schaepman, M., & Liebisch, F. (2020). Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecological Indicators, 113, 106201. https://doi.org/10.1016/j.ecolind.2020.106201
Swacha, G., Botta-Dukát, Z., Kącki, Z., Pruchniewicz, D., & Żołnierz, L. (2018). The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS One, 13(5), e0197363. https://doi.org/10.1371/journal.pone.0197363
Thompson, K.A., & Newmaster, S.G. (2014). Molecular taxonomic tools provide more accurate estimates of species richness at less cost than traditional morphology-based taxonomic practices in a vegetation survey. Biodiversity Conservation, 23(6), 1411‑1424. https://doi.org/10.1007/s10531‑014‑0672-z
Tichý, L., Chytrý, M., & Botta-Dukát, Z. (2014). Semi-supervised classification of vegetation: preserving the good old units and searching for new ones. Journal of Vegetation Science, 25(6), 1504‑1512. https://doi.org/10.1111/jvs.12193
Timmermann, A., Damgaard, C., Strandberg, M.T., & Svenning, J.C. (2015). Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. Journal of Applied Ecology, 52(1), 21‑30. https://doi.org/10.1111/1365‑2664.12374
Tordoni, E., Bacaro, G., Weigelt, P., Cameletti, M., Janssen, J.A.M., Acosta, A.T.R., Bagella, S., Filigheddu, R., Bergmeier, E., Buckley, H.L., Ciccarelli, D., Forey, E., Hennekens, S.M., Lubke, R.A., Mahdavi, P., Peet, R.K., Peinado, M., Sciandrello, S., & Kreft, H. (2021). Disentangling native and alien plant diversity in coastal sand dune ecosystems worldwide. Journal of Vegetation Science, 32(1), e12861. https://doi.org/10.1111/jvs.12961
Tullus, T., Tishler, M., Rosenvald, R., Tullus, A., Lutter, R., & Tullus, H. (2019). Early responses of vascular plant and bryophyte communities to uniform shelterwood cutting in hemiboreal Scots pine forests. Forest Ecology and Management, 440, 70‑78. https://doi.org/10.1016/j.foreco.2019.03.009
Vandewalle, M., Purschke, O., de Bello, F., Reitalu, T., Prentice, H.C., Lavorel, S., Johansson, L.J., & Sykes, M.T. (2014). Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. Journal of Vegetation Science, 25(3), 750‑759. https://doi.org/10.1111/jvs.12126
Vankat, J.L. (2011). Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 1 - ponderosa pine forest. Forest Ecology and Management, 261(3), 309‑325. https://doi.org/10.1016/j.foreco.2010.05.026
Vanneste, T., Govaert, S., de Kesel, W., van den Berge, S., Vangansbeke, P., Meeussen, C., Brunet, J., Cousins, SAO., Decocq, G., Diekmann, M., Graae, B.J., Hedwall, P.O., Heinken, T., Helsen, K., Kapás, R.E., Lenoir, J., Liira, J., Lindmo, S., Litza, K., Naaf, T., Orczewska, A., Plue, J., Wulf, M., Verheyen, K., & de Frenne, P. (2020). Plant diversity in hedgerows and road verges across Europe. Journal of Applied Ecology, 57(7), 1244‑1257. https://doi.org/10.1111/1365‑2664.13620
Vaz, A.S., Marcos, B., Goncalves, J., Monteiro, A., Alves, P., Civantos, E., Lucas, R., Mairota, P., Garcia-Robles, J., Alonso, J., Blonda, P., Lomba, A., & Honrado, J.P. (2015). Can we predict habitat quality from space? A multi-indicator assessment based on an automated knowledge-driven system. International Journal of Applied Earth Observation and Geoinformation, 37, 106‑113. https://doi.org/10.1016/j.jag.2014.10.014
Vellend, M., Baeten, L., Myers-Smith, I.H., Elmendorf, S.C., Beauséjour, R., Brown, C.D., de Frenne, P., Verheyen, K., & Wipf, S. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19456‑19459. https://doi.org/10.1073/pnas.1312779110
Verheyen, K., Baeten, L., de Frenne, P., Bernhardt-Römermann, M., Brunet, J., Cornelis, J., Decocq, G., Dierschke, H., Eriksson, O., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Kirby, K., Naaf, T., Peterken, G., Petřik, P., Pfadenhauer, J., van Calster, H., Walther, G.R., Wulf, M., & Verstraeten, G. (2012). Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 100(2), 352‑365. https://doi.org/10.1111/j.1365‑2745.2011.01928.x
Verheyen, K., Bažány, M., Chećko, E., Chudomelová, M., Closset-Kopp, D., Czortek, P., … & Baeten, L. (2018). Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 29(5), 812‑823. https://doi.org/10.1111/jvs.12673
Vild, O., Hédl, R., Kopecký, M., Szabó, P., Suchánková, S., & Zouhar, V. (2017). The paradox of longterm ungulate impact: increase of plant species richness in a temperate forest. Applied Vegetation Science, 20(2), 282‑292. https://doi.org/10.1111/avsc.12289
Vild, O., & Rotherham, I.D. (2021). Long term exclosure of sheep grazing from an ancient wood: Vegetation change after a sixty year experiment. Applied Vegetation Science, 24(1), e12543. https://doi.org/10.1111/avsc.12543
Wamelink, G.W.W., Walvoort, D.J.J., Sanders, M.E., Meeuwsen, H.A.M., Wegman, R.M.A., Pouwels, R., & Knotters, M. (2019). Prediction of soil pH patterns in nature areas on a national scale. Applied Vegetation Science, 22(2), 189‑199. https://doi.org/10.1111/avsc.12423
Westhoff, V., & van der Maarel, E. (1978). The Braun-Blanquet approach. W: R.H. Whittaker (red.), Classification of plant communities (s. 289‑399). The Hague: Junk.
Willner, W., Jiménez-Alfaro, B., Agrillo, E., Biurrun, I., Campos, J.A., Čarni, A., … & Chytrý, M. (2017). Classification of European beech forests: a Gordian Knot? Applied Vegetation Science, 20(3), 494‑512. https://doi.org/10.1111/avsc.12299
Willner, W., Kuzemko, A., Dengler, J., Chytrý, M., Bauer, N., Becker, T., … & Janišová, M. (2017). A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe). Applied Vegetation Science, 20(1), 143‑158. https://doi.org/10.1111/avsc.12265
Wiser, S.K., Spencer, N., de Cáceres, M., Kleikamp, M., Boyle, B., & Peet, R.K. (2011). Veg-X - an exchange standard for plot-based vegetation data. Journal of Vegetation Science, 22(4), 598‑609. https://doi.org/10.1111/j.1654‑1103.2010.01245.x
Wysocki, Cz., & Sikorski, P. (2009). Fitosocjologia stosowana w ochronie i kształtowaniu krajobrazu. Warszawa: Wydawnictwo SGGW.
Zelený, D., Li, C.F., & Chytrý, M. (2010). Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift? Ecography, 33(3), 578‑589. https://doi.org/10.1111/j.1600‑0587.2009.05762.x
Zhao, M.X., Brofeldt, S., Li, Q.H., Xu, J.C., Danielsen, F., Laessoe, S.B.L., Poulsen, M.K., Gottlieb, A., Maxwell, J.F., & Theilade, I. (2016). Can Community Members Identify Tropical Tree Species for REDD plus Carbon and Biodiversity Measurements? PLoS One, 11(11), e0152061. https://doi.org/10.1371/journal.pone.0152061
oai:rcin.org.pl:231902 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.3.1
CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Creative Commons Attribution BY 4.0 license
Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Nov 18, 2021
Nov 18, 2021
885
https://www.rcin.org.pl/igipz/publication/268595
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– )
Roo-Zielińska, Ewa (1948– )
Kowalska, Anna (1977– )
Roo-Zielińska, Ewa (1948– ) Wydawnictwo Akademickie SEDNO Polska Akademia Nauk. Instytut Geografii i Przestrzennego Zagospodarowania
Wysocki, Czesław
Roo-Zielińska, Ewa (1948– ) Grabińska, Bożenna (1952– )
Matuszkiewicz, Jan Marek (1946– ) Wolski, Jacek (1971– ) Kowalska, Anna (1977– )