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REPORT ON THE PROGRESS OF THE SOLUTION OF CERTAIN
SPECIAL PROBLEMS OF DYNAMICS.

[From the Report of the British Association for the Advancement of Science, 1862, 
pp. 184—252.]

My “ Report on the Recent Progress of Theoretical Dynamics ” was published in the 
Report of the British Association for the year 1857, [195]. The present Report (which is 
in some measure supplemental thereto) relates to the Special Problems of Dynamics : to 
give a general idea of the contents, I will at once mention the heads under which 
these problems are considered ; viz., relating to the motion of a particle or system of 
particles, we have

Rectilinear Motion ;
Central Forces, and in particular
Elliptic Motion ;
The Problem of two Centres ;
The Spherical Pendulum ;
Motion as affected by the Rotation of the Earth, and Relative Motion in general ; 
Miscellaneous Problems ;
The Problem of three bodies.

And relating to the motion of a solid body, we have

The Transformation of Coordinates ;
Principal Axes, and Moments of Inertia ;
Rotation of a Solid Body ;
Kinematics of a Solid Body ;
Miscellaneous Problems.
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As regards the first division of the subject, I remark that the lunar and planetary- 
theories, as usually treated, do not (properly speaking) relate to the problem of three 
bodies, but to that of disturbed elliptic motion—a problem which is not considered in 
the present Report. The problem of the spherical pendulum is that of a particle 
moving on a spherical surface ; but, with this exception, I do not much consider the 
motion of a particle on a given curve or surface, nor the motion in a resisting medium ; 
what is said on these subjects is included under the head Miscellaneous Problems. 
The first six heads relate exclusively, and the head Miscellaneous Problems relates 
principally, to the motion of a single particle. As regards the second division of the 
subject, I will only remark that, from its intimate connexion with the theory of the 
motion of a solid body, I have been induced to make a separate head of the 
geometrical subject, “ Transformation of Coordinates,” and to treat of it in considerable 
detail.

I have inserted at the end of the present Report a list of the memoirs and 
works referred to, arranged (not, as in the former Report, in chronological order, but) 
alphabetically according to the authors’ names : those referred to in the former Report 
formed for the purpose thereof a single series, which is not here the case. The dates 
specified are for the most part those on the title-page of the volume, being intended 
to show approximately the date of the researches to which they refer, but in some 
instances a more particular specification is made.

I take the opportunity of noticing a serious omission in my former Report, viz., 
I have not made mention of the elaborate memoir, Ostrogradsky “ Mémoire sur les 
équations différentielles relatives au problème des Isopérimètres,” Mém. de St Pét., t. iv. 
(6 sér.) pp. 385—517, 1850, which among other researches contains, and that in the 
most general form, the transformation of the equations of motion from the Lagrangian 
to the Hamiltonian form, and indeed the transformation of the general isoperimetric 
system (that is, the system arising from any problem in the calculus of variations) 
to the Hamiltonian form. I remark also, as regards the memoir of Cauchy referred to 
in the note p. 12 as an unpublished memoir of 1831, there is an “Extrait du Mémoire 
présenté à l’Académie de Turin le 11 Oct. 1831,” published in lithograph under the 
date Turin, 1832, with an addition dated 6 Mar. 1833. The Extract begins thus :— 
“§ I. Variation des Constantes Arbitraires. Soient données entre la variable t,... 
n fonctions de t désignées par x, y, z.. et n autres fonctions de t désignées par u, v, w,.. 
2n équations différentielles du premier ordre et de la forme

dx _ dQ dy _ dQ dz _ dQ
dt du ’ dt dv’ dt dw ’

du _ dQ dv _ dQ dw _ dQ „ „
dt dx ’ dt dy’ dt dz ’

without any explanation as to the origin of these equations ; and the formulæ are 
then given for the variations of the constants in the integrals of the foregoing system ; 
this seems sufficient to establish that Cauchy in the year 1831 was familiar with the 
Hamiltonian form of the equations of motion.
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Bour’s “ Mémoire sur l’intégration des équations différentielles de la Mécanique,” 
as published, Mém. prés, à l’Inst., t. xiv. pp. 792—821, is substantially the same as 
the extract thereof in Lionville's Journal, referred to in my former Report ; but since 
the date of that Report there have been published in the Comptes Rendus, 1861 and 
1862, several short papers by the same author ; also Jacobi’s great memoir, see list, 
Jauobi, Nova Methodus &c., 1862, edited after his decease by Clebsch ; some valuable 
memoirs by Natani and Clebsch (Crelle, 1861 and 1862) relating to the Pfaffian system 
of equations (which includes those of Dynamics), and Boole “ On Simultaneous Diffe­
rential Equations of the First Order, in which the number of the Variables exceeds by 
more than one the number of the Equations,” Phil. Trans., t. clii. (1862), pp. 437—454.

Rectilinear Motion. Article Nos. 1 to 5.

1. The determination of the motion of a falling body, which is the case of a 
constant force, is due to Galileo.

2. A variable force, assumed to be a force depending only on the position of the 
particle, may be considered as a function of the distance from any point in the line, 
selected at pleasure as a centre of force; but if, as usual, the force is given as a 
function of the distance from a certain point, it is natural to take that point for the 
centre of force. The problem thus becomes a particular case of that of central forces ; 
and it is so treated in the Principia, Book I. § 7 ; the method has the advantage of 
explaining the paradoxical result which presents itself in the case Force <x(Dist.)-2, and 
in some other cases where the force becomes infinite. According to theory, the velocity 
becomes infinite at the centre, but the direction of the motion is there abruptly 
reversed; so that the body in its motion does not pass through the centre, but on 
arriving there, forthwith returns towards its original position ; of course such a motion 
cannot occur in nature, where neither a force nor a velocity ever is actually infinite.

3. Analytically the problem may be treated separately by means of the equation 
^ = X, which is at once integrable in the form = C + 2^Xdx.

4. The following cases may be mentioned:

Force Dist. The law of motion is well known, being in fact the same as for 
the cycloidal pendulum.

Force (Dist.)-2, = , which is the case above alluded to.

Assuming that the body falls from rest at a distance a, we have

æ — a (1 — cos </>),

ai
where, if n = , </> is given in terms of the time by means of the equationV p

nt — cf) — sin </>.
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If the body had initially a small transverse velocity, the motion would be in a very 
eccentric ellipse, and the formulae are in fact the limiting form of those for elliptic 
motion.

5. There are various laws of force for which the motion may be determined. In 
particular it can be determined by means of Elliptic Integrals, in the case of a body 
attracted to two centres, force oc(dist.)-2: see Legendre, Exercices de Cal. Intég., t. II. 
pp. 502—512, and Théorie des Fond. Ellip., t. I. pp. 531—538.

Central Forces, Article Nos. 6 to 26.

6. The theory of the motion of a body under the action of a given central force 
was first established in the Principia, Book I. §§ 2 and 3 : viz. Prop. I. the areas 
are proportional to the times, that is (using the ordinary analytical notation), r2d0 = hdt,

1 \
■and Prop. VI. Cor. 3, P°c^y2 py> \f[fp+u) > so ^at

d2u P ~ 
d02 + U~h2u2~Q‘

T. It is to be noticed that, given the orbit, the law of force is at once determined ; 
and § 2 contains several instances of such determination; thus,

Prop. VII. If a body revolve in a circle, the law of force to a point $ is force 

°c p (P the body, PV the chord through $).

Prop. IX. If a body move in a logarithmic spiral, force <* (dist.)-3.
Prop. X. If a body move in an ellipse, force to centre «dist., and as a particular 

case, if the body move in a parabola under the action of a force parallel to the axis, 
the force is constant. The particular case of motion in a parabola had been obtained by 
Galileo.

And § 3, Props. XI. XII. XIII. If a body move in an ellipse, hyperbola, or 
parabola under the action of a force tending to the focus, force <x (dist.)-2.

8. But Newton had no direct method of solving the inverse problem (which depends 
on the solution of the differential equation), “ Given the force to find the orbit.” Thus 
force « (dist.)-2, after it has been shown that an ellipse, a hyperbola, and a parabola 
may each of them be described under the action of such a force, the remainder of 
the solution consists in showing that, given the initial circumstances of the motion, a 
conic section (ellipse, parabola, or hyperbola, as the case may be) can be constructed, 
passing through the point of projection, having its tangent in the direction of the 
initial motion, and such that the velocity of the body describing the conic section under 
the action of the given central force is equal to the velocity of projection; which being 
so, the orbit will be the conic section so constructed. This is what is done, Prop. 
XVII. ; it may be observed that the latus rectum is constructed not very elegantly by 
means of the latus rectum of an auxiliary orbit.
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9. A more elegant construction was obtained by Cotes (see the Harmonia Mensurarum, 
pp. 103—105, and demonstration from the author’s papers in the Notes by R. Smith, 
pp. 124, 125), depending on the position of a point C, such that the velocity acquired 
in falling under the action of the central force from C directly or through infinity (x) 
to P the point of projection, is equal to the given velocity of projection.

10. But Newton’s original construction is now usually replaced by a construction 
which employs the space due to the velocity of projection considered as produced by 
a constant force equal to the central force at the point of projection.

11. § 9 of Book I. relates to revolving orbits, viz., it is shown that a body may 
be made to move in an orbit revolving round the centre of force, by adding to 
the central force required to make the body move in the same orbit at rest, a force 
« (dist.)-3. This appears very readily by means of the differential equation (ante, No. 6), 

viz. writing therein P + cw3 for P, and then 0', h' in the place of

respectively, the equation retains its original form, with 0', h' in the place of 0, h 
respectively.

12. It may be remarked that when the original central force vanishes, the fixed 
orbit is a right line (not passing through the centre of force). It thus appears by 
§ 9 that the curve u = A cos (n0 + B) may be described under the action of a force 
<x (dist.)-3. A proposition in § 2, already referred to, shows that a logarithmic spiral 
may be described under the action of such a force.

13. But the case of a force «(dist.)-3 was first completely discussed by Cotes in

Cf

Pf

s/--------Ç

. c/--------------T

the Harmonia Mensurarum, pp. 31—35, 98—104, and Notes, pp. 117—173. There are 
in all five cases, according as the velocity of projection is

1. Less than that acquired in falling from infinity, or say equal to that acquired 
in falling from a point C to P, the point of projection.

1 In the second case C lies on the radius vector produced beyond the centre, and the body is supposed 
to fall from rest at C (under the action of the central force considered as repulsive) to infinity, and then 
from the opposite infinity (with an initial velocity equal to the velocity so acquired) to P.
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2. Equal to that acquired in falling from infinity.

3, 4, 5. Greater than that acquired in falling from infinity, or say equal to that 
acquired in falling from a point G', through infinity, to P ; viz. PQ being the 
direction of projection, and SQ, G'T perpendiculars thereon from $ and Gr 
respectively,

3. SQ<TQ-,
4. =
5. SQ>TQ-

the equations of the orbits being

1. u = Aem0 + Be~m6, A and B same sign, so that rad. vector is never infinite.

2. u = Aem6 or Be~md, logarithmic spiral.

3. u = Aem0 + Be"™6, A and B opposite signs, so that rad. vector becomes infinite.

4. u = A0 + B, m = 0, reciprocal spiral.

5. u — A cos(n0 + B), m=n^ — 1.

14. The before-mentioned equation,

is in effect given (but the equation is encumbered with a tangential force) in 
Clairaut’s Théorie de la Lune, 1765. It is given in its actual form, and extensively 
used (in particular for obtaining the above-mentioned equations for Cotes’ spirals) in 
Whewell’s Dynamics, 1823. The equation appears to be but little known to continental 
writers, and (under the form u" + u - a2r2R = 0) it is given as new by Schellbach as 
late as 1853. The formulæ used in place of it are those which give t and 0 each of 
them in terms of r; viz.

which, however, assume that P is a function of r only.

15. Force œ (dist.)-2. The law of motion in the conic sections is implicitly given 
by Newton’s theorem for the equable description of the areas. For the parabola, if 
a denote the pericentric distance, and f the angle from pericentre or true anomaly, 
we have
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For the ellipse we have an angle g, the mean anomaly varying directly as the time 
(g — nt if n = —; an auxiliary angle u, the eccentric anomaly, connected with g by the 
V a2 '
equation

g = u — e sin u ;

and then the radius vector r and the true anomaly f are given in terms of u by the 
equations r—a(l—e cos u), and

T16. It is very convenient to have a notation for - and f considëred as functions 

of e, g, and I have elsewhere proposed to write

r = a elqr (e, g), f= elta (e, g),

read elqr elliptic quotient radius, and elta elliptic true anomaly.

17. The formulæ for the hyperbola correspond to those for the ellipse, but they 
contain exponential in the place of circular functions (see post, Elliptic Motion).

18. Euler, in the memoir “ Determinatio Orbitæ Cometæ Anni 1742,” (1743), 
p. 16 et seq., obtained an expression for the time of describing a parabolic arc in terms 
of the radius vectors and the chord ; viz. these being f, g, and k, the expression is 

which, however, as remarked by Lagrange, Méc. Anal., t. II. (3rd edit. p. 28), is deducible 
from Lemma X. of the third book of the Principia. But the theorem in its actual form 
is due to Euler.

19. Lambert, in the Proprietates Insigniores &c. (1761), Theorem VII. Cor. 2, 
obtained the same theorem, and in section 4 he obtained the corresponding theorem 
for elliptic motion ; viz. the expression for the time is

The form of the formula is, it will be observed, similar to that for motion in a 
straight line (ante, No. 4), and in fact the motion in the ellipse is, by an ingenious 
geometrical transformation, made to depend upon that in the straight line. The 
geometrical theorems upon which the transformation depends are stated, Cayley “ On 
Lambert’s Theorem &c.” (1861).
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20. The theorem was also obtained by Lagrange in the memoir “ Recherches &c.” 
(1767) as a corollary to his solution of the problem of two centres ; viz. upon making 
the attractive force of one of the centres equal to zero, and assuming that such centre 
is situate on the curve, the expression for the time presents itself in the form given 
by Lambert’s theorem.

21. Two other demonstrations of the theorem are given by Lagrange in the memoir 
“Sur une manière particulière d’exprimer le temps &c.” (1778), reproduced in Note V. 
of the second volume of the last edition (Bertrand’s) of the Mécanique Analytique. As 
M. Bertrand remarks, these demonstrations are very complete, very elegant, and very 
natural, assuming that the theorem is known beforehand.

Demonstrations were also given by Gauss, “Theoria Motus’’ (1809), p. 119 et seq.; 
Pagani, “ Demonstration d’un théorème &c.” (1834) ; and (in connexion with Hamilton’s 
Principal Function) by Sir W. R. Hamilton, “ On a General Method &c.” (1834), p. 282 ; 
Jacobi, “ Zur Theorie &c.” (1837), p. 122; Cayley, “Note on the Theory of Elliptic 
Motion ” (1856).

22. Connected with the problem of central forces, we have Sir W. R. Hamilton’s 
“ Hodograph,” which in the paper (Proc. R. Irish Acad. 1847) is defined, and the 
fundamental properties thereof are stated ; viz. if in an orbit round a centre of force 
there be taken on the perpendicular from the centre on the tangent at each point, a 
length equal to the velocity at that point of the orbit, the extremities of these lengths 
will trace out a curve which is the hodograph. As the product of the velocity into 
the perpendicular on the tangent is equal to twice the area swept out in a unit of 
time (vp = A), the hodograph is the reciprocal polar of the orbit with respect to a 
circle described about the centre of force, radius = Vh. Whence also the tangent at 
any point of the hodograph is perpendicular to thg radius vector through the corre­
sponding point of the orbit, and the product of the perpendicular on the tangent into 
the corresponding radius vector is =A

If force æ (dist.)-2, the hodograph, qua reciprocal polar of a conic section with 
respect to a circle described about the focus, is a circle.

23. The following theorem is also given without demonstration ; viz. if two circular 
hodographs, which have a common chord passing or tending through a common centre 
of force, be both cut at right angles by a third circle, the times of hodographically 
describing the intercepted arcs (that is, the times of describing the corresponding elliptic 
arcs) will be equal.

24. Droop, “On the Isochronism &c.” (1856), shows geometrically that the last- 
mentioned property is equivalent to Lambert’s theorem ; and an analytical demonstration 
is also given, Cayley, “A demonstration of Sir W. R. Hamilton’s Theorem &c.” (1857). 
See also Sir W. R. Hamilton’s Lectures on Quaternions (1853), p. 614.

25. The laws of central force which have been thus far referred to are force
11. C

ccr> > an<I V has been seen that the case of a force P + — depends upon that
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C B Cof a force P, so that the motions for the forces Ar + — and — + - are deducible from
B Athose for the forces Ar and — respectively. Some other laws of force, e. g. — ± Br, 

ABCD— are considered by Legendre, “Théorie des Fonctions Elliptiques” (1825),
M being such as lead to results expressible by elliptic integrals, and also the law —, 

for which the result involves a peculiar logarithmic integral. But the most elaborate 
examination of the different cases in which the solution can be worked out by elliptic 
integrals or otherwise is given in Stader’s memoir “ De Orbitis &c.” (1852), where the 
investigation is conducted by means of the formulæ which give t and 0 in terms of r 
(antè, No. 14).

26. In speaking of a central force, it is for the most part implied that the force 
is a function of the distance: for some problems in which this is not the case, see 
post, Miscellaneous Problems, Nos. 86 and 87.

It is to be noticed that, although the problem of central forces may be (as it has 
so far been) considered as a problem in piano (viz. the plane of the motion has been 
made the plane of reference), yet that it is also interesting to consider it as a problem 
in space ; in fact, in this case the integrals, though of course involved in those which 
belong to the plane problem, present themselves under very distinct forms, and afford 
interesting applications of the theory of canonical integrals, of the derivation of the 
successive integrals by Poisson’s method, and of other general dynamical theories. More­
over, in the lunar and planetary theories, the problem must of necessity be so treated. 
Without going into any details on this point, I will refer to Bertrand’s memoir, “ Sur 
les Equations différentielles de la Mécanique ” (1852), Donkin’s memoir “ On a Class 
of Differential Equations &c.” (1855), and Jacobi’s posthumous memoir, “Nova* Methodus 
&c.” (1862).

Elliptic Motion, Article Nos. 27—40.

27. The question of the development of the true anomaly in terms of the mean 
anomaly (Kepler’s problem), and of the other developments which present themselves 
in the theory of elliptic motion, is one that has very much occupied the attention of 
geometers. The formulæ on which it depends are mentioned antè, No. 15; they involve 
as an auxiliary quantity the eccentric anomaly u.

28. Consider first the equation
g = u — e sin u,

which connects the mean anomaly g with the eccentric anomaly u.
COSAny function of u, and in particular u itself, and the functions nu may be 

expanded in terms of g by means of Lagrange’s theorem (Lagrange, Mém. de Berlin, 
1768—1769, “Théorie des Fonctions,” chap. 16, and “Traité de la Résolution des 
Equations Numériques,” Note 11).

a a
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Considprincr next the eouation

which gives the true anomaly in terms of the eccentric anomaly, then, by replacing 
the circular functions by their exponential values (a process employed by Lagrange, 
Mém. de Berlin, 1776),/ can be expressed in terms of w; viz. the result is

/= u 4- 2X sin u 4- 2X2. sin 2u 4- 2X3. | sin 3u + &c.,

where > Hence if u, sin u, sin 2w, &c. are expressed in terms

of the mean anomaly, / will be obtained in the form / = g 4- a series of multiple 
sines of g, the coefficients of the different terms being given in the first instance as 
functions of e and X ; and to complete the development X and its powers have to be 
developed in powers of e. The solution is carried thus far in the Mécanique Analytique 
(1788), and in the Mécanique Celeste (1799).

30. We have next Bessel’s investigations in the Berlin Memoirs for 1816, 1818, 
and 1824, and which are carried on mainly by means of the integral

and various properties are there obtained and applications made of this important 
transcendant.

31. Relating to this integral we have Jacobi’s memoir, “ Formulae transformationis 
&c.” (1836), Liouville, “Sur l’intégrale [ cos i (u — x sin u) du” (1841), and Hansen’s

J o
“ Ermittelung der absoluten Storungen ” (1843) ; the researches of Poisson in the Con­
naissance des Temps for 1825 and 1836 are closely connected with those of Bessel.

32. A very elegant formula, giving the actual expression of the coefficients con­
sidered as functions of e and X, is given by Greatheed in the paper “ Investigation of 
the General Term &c.” (1838) ; viz. this is

where, after developing in powers of X, the negative powers of X must be rejected, 
and the term independent of X divided by 2. This result is extended to other functions 
of / Cayley “ On certain Expansions &c.” (1842).

33. An expression for the coefficient of the general term as a function of e only 
is obtained, Lefort, “ Expression Numérique &c.” (1846). The expression, which, from 
the nature of the case, is a very complicated one, is obtained by means of Bessel’s 
integral. This is an indirect process which really comes to the combination of the 
developments of / in terms of u, and u in terms of g-, and an equivalent result is 
obtained directly in this manner, Creedy, “General and Practical Solution &c.” (1855).
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34. We have also on the subject of these developments the very valuable and 
interesting researches of Hansen, contained in his Fundamenta Nova &e. (1838), in 
the memoir “ Ermittelung der absoluten Stdrungen &c.” (1845), and in particular in the 
memoir “ Entwickelung des Products &c.” (1853).

COS35. But the expression for the coefficient of the general term rg in any of 

these expansions is so complicated that it was desirable to have for the coefficients 
corresponding to the values r = 0, 1, 2, 3, ... the finally reduced expressions in which 
the coefficient of each power of e is given as a numerical fraction. Such formulæ for

(P \m QQg
- — 1 ) where j is a general symbol, the expansion being

carried as far as e7, were given, Leverrier, Annales de l’Observatoire de Paris, t. I. (1855).

36. And starting from these I deduced the results given in my “Tables of the
Developments &c.” (1861) ; viz. these tables give

all carried to e7.

37. The true anomaly f has been repeatedly calculated to a much greater extent,
in particular by Schubert (Ast. Théorique, St Pet. 1822), as far as e20. The expression for 

- as far as e13 is given in the same work, and that for log— as far as e9 was 
a a
calculated by Oriani, see Introd, to Delambre’s Tables du Soleil, Paris (1806).

38. It may be remarked that when the motion of a body is referred to a plane 
which is not the plane of the elliptic orbit, then we have questions of development 
similar in some measure to those which regard the motion in the orbit ; if, for instance, 
z be the distance from node, </> the inclination, and x the reduced distance from node, 
then cos z = cos </> cos x, from which we may derive z — x + series of multiple sines of x. 
And there are, moreover, the questions connected with the development of the reciprocal 
distance of two particles—say (a2 + a2 — 2aa cos 0) ’—which present themselves in the 
planetary theory ; but this last is a wide subject, which I do not here enter upon. 
I will, however, just refer to Hansen’s memoir, “Ueber die Entwickelung der negativen 
und ungeraden Potenzen &c.” (1854).
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39. The question of the convergence of the series is treated in Laplace’s memoir 
of 1823, where he shows that in the series which express r and f in multiple cosines

COSor sines of g, the coefficient of a term . ig, where i is very great, is at most equal

in absolute value to a quantity of the form , A and X being finite quantities

independent of t, whence he concludes that, in order to the convergency of the series, 
the limiting value of the eccentricity is e=X, the numerical value being e = 0'66195.

40. The following important theorem was established by Cauchy, as part of a 
theory of the convergence of series in general; viz. so long as e is less than 0'6627432, 
which is the least modulus of e for which the equations

= u — e sin u, 1 —e cos u = 0,
At

can be satisfied, the development of the true anomaly and other developments in the 
theory of elliptic motion will be convergent. This was first given in the “ Mémoire sur 
la Mécanique Céleste,” read at Turin in 1831, but it is reproduced in the memoir 
“Considérations nouvelles sur les suites &c.,” Mém. d’Anal. et de Phys. Math. t. I. (1840); 
and see also the memoirs in Lionville's Journal by Puiseux, and his Note i. to vol. n. 
of the 3rd ed. of the Mécanique Analytique (1855). There are on this subject, and on 
subjects connected with it, several papers by Cauchy in the Comptes Rendus, J 840 et seq., 
which need not be particularly referred to.

The Problem of two Centres, Article Nos. 41 to 64.

41. The original problem is that of the motion of a body acted upon by forces 
tending to two centres, and varying inversely as the squares of the distances ; but, as 
will be noticed, the solutions apply with but little variation to more general laws of 
force.

42. It may be convenient to notice that the coordinates made use of (in the
several solutions) for determining the position of the body, are either the sum and
difference of the two radius vectors, or else quantities which are respectively functions
of the sum and the difference of these radius vectors (x). If the plane of the motion
is not given, then there is a third coordinate, which is the inclination of the plane 
through the body and the two centres to a fixed plane through the two centres, or 
say the azimuth of the axial plane, or simply the azimuth.

1 If v, u are the distances of the body P from the centres A and B, a the distance AB, f, g the angles 
at A and B respectively, and p=tan^ftang = tan|f+-tanthen, as may be shown without difficulty, 
w + W-M=aI+f ’ S° & an^ ® are ^unc^ons v + u an<l v — u respectively; these quantities

p and q are Euler’s original coordinates.
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39. The question of the convergence of the series is treated in Laplace’s memoir 
of 1823, where he shows that in the series which express r and f in multiple cosines

COS
or sines of g, the coefficient of a term w^ere verY greaL is most equal

in absolute value to a quantity of the form A and X being finite quantities

independent of % whence he concludes that, in order to the convergency of the series, 
the limiting value of the eccentricity is e = X, the numerical value being e = 0’66195.

40. The following important theorem was established by Cauchy, as part of a 
theory of the convergence of series in general; viz. so long as e is less than 0’6627432, 
which is the least modulus of e for which the equations

= = u — e sin u, 1 — e cos u = 0,
Ai

can be satisfied, the development of the true anomaly and other developments in the
theory of elliptic motion will be convergent. This was first given in the “ Mémoire sur
la Mécanique Céleste,” read at Turin in 1831, but it is reproduced in the memoir 
“Considérations nouvelles sur les suites &c.,” Mém. (TAnal, et de Phys. Math. t. I. (1840);
and see also the memoirs in Lionville's Journal by Puiseux, and his Note i. to vol. II.
of the 3rd ed. of the Mécanique Analytique (1855). There are on this subject, and on 
subjects connected with it, several papers by Cauchy in the Comptes Rendus, 1840 et seq., 
which need not be particularly referred to.

The Problem of two Centres, Article Nos. 41 to 64.

41. The original problem is that of the motion of a body acted upon by forces 
tending to two centres, and varying inversely as the squares of the distances ; but, as 
will be noticed, the solutions apply with but little variation to more general laws of 
force.

42. It may be convenient to notice that the coordinates made use of (in the
several solutions) for determining the position of the body, are either the sum and
difference of the two radius vectors, or else quantities which are respectively functions
of the sum and the difference of these radius vectors (x). If the plane of the motion
is not given, then there is a third coordinate, which is the inclination of the plane 
through the body and the two centres to a fixed plane through the two centres, or 
say the azimuth of the axial plane, or simply the azimuth.

1 If v, u are the distances of the body P from the centres A and B, a the distance AB, g the angles 
at A and B respectively, and p = tan|f tan^rç, <? = tan£f-+tan|77, then, as may be shown without difficulty, 

1+p 1 — q ,v + u=»yj)' v-u—a > 80 that p and q are functions of v+u and v — u respectively; these quantities
p and q are Euler’s original coordinates.
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43. Calling the first-mentioned two coordinates r and s, and the azimuth fi, the 
solution of the problem leads ultimately to equations of the form

where R and $ are rational and integral functions (of the third or fourth degree, in 
the case of forces varying as (dist.)-2) of r, s respectively (but they are not in general 
the same functions of r, s respectively) ; X and p are simple rational functions of r, 
and p. and a simple rational functions of s ; so that the equations give by quadratures, 
the first of them the curve described in the axial plane, the second the position of
the body in this curve at a given time, and the third of them the position of the
axial plane. In the ordinary case, where R and $ are each of them of the third or
the fourth order, the quadratures depend on elliptic integrals (J) ; but on account of the
presence in the formulæ of the two distinct radicals V R, VS, it would appear that 
the solution is not susceptible of an ulterior development by means of elliptic and 
Jacobian functions (T) similar to those obtained in the problems of Rotation and the 
Spherical Pendulum.

44. It has just been noticed that when R, S are each of them of the fourth 
order, the quadratures depend on elliptic integrals ; in the particular cases in which 

mdn ndsthe relation between r, s is of the form , R and $ being the same functions
V R VS

of r, s respectively, and m and n being integers (or more generally for other relations 
between the forms of R, S given by the theory of elliptic integrals), the equation admits 
of algebraical integration ; but as the relations in question do not in general hold good, 
the theory of the algebraical integration of the equations plays only a secondary part 
in the solution of the problem. It is, however, proper to remark that Euler, when 
he wrote his first two memoirs “ On the Problem of the two Centres ” (post, Nos. 45 
and 46), had already discovered and was acquainted with the theory of the algebraic

integration of the equation although his memoir,

“ Integratio æquationis

N. Comm. Petrop. t. xil. 1766—1767 ?, bears in fact a somewhat later date.

45. Having made these preliminary remarks, I come to the history of the problem.

It is I think clear that Euler’s earliest memoir is the one “ De Motu Corporis &c.” 
in the Petersburg Memoirs for 1764 (printed 1766). In this memoir the forces vary

1 The elliptic integrals are Legendre’s functions F, E, II ; the elliptic and Jacobian functions are sinam, 
cosam, Aam, and the higher transcendants, 0, H.
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where
P = ( A + B + D)p + 2Ep2 + (— A — B + D) p3,
Q = (~ A + B- D)q+ 2Eq2 + ( A — B - I)) q3,

so that P and Q are cubic functions (not the same functions) of p and q respectively 
and the equation for the time is found to be 

which are the formulæ for the solution of the problem, as obtained in Euler’s first 
and second memoirs.

47. In his third memoir, viz. that “ De Motu Corporis &c.” in the Petersburg 
Memoirs for 1765 (printed 1767), Euler considers the body as moving in space, the 
forces being as before as (dist.)-2. Assuming that the coordinates y, z are in the plane 

perpendicular to the axis, there is in this case the equation of areas y -,— z~j~— const. ; 

and writing y=y'sinty, z = y'cos-\/r, that is, y’ = My2 + z2, and the azimuth, the integral 
equations for the motion in the variable plane (coordinates x, y') are not materially 
different in form from those which belong to the motion in a fixed plane, coordinates 
x, y (see post, No. 56, Jacobi) ; and the last-mentioned equation, which reduces itself to

(lylp *
the form y'2 = const., gives at once df in a form such as that above alluded to

(ante, No. 43), and therefore f by quadratures. The variables employed by Euler in the 
memoir in question are

v +u, v — u, (say r, s), and -fr,

v, u being, as above, the distances from the two centres, and i/r the azimuth of the 
axial plane. The functions of r, s under the radical signs are of the fourth order ; 
this is so, with these variables, even if the motion is in a fixed plane; but this is no 
disadvantage, since, as is well known, the case of a quartic radical is not really more 
complicated than that of a cubic radical, the two forms being immediately convertible 
the one into the other.

48. Lagrange’s first memoir (Turin Memoirs, 1766—1769) refers to Euler’s three 
memoirs, but the author mentions that it was composed in 1767 without the knowledge 
of Euler’s third memoir. The coordinates ultimately made use of are v + u, v — u, (say r, s), 
and i/r, the same as in Euler’s third memoir, and the results consequently present 
themselves in the like form.

49. If the attractive force of one of the centres is taken equal to zero, then the 
position of such centre is arbitrary, and it may be assumed that the centre lies on 
the curve, which is in this case an ellipse (conic section) ; the expression of the time 
presents itself as a function of the focal radius vectors and the chord of the arc 
described ; which, as remarked, antè, No. 20, leads to Lambert’s theorem for elliptic 
motion.
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50. The case presents itself of an ellipse or hyperbola described under the action
di* dsof the two forces, viz. the equation —— = will be satisfied by r - a = 0, if r - a be
y R y S

a double factor of R, or by s - = 0, if s - fl be a double factor of S, a case which 
is also considered in the Mécanique Analytique ; and see in regard to the analytical 
theory, t. II. 3rd ed. Note III. by M. Serret, and “ Thèse,” Liouv. 1848. It is remarked 
by M. Bonnet, Note IV. and Liouv. t. ix. p. 113, (1844), that the result is a mere 
corollary of a general theorem, which is in effect as follows, viz. if a particle under 
the separate actions of the forces F, F',... starting in each case from the same point 
in the same direction but with the initial velocities v, v, &c. respectively, describe the 
same curve, then such curve will also be described under the conjoint action of all the 
forces, provided the body start from the same point in the same direction, with the 
initial velocity V = V y2 + v'2 + .. .

51. Lagrange’s second memoir (same volume of the Turin Memoirs) contains an
■ exceedingly interesting discussion as to the laws of force for which the problem can 

be solved. Writing U, V, u, v in the place of Lagrange’s P, Q, p, q, the equations of 
motion are

where

and putting also the distance of the centres, and then

are of course not to be confounded with the

coordinates originally so represented), Lagrange obtains the equations

which he represents by

and he then inquires as to the conditions of integrability of these equations, for which 
purpose he assumes that the equations multiplied by mdx + ndy and pdx + vdy 
respectively and added, give an integrable equation.
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52. A case satisfying the required conditions is found to be

or, what is the same thing,

that is, besides the forces , which vary as (dist.)-2, there are the forces 2aw, 2av,

varying directly as the distance, and of the same amount at equal distances ; or, what 
is the same thing, there is, besides the forces varying as (dist.)-2, a force varying 
directly as the distance, tending to a third centre midway between the other two, a 
case which is specially considered in the memoir ; it is found that the functions in 
r, s under the radicals (instead of rising only to the order 4) rise in this case to the 
order 6.

53. Among other cases are found the following, viz. :

where ft=e, or else ae~ /38 = 2/3e.

In regard to the subject of this second memoir of Lagrange, see post, Miscellaneous 
Problems, Liouville’s Memoirs, Nos. 100 to 105.

54. In the Mécanique Analytique (1st ed. 1788, and 2nd ed. t. II. 1813), Lagrange 

in effect reproduces his solution for the above-mentioned law of force (say Z7 = - + 2yzz, 

F= — 27v).C) There are even in the third edition a few trifling errors of work to
v2

be corrected. The remarks above referred to, as made by Lagrange in his first memoir, 
are also reproduced (see ante, Nos. 49 and 50).

55. Legendre, Exercices de Calcul Intégral, t. II. (1817), and Théorie des Fonctions 
Elliptiques, t. I. (1825), uses p2 and q2 in the place of Euler’s p, q; the forces 
are assumed to vary as (dist.)-2, and in consequence of the change Euler s cubic 
radicals are replaced by quartic radicals involving only even powers of p and q>

1 In the Mécanique Analytique, Lagrange’s letters are r, q for the distances r + q=s, r-q-w. the change 
in the present Report was occasioned by the retention of Euler’s variables p, q.

c. iv. 67
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respectively; that is, the radicals are in a form adapted for the transformation to elliptic 
integrals ; in certain cases, however, it becomes necessary to attribute to Legendre’s 
variables p and q imaginary values. The various cases of the motion are elaborately 
discussed by means of the elliptic integrals ; in particular Legendre notices certain cases 
in which the motion is oscillatory, and which, as he remarks, seem to furnish the 
first instance of the description by a free particle of only a finite portion of the curve 
which is analytically the orbit of the particle ; there is, however, nothing surprising 
in this kind of motion, although its existence might easily not have been anticipated.

56. § 26 of Jacobi’s memoir “Theoria Novi Multiplicatoris &c.” (1845) is entitled
“ Motus puncti versus duo centra secundum legem Neutonianum attracti.” The equations 
for the motion in space are by a general theorem given in the memoir “ De Motu 
puncti singularis ” (1842), reduced to the case of motion in a plane : viz. if x, y are 
the coordinates, the centre point of the axis being the origin, and y being at right 
angles to the axis, and if the distance of the centres is 2a ; then the only difference is 

* d?v •that to the expression for ~ there is added a term -, which arises from the rotation r dt2 y3
about the axis. Two integrals are obtained, one the integral of Vis Viva, and the other 
of them an integral similar to one of those of Euler’s or Lagrange’s. And then x', y’ 
being the differential coefficients of x, y with regard to the time, the remaining equation 
may be taken to be y'dx — x'dy = 0, where x’, y are to be expressed as functions of x, y 
by means of the two given integrals. This being so, the principle of the Ultimate 
Multiplier^) furnishes a multiplier of this differential equation, and the integral is found 
to be 

the quantity under the integral sign being a complete differential. To verify à posteriori 
that this is so, Jacobi introduces the auxiliary quantities X', X" defined as the roots 
of the equation X2 + X (a? + y2 — a2) — a2y2 = 0, which in fact, if as before u, v are the 
distances from the centres, leads to 

so that X', X" are functions of u + v, u—v respectively ; and the formulae, as ultimately 
expressed in terms of X', X", are substantially of the same form with those of Euler 
and Lagrange.

57. The investigations contained in Liouville’s three memoirs “ Sur quelques cas 
particuliers &c.” (1846), find their chief application in the problem of two centres, and 
by leading in the most direct and natural manner to the general law of force for 
which the integration is possible, they not only give some important extension of the 
problem, but they in fact exhibit the problem itself and the preceding solutions of it 
in their true light. But as they do not relate to this problem exclusively, it will be 
convenient to consider them separately under the head Miscellaneous Problems.

1 Explained in Jacobi’s memoir “ Theoria Novi Multiplicatoris &c.,” Crelle, tt. xxvii., xxvm., xxix. 1844-45.
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58. In Serret’s “ Thèse sur le Mouvement &c.” (1848), the problem is very elegantly 
worked out according to the principles of Liouville’s memoirs as follows : viz. assuming 
that the expression of the distance between two consecutive positions of the body is

where m, n are functions of p, v respectively, and if the forces can be represented by 
means of a force-function U, then the motion can be determined, provided only

- are of the forms

where the functional symbols </>, 0, &c. denote any arbitrary functions whatever.

59. It is then assumed that p, v are the parameters of the confocal ellipses and 
hyperbolas situate in the moveable plane through the axis, viz. that we have

(the origin is midway between the two centres, 2b being their distance; %p, are in 
fact equal to the sum and difference u + v, u — v of the two centres respectively) ; and 
that the position of the moveable plane is determined by means of 7, the inclination 
to a fixed plane through the axis, or say, as before, its azimuth. In fact, with these 
values of the coordinates, the expression of ds2 is

which is of the required form. And moreover if the forces to the two centres vary 
as (dist.)-2, and there is besides a force to the middle point varying as the distance, then

whence (observing that X = p2—v2) XU is of the required form. The equations obtained 
by substituting for U the above value give the ordinary solution of the problem.

60. Liouville’s note to the last-mentioned memoir (1848) contains the demonstration 
of a theorem obtained by a different process in his second memoir, but which is in 
the present note, starting from Serret’s formulæ, demonstrated by the more simple 
method of the first memoir, viz., it is shown that the motion can be obtained if the 
two centres, instead of being fixed, revolve about the point midway between them in 

O 
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a circle in such manner that the diameter through the two centres always passes 
through the projection of the body on the plane of the circle. It will be observed 
that the circular motion of the two centres is neither a uniform nor a given motion, 
but that they are, as it were, carried along with the moving body.

61. In Desboves’s memoir “ Sur le Mouvement d’un point matériel &c.” (1848), the 
author developes the solution of the foregoing problem of moving centres, chiefly by 
the aid of the method employed in Liouville’s second memoir. And he shows also that 
the methods of Euler and Lagrange for the case of two fixed centres apply with modi­
fication to the more complicated problem of the moving centres.

62. The problem of two centres is considered in Bertrand’s “ Mémoire sur les 
équations différentielles &c.” (1852), by means of Jacobi’s form of the equations of 
motion, viz., the problem is reduced to a plane one by means of the addition of a 

force « y (ante, No. 56).

63. Cayley’s “ Note on Lagrange’s Solution &c.” (1857) is merely a reproduction 
of the investigation in the Mécanique Analytique ; the object was partly to correct 
some slight errors of work, and partly to show what were the combinations of the 
differential equations, which give at once the integrals of the problem.

64. In § II. of Bertrand’s “ Mémoire sur quelques unes des formes &c.” (1857), 
the following question is considered, viz., assuming that the dynamical equations

have an integral of the form

a = Px'2 + Qx'y' + Ry'2 + Sy' + Tx' + K

(where a is the arbitrary constant, and P, Q, ... K are functions of x and y), it is 
required to find the form of the force-function U. It is found that U must satisfy 
a certain partial differential equation of the second order, the general solution of which 
is not known ; but taking U to be a function of the distance from any fixed point (or 
rather the sum of any number of such functions), it is shown that the only case in 
which the differential equations for the motion of a point attracted to a fixed centre 
of forces have an integral of the form in question is the above-mentioned one of two 
centres, each attracting according to the inverse square of the distance, and a third 
centre midway between them, attracting as the distance.

The Spherical Pendulum, Article Nos. 65 to 73.

65. The problem is obviously the same as that of a heavy particle on the surface 
of a sphere.

I have not ascertained whether the problem was considered by Euler. Lagrange 
refers to a solution by Clairaut, Mém. de I’Acad., 1735.
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The question was considered by Lagrange, Méc. Anal., 1st edit. p. 283. The angles 
which determine the position are 4 the inclination of the string to the horizon, </> the 
inclination of the vertical plane through the string to a fixed vertical plane, or say 
the azimuth. And then forming the equations of motion, two integrals are at once 
obtained ; these are the integrals of Vis Viva, and an integral of areas. And these give 
equations of the form dt = funct. (i/r) dyfr, def) = funct. (fir) dyfr ; so that t, </> are each of 
them given by a quadrature in terms of i/r, which is the point to which the solution 
is carried. It is noticed that \fr may have a constant value, which is the case of the 
conical pendulum.

66. In the second edition, t. xi. p. 197 (1815), the solution is reproduced ; only, 
what is obviously more convenient, the angles are taken to be

i/r, the inclination to the vertical,

(/>, the azimuth.

It is remarked that \|r will always lie between a greatest value a and a least value 
■/3, and the integrals are transformed by introducing therein instead of the angle cr, 
which is such that

cos i/r = cos a sin2 a + cos /3 cos2 cr,

by which substitution they assume a more elegant form, involving only the radical

where k is a constant depending on cos a, cos /? ; and the integration is effected 
approximately in the case where cos /3 — cos a is small.

M. Bravais has noticed, however, that by reason of some errors in the working 
out, Lagrange has arrived at an incorrect value for the angle <!>, which is the apsidal 
angle, or difference of the azimuths for the inclinations a and /3 : see the 3rd edition 
(1855), Note VII., where M. Bravais resumes the calculation, and he arrives at the 
value <I> = |-7r (1 + ja/3), a and A being small.

Lagrange considers also the case where the motion takes place in a resisting 
medium, the resistance varying as velocity squared.

67. A similar solution to Lagrange’s, not carried quite so far, is given in Poisson’s 
Mécanique, t. I. pp. 385 et seq. (2nd ed. 1833).

A short paper by Puiseux, “Note sur le Mouvement d’un point matériel sur une 
sphère” (1842), shows merely that the angle is >^7r.

68. The ultei’ior development of the solution consists in the effectuation of the 
integrations by the elliptic and Jacobian functions. It is proper to remark that the 
dynamical problem the solution whereof by such functions was first fairly worked out, 
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is the more difficult one of the rotation of a solid body, as solved by Jacobi (1839), in 
completion of Rueb’s solution (1834), post, Nos. 186 and 197.

69. In relation to the present problem we have Gudermann’s memoir “ De pen- 
dulis sphæricis &c.” (1849), who, however, does not arrive at the actual expressions of 
the coordinates in terms of the time ; and the perusal of the memoir is rendered 
difficult by the author’s peculiar notations for the elliptic functions (*).

70. It would appear that a solution involving the Jacobian functions was obtained 
by Durège, in a memoir completed in 1849, but which is still unpublished ; see § XX. 
of his Theorie der elliptischen Functionen (1861), where the memoir is in part reproduced. 
It is referred to by Richelot in the Note presently mentioned.

71. We have next Tissot’s Thèse de Mécanique, 1852, where the expressions for the 
variables in terms of the time are completely obtained by means of the Jacobian 
functions H, ®, and which appears to be the earliest published one containing a com­
plete solution and discussion of the problem.

72. Richelot, in the Note “ Bemerkungen zur Theorie des Raumpendels ” (1853), 
gives also, but without demonstration, the final expressions for the coordinates in terms 
of the time.

Donkin’s memoir “ On a Class of Differential Equations &c.” (1855) contains (No. 59) 
an application to the case of the spherical pendulum.

73. The first part of the memoir by Dumas, “Ueber die Bewegung des Raum­
pendels, &c.” (1855), comprises a very elegant solution of the problem of the spherical 
pendulum based upon Jacobi’s theorem of the Principal Function (1837), and which is 
completely developed by the elliptic and Jacobian functions. The latter part of the 
memoir relates to the effect of the rotation of the Earth; and we thus arrive at the 
next division of the general subject.

Motion as affected by the Rotation of the Earth, and Relative Motion in general.. 
Article Nos. 74 to 85.

74. Laplace (Méc. Céleste, Book X. c. 5) investigates the equations for the motion 
of a terrestrial body, taking account of the rotation of the Earth (and also of the 
resistance of the air), and he applies them to the determination of the deviations of 
falling bodies, &c. He does not, however, apply them to the case of the pendulum.

75. We have also the memoir of Gauss, “ Fundamental-gleichungen &c.” (1804): 
the equations ultimately obtained are similar to those of Poisson. I have not had the 
opportunity of consulting this memoir.

1 The mere use of sn, cn, dn as an abbreviation of the somewhat cumbrous sinam, cosam, Aam of the 
Fundamenta Nova is decidedly convenient.
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76. Poisson, in the “ Mémoire sur le mouvement des Projectiles &c.” (1838), also 
obtains the general equations of motion, viz, (omitting terms involving n2), these may 
be taken to be

(see p. 20), where the axes of x, y, z are fixed on the Earth and moveable with it : 
viz., z is in the direction of gravity; x, y in the directions perpendicular to gravity, 
viz., y in the plane of the meridian northwards, x westwards ; g is the actual force of 
gravity as affected by the resolved part of the centrifugal force ; ft is the latitude. 
There are some niceties of definition which are carefully given by Poisson, but which 
need not be noticed here.

77. Poisson applies his formulæ incidentally to the motion of a pendulum, which 
he considers as vibrating in a plane; and after showing that the time of oscillation 
is not sensibly affected, he remarks that upon calculating the force perpendicular to 
the plane of oscillation, arising from the rotation of the Earth, it is found to be too 
small sensibly to displace the plane of oscillation or to have any appreciable influence 
on the motion—a conclusion which, as is well known, is erroneous. He considers also 
the motion of falling bodies, but the memoir relates principally to the theory of 
projectiles.

78. That the motion of the spherical pendulum is sensibly affected by the rotation 
of the Earth is the well-known discovery of Foucault; it appears by his paper, 
“Démonstration Physique &c.,” Comptes Rendus, t. xxxii. 1851, that he was led to it 
by considering the case of a pendulum oscillating at the pole ; the plane of oscillation, 
if actually fixed in space, will by the rotation of the Earth appear to rotate with the 
same velocity in the contrary direction ; and he remarks that although the case of a 
different latitude is more complicated, yet the result of an apparent rotation of the 
plane of oscillation, diminishing to zero at the equator, may be obtained either from 
analytical or from mechanical and geometrical considerations. Some other Notes by 
Foucault on the subject are given, Comptes Rendus, t. xxxv. (1853).

79. An analytical demonstration of the theorem was given by Binet, Comptes 
Rendus, t. xxxii. (1851), and by Baehr (1853). Various short papers on the subject 
will be found in the Philosophical Magazine, and elsewhere.

80. In regard to the above-mentioijed problem of falling bodies, we have a Note 
by W. S., Camb, and Dubl. Math. Journ. t. ill. (1848), containing some errors which are 
rectified in a subsequent paper, “Remarks on the Deviation of Falling bodies, &c.” 
t. iv. (1849), by Dr Hart and Professor W. Thomson.
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81. The theory of relative motion is considered in a very general manner in 
M. Quet’s memoir, “ Des Mouvements relatifs en général &'c.” (1853). Suppose that 
x, y, z are the coordinates of a particle in relation to a set of moveable axes ; let 

y, J be the coordinates of the moveable origin in reference to a fixed set of axes, 
^2 ' (pf'

and treating the accelerations as if they were coordinates, let these,

when resolved along the moveable axes, give u, v, w' : suppose, moreover, that p, q, r 
denote the angular velocities of the system of the moveable axes (or axes of x, y, z) 
round the axes of x, y, and z respectively ; u, v', w, p, q, r are considered as given 
functions of the time, and then, if

it is shown that the equations of motion are to be obtained from the equation

where 8x, 8y, 8z are the virtual velocities of the particle m in the directions of the 
moveable axes. This equation is in fact obtained as a transformation of the equation

which belongs to a set of fixed axes of £, y, Ç.

82. The equations for the motion of a free particle are of course u = X, v = Y, w = Z.
In the case where the moveable axes are fixed on the Earth, and moveable with it 
(the diurnal motion being alone attended to), these lead to equations for the motion
of a particle in reference to the Earth, similar to those obtained by Gauss and Poisson.
The formulæ are applied to the case of the spherical pendulum, which is developed
with some care ; and Foucault’s theorem of the rotation of the plane of oscillation
very readily presents itself. The general formulæ are applied to the relative motion 
of a solid body, and in particular to the question of the gyroscope ; the memoir con­
tains other interesting results.

83. The principal memoirs on the motion of the spherical pendulum, as affected 
by the rotation of the Earth, are those of Hansen, “ Theorie der Pendelbewegung &c.” 
(1853), which contains an elaborate investigation of all the physical circumstances 
(resistance of the air, torsion of the string, &c.) which can affect the actual motion, 
and the before-mentioned memoir by Dumas, “ Ueber der Bewegung des Raumpendels 
&c.” (1855). The investigation is conducted by means of the variation of the constants ;
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81. The theory of relative motion is considered in a very general manner in 
M. Quet’s memoir, “ Des Mouvements relatifs en général &c.” (1853). Suppose that 
x, y, z are the coordinates of a particle in relation to a set of moveable axes ; let 
g, fi, U be the coordinates of the moveable origin in reference to a fixed set of axes, 

d2P d?7] d2Uand treating the accelerations as they were coordinates, let these,

when resolved along the moveable axes, give u', v, w' : suppose, moreover, that p, q, r 
denote the angular velocities of the system of the moveable axes (or axes of x, y, z) 
round the axes of x, y, and z respectively ; u', v', w, p, q, r are considered as given 
functions of the time, and then, if

it is shown that the equations of motion are to be obtained from the equation

where 8x, 8y, 8z are the virtual velocities of the particle m in the directions of the 
moveable axes. This equation is in fact obtained as a transformation of the equation

which belongs to a set of fixed axes of £, tj, £.

82. The equations for the motion of a free particle are of course u = X, v = Y, w = Z. 
In the case where the moveable axes are fixed on the Earth, and moveable with it 
(the diurnal motion being alone attended to), these lead to equations for the motion 
of a particle in reference to the Earth, similar to those obtained by Gauss and Poisson. 
The formulæ are applied to the case of the spherical pendulum, which is developed 
with some care ; and Foucault’s theorem of the rotation of the plane of oscillation 
very readily presents itself. The general formulæ are applied to the relative motion 
of a solid body, and in particular to the question of the gyroscope ; the memoir con­
tains other interesting results.

83. The principal memoirs on the motion of the spherical pendulum, as affected 
by the rotation of the Earth, are those of Hansen, “ Theorie der Pendelbewegung &c.” 
(1853), which contains an elaborate investigation of all the physical circumstances 
(resistance of the air, torsion of the string, &c.) which can affect the actual motion, 
and the before-mentioned memoir by Dumas, “ Ueber der Bewegung des Raumpendels 
&c.” (1855). The investigation is conducted by means of the variation of the constants; 
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the integrals for the undisturbed problem were, as already noticed, obtained by means 
of Jacobi’s Principal Function, that is, in a form which leads at once to the expressions 
for the variation of the constants ; and the investigation appears to be carried out in 
a most elaborate and complete manner.

84. In concluding this part of the subject I refer to Mr Worm’s work, The 
Rotation of the Earth (1862), where the last-mentioned questions (falling bodies, the 
pendulum, and the gyroscope) are, in reference to the proofs they afford of the 
rotation of the Earth, considered as well in an experimental as in a mathematical 
point of view. The second part of the volume contains the theory (after Laplace and 
Gauss) of falling bodies, that of the pendulum (after Hansen), and that of the gyroscope 
(after Yvon Villarceau); and the whole appears to be a complete and satisfactory 
résumé of the experimental and mathematical theories to which it relates.

85. We have also Cohen “ On the Differential Coefficients and Determinants of 
Lines &c.” (1862), where the equations for relative motion are obtained in a very 
elegant manner. The fundamental notion of the memoir may be considered to be the 
dealing directly with lines, velocities, &c., which are variable in direction as well as 
in magnitude, instead of referring them, as in the ordinary analytical method, to axes 
fixed in space. The memoir is a highly interesting and valuable one, and the results 
are brought out with great facility ; but I cannot but think that the great care required 
to apply the method correctly is an objection to it, if used otherwise than by way of 
interpretation of previously obtained results, and that the Ordinary method is preferable.

I may remark that the theory of relative motion connects itself with the lunar 
and planetary theories as regards the reference of the plane of the orbit to the variable 
ecliptic, and as regards the variations of the position of the orbit ; but this is a 
subject which I have abstained from entering upon.

Miscellaneous Problems. Articles Nos. 86 to 111 (several subheadings).

Motion of a single particle.

86. Jacobi, in the memoir “De Motu puncti singularis” (1842), notices (§ 5) the 
case of a body acted on by a central force which is any homogeneous function of the 
degree — 2 of the coordinates ; or representing these by r cos 0, r sin </>, then the force 

is = — , where 0 is any function of the angle </>. In fact, after integrating by a 

process different from the ordinary one the case of a central force cci, he remarks 

that the method in fact applies to the more general law of force just mentioned.

87. Jacobi, in the memoir “ Theoria Novi Multiplicands &c.” (1845), considers (§ 25) 
the case of a body acted on by a central force P a function of the distance, and

C. IV. 68
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besides by forces X and Y, which are homogeneous functions of the degree —3 of the 
coordinates (x, y) ; viz. the equations of motion are in this case

and there is an integral

(the function under the integral sign is obviously a function of the degree 0 in (x, y), 

that is, it is a function of -). If X, Y are the derived functions of a force-function x'
U of the degree — 2 in (x, y), then there is, besides, the integral of Vis Viva, and 
thence a third integral is obtained by means of the theorem of the Ultimate Multiplier. 
It may be noticed that in the last-mentioned case the force-function is of the form 
0 .—, so that if we represent also the central force by means of a force-function R

0(= function of r), then the entire force-function is R + —. The case is a very interesting 

one ; it includes that considered § iv. of Bertrand’s “ Mémoire sur les équations différen- 

tielles de la Mécanique ” (1852), where the force-function is of the form = — .

Motion of three mutually attracting bodies in a right line.

88. The problem is considered by Euler in the memoir “ De Motu rectilineo &c.” 
(1765), the forces being as the inverse square of the distance; and a solution is obtained 
for an interesting particular case. Let A, B, C be the masses, and suppose that at 
the commencement of the motion the distances CB, BA are in the ratio a : 1, and 
that the velocities (assumed to be in the same sense) are proportional to the distances 
from a fixed point. Then, if a be the real root (there is only one) of the equation 
of the fifth order

the distances CB, BA will always continue in the ratio a : 1. It may be added that 
the distances CB, BA each of them vary as r2 — a2, where a is a constant, and r is, 
according to the initial circumstances, a function of t defined by one or the other of 
the two equations
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89. The bodies are considered as restricted to move in a given line ; but it is 
clear that if the bodies, considered as free points in space, are initially in a line, and 
the initial velocities are also in this line, then the bodies will always continue in 
this line, which will be a fixed line in space. But if the distances and velocities are 
as above, except only that the velocities, instead of being along the line, are parallel 
to each other in any direction whatever, then the bodies will always continue in a 
line, which is in this case a moveable line in space (see post, No. 93).

90. Euler resumes the problem in the memoir of 1776 in the Nova Acta Petrop. 
The distances AB, BC being p and q, then

and in particular he considers the before-mentioned case of a solution of the form 
p = nq ; and also the particular problem where one of the masses vanishes, (7 = 0; in 
this case, introducing (instead of p, q), the new variables u, s, where q = up, dq = sdp 
(a transformation suggested by the homogeneity of the equations), and making, moreover,

the particular supposition that the integral of the first equation is

(viz. making the constant of integration to vanish), he obtains between s and u the 
equation of the first order

which, however, he is not able to integrate.

91. Jacobi has given in the memoir “Theoria Novi Multiplicatoris &c.” (1845) (§ 28, 
entitled “ De Problemate trium corporum in eâdem rectâ motorum. Substitutio Euleriana. 
Theoremata de viribus homogeneis ”) a very symmetrical and elegant investigation of 
the same problem. The centre of gravity being assumed to be at rest, the coordinates 
x, xx, x2 of the three bodies are in the first instance expressed as linear functions of 
the two variables u, v (being, as Jacobi remarks, the transformation employed in his 

d2vmemoir “Sur l’élimination des Nœuds” (1843), post, No. 114), and come out 

respectively equal to homogeneous functions of the degree — 2 of these variables u and v,. 
and the integral of Vis Viva exists. The subsequent transformation consists in the

introduction of the variables r, </>, s, y, where

this gives a system of equations independent of r ; viz.,

where 0 is a given function of </>, and 0' is the derived function. If these equations

were integrated, the equation of Vis Viva gives at once and
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finally the time t would be given by a quadrature. The system of three equations

has the multiplier hence if one integral were known the other

would be at once furnished by the general theory. There is a simplification in the 
form of the solution if h (the constant of Vis Viva) = 0. It is remarked that the 
method is equally applicable when the force varies as any power of the distance ; and 
moreover that when the force varies as (dist.)-3, then the solution depends upon one 
quadrature only.

92. The concluding part of the section relates to the very general problem of a 
system of n particles acted on by any forces homogeneous functions of the coordinates 
(this includes the case of n particles mutually attracting each other according to a 
power of the distance), and this more general investigation illustrates the method employed 
in regard to the three bodies in a line. It may be remarked that in the general 
theorem for the n particles “ sint vires &c.,” the constant of Vis Viva is supposed to 
vanish.

Particular cases of the motion of three bodies.

93. In the case of three bodies attracting each other according to the inverse 
square of the distance, the bodies may move in such manner as to be constantly in 
a line (a moveable line in space) ; this appears by the memoir, Euler, '“ Conside'rations 
générales &c.” (1764), in which memoir, however (which it will be observed precedes 
the memoir “De Motu rectilineo &c.” (1765), referred to No. 88), Euler assumes that 
the mass of one of the bodies is so small as not to affect the relative motion of the 
other two. Calling the bodies the Sun, Earth, and Moon, and taking the masses to 
be 1, m, 0, then a result obtained is, that in order that the Moon may be perpetually in 
conjunction, its distance must be to that of the Sun as a : 1, where m(l — a)2 = 3a3 — 3a4 + a5, 
or a='fm nearly. It appears, however (ante, No. 88), that the foregoing restriction 
as to the masses is unnecessary, and, as will be mentioned, the problem has since 
been treated without such restriction. Euler investigates the motion in the case where 
the initial circumstances are nearly but not exactly as originally supposed ; this assumes, 
however, that the motion is stable—i.e. that the bodies will continue to move nearly, 
but not exactly as originally supposed, which is at variance with the conclusions of 
Liouville’s memoir, post, No. 95. I have not examined the cause of this discrepancy.

94. In the Mécanique Céleste (1799), Book X. c. 6, Laplace considers two cases 
where the motion can be exactly determined.

1°. Force varies as any function of the distance. It is shown that the motion 
may be such that the bodies form always an equilateral triangle of variable magnitude— 
the motion of each body about the centre of gravity being the same as if that point 
were a centre of force attracting the body according to a similar law.

2°. Force <x(dist.)n. The motion may be such that the three bodies are always 
in a right line (moveable in space), the relative distances being in fixed ratios to each
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other. In particular, if force <=c (dist.)~2, then m, m', m" being the masses, the quantity 
z which determines the ratio of the distances m"m', mm is given by

which is, in fact, the formula in Euler’s memoir “ De Motu rectilineo &c.”

95. Liouville’s memoir “ Sur un cas particulier àc.” (1842) has for its object to 
show that if the initial circumstances are not precisely as supposed in the second of 
the two cases considered by Laplace, or, what is the same thing, in Euler’s memoir 
“ Considérations générales &c.,” then the motion is unstable ; the instability manifests 
itself in the usual manner, viz. the expressions for the deviations from the normal 
positions are found to contain real exponentials which increase indefinitely with the time.

96. It may be proper to refer here to Jacobi’s theorem, Comptes Rendus, t. ill. p. 61 
(1836), quoted in the foot-note to No. 31 of my Report of 1857, [195], which relates to 
the motion of a point without mass revolving round the Sun, and disturbed by a planet 
moving in a circular orbit, and properly belongs (as I have there remarked) to the 
problem of two centres, one of them moveable and the other revolving round it in 
a circle with uniform velocity. The theorem (given without demonstration by Jacobi) 
is proved by Liouville in his last-mentioned memoir, and he remarks that the theorem 
follows very simply as a corollary of the theorem by Coriolis, “ Mémoire sur le principe 
des forces vives dans les mouvemens relatifs des Machines,” Journ. de l'Ecole Polyt. 
t. xiii. pp. 268—302 (1832). There is, however, no difficulty in proving the theorem ; 
another proof is given, Cayley, “ Note on a Theorem of Jacobi’s &c.” (1862).

Motion in a resisting medium.

97. I do not consider the various integrable cases of the motion of a particle in 
a resisting medium, the resistance varying with the velocity according to some assumed 
law, the particle being either not acted on by any force, or acted upon by gravity only. 
Some interesting cases are considered in Jacobi’s memoir “De Motu puncti singularis ” 
(1842), §§ 6 and 7 (see post, No. 108).

98. In the case of a central force varying as (dist.)-2, the effect of a resisting 
medium (R oc w) is considered in reference to the lunar theory, in the Mécanique Céleste, 
Book VII. c. 6. Formulæ for the variations of the elliptic elements are given in the 
Mécanique Analytique, t. II. (2nd edition). But the variations of the elliptic elements 
are fully worked out by means of elliptic and Jacobian functions in Sohncke’s valuable 
memoir “ Motus Corporum &c.” (1833).

99. The effect of the resistance of the air on a pendulum has been elaborately 
considered by Poisson, Bessel, Stokes, and others ; as the dimensions of the ball are 
attended to, the problem is in fact a hydrodynamical one.

The effect on the spherical pendulum is considered in Hansen’s memoir “ Theorie 
der Pendelbewegung &c. (1853).

The effect on the motion of a projectile is considered in Poisson’s memoirs “ Sur 
le Mouvement des Projectiles &c.” (1838).
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Liouville’s memoirs “ Sur quelques Cas particuliers où les équations du mouvement d’un 
point matériel peuvent s’intégrer” (1846—49).

100. In the first memoir (§ 1) the author considers a point moving in a plane 
or on a given surface, where the principle of Vis Viva holds good (or say where there 
is a force-function IT). The coordinates of the point, and the function U, may be 
expressed in terms of two variables a, ft, and it is assumed that these are such that

where X is a function of a and ft. That is, we have T = |X (a'2 +S'2)', and the equations 
of motion are

7^/7» f TT

One integral of these is

and by means of it the equations take the form

These equations, it is easy to show, may be integrated if

and they then in fact give

where A is an arbitrary constant. And we then have

which gives the path, and the expression for the time is easily obtained by means of 
a quadrature.

It is not more general, but it is frequently convenient to employ instead of a, /3, 
two variables p and v, such that
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where m is a function of p only and n of v only, while X contains p and v. The 
geometrical signification of the equation ds2 = X (da2 + dft2), or of the last-mentioned 
equivalent form, is that the curves

a or X = const., ft or p = const.
intersect at right • angles.

The foregoing differential equation of the path, writing fp, Fv in the place of 
fa, Fft respectively, may he expressed in the form

fp cos2 i + Fv sin2 i = A,
where i, 90° — i are the inclinations of the path at the point (X, p) to the two ortho­
tomic curves through this point.

101. The before-mentioned equation
(2U+C)X=/a-F/3

may be satisfied independently of C, or else only for a particular value of C. In the 
former case the law of force is much more restricted, but on the other hand there is 
no restriction as regards the initial circumstances of the motion ; it is the more 
important one, and is alone attended to in the sequel of the memoir. In the case 
in question (changing the functional symbols) we must have

X = 0a — st ft, XU =fa — Fft ;
I

so that the functions denoted above by fa, Fft now are 2/a + (70a, 2Fft + Csrft ; the 
equation of the trajectory is

and for the time the formula is

It is noticed also that taking B, e to denote two new arbitrary constants, and writing

the equation of the trajectory and the expression for the time assume the forms

as is known a priori by a theorem oi Jacobis.
If the forces vanish, the path is a geodesic line; and denoting by a the ratio 

of the constants A, C, we have
no

and moreover

which are geometrical properties relating to the geodesic line.
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102. Passing to the applications : in the first place, if a, ft are rectangular coordi­
nates of a point in piano, then writing instead of them x, y, we have ds2 = dx2 + d,y\ 
which is of the required form ; but the result obtained is the self-evident one, that 
the equations may be integrated by quadratures when U is of the form funct. x — funct. y.

But taking instead the elliptic coordinates p, v, of a point in piano—viz., as employed 
by the author, these are the semiaxes of the confocal ellipse and hyperbola represented 
by the equations

—very interesting results are obtained. The equations give

and thence

. which is of the proper form, and the corresponding expression of U is

so that the force-function having this value (fp, Fv being arbitrary functions of p 
and v respectively), the equations of motion may be integrated by quadratures.

103. In particular, if
fp=gp+ g'p + k(p4 — b2p2),
Fv — gv — g'v + k(v4 — b2v2),

then

But p + v, p—v are the distances of the point from the two foci, and p2+v2—b2(=x2+y2) 
is the square of the distance from the centre, so that the expression for U is

and the case is that of forces to the foci varying inversely as the squares of the 
distances, and a force to the centre varying directly as the distance—the case con­
sidered by Lagrange in the problem of two centres. But this is merely one particular 
case of those given by the general formula.

The cases g = 0, g' = 0, k = 0 (no forces), and g = 0, g' = 0 (a force to the centre) 
lead to some interesting results ; it is noticed also that the expression for the force­

function may be written and that it may be thereby

ascertained (without transforming to elliptic coordinates) whether a given value of the 
force-function is of the form considered in the theory.
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In § 3 the author considers the expression dx2 + dy2 = X (da2 + d/32), X being in the 
first instance any function whatever of a and ; and he shows that the expressions 
of x, y are given by the equation 

ip being any real function. If, however, it is besides assumed that X is of the required 
form =fa — F(3, then he shows that the system of elliptic coordinates is the only one 
for which the conditions are satisfied. 4, 5, 6 and 7 relate to the motion of a point 
on a sphere, an ellipsoid, a surface of revolution, and the skew helicoid respectively ; and 
the concluding § 8 contains only a brief reference to the author’s second memoir.

104. Liouville’s second and third memoirs may be more briefly noticed. In the 
second memoir the author starts from Jacobi’s theorem of the V function, viz., assuming 
that there is a force-function U independent of the time, then in order to integrate 

the equations of motion all that is required is to

find a function 0 of x, y, z containing three arbitrary constants A, B, G (distinct from 
the constant attached to ® by mere addition) satisfying the differential equation 

for then the required integrals of the equations of motion are

A', B', G' being new arbitrary constants. Liouville introduces in place of x, y, z, the 
elliptic coordinates p, p, v, which are such that 

or, what is the same thing, 
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and he then finds that the resulting partial differential equation in p, g, v may be 
integrated provided that U is of the form 

f, F, -&■ being any functional symbols whatever ; viz., the expression for 0 is

In the case where U= 0 we have a particle not acted on by any forces, and the 
path is of course a straight line. The peculiar form in which these equations are 
obtained leads to very interesting results in. regard to the theory of Abelian integrals, 
and to that of the geodesic lines of an ellipsoid.

The formulæ require to be modified in certain cases, such as c = b or b = 0. The 
case b—0 leads to the theory developed in the first memoir in relation to the problem 
of two centres. The case is indicated where 6 = 0, c = 0, the ratio b : c remaining finite.

The case is briefly considered of a particle moving on a given surface.

105. The third memoir purports to relate to a system of particles, but the 
formulæ are exhibited under a purely analytical point of view ; so much so, that the 
coordinates of the points (3 for each point) are considered as forming a single system 
-of variables x1, x2> ... xit The partial differential equation is 

which is transformed by introducing therein the new variables p1? p2,... pi analogous to 
the elliptic coordinates of the second memoir. The memoir really belongs rather to the 
theory of the Abelian integrals (in regard to which it appears to be a very valuable 
one) than to dynamics.

Memoirs by Jacobi, Bertrand, and Donkin, relating to various Special Problems.

106. I have inserted this heading for the sake of showing at a single view what 
are the special problems incidentally considered in the undermentioned memoirs which 
are referred to in several places in the present Report.
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107. Jacobi, “De Motu puncti singularis” (1842).—I call to mind that the memoir
chiefly depends on the theorem of the Ultimate Multiplier (the theory in its generality 
being developed in the later memoir “ Theoria Novi Multiplicatoris &c.,” 1844—45). 
§ 4 is entitled “ The motion of a point on the surface of revolution,” which, the 
principle of the conservation of areas holding good, is reduced to the problem of the 
motion on the meridian curve, and thus depends upon quadratures only. § 5 is entitled 
“ On the motion of a point about a fixed centre attracted according to a certain law 
more general than the Newtonian one ” (ante, No. 85). § 6, “ On the motion of a
point on a given curve and in a resisting medium ” (resistance = a + be™2, or = a 4- bv2) ; 
and § 7, “ On the Ballistic Curve,” viz., the forces are gravity and a resistance = a 4- bvn.

108. In Jacobi’s memoir “ Theoria Novi Multiplicatoris &c.” (1845), § 25 is entitled 
“ On the motion of a point attracted towards a fixed centre ” (see antè, No 87) ; 
§ 26, “ On the motion of a point attracted towards two fixed centres according to the 
Newtonian law” (ante, No. 56); § 27, “On the rotation of a solid body about a fixed 
point” (post, No. 193); § 28, “On the problem of three bodies moving in a right line; 
the Eulerian substitution; theorems on homogeneous forces” (ante, No. 91); and § 29, 
“ The principle of the ultimate multiplier applied to a free system of material points 
moving in a resisting medium ; on the motion of a comet in a resisting medium about 
the sun.”

109. And in Jacobi’s memoir “ Nova Methodus &c.” (1862), besides § 64 and § 65, 
which are applications of the method to general dynamical theorems, we have § 66, 
containing a simultaneous solution of the problem of the motion of a point attracted 
to a fixed centre and of that of the rotation of a solid body (post, No. 206) and 
§ 67, relating to the motion of a point attracted to a fixed centre according to the 
Newtonian law.

110. Bertrand’s “Mémoire sur les intégrales différentielles de la Mécanique” (1852).—
§ III. relates to the motion of a point attracted to a fixed centre by a force varying 
as a function of the distance ; § IV. to the case where the forces arise from a force­
function U = (°r’ what is the same thing, = (ante, No. 87); § V. to the

problem of two centres (antè, No. 62), and § VI. to the problem of three bodies (post, 
No. 117).

111. Donkin’s memoir “On a Class of Differential Equations &c.” (1855). Part I. 
Nos. 27 to 30 relate to the problem of central forces (in space), No. 31 to the rotation 
of a solid body, and § III. to the same subject, viz. Nos. 40 and 41 to the general 
case, Nos. 42 to 44 to the particular case A=B; and Nos. 45 to 48 to the reduction 
thereto of the general case by treating the forces which arise from the inequality of 
A and B as disturbing forces. Part II. Nos. 59 and 60 relate to the spherical 
pendulum; Nos. 72 and 73 to “Transformation from fixed to moving axes of coordi­
nates,” say to Relative Motion ; and Nos. 84 to 96 to the problem of three bodies 
(post, No. 120).

AQ__ 9
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The Problem of Three Bodies, Article Nos. 112 to 123.

112. A system of differential equations, such as

(n equations between n +1 variables), may be termed a system of the nth order, or 
more simply a system of n equations. Let (ux, u2....un+1) be any functions of the 
original variables (x1} x2.... xn+1), the system may be transformed into the similar system 

and if it happens that we have e.g. Z7X identically equal to zero, then the system becomes 

so that we have an integral wx = c, and then in the remaining equations substituting 
this value, or treating as constant, the system is reduced to one of m — 1 equations. 
Or again, if it happen that we have in the transformed system m equations (m < n), say 

which are such that Ulf U2... TJm+1 are functions of only the m+ 1 variables u1} u2... um+1, 
then the integration of the proposed system of n equations depends on the integration 
in the first instance of a system of m equations. It is to be observed that if the 
system of m equations can be integrated, then the completion of the integration of 
the original system depends on the integration of a system of n — m equations, and in 
this sense the original system of n equations may be said to be broken up into two 
systems of m equations and n—m equations respectively : but non constat that the 
system of m equations admits of integration; and it is therefore more correct to say 
that, from the original system of the n equations, there has been separated off a system 
of m equations.

113. The bearing of the foregoing remarks on the problem of three bodies will 
presently appear. It will be seen that whereas the problem as it stood before Jacobi 
depends on a system of seven equations, it has been shown by him that there may 
be separated off from this a system of six equations.

114. Jacobi’s memoir “ Sur l’élimination des Nœuds &c.” (1843).—The problem of 
the motion of three mutually attracting bodies is in the first instance reduced to that 
of the motion of two fictitious bodies (which may be considered as mutually attracting 
bodies, attracted by a fixed centre of force) (*). In fact, in the original problem the

1 This is the effect of Jacobi’s reduction ; but the explicit statement of the theorem, and actual replace­
ment of the problem of the three bodies by that of the two bodies attracted to a fixed centre, is due to 
Bertrand (post, No. 117).
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centre of gravity of the three bodies moves uniformly in a right line, and it may 
without any real loss of generality be taken to be at rest ; that is, if the ^-coordinates 
of the three bodies are £>, £3, then mft+m2^2 + m3^3=0, or & may be taken
to be linear functions of two quantities x, and x2. And similarly for the y-coordinates 
and the ^-coordinates respectively. And (x„ y„ z,\ (x2, y2, z2) may be regarded as the 
coordinates of two bodies revolving about a fixed centre of force. Hence representing 
the differential coefficients in regard to the time by xf &c., and treating these as new 
variables, the equations of motion will assume the form

Wi #1 Zq 0-2 y2 ^2 -Zkl 1 ^1 -Z-L2 J- 2 ^2

where X„ Fn Z„ X2, F2, Z2 are forces capable of representation by means of a force­
function U. This is a system of twelve equations; but since Xlf Y„ Z„ X2, F2, Z2 
are independent of the time, we may omit the equation (=cZ0, and treat the system 
as one of eleven equations between the variables x„ y,, z1} x2, y2, z2, xf, y,, zf, xf y2, z2: 
if this system were integrated, the determination of the time would then depend on 
a quadrature only. But for the system of eleven equations we have four integrals, viz., 
the integral of Vis Viva and the three integrals of areas, and the system is thus 
reducible to one of (11—4=) seven equations. This preliminary transformation in 
Jacobi’s memoir explains the remark that the problem, as it stood before him, depended 
on a system of seven equations.

115. Jacobi remarks that in the transformed problem the three integrals of areas 
show (1) that the intersection of the planes of the orbits of the two bodies lie in a 
fixed plane, the invariable plane of the system ; (2) that the inclinations of the planes 
of the two orbits to this fixed plane, and the parameters of the two orbits considered 
as variable ellipses, are four elements any two of which rigorously determine the two 
others.

And then choosing for variables the inclinations of the two orbits to the invariable 
plane, the two radius vectors, the angles which they form with the intersection of the 
planes of the two orbits, and lastly the angle between this intersection (being as already 
mentioned a line in the invariable plane) with a fixed line in the invariable plane, he 
finds that the last-mentioned angle entirely disappears from the system of differential 
equations, and is determined after their integration by a quadrature. In this new form of 
the differential equations there is no trace of the nodes. The differential equations 
which determine the relative motion of the three bodies are reduced to five equations of 
the first order and one of the second order. The equations in question are the equations 
I. to VI. given at the end of the memoir. It is to be remarked that the differential

dt is not eliminated from these equations ; the last of them is
ax

and if to reduce them to a system of equations of the first order we write

and therefore the system may be presented in the

form
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which if we do, and then omit the equation (=dt), we have a system of six equations 
between the seven quantities u, u1} i, r, rlf 0 ; when this is integrated, the equation 
(= dt) gives the time by a quadrature ; and finally, Jacobi's equation VII. (d£l = tan u 

gives by a quadrature the angle before referred to as disappearing from the system of 
equations I. to VI.

116. But when Jacobi says, “ Par suite on a fait cinq integrations. Les intégrales 
connues n’étant qu’au nombre de quatre, ,on pourra donc dire que l’on a fait une 
intégration de plus dans le système du monde. Je dis dans le système du monde 
puisque la même méthode s’applique à un nombre quelconque de corps,” the language 
used is not, I .think, quite accurate. It in fact appears from the memoir that it is 
only on the assumption of the integration of the system of six equations that, besides 
the integral of Vis Viva and the integrals of areas, the remaining two integrals are 
known ; in factj after, but not before, the system of the order six has been integrated, 
the time t and the angle fl are each of them given by a quadrature.

117. Bertrand’s “ Mémoire sur l’intégration des équations différentielles de la 
Mécanique ” (1852).—I have spoken of this memoir in No. 56 of my former Report. 
The course of investigation is the inquiry as to the integrals, which, combined according 
to Poisson’s theorem with the integral of Vis Viva or any other given integral, give rise 
to an illusory result. But as regards the application made to the problem of three 
bodies, it will be more convenient to state from a different point of view the con­
clusions arrived at: and I may mention that when the author says “Je parviens., 
à réduire la question à l’intégration de six équations toutes du premier ordre, c’est-à-dire 
que j’effectue une intégration de plus que ne l’avait fait Jacobi,” he seems to have 
overlooked that Jacobi’s system of five equations of the first order and one of the 
second order really is, as above noticed, a system of the six equations with another 
equation which then gives the time by a quadrature, and that, at least as appears to 
me, he has not advanced the solution beyond the point to which it had been carried 
by Jacobi (x).

118. Presenting Bertrand’s results in the slightly different notation in which they 
are reproduced in Bour’s memoir (post. No. 122), then if (x, y, z), (xlf y1} zf) are the 
coordinates of the two bodies (the problem actually considered being, as with Jacobi, 
that of the motion of two bodies about a fixed centre of force), and representing the 
Functions x2 + y2 + z2, xf + y2 + zf m2 (x2 + y'2 + z'2), (xf2 + yf2 + zf), m(xx +yy' + zz')>

(xvxf + y2yf + zpf), m (x^x' + yff + zf), (xxf + yyf + zzf), (xxx + yyx + zzx),
mn^ (x'xf + y'yx + z'zx) by u, u1} v, v1} w, wlf r, rx, q, s respectively, then the last- 
mentioned quantities are connected by a single geometrical relation, so that any one 
af them, say s, may be considered as a given function of the remaining nine. And 
the author in effect shows that the equations of motion give a system

du _ dux _dv _ dvx _ dw _ dwx _dr _ drx _dq_ 
Tj-jÿ-v-vfaw ~ w,_ r " r; _ “q _{

1 These remarks were communicated by me to M. Bertrand—see my letter “ Sur l’intégration des équations 
lifférentielles de la Mécanique,” Comptes Rendus (1863)—and, in the answer he kindly sent me, he agrees that 
they are correct.
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where U, U1} &c. are functions of the quantities u, zq, v, &c. Omitting from the 
system the equation (= dt), there are eight equations between nine quantities ; but 
there are two known integrals, viz., the integral of Vis Viva and the integral of 
principal moment (or sum of the squares of the integrals of areas); that is to say, 
the system is really a system of six equations.

119. Painvin, “Recherche du dernier Multiplicateur &c.” (1854).—The author 
investigates the ultimate multiplier for two systems of differential equations:

1°. The system of the equations I. to VL in Jacobi’s memoir “ Sur l’élimination 
-r x • • • • dv d/ï*des Nœuds &c.” (antè, No. 114). Writing in the equations = r, and treating

r', r/ as new variables, the system may be written in the form

which, omitting the equation (= dt), is a system of seven equations between eight
variables ; and it is for this form of the system that the value of M is determined,

the result obtained being the simple and elegant one, M = —• The system of

seven equations has an integral which is in fact the equation V. of the system in
Jacobi’s form, so that it is really a system of six equations (antè, No. 115).

2°. The system secondly discussed is Bertrand’s system of nine equations (ante, No. 118).

The multiplier M is obtained under four different forms, .

(I do not stop to explain the notation), the last of them being referred to as a result 
announced by M. Bertrand in his course. But it is shown by M. Bour in the memoir 
next referred to (post, No. 122), that the multiplier for the system in question can 
be obtained in a very much more simple manner, almost without calculation.

120. In connexion with Jacobi’s theory of the elimination of the Nodes, I may 
refer to the investigations “ Application to the Problem of three Bodies,” Nos. 84 to 
96 of Donkin’s memoir “ On a Class of Differential Equations &c.” Part II. The author 
remarks that his differential equations No. 93 afford an example of the so-called 
elimination of the Nodes, quite different however (in that they are merely transfor­
mations of the original differential equations of the problem without any integrations) 
from that effected by Jacobi.

121. It may be right to refer again in this place to the concluding part of 
§ 28 of Jacobi’s memoir “Nova Theoria Multiplicatoris &c.” (antè, No. 92), as bearing 
on the problem of three bodies.

122. Bour’s “Mémoire sur le Problème des Trois Corps” (1856).—The author 
remarks that Bertrand’s system of equations have lost the remarkable form and the 
properties which characterize the ordinary equations for the solution of a dynamical
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problem. But by selecting eight new variables, functions of Bertrand’s variables, the 
system may be brought back to the standard Hamiltonian form

or to the form adopted by M. Bour, of a partial differential equation

and guiding himself by a theorem in relation to canonical integrals obtained in his 
memoir of 1855 (see No. 66 of my former Report), he finds by a somewhat intricate 
analysis the expressions of the eight new variables p1} p2, p3, p4, qlf q2, q3, qt. The 
results ultimately obtained are of a very remarkable and interesting form, viz. H = 
funct. (plf p2, p3, pi, qlt q2, q3, qft is equal to the value it would have for motion in a 
plane, plus a term admitting of a simple geometrical interpretation ; and he thus 
arrives at the following theorem as a résumé of the whole memoir, viz.,

“ In order to integrate in the general case the problem of three bodies, it is 
sufficient to solve the case of motion in a plane, and then to take account of a 
disturbing function equal to the product of a constant depending on the areas by the 
sum of the moments of inertia of the bodies round a certain axis, divided by the 
square of the triangle formed by the three bodies.”

123. It may be remarked that the only given integral of the system of eight 
equations is the integral of Vis Viva, H = const., and that using this equation to 
eliminate one of the variables, and omitting the equation (= dt), we have, as in the 
solutions ot Jacobi and Bertrand, a system of six equations between seven variables. 
As the equations are in the standard dynamical form, no investigation is needed of 
the multiplier M, which is given by Jacobi’s general theory, and consequently when 
any five integrals of the six equations are given, the remaining integral can be 
obtained by a quadrature.

In the case of three bodies moving in a plane, the solution takes a very simple 
form, which is given in the concluding paragraph of the memoir.

Transformation of Coordinates, Article Nos. 124 to 141.

124. It may be convenient to remark at once that two sets of rectangular 
coordinates may be related to each other properly or improperly, viz., the axes to which 
they belong (considered as drawn from the origin in the positive directions) may be 
either capable, or else incapable, of being brought into coincidence. The latter relation, 
although of equal generality with the former one, may for the most part be disregarded ; 
for by merely reversing the directions of the one set of axes, the improper is converted 
into the proper relation.
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125. In the memoir “Problema Algebraicum &c.” (1770) Euler proposes to himself 
the question “ Invenire novem numéros ita in quadratum disponendos

A, B, C
D, E, F
G, H, I

ut satisfiat duodecem sequentibus conditionibus &c.”, viz., substituting for A, B, C, &c. 
the ordinary letters

a , ft ,' 7 ,
*', ft', 7,

ft", 7",
the twelve conditions are

a2 + a'2 +a"2 = 1} a/3 a'p + = 0

ft2 Aft'2 A ft"2 = 1, fty + ft’y + £V = 0,
T2 + y'2 + y"2 = 1, ya + y a' + y"a" = 0,

a2 + ft2 + y2 =1, aa' + ft ft' A yy' =0,
a!2 A ft'2 Ay2 =1, da!'A ft^ft" A y'y” =0,
a"2 + /3"2 + y"2=l, aa" + /3"/3 + y"7 =0.

I 
And he remarks that this is in fact the problem of the transformation of coordinates, 
viz., if we have

X = aa?+/3y + y z,
Y = a! x + ft' y + y z,
Z = d'x + ft" y + y"z,

then the first equations are such as to give identically

X2 A Y2 A Z2 — x2 A y2 A z2.

126. Assuming the first six equations, he shows by a direct analytical process that 
a2 = (ft'y" — ft"y )2, or a = + (ft'y" — ft"y') ; or taking the positive sign (for, as the numbers 
may be taken as well positively as negatively, there is nothing lost by doing so) 
a = ft'y" — ft"y, which gives the system

a = ft'y"-ft"y', ft = y'd'—y"d , y = d ft" — a!'ft',

a! = ft"y — ft y", ft' = y"a —ya", y' = a"ft — a ft",

a!' = ft y - ft'y , ft" = y a! -ya , y" = a ft' -a! ft',

and from these he deduces the second system of six equations. The inverse system of 
equations

X = ax + a’y + a" z,
Y = ftx a ft'y + Æ'X
Z =yx a y y + y" z

is not explicitly referred to.
C. IV. 7 0
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127. He then satisfies the equations by means of trigonometrical substitutions, viz., 
assuming a = cos£ then a'2 + a"2 = sin2 £ which is satisfied by a! = sin £ cos y, a!' = sin £ sin y, 
&c., and he thus obtains for the coefficients a set of values involving the angles 
£ y, 6, which are the same as those mentioned post, No. 130. And he shows how 
these formulæ may be obtained geometrically by three successive transformations of two 
coordinates only. The remainder of the memoir relates to the analogous problem of 
the transformation of four or more coordinates.

128. I have analysed so much of Euler’s memoir in order to show that it con­
tains nearly the whole of the ordinary theory of the transformation of coordinates ; 
the only addition required is the equation

a , ft , 7 = ± 1,

< ft', 7
a", ft", 7"

where the sign + gives a = ft'y" — ft"y, &c. (ut supra), but the sign — would give 
a = -(ft'y" - ft"y), &c.

129. The distinction of the ambiguous sign is in fact the above-mentioned one 
of the proper and improper transformations ; viz., for the sign + the two sets of axes 
can, for the sign — they cannot, be brought into coincidence: this very important 
remark was, I believe, first made by Jacobi in one of his early memoirs in Crelles 
Journal, but I have lost the reference. As already mentioned, it is allowable to attend 
only to the proper transformation, and to consider the value of the determinant as 
being = +1 ; and this is in fact almost always done.

130. Fuler’s formulæ involving the three angles are those which are ordinarily made 
use of in the problem of rotation and the problems of physical astronomy generally.

It is convenient to take them as in the figure, viz., 3, the longitude of node,
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cf>, the inclination, t, the angular distance of X from node, and the formulæ of trans­
formation then are

The foregoing very convenient algorithm, viz., the employment of

X Y Z

X cos t cos 3 — sin t sin 3 cos </> — sin t cos 3 — cos r sin 3 cos <ft sin 3 sin 0

y cos r sin 3 + sin r cos 3 cos </> — sin t sin 3 + cos t cos 3 cos <f> — cos 3 sin <(i

z sin t sin cos t sin <f) cos <f>

X r z
X a £ 7

y
/ a ft' 7

z // a ft" //
7

to denote tne system of equations
x = a X + ft Y + y Z, 
y = a'X + ft'Y + y'Z, 
z =a"X + ft''Y+y"Z, 

is due to M. Lamé.

131. But previously to the foregoing investigations, viz., in the memoir “D 
Mouvement de Rotation &c.,” Mém. de Berlin for 1758 (pr. 1765), Euler had obtaine* 
incidentally a very elegant solution of the problem of the transformation of coordinates 
this is in fact identical with the next mentioned one, the letters l, m, n ; X, /z, 
being used in the place of Ç, tf f Î V, f, f'-

132. In the memoir “Formulæ generales pro translatione &c.” (1775), Euler give 
the following formulæ for the transformation of coordinates, viz., if the position of th 
set of axes XYZ in reference to the set xyz is determined by

xX, yX, zX = M°-Ç, 90° —£', 90°-Ç", ^YXx, YXy, YXz = y, y', y",

then the formulæ of transformation are

X Y Z

X sin £ cos t, sin y COS t, COS y

y sint cos f sin y cos Ç cos y

z sin Ç' cos sin y" cos £" cos y"
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with the following equations connecting the six angles, viz., if

133. It is right to notice that these values of F F> give the twelve equations
a2 + /32 + 72 = l, &c., but they do not give definitely a = /3'g" — fi''q, &c., but only 
a = ± (J3'q" — ; that is, in the formulæ in question the two sets of axes are not
of necessity displacements the one of the other. In the same memoir Euler considers 
two sets of rectangular axes, and assuming that they are displacements the one of the 
other (this assumption is not made as explicitly as it should have been), he remarks 
that the one set may be made to coincide with the other set by means of a finite 
rotation about a certain axis (which may conveniently be termed the Resultant Axis). 
This consideration leads him to an equation which ought to be satisfied by the coefficients 
of transformation, but which he is not able to verify by means of the foregoing 
expressions in terms of F F> f •

134. I remark that Euler’s equation in fact is

or, as it may be written,

in which form it is an immediate consequence of the equations

which are true for the proper, but not for the improper transformation.
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135. In the undated addition to the memoir, Euler states the theorem of the 
resultant axis as follows :—“ Theorema. Quomodocunque sphæra circa centrum suum con- 
vertatur, semper assignari potest diameter cujus directio in situ translato conveniat cum 
situ originali and he again endeavours to obtain a verification of the foregoing 
analytical theorem.

136. The theory of the Resultant Axis was further developed by Euler in the 
memoir “Nova Methodus Motum &c.” (1775), and by Lexell in the memoir “Nonnulla 
theoremata generalia &c.” (1775) : the geometrical investigations are given more com­
pletely and in greater detail in Lexell’s memoir. The result is contained in the following 
system of formulæ for the transformation of coordinates, viz., if a, ft, 7 are the incli­
nations of the resultant axis to the original set, and if </> is the rotation about the 
resultant axis, or say the resultant rotation, then we have

X Y Z

X COS2 a + sin2 a COS </> cos a cos (1 — cos </>) + cos 7 sin 0 cos a cos 7(1— cos </>) — cos ft sin </>

y cos ft cos a (1 — cos <£) — cos y sin <f> cos2 ft + sin2 ft cos <f> cos ft cos 7 (1 —cos 0) + cos. a sin </>

z cos 7 cos a (1 — cos </>) + cos /3sin </> cos 7 cos ft (1 — cos </>) — cos a sin cf> cos2 7 + sin2 7 cos </>
I

Euler attempts, but not very successfully, to apply the formulæ to the dynamical 
problem of the rotation of a solid body : he does not introduce them into the differential 
equations, but only into the integral ones, and his results are complicated and inelegant. 
The further simplification effected by Rodrigues was in fact required.

137. Jacobi’s paper, “ Euleri formulæ &c.” (1827), merely cites the last-mentioned 
result.

138. I find it stated in Lacroix’s Differential Calculus, t. 1. p. 533, that the 
following system for the transformation of coordinates was obtained by Monge (no 
reference is given in Lacroix), viz., the system being as above,

a , ft , 7 ,
a', ft' , 7,
f, ft", y",

and the quantities a, ft', y" being arbitrary, then putting

1 + a + ft' + y" = Jf,
1 + a — /3' — 7" = .V,
1 — a + /8' — 7" = P,

1 — a — /3' + 7" = Q,
so that
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we have

These are formulæ very closely connected with those of Rodrigues.

139. The theory was perfected by Rodrigues in the valuable memoir “ Des lois 
géométriques &c.” (1840). Using for greater convenience X, p, v in the place of his

fa, fa, he in effect writes
tan fa cos a = X,
tan </> cos ft = p, 
tan </> cos 7 = i/,

and this being so, the coefficients of transformation are

1 + X2 - p2 - v2, 2 fap + v) , 2fav — p)
2(pX —v) , \-X2 + p2-v2, 2(pv+X)

2 (i/X + p) , 2vp — X , 1 - X2 - p2 4- v2,

all divided by the common denominator 1 + X2 4- p2 + v2. Conversely, if the coefficients 
of transformation are as usual represented by

« , ft , 7 ,
*, ft', 7,

ft", 7",

then X2, p2, v2, X, p, v are respectively equal to

1 + a — /3' — 7", 1 — a 4- /3' — 7", 1 — a — ft’ 4- 7",

7~/3" , *'~ft > ft~*

each of them divided by 1 4- a 4- 0' 4- 7".

The memoir contains very elegant formulæ for the composition of finite rotations, 
and it will be again referred to in speaking of the kinematics of a solid body.

140. Sir W. R. Hamilton’s first papers on the theory of quaternions were published 
in the years 1843 and 1844 : the fundamental idea consists in the employment of the 
imaginaries i, j, k, which are such that

i2 —j2 = k2 = — 1, jk=—kj = i, ki = —ik=j, ij = —ji = k, 
whence also

fa 4- ix + jy 4- kz) fa' 4- ix' +jy 4- kz')
= ww' — xx' — yy'— zz

+ i fax' 4- w'x 4- yz' — y'z)

+j fay’ + w'y + ~ z>x)
4- k faz' 4- w'z 4- xy' — x y) ;
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so that representing the right-hand side by

W+iX+jY+kZ, 
we have identically

TF2 + X2 + Y2 + Z2 = (w2 + x2 + y2 + z2) (w'2 + x2 + y'2 + z'2\

It is hardly necessary to remark that Sir W. R. Hamilton in his various publications 
on the subject, and in the Lectures on Quaternions, Dublin, 1853, has developed the 
theory in detail, and has made the most interesting applications of it to geometrical 
and dynamical questions; and although the first explicit application of it to the 
present question may have been made in my own paper next referred to, it seems 
clear that the whole theory was in its original conception intimately connected with 
the notion of rotation.

141. Cayley, “ On certain Results relating to Quaternions ” (1845).—It is shown 
that Rodrigues’ transformation formula may be expressed in a very simple manner by 
means of quaternions ; viz., we have

zzr +jy + kz = (1 + iX +jp + kv)"1 (iX +jY + kZ) (1 + ix +jp + kv), 

where developing the function on the right-hand side, and equating the coefficients of 
i, j, k, we obtain the formulæ in question. A subsequent paper, Cayley, “ On the 
application of Quaternions to the Theory of Rotation ” (1848), relates to the composition 
of rotations.

Principal Axes, and Moments of Inertia. Article Nos. 142—163.

142. The theorem of principal axes consists herein, that at any point of a solid 
body there exists a system of axes Ox, Oy, Oz, such that

J” yzdm = 0, zxdm = 0, \ xydm = 0.

But this, the original form of the theorem, is a mere deduction from a general theory 
of the representation of the integrals

I z2dm, J yzdm, zxdm, xydm

for any axes through the given origin by means of an ellipsoid depending on the 
values of these integrals corresponding to a given set of rectangular axes through the 
same origin.

143. If, for convenience, we write as follows, M = J dm the mass of the body, and

A'=j" x2dm, B' = f y2dm, U=j‘ z2dm, 1'=^ yzdm,» zxdm, H' = J xydm,
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and moreover
A =/(y1 2 + z2) dm, B = J (z2 + x2) dm, C = j’(x2 + y2) dm,

1 I have ventured to make this change instead of writing as usual F=j"yzdm, &c. ; as in most cases

F—G = H=Q, the formulae affected by the alteration are not numerous.

F= — j" yzdm, G = — j" zxdm, H= — J xydmf)

so that
A = B' + G', B = C' + A', C = A' + B', F=-F, G = -G', H = -H’,

then the ellipsoid which in the first instance presents itself for this purpose, and which 
Prof. Price has termed the Ellipsoid of Principal Axes, but which I would rather term 
the “ Comomental Ellipsoid,” is the ellipsoid

(A’, B', O', F', G', H'^x, y, z)2 = Mk4,

where k is arbitrary, so that the absolute magnitude is not determined. But it is 
more usual, and in some respects better to consider in place thereof the “ Momental 
Ellipsoid ” (Cauchy, “ Sur les Moments d’inertie,” Exercices de Mathématique, t. II. 
pp. 93—103, 1827),

(A, B, C, F, G, H^x, y, z^Mk4,

or as it may also be written,

(A’ +B'.+ C')(x2 + y2 + z2)-(A', B', C', F', G', H'Jx, y, z)2 = Mk4,

which shows that the two ellipsoids have their axes, and also their circular sections,
coincident in direction.

144. And there is besides this a third ellipsoid, the “ Ellipsoid of Gyration,” which
is the reciprocal of the momental ellipsoid in regard to the concentric sphere, radius k.
The last-mentioned ellipsoid is given in magnitude, viz., if the body is referred to its 
principal axes, then putting A = Ma2, B = Mb2, C = Me2, the equation of the ellipsoid of 
gyration is

tv tz V

The axes of any one of the foregoing ellipsoids coincide in direction with the principal 
axes of the body, and the magnitudes of the axes lead very simply to the values of 
the principal moments A, B, G.

145. The origin has so far been left arbitrary : in the dynamical applications, this 
origin is in the case of a solid body rotating about a fixed point, the fixed point ; and 
in the case of a free body, the centre of gravity. But the values of the coefficients 
(A, B, G, F, G, H), or (A', B', C', F', G', IF), corresponding to any given origin what­
ever, are very easily expressed in terms of the coordinates of this origin, and the values 
of the corresponding coefficients for the centre of gravity as origin ; or, what is the 
same thing, any one of the ellipsoids for the given origin may be geometrically con­
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structed by means of the ellipsoid for thè centre of gravity. The geometrical theory, 
as regards the magnitudes of the axes, does not appear to have been anywhere explicitly 
enunciated ; as regards their direction, it is comprised in the theorem that the directions 
at any point are the three rectangular directions at that point in regard to the ellipsoid 
of gyration for the centre of gravity(4), post, No. 159. The notion of the ellipsoids, 
and of the relation between the ellipsoids at a given point and those at the centre 
of gravity, once established, the theory of principal axes and moments of inertia becomes 
a purely geometrical one.

146. The existence of principal axes was. first established by Segner in the work 
Specimen Theoriœ Turbinum, Halle (1755), where, however, it is remarked that Euler had 
said something on the subject in the {Berlin} Memoirs for 1749 and 1750 (post, No. 
167), and had constructed a new mechanical principle, but without pursuing the question. 
Segner’s course of investigation is in principle the same as that now made use of, viz. 
a principal axis is defined to be an axis such that when a body revolves round it 
the forces arising from the rotation have no tendency to alter the position of the axes. 

It is first shown that there are systems of axes x, y, z such that xzdm = 0, and then, 

in reference to such a set of axes, the position of a principal axis, say the axis of X, 
is determined by the conditions J XYdm = 0, ^XZdm = 0, viz. the unknown quantities 

being taken to be t = C°3--, t = cos_(a fi y being the inclinations of the principal
° cos 7 cos 7 x ° r i

axis to those of x, y, z), and then putting A = j'x2dm, &c. (F = 0 by hypothesis), 

Segner’s equations for the determination of t, r, are

G't2 + (O' -A')t-G'~ H't = 0,
(0"-Z/)t-^7+Æ'Z = 0,

the second of which gives

T~ B'-C'+G't’
and by means of it the first gives

G'2ts - G' (A' - B') t2 + {(B' - C') (O' - A') - G'2 - H'2} t + G' (B - O') = 0, 
which being a cubic equation shows that there are three principal axes ; and it is 
afterwards proved that these are at right angles to each other.

147. To show the equivalence of Segner’s solution to the modern one, I remark 
that if u = J X2dm, we have

(A'— u)t+ H' t + G' =0,
B' t + (B'-u)t + F' =0,
G' t+ F' r+G'-u = 0,

1 The rectangular directions at a point in regard to an ellipsoid are the directions of the axes of the 
circumscribed cone, or, what is the same thing, they are the directions of the normals to the three quadric 
surfaces, confocal with the given ellipsoid, which pass through the given point. The theory of confocal 
surfaces appears to have been first given by Chasles, Note XXXI. of the Aperçu Historique (1837).

c. iv. 71
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whence
t2 : t2 : 1 : t : t : tr = B'C' - F'2 - (B' + G') u + u2

: C'A'-G'2-(G' + A')u + u2

: AZ'-ZP-U'+^u + u2
:G'H'-A'F' + F'u

: H'F'—B'G' +G' u

: F'G' - C'H' + H' u,
or putting therein F' = 0,

t2 : t2 : 1 : r : t : tr = B'C/ -(B' + G')u + u2

: G'A'-G'2-(G' + A')u + u2

: A'B'-H'2-(A'+B')u + u2

: G’H'

-. — B'G' +G'u

-.-G'H’ + H'u,

by means of which Segner’s equations may be verified. I have given this analysis, as 
the first solution of such a problem is a matter of interest.

148. There is little if anything added to Segner’s results by the memoir, Euler, 
“Recherches sur la Connaissance Mécanique des Corps” (1758), which is introductory to 
the immediately following one on Rotation.

149. Relating to the theory of principal axes we have Binet’s “ Mémoire sur les 
axes conjugués &c.,” (1813). The author proposes to make known the new systems of 
axes which he calls conjugate axes, which, when they are at right angles to each other, 
coincide with the principal axes ; viz. considering the sum of the molecules each into 
its distance from a plane, such distance being measured in the direction of a line, 
then (the direction of the line being given) of all the planes which pass through a 
given point, there is one for which the sum in question is a minimum, and this plane 
is said to be conjugate to the given line, and from the notion of a line and conjugate 
plane he passes to that of a system of conjugate axes. The investigation (which is 
throughout an elegant one) is conducted analytically ; the coordinates made use of are 
oblique ones, and the formulæ are thus rendered more complicated than they would 
have been ; in referring to them it will be convenient to make the axes rectangular.

150. One of the results is the well-known equation

(A' - 0) (B' - 0) (O' - 0) - F'2 (A' - 0) - G'2 (Br - ©) - H'2 (O' - 0) + 2F'G'H' = 0 ; 

which, if +, yx, z4 are the principal axes, has for its roots J x?dm, y?dm, z?dm.
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And the equations (1), p. 49, taking therein the original axes as rectangular, are

where ST, 23', (S', ®', & denote the reciprocal coefficients, 2T = B'C' — F'2 &c., and K'
is the discriminant = A'B'C' — A'F'2 — B'G'2 — G'H'2 + 2F'G'H' : this is a symmetrical 
system of equations for finding cos a. : cos ft : cos 7, less simple however than the 
modern form (post, No. 154), the identity of which with Binet's may be shown without 
difficulty.

151. Another result (p. 57) is that if the original axes are principal axes, and 
if Ox, Oy, Oz are the principal axes through a point the coordinates whereof are 
f, g, h, and if 0/ = (say) J x^dm, then we have 

(in which I have restored the mass M, which is put equal to unity), so that if 0/ have 
a given constant value, the locus of the point is a quadric surface, the nature whereof 
will depend on the value of 0X. The surfaces in question are confocal with each other

{and with the imaginary surface which is similar to the ellipsoid

which is the reciprocal of the comomental ellipsoid A'x2 + B'y2 + C'z2 = Mid

in regard to a concentric sphere, radius &}. The author mentions the ellipsoid

(see p. 64), and he remarks that his conjugate axes are in fact con­

jugate axes in respect to this ellipsoid, and consequently that the principal axes are 
in direction the principal axes of this ellipsoid : it is noticeable that the ellipsoid thus 
incidentally considered is not the comomental ellipsoid itself, but, as just remarked, its 
reciprocal in regard to a concentric sphere.

152. Poisson, Mécanique (1st ed. 1811, and indeed 2nd ed. 1833), gives the theory 
of principal axes in a less complete form than in Binet’s memoir ; for the directions 
of the principal axes are obtained in anything but an elegant form.

153. Ampère’s Memoir (1823).—The expression permanent axis is used in the place 
of principal axis, which is employed to designate a principal axis through the centre 
of gravity. The memoir contains a variety of very interesting geometrical theorems, 
which however, as no ellipsoid is made use of, can hardly be considered as exhibited 
in their proper connexion. The author arrives incidentally at certain conics, which are

in fact the focal conics of the ellipsoid of gyration for the centre of

gravity.
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154. Cauchy, in the memoir “Sur les Momens d’inertie” (1827), considers the 
momental ellipsoid (A, B, C, F, G, Hfa, y, z)2 = 1, and employs it as well to prove 
the existence of the principal axes as to determine their direction, and also the 
magnitudes of the principal moments ; the results are obtained in the simplest and 
best forms ; viz. the direction cosines are given by

(A — 0) cos a + II cos fl + G cos 7 = 0,
H cos a + (B — 0) cos fl + F cos 7 = 0,
G cos a + F cos fl + ((7 — 0) cos 7 = 0,

where
(A - 0) (B - 0) ((7 - 0) - (A - 0) F2 - (B - 0) G2 - ((7 - 0) H2 + 2FGH = 0,

0 being one of the principal moments.

155. Poinsot, “Mémoire sur la Rotation” (1834), defines the “Central Ellipsoid” as 
an ellipsoid having for its axes the principal axes through the centre of gravity, the 
squares of the lengths being reciprocally proportional to the principal moments ; and 
he remarks in passing that the moment about any diameter of the ellipsoid is inversely 
proportional to the square of this diameter. It is to be noticed that Poinsot speaks 
only of the ellipsoid having its centre at the centre of gravity, but that such ellipsoid 
may be constructed about any point whatever as centre, and that so generalized it 
is in fact the momental ellipsoid Ax2 + By2 + Cz2 = Mid ; and moreover that Poinsot 
defines his ellipsoid by reference to the principal axes.

156. Pirie, “On the Principal Axes &c.” (1837), obtained analytically in a very 
elegant manner equations for determining the positions of the principal axes ; viz. 
these are 

where 

viz. these are similar to those of Cauchy, only they belong to the comomental instead 
of the momental ellipsoid.

157. Maccullagh, in his Lectures of 1844 (see Haughton), considers the momental 
ellipsoid

(A, B, C, F, G, Hfa, y, z)2 = Mld

(A, B, C, F, G, H ut supra), which is such that the moment of inertia of the body 
with respect to any axis passing through the origin is proportional to the square of 
the radius vector of the ellipsoid ; and from the geometrical theorem of the ellipsoid 
having principal axes he obtained the mechanical theorem of the existence of principal 
axes of the body ; at least I infer that he did so, although the conclusion is not
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explicitly stated in Haughton’s account ; but in all this he had been anticipated by 
Cauchy. And afterwards, referring the ellipsoid to its principal axes, so that the equation 
is Ax2 + By2 + Cz2 = Mk4, he writes A = Ma2, B = Mb2, G = Me2, which reduces the equation

~ .9 - .9

to a2x2 + b2y2 + e2z2 = k4, and he considers the reciprocal ellipsoid or, what

is the same thing, which is the ellipsoid of gyration.

158. Thomson, “ On the Principal Axes of a Solid Body ” (1846), shows analytically 
that the principal axes coincide in direction with the axes of the momental ellipsoid

(A, B, C, F, G, H~§x, y, z)2 = Mk4-,

but the geometrical theorem might have been assumed : the investigation is really 
an investigation of the axes of this ellipsoid. And he remarks that the ellipsoid 
(A', B', G', F, G', H'^x, y, z)2 = Mk4 (the comomental ellipsoid) might equally well have 
been used for the purpose.

159. He obtains the before-mentioned theorem that the directions of the principal
axes at any point are the rectangular directions in regard to the ellipsoid of gyration 
/ z^2 qj2 g2 1 X
( — + + g = ) for the centre of gravity. And for determining the moments of inertia

at the given point (say its coordinates are g y, g he obtains the equation

where the three roots of the cubic in P are the required moments. Analytically 
nothing can be more elegant, but, as already remarked, a geometrical construction for 
the magnitudes of these moments appears to be required.

160. Some very interesting geometrical results are obtained by considering the 
“ equimomental surface”, the locus of the points for which one of the moments of 
inertia is equal to a given quantity n ; the equation is of course

which includes Fresnel’s wave-surface. In particular it is shown that the equimo­
mental surface cuts any surface

confocal with the ellipsoid of gyration in a spherical conic and a curve of curvature ; 
a theorem which is also demonstrated, Cayley, “Note on a Geometrical Theorem &c. 
(1846).



566 REPORT ON THE PROGRESS OF THE SOLUTION OF [298

161. Townsend, “ On principal Axes &c.” (1846).—This elaborate paper is con­
temporaneous, or nearly so, with Thomson’s, and several of the conclusions are common 
to the two. From the character of the paper, I find it difficult to give an account 
of it ; and I remark that, the theory of principal axes once brought into connexion 
with that of confocal surfaces, all ulterior developments belong more properly to the 
latter theory.

162. Haton de la Goupillière’s two memoirs, “ Sur la Théorie Nouvelle de la 
Géométrie des Masses” (1858), relate in a great measure to the theory of the integral 
J1 xydm, and its variations according to the different positions of the two planes x = 0 

and y = 0 ; the geometrical interpretations of the several results appear to be given 
with much care and completeness, but I have not examined them in detail. The 
author refers to the researches of Thomson and Townsend.

163. I had intended to show (but the paper has not been completed for publi­
cation) how the momental ellipsoid for any point of the body may be obtained from 
that for the centre of gravity by a construction depending on the “ square potency ” 
of a point in regard to the last-mentioned ellipsoid.

The Rotation of a solid body. Article Nos. 164—207.

164. It will be recollected that the problem is the same for a body rotating 
about a fixed point, and for the rotation of a free body about the centre of gravity; 
the case considered is that of a body not acted on by any forces. According to the 
ordinary analytical mode of treatment, the problem depends upon Euler’s equations

Adp + (C— B) qrdt = 0,
Bdq +(A — C) rpdt = 0, 
Cdr + (B— A)pqdt = 0, 

for the determination of p, q, r, the angular velocities about the principal axes ; con­
sidering p, q, r as known, we obtain by merely geometrical considerations a system of 
three differential equations of the first order for the determination of the position in 
space of the principal axes.

165. The solution of these, which constitutes the chief difficulty of the problem, 
is usually effected by referring the body to a set of axes fixed in space, the position 
whereof is not arbitrary, but depends on the initial circumstances of the motion ; viz. 
the axis of z is taken to be perpendicular to the so-called invariable plane. The 
solution is obtained without this assumption both by Euler and Lagrange, although, as 
remarked by them, the formulæ are greatly simplified by making it ; it is, on the 
other hand, made in the solution (which may be considered as the received one) by 
Poisson ; and the results depending on it are the starting-point of the ulterior analytical 
developments of Rueb and Jacobi ; the method of Poinsot is also based upon the con­
sideration of the invariable plane.
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166. D’Alembert’s Principle, which affords a direct and general method for obtaining 
the equations of motion in any dynamical problem whatever, was given in his “Traité 
de Dynamique” (1743); and in his memoir of 1749 he applied it to the physical 
problem of the Precession of the Equinoxes, which is a special case of the problem of 
Rotation, the motion of rotation about the centre of gravity being in fact similar to 
that about a fixed point. But, as might be expected in the first attempt at the 
analytical treatment of so difficult a problem, the equations of motion are obtained in 
a cumbrous and unmanageable form.

167. They are obtained by Euler in the memoir “Découverte d’un Nouveau 
Principe de Mécanique,” Berlin Memoirs for 1750 (1752) (written before the establish­
ment of the theory of principal axes), in a perfectly elegant form, including the 
ordinary one already mentioned, and, in fact, reducible to it by merely putting the 
quantities F, G, H (which denote the integrals J yzdm, &c.) equal to zero. But Euler 

does not in this memoir enter into the question of the integration of the equations.

168. The notion of principal axes having been suggested by Euler, and their 
existence demonstrated by Segner, we come to Euler’s investigations contained in the 
memoirs “Du Mouvement de Rotation &c.,” Berlin Memoirs for 1758 (printed 1765) and 
for 1760 (printed 1767), and the “ Theoria Motus Corporum Solidorum &c.” (1765). In 
the memoir of 1760, and in the “Theoria Motus,” Euler employs 8, the angular 
velocity round the instantaneous axis, but not the resolved velocities 8 cos a, 8 cos ft, 
8 cos 7 (= p, q, r) : these quantities (there called x, y, z) are however employed in the 
memoir, Berlin Memoirs (1758), which must, I apprehend, have been written after the 
other, and in which at any rate the solution is developed with much greater complete­
ness. It is in fact carried further than the ordinary solutions, and after the angular 
velocities p, q, r have been found, the remaining investigation for the position in space 
of the principal axes, conducted, (as above remarked), without the aid of the invariable 
plane, is one of great elegance.

169. In the last-mentioned memoir Euler starts from the equations given by 
d’Alembert’s principle; viz. the impressed forces being put equal to zero, these are 

or, what is the same thing, using u, v, w to denote the velocities of an element in 
the directions of the axes fixed in space, these are
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It is assumed that at any moment the body revolves round an instantaneous axis, 
inclinations a, ft, 7, with an angular velocity this gives

u = 8 (z cos B — y cos 7) = qz — ry,
v = 8 (x cos 7 — z cos a) = rx —pz,
w — 8(y cos a — x cos /3) =px — qy,

if 8 cos a, 8 cos ft, 8 cos 7 are denoted by p, q, r. The values of du, dv, dw are obtained 
by differentiating these formulæ, treating p, q, r, x, y, z as variable, and replacing 
dx, dy, dz by udt, vdt, wdt respectively ; in the resulting formulæ for ydw — zdv, &c., 
x, y, z are considered as denoting the coordinates of the element in regard to axes 
fixed in the body and moveable with it, but which at the moment under consideration 
coincide in position with the axes fixed in space. The expressions for lb (ydw — zdv) dm 
involve the integrals A =J(y2 + z2) dm, &c., where the coordinates refer to axes fixed in 

the body ; and if these are taken to be principal axes, the expression for X (ydw — zdv) dm 
is = Adp + (C — B) qrdt, which gives the three equations

Adp + (C — B) qrdt = 0, 
Bdq + (A — C) rpdt = 0, 
Cdr + (B — A) pqdt = 0, 

already referred to as Euler’s equations.

170. Next, as regards the determination of the position in space of the principal 
axes : if about the fixed point we describe a sphere meeting the principal axes in 

Vi, zx, and if P be an arbitrary point on the sphere and PQ an arbitrary direction 
through P, the quantities used to determine the positions of x1} y1} zx are the distances 
x1P, yxP, zxP (—1, m, n) and the inclinations xxPQ, y^PQ, z1PQ(—X, p, v) of these arcs 
to the fixed direction PQ (it is to be observed that the sines and cosines of the 
differences of X, p, v are given functions of the sines and cosines of I, m, n, and, 
moreover, that cos2 Z + cos2 m + cos2n = 1, so that the number of independent parameters 
is three). The above is Euler’s definition ; but if we consider a set of axes fixed in 
space meeting the sphere in the points X, Y, Z, then if the point X be taken for P, 
and the arc XY for PQ, it is at once seen that the angles used for determining the 
relative positions of the two sets of axes are the same as in Euler’s memoir “Formulæ 
Generales &c.,” 1775 (ante, No. 132), where the formulæ for this transformation of 
coordinates are considered apart from the dynamical theory.

Euler expresses the quantities p, q, r in terms of an auxiliary variable u, which is 
such that du = pqrdt ; p, q, r are at once obtained in terms of u, and then t is given 
in terms of u by a quadrature. Euler employs also an auxiliary angle U, given in terms 
of u by a quadrature. And he obtains finite algebraical expressions in u, cos U, sin U 
for the cosines or sines of l, m, n-, s (the angular distance IP, if I denote the point 
in which the instantaneous axis meets the sphere), </> (the angle IPQ) and X — $, p — </>, v -(f). 
The formulæ, although complicated, are extremely elegant, and they appear to have 
been altogether overlooked by subsequent writers.



298] CERTAIN SPECIAL PROBLEMS OF DYNAMICS. 569

171. Euler remarks, however, that the complexity of his solution is owing to the 
circumstance that the fixed point P is left arbitrary, and that they may be simplified 
by taking this point so that a certain relation G — 2)2 = 0 may be satisfied between 
the constants of the solution ; and he gives the far more simple formulæ corresponding 
to this assumption. This amounts to taking the point P in the normal of the invariable 
plane, and the resulting formulæ are in fact identical with the ordinary formulæ for 
the solution of the problem. The expression invariable plane is not used by Euler, 
and seems to have been first employed in Lagrange’s memoir “ Essai sur le Problème 
de Trois Corps,” Prix de VAcad. de Berlin, -t. ix. (1772) : the theory in reference to 
the solar system has been studied by Laplace, Poinsot, and others.

172. Lagrange’s solution in the memoir of 1773 is substantially the same with 
that in the Mécanique Analytique. Only he starts from the integral equations of areas 
and of Vis Viva, but in the last-mentioned work from the equations of motion as ex­
pressed in the Lagrangian form by means of the Vis Viva function T (=^£(x'2+y'2+z'2)drn). 
The distinctive feature is that he does not refer the body to the principal axes but 
to any rectangular axes whatever fixed in the body : the expression for T consequently 
is T=^(A, B, G, F, G, H^p, q, r)2, instead of the more simple form

T = | (Ap2 + Bq2 + Cr2),
which it assumes when the body is referred to its principal axes. And Lagrange effects 
the integration as well with this more general form of T, as without the simplification 
afforded by the invariable plane; the employment, however, of the more general form 
of T seems an unnecessary complication of the problem, and the formulæ are not worked 
out nearly so completely as in Euler’s memoir. It may be observed that p, q, r are 
expressed as functions of the instantaneous velocity <o (= Vp2 + q2 + r2), and thence t 
obtained by a quadrature as a function of w.

173. Poisson’s Memoir of 1809.—The problem is only treated incidentally for the 
sake of obtaining the expressions for the variations of the arbitrary constants ; the 
results (depending, as already remarked, on the consideration of the invariable plane) 
are obtained and exhibited in a very compact form, and they have served as a basis 
for further developments ; it will be proper to refer to them somewhat particularly. 
The Eulerian equations give, in the first place, the integrals

A p2 + B q2 + G r2 = h, 
A2p2 + B2q2 + C2r2 = k2 ;

and then by means of these, p, q being expressed in terms of r, we have t in terms 
of r by a quadrature.

174. The position in space of the principal axes is determined by referring them, 
by means of the angles 0, </>, t, to axes Ox, Oy, Oz fixed in space ; if, to fix the 
ideas, we call the plane of xy the ecliptic (Ox being the origin of longitudes), and 
the plane of the two principal axes xxyx the equator, then we have

0, the longitude of node,
</>, the inclination,
t, the hour-angle, or angular distance of 0xx from the node,

c. iv. 72
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and a, fl, 7 the cosine inclinations of Ox,, a, fl', 7' those of Oy,, and a", fl", y" those of 
Oz, to Ox, Oy, Oz respectively are given functions of 3, (f>, t (the values of a", fl", y" 
depending upon 3, only), we have

pdt = sin t sin cf)d3 + cos t d<f), 
qdt = cos t sin </> d3 — sin r dff 
rdt =dr + cos (f> d3.

175. A set of integrals is

Apa + Bqfl + Cry = k cos X,
Apa' + Bqfl' + Cry = k cos p, 
Apa" + Bqfl" + Cry" — k cos v,

equivalent to two independent equations, the values of X, p, v being such that 
cos2 X + cos2 p + cos2 v = 1 ; but the position of the axis of z may be chosen so that 
the values on the right-hand sides become 0, 0, k ; the axis of z is then perpen­
dicular to the invariable plane, the condition in question serving as a definition. And 
the three equations then give

Ap = ka", Bq = kfl", Cr = ky",

where the values of a!', fl", y" in fact are

a" = sin t sin </>, fl" = cos r sin </>, y" = cos </> ;

we have thus t, </> in terms of r. And the equation rdt — dr + cos (f>d3 then leads to 
the value of d3, or 3 is determined as a function of r by a quadrature.

176. The constants of integration are h, k, I (the constant attached to t), g (the 
constant attached to 3) ; and two constants, say a the longitude of the node, and 7 
the inclination of the invariable plane in reference to an arbitrary plane of xy and 
origin x of longitudes therein. I remark in passing that Poisson obtains an elegant 
set of formulæ for the variations of the constants h, k, g, I, a, 7, not actually in the 
canonical form, but which may by a slight change be reduced to it.

177. Legendre considers the problem of Rotation in the Exercices de Calcul 
Intégral, t. II. (1817), and the Théorie des Fonctions Elliptiques, t. 1. pp. 366—410 
(1826). He does not employ the quantities p, q, r, but obtains de novo a set of 
differential equations of the second order involving the angles which determine the 
position of the principal axes with regard to the axes fixed in space : these angles are 
in fact (calling the plane of the fixed axes x, y the ecliptic) the longitude and latitude 
of one of the principal axes, and the azimuth from the meridian through such 
principal axis of an arbitrary axis fixed in the body and moveable with it. The 
solution is developed by means of the elliptic integrals. From the peculiar choice of 
variables there would, it would seem, be considerable labour in comparing the results 
with those of other writers, and there would be but little use in doing so.
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178. Poinsot’s “Théorie Nouvelle de la Rotation des Corps.”—The ‘Extrait’ of the 
memoir was published in 1834, but the memoir itself was not published in extenso 
until the year 1851. The ‘Extrait’ contains, however, not only the fundamental theorem 
of the representation of the motion of a body about a fixed point by means of the 
momental ellipsoid rolling on a fixed tangent plane, but also the geometrical and 
mechanical reasonings by which this theorem is demonstrated ; it establishes also the 
notions of the Poloid and Serpoloid curves; and it contains incidentally, and without 
any developments, a very important remark as to the representation of the motion by 
means of the rolling and sliding motion of an elliptic cone. The whole theory 
(including that of the last-mentioned representation of the motion) is in the memoir 
itself also analytically developed, but without the introduction of the elliptic and Jacobian 
functions : to form a complete theory, it would be necessary to incorporate the memoir 
with that of Jacobi.

179. The following is an outline of the ‘Extrait’:

The instantaneous motion of a body about a fixed point is a motion of rotation 
about an axis (the instantaneous axis) ; and hence the finite motion is as if there 
were a cone fixed in the body which rolls (without sliding) upon another cone fixed 
in space.

The instantaneous motion of a body in space is a motion of rotation about an
axis combined with a translation in the direction of this axis : this remark is hardly
required for Poinsot’s purpose, and he does not further develope the theory of the
motion of a body in space. The effect of a couple in a plane perpendicular to a
principal axis is to turn the body about this axis with an angular velocity proportional 
to the moment of the couple divided by the moment of inertia about the axis.

And hence by resolving any couple into couples perpendicular to the principal axes, 
the effect of such couple may be calculated ; but more simply by means of the 
central ellipsoid (momental ellipsoid a2x2 + b2y2 + c2z2 = Id, if A, B, C = Ma2, Mb2, Me2), viz., 
if the body is acted on by a couple in a tangent plane of the ellipsoid, the instan­
taneous axis passes through the point of contact ; and reciprocally, given the instantaneous 
axis, the couple must act in the tangent plane.

180. Considering now a body rotating about a fixed point, and taking as the 
plane of the couple of impulsion a tangent plane of the ellipsoid, the instantaneous 
axis is initially the diameter through the point of contact ; the centrifugal forces 
arising from the rotation produce however an accelerating couple, the effect whereof is 
continually to impress on the body a rotation which is compounded with that about 
the instantaneous axis, and thus to cause a variation in the position of this axis and 
in the angular velocity round it. The axis of the accelerating couple is always situate 
in the plane of the couple of impulsion.

181. Hence also

1°. Throughout the motion the angular velocity is proportional to the length of 
the instantaneous axis considered as a radius vector of the ellipsoid.

*70__ o
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2°. The distance of the tangent plane from the centre is constant; that is, the 
tangent plane to the ellipsoid at the extremity of the instantaneous axis is a fixed 
plane in space.

Or, what is the same thing, the motion is such that the ellipsoid remains always 
in contact with a fixed plane, viz., the body revolves round the radius vector through 
the point of contact, the angular velocity being always proportional to the length of 
this radius vector.

It is right to remark that in Poinsot’s theory the distance of this plane from 
the centre depends on the arbitrarily assumed magnitude of the central ellipsoid ; the 
parallel plane through the centre is the invariable plane of the motion.

182. The motion is best understood by the consideration that it is implied in 
the theorem that the pole of the instantaneous axis describes on the ellipsoid a certain 
curve, “the Poloid,” which is the locus of all the points for which the perpendicular 
on the tangent plane has a given constant value (the curve in question is easily seen 
to be the intersection of the ellipsoid by a concentric cone of the second order) ; and 
that the instantaneous axis describes on the fixed tangent plane a curve called “ the 
Serpoloid,” which is the locus of the points with which the several points of the poloid 
come successively in contact with the tangent plane, and is a species of undulating 
curve, viz., the radius vector as it moves through the angles 0 to 0r 4- 211, 0^ 4- 211 to 
#! 4-411, &c. assumes continually the same series of values. This is in fact evident 
from the mode of generation ; and it is moreover clear that the serpoloid is an algebraical 
or else a transcendental curve according as II is or is not commensurable with 7r.

{Treating the poloid and serpoloid as cones instead of curves, the motion of the 
body is the rolling motion of the former upon the latter cone, which agrees with a 
previous remark.}

There is a very interesting special case where the perpendicular distance from the 
tangent plane is equal to the mean axis of the ellipse.

183. Poinsot remarks that the motion is such that {considering the plane of the 
couple of impulsion as drawn through the centre of the ellipsoid} the section of the 
■ellipsoid is an ellipse variable in form but of constant magnitude, and that this leads 
to a new representation of the motion, viz., that it may be regarded as the motion 
of an elliptic cone which rolls on the plane of the couple {the invariable plane} with a 
variable velocity, and which slides on this plane with a uniform velocity.

184. The theory of the last-mentioned cone, say the “ rolling and sliding cone,” is 
developed in the memoir, Liouville, t. xvi. p. 303, in the chapter entitled “ Nouvelle Image 
de la Rotation des Corps.” If a, b, c signify as before (viz., A, B, C = Ma2, Mb2, Me2), 
and if h be the distance of the centre from Poinsot’s fixed tangent plane (h< a > c), 
then the invariable axis describes in the body a cone the equation whereof is

(a2 — h2) x2 4- (b2 — h2) y2 4- (c2 — h2) z2 = 0 ;

the cone reciprocal to this, viz. the cone the equation whereof is
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is the “rolling and sliding cone.” The generating line OT of this cone is perpendicular 
to the plane of the instantaneous axis 01, and of the invariable axis OG ; and the 
analytical expressions for the rolling and sliding velocities follow from the geometrical 
consideration that the motion at any instant is a rotation round the instantaneous 
axis 01 : that for the sliding velocity is the instantaneous angular velocity into the 
cosine of the angle IOG, which is in fact constant ; that for the rolling velocity is 
given, but a further explanation of the geometrical signification is perhaps desirable.

185. I may in this place again refer to Cohen’s memoir “ On the Differential 
Coefficients and Determinants of Lines &c.” (1862), the latter part of which contains 
an application of the method to finding Euler’s equations for the motion of a rotating 
body.

186. Rueb in his memoir (1834) first applied the elliptic and Jacobian functions 
to the present problem. Starting from the equations

A p2 + B q2 + C r2 = h,
A2p2 + B2q2 + C2r2 = I2, (x)

and

it is easy to perceive that by assuming q = a proper multiple of sin £, the expression

for dt takes the form ndt = , so that writing £ = amw, the integral equation

is nt — e—u, or u is an angle varying directly as the time (and corresponding to the 
mean longitude, or, if we please, to the mean anomaly in the problem of elliptic 
motion). And then p, q, r are expressed as elliptic functions of u. The value of the 
modulus k, and that of n (nt — e = u ut supra) are

and then

1 l is Poisson’s k, the constant of the principal area; it is the letter afterwards used by Jacobi; Rueb’s 
letter is g. In quoting (infra) the expressions lor p, q, r, I have given them with Rueb s signs, but it would 
be too long to explain how the signs of the radicals are determined.



574 REPORT ON THE PROGRESS OF THE SOLUTION OF [298

187. Substituting for p, q, r their values in terms of u, we have d0, and thence 0 
(the longitude of the node of the equator on the invariable plane) in the form 

which by Jacobi’s formulæ for the transformation of the elliptic integral of the third 
class becomes 

which Rueb reduces to the real form

0 = — nu + tan-1 W,

W being given in the form of a fraction, the numerator and denominator whereof are 

series in multiple sines and multiple cosines respectively of

188. Rueb investigates also the values in terms of u of the cosine inclinations 
of the instantaneous axis to the axes fixed in space ; and he obtaiiis a very elegant 
expression for the angle g which is the angular distance from x of the projection on 
the plane of xy (the invariable plane) of the instantaneous axis ; viz., this is 

and there is throughout a careful discussion of the geometrical signification of the results.

189. The advance made was enormous ; the result is that we have in terms of 
the time sin t sin </>, cos t sin cos cf) (the cosine inclinations of the invariable axis to 
the principal axes), and also 0, the longitude of the node. The cosine inclinations of 
the axes of x and y to the principal axes could of course be obtained from these, 
but they would be of a very complicated and unmanageable form ; the reason of this 
is the presence in the expression for 0 of the non-periodic term — n'u. It will presently 
be seen how this difficulty was got over by Jacobi.

190. Briot’s paper of 1842 contains an analytical demonstration of some of the 
theorems given in the ‘Extrait’ of Poinsot’s memoir of 1834.

191. In Maccullagh’s Lectures of 1844 (see Haughton, 1849 ; Maccullagh, 1847)
the problem of the rotation of a solid body is treated in a mode somewhat similar to 

that of Poinsot ; only the ellipsoid of gyration + + = A, B, C=Ma2, Mb2, Me2)

is used instead of the momental ellipsoid. Thus, reciprocal to the poloid curve on the 
momental ellipsoid we have on the ellipsoid of gyration a curve all the points whereof 
are equidistant from the centre ; such curve is of course the intersection of the 
ellipsoid by a concentric sphere, that is, it is a spherical conic ; and the points of 
this spherical conic come successively to coincide with a fixed point on the invariable 
axis. This is a theorem stated in Art. VI. of Haughton’s memoir : it may be added 
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that the several tangent planes of the ellipsoid of gyration at the points of the 
spherical conic as they come to coincide with the fixed point, form a cone reciprocal 
to Poinsot’s serpoloid cone. It is clear that every theorem in the one theory has its 
reciprocal in the other theory ; I have not particularly examined as to how far the 
reciprocal theorems have been stated in the two theories.

192. Cayley, “On the Motion of Rotation of a Solid Body” (1843).—The object was 
to apply to the solution of the problem Rodrigues’ formulæ for the resultant rotation ; viz., 
if the principal axes, considered as originally coinciding with the axes of x, y, z, can be 
brought into their actual position at the end of the time t by a rotation 0 round an axis 
inclined at angles f g, h to the axes of x, y, z, and if X = tan ^6 cosf p = tan ^6 cos g,

= tan |0cos A, then the principal axes are referred to the axes fixed in space by means 
of the quantities X, p, v. And these are to be obtained from the equations

xpdt = 2 ( dX + vdp — pdv),

k qdt = 2 (— vdX + dp A Xdv), 
k rdt = 2 ( pdX — Xdp + dv),

where k = 1 A X2 A p2 A v2, and p, q, r are to be considered as given functions of t, or 
of other the variable selected as the independent one. But for effecting the integration 
it was found necessary to take the axis of z as the invariable axis.

t

193. The solution by Jacobi, § 27 of the memoir “Theoria Novi Multiplicatoris ” 
(1845), is given as an application of the general theory, the author remarking that, 
as well in this question as in the problem of the two fixed centres, he purposely 
employed a somewhat inartificial analysis, in order to show that the principle (of the 
Ultimate Multiplier) would lead to the result without any special artifices. The 
principal axes are referred to the axes fixed in space by the ordinary three angles (here 
called qx, q2, q3), and the solution is carried so far as to give the integral equations, 
without any reduction of the integrals contained in them to elliptic integrals. The 
solution is, however, in so far remarkable that the integrations are effected without the 
aid of the invariable plane.

194. Cayley, “ On the Rotation of a Solid Body &c.” (1846).—It appeared desirable 
to obtain the solution by means of the quantities X, p, v, without the assistance of the 
invariable plane, and Jacobi’s discovery of the theorem of the Ultimate Multiplier induced 
me to resume the problem, and at least attempt to bring it so far as to obtain a 
differential equation of the first order between two variables only, the multiplier of 
which could be obtained theoretically by Jacobi’s discovery. The choice of two new 
variables to which the equations of the problem led me, enabled me to effect this in 
a simple manner ; and the differential equation which I finally obtained turned out 
to be integrable per se, so that the laborious process of finding the multiplier became 
unnecessary.

195. The new variables fl, v have the following geometrical significations: fl=Ztan|0cosZ, 
where I is the principal moment (A2p2 + Bq2 + C2r2 = I2), 6 (as before) the angle of resultant 
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rotation, and I is the inclination of the resultant axis to the invariable axis ; and 
v = Z2cos2|Jr, where if we imagine a line AQ having the same position relatively to 
the axes fixed in space that the invariable axis has to the principal axes of the body, 
then J is the inclination of this line to the invariable axis. It is found that p, q, r 
are functions of v only, whereas X, y, v contain besides the variable ft. In obtaining 
these relations, there occurs a singular relation H2 = tcv — Z2, which may also be written 
1 + tan2 cos2 7= sec2 ^0 cos2 ^.7, where the geometrical significations of the quantities 
I, J have just been explained. The final results are that the time t, and the arc 

tan-1 y are each of them expressible as the integrals of certain algebraical functions 

of v. There might be some interest in comparing the results with those of Euler’s 
memoir of 1758, where the principal axes are also referred to an arbitrary system of 
axes fixed in space ; but I was not then acquainted with Euler’s memoir.

The concluding part of the paper relates to the determination of the variations 
of the constants in the disturbed problem.

196. Cayley, “Note on the Rotation of a Solid of Revolution” (1849), shows the 
simplification produced in the formulæ of the last-mentioned memoir in the case where 
two of the moments of inertia are equal, say A = B.

197. Jacobi’s final solution of the problem of Rotation was given without demon­
stration in the letter to the Academy of Sciences at Paris ; the demonstration is added 
in the memoir, Grelle, t. xxxix. (1849). The fundamental idea consists in taking in 
the invariable plane, instead of the fixed axes xy, a set of axes xy revolving with 
uniform velocity, such that the angular distance of the axis of x from its initial 
position is precisely = — n'u ; and consequently if 3' be the longitude of the node of 
the equator on the invariable plane, measured from the moveable axis of x as the 
origin of longitude, we have 

and in consequence of this form of the expression for 3' y into a logarithmic function J 

in passing to the trigonometrical functions sin 3', cos 3' the logarithm disappears altogether ; 
and we have in a simple form the expressions for the actual functions sin 3', cos 3', 
through which 3' enters into the formulæ, and thus, Jacobi remarks, the barrier is 
cleared which stands in the way when the expression of an angle is reduced to an 
elliptic integral of the third class.

198. For the better expression of the results, Jacobi joins to the functions H, 0, 
considered in the “Fundamenta Nova,” the functions ©1w = 0(A’—w), (u) = H (K — u) ;
so that 

and then considering the cosine inclinations of the principal axes to the invariable 
axis and the revolving axes in the invariable plane, these are all fractions which, 
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neglecting constant factors, have the common denominator ©w ; a", fi", q" (as shown by 
Rueb’s formulæ) have the numerators Hxu, Hu, and ©xw respectively ; and a, a' have 
the numerators H (u + ia) + H(u — ia), fi, fi' the numerators Hx (u — ia) ±Hx(u + ia), q, q' 
the numerators © (u + ia) + © (u — ia) respectively : there are also expressions of a similar 
form for the angular velocities about the axis of x and y; that about the axis of z (the 

invariable axis) having, as was known, the constant value j . The memoir is also very 

valuable analytically, as completing the systems of formulæ given in the Fundamenta 
Nova in reference to elliptic integrals of the third class.

199. It is worth noticing how the results connect themselves with Poinsot’s theorem 
of the rolling and sliding cone : the velocity of the rolling motion depends only upon 
the position, on the cone, of the line of contact, so that the same series of velocities 
recur after any number of complete revolutions of the cone ; that is, the total angle 
described by the line of contact in consequence of the rolling motion, consists of a part 
varying directly with the time (or say varying as u) and a periodic part ; the former 
part combines with the similar term arising from the sliding motion, and the two 
together give Jacobi’s term riu.

200. Somoff’s memoir (1851), written after Jacobi’s Note in the Comptes Rendus, 
but before the appearance of the memoir in Crelle, gives the demonstration of the 
greater part of Jacobi’s results.

* I

201. Booth’s Theory of Elliptic Integrals &c. (1851) (contemporaneous with the 
publication of Poinsot’s memoir of 18.34) contains various interesting analytical develop­
ments, and, as an interpretation of them, the author obtains (p. 93) the theorem of 
the rolling and sliding cone. The investigations involve the elliptic integrals, but not 
the elliptic or Jacobian functions.

202. Richelot’s two Notes (Crelle, tt. XLII. and xliv.) relate to the solution of 
the problem of rotation given in his memoir “ Eine neue Lbsung &c.” (1851). This is 
an application of Jacobi’s theorem for the integration of a system of dynamical equations 
by means of the principal function >8 (see my “ Report ” of 1857, art. 34). Retaining 
Richelot’s letters </>, y]r, 0, which signify

y/r, the longitude of the node,
0, the inclination,
cf), the hour-angle,

the question is to find a complete solution of the partial differential equation
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that is, a solution involving (besides the constant attached to F by a mere addition) 
three arbitrary constants; these are 4, ^1, p- Writing in the first place V= ^^1,
the resulting equation for W may be satisfied by taking W, a function of <£> and 3, 
without yjr or i; and it is sufficient to have a solution involving only a single arbitrary 
constant. This leads to a solution which is as follows: 

where <£>j and 3X are certain given functions of ti, p, and of 3 and The solution 
of the dynamical problem is then obtained by putting the differential coefficients 
dV dV dV
Hit ’ d^r ’ HT eclual arbitrary constants L, a, G respectively ; the results are some­

what more simple than might be expected from the very complicated form of the 
function F. The foregoing results (although not by themselves very intelligible) will 
give an idea of the form in which the analytical solution in the first instance presents 
itself.

203. Richelot proceeds to remark that the solution in question, and the resulting 
integral equations of the problem, may be simplified in a peculiar manner by the 
method which he calls “the integration by the spherical triangle.” For this purpose 
he introduces a spherical triangle, the sides and angles whereof are 

and then assuming 

where p and t, are constant, the solution is 

and that this expression leads to all the results almost without calculation.
204. I have quoted the foregoing results from the Note (Crelle, t. xlii.), having 

seen, but without having studied, the Memoir itself : the results appear very interesting 
and valuable ones; but they seem to require a more complete geometrical develop­
ment than they have received in the Memoir ; and I am not able to bring them 
into connexion with the other researches on the subject.

205. The solution, § 3 of Donkin’s memoir “On a Class of Differential Equations 
&c.” (part I. 1854), is given as an illustration of the general theory to which the 
memoir relates ; it contains, however, some interesting geometrical developments in regard 
to the case (A = B) of two equal moments of inertia. I have not compared the results 
with those in my Note of 1849.
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206. The solution of the rotation problem, § 66 of Jacobi’s memoir “Nova 
Methodus &c.” (1862), has for its object to show the complete analogy which exists 
between this problem and the problem of a body attracted to a fixed centre. The 
section is in fact headed “ Solutio simultanea problematis de motu puncti versus cen­
trum attracti atque problematis de rotatione &c.” ; and Jacobi, after noticing that 
Poisson, in his memoir of 1816 (Mém. de l’Inst. t. I.), had shown that the expressions 
for the variations of the elements in the two problems could be investigated by a 
common analysis, remarks, “ Sed ipsa problemata duo imperturbata hie primum, quantum 
credo, amplexus sum.” The solution is in fact as follows :—Suppose that in the one 
problem the position of the point in space, and in the other problem the position of 
the body in regard to the fixed axes, is determined in any manner by the quantities 
7i> Ç2, 7s- Let

and expressing the Vis Viva function T in terms of qx, q2, q3, q}', q2, q3, let

and let H be the value of T expressed in terms of q1} q2, q3, plt p2, p3, so that 
H=a is the integral of Vis Viva (this is merely the transformation to the Hamiltonian 
form). And let 11^ = 0^ cf) = a1', ^ = a1" be the three integrals of areas (H, Hx, <f>, 
are functions of the variables only, not containing the arbitrary constants a, a1} ax', a"). 
Then, expressing

in terms of px, p2, p3, qx, q2, q3, and by means of the equations

expressing px, p2, p3 in terms of qx, q2, q3, we have
pxdqx+p2dq2 + p3dq3 a complete differential; and putting

then (a, alt a2,. b, bx, b2 being arbitrary constants) we have



580 REPORT ON THE PROGRESS OF THE SOLUTION OF [298

as the complete integrals of either problem, the last three of them being the final 
integrals.

And it is added that if in either problem we have H + fl instead of H, the expressions 

for the variations of the elements assume the canonical forms = — — , ~ , &c.dt db dt da

The solution is not further developed as regards the rotation problem, but it is 
so (§ 67) as regards the other problem.

207. It must, I think, be considered that a comprehensive memoir on the Problem 
of Rotation, embracing and incorporating all that has been done on the subject, is 
greatly needed.

Kinematics of a solid body. Article Nos. 208 to 215.

208. The general theorem in regard to the infinitesimal motions (rotations and 
translations) of a solid body is that these are compounded and resolved in the same 
way as if they were single forces and couples respectively. Thus any infinitesimal 
rotations and translations are resolvable into a rotation and a translation ; the rotation 
is given as to its magnitude and as to the direction of its axis, but not as to the 
position of the axis (which may be any line in the given direction) : the magnitude 
and direction of the translation depend on the assumed position of the axis of rotation ; 
in particular this may be taken so that the translation shall be in the direction of 
the axis of rotation ; and the magnitude of the rotation is then a minimum. I remark 
that the theorem as above stated presupposes the establishment of the theory of couples 
(of forces) which was first accomplished by Poinsot in his ‘ Elémens de Statique,’ 1st edit. 
1804 ; it must have been, the whole or nearly the whole of it, familiar to Chasles at 
the date of his paper of 1830 next referred to (see also Note XXXIV. of the Aperçu 
Historique, 1837); and it is nearly the whole of it stated in the ‘Extrait’ of Poinsot’s 
memoir on Rotation, 1834.

209. Chasles’ paper in the Bulletin Univ, des Sciences for 1830.—The corresponding 
theorem is here given for the finite motions (rotations and translations) of a solid 
body as follows : viz. if any finite displacement be given to a free solid body in space, 
there exists always in the body a certain indefinite line which after the displacement 
remains in its original situation. The theorem is deduced from a more general one 
relating to two similar bodies. It may be otherwise stated thus : viz., any motions may 
be represented by a translation and a rotation (the order of the two being indifferent) ; 
the rotation is given as regards its magnitude and the direction 'of its axis, but not 
as to the position of the axis (which may be any line in the given direction) ; the 
magnitude and direction of the translation depend on the assumed position of the axis 
of rotation ; in particular this may be taken so that the translation shall be in the 
direction of the axis of rotation ; the magnitude of the translation is then a minimum.

It may be noticed that a translation may be represented as a couple of rotations ; 
that is, two equal and opposite rotations about parallel axes.
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210. It is part of the general theorem that any number of rotations about axes
passing through one and the same point may be compounded into a single rotation
about an axis through that point ; this is, in fact, the theory of the “ Resultant Axis ”
developed in Euler’s and Lexell’s memoirs of 1775.

211. The following properties are also given, viz., considering two similar solid 
bodies (or in particular any two positions of a solid body) and joining the corresponding 
points, the lines which pass through one and the same point form a cone of the 
second order; and the points of either body form on this cone a curve of the third 
order (skew cubic). And, reciprocally, the lines, intersections of corresponding planes, 
which lie in one and the same plane envelope a conic, and such planes of either body 
envelope a developable surface, which is such that any one of these planes meets it 
in a conic {or, what is the same thing, the planes envelope a developable surface of 
the fourth order}.

And also, given in space two equal bodies situate in any manner in respect to 
each other, then joining the points of the first body to the homologous points of the 
second body, the middle points of these lines form a body capable of an infinitesimal 
motion, each point of it along the line on which the same is situate.

212. The entire theory, as well of the infinitesimal as of the finite motions of 
a solid body, is carefully and successfully treated in Rodrigues’ memoir “ Des lois 
géométriques &c.” (1840). It may be remarked that for the purpose of compounding 
together any rotations and translations, each rotation may be resolved into a rotation 
about a parallel axis and a couple of rotations, that is, a translation ; the rotations 
are thus converted into rotations about axes through one and the same point, and 
these give rise to a single resultant rotation given as to its magnitude and the 
direction of the axis, but not as to the position of the axis (which is an arbitrary 
line in the given direction); the translations are then compounded together into a 
single translation, and finally the position of the axis of rotation is so determined 
that the translation shall be in the direction of this axis; the entire system is thus 
compounded (in accordance with Chasles’ theorem) into a rotation and a translation in 
the direction of the axis of the rotation. The problem of the composition depends 
therefore on the composition of rotations about axes through one and the same point ; 
that is, upon Euler’s and Lexell’s theory of the resultant axis. But, as already noticed, 
the analytical theory of the resultant axis was perfected by Rodrigues in the present 
memoir (see ante, ‘ Transformation of Coordinates,’ Nos. 139—141, as to this memoir and 
the quaternion representation of the formulæ contained in it.

213. It was remarked in Poinsot’s memoir of 1834 that every continuous motion 
of a solid body about a fixed point is the motion of a cone fixed in the body rolling 
upon another cone fixed in space. The corresponding theorem for the motion of a 
solid body in space is given

Cayley, “ On the Geometrical Representation &c.” (1846) : viz. premising that a 
skew surface is said to be “ deformed ” if, considering the elements between consecutive 
generating lines as rigid, these elements be made in any manner to turn round and 
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slide along the successive generating lines :—and that two skew surfaces can be made 
to roll and slide one upon the other, only if the one is a deformation of the other— 
and that then the rolling and sliding motions are perfectly determined—and that such 
a motion may be said to be a “ gliding ” motion : the theorem is that any motion 
whatever of a solid body in space may be represented as the gliding motion of one 
skew surface upon another skew surface of which it is the deformation.

214. The same paper contains the enunciation and analytical proof of the following 
theorem supplementary to that of Poinsot just referred to, viz. that when the motion 
of a solid body round a fixed point is represented as the rolling motion of one cone 
on another, then “ the angular velocity round the line of contact (the instantaneous 
axis) is to the angular velocity of this line as the difference of the curvatures of 
the two cones at any point in this line is to the reciprocal of the distance of the point 
from the vertex.”

215. There are a great number of theorems relating to the composition of forces 
and force-couples, which consequently relate also to infinitesimal rotations and translations. 
See, for instance, Chasles, “ Théorèmes généraux &c.” (1847), Mobius, “ Lehrbuch der 
Statik” (1837), Steichen’s Memoirs of 1853 and 1854, &c. Arising out of some 
theorems of Mobius in the “ Statik,” we have Sylvester’s theory of the involution of 
six lines: viz. six lines (given in position) may be such that properly selected forces 
along them (or if we please, properly selected infinitesimal rotations round them) will 
counterbalance each other ; or, what is the same thing, the six lines may be such 
that a system of forces, although satisfying for each of the six lines the condition 
moment = 0, will not of necessity be in equilibrium ; such six lines are said to be in 
involution, and the geometrical theory is a very extensive and interesting one.

Miscellaneous Problems. Article Nos. 216 to 223.

216. As under the foregoing head, “Rotation round a fixed point,” I have con­
sidered only the case of a body not acted upon by any forces, the case where the 
body is acted upon by any forces comes under the present head. The forces, whatever 
they are, may be considered as disturbing forces, and the problem be treated by the 
method of the variation of the elements ; this is at any rate a separate part of the theory 
of rotation round a fixed point, and I have found it convenient to include it under 
the present head ; the only case in which the forces have been treated as principal 
ones, seems to be that of a heavy body (a solid of revolution) rotating about a point 
not its centre of gravity. The case of a body suspended by a thread or resting on 
a plane comes under the present head, as also would (in some at least of the questions 
connected with it) the gyroscope. But none of these questions are here considered in 
any detail.

Rotation round a fixed point—Variation of the elements.
217. The forces acting on the body are treated as disturbing forces. Formulæ for 

the variations of the elements were first obtained by Poisson in the memoir “ Sur la 
Variation des Constantes Arbitraires &c.” (1809). The variations are expressed in terms 
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of the differential coefficients of the disturbing function in regard to the elements, and, 
as the author remarks, they are very similar in their form to, and can be rendered 
identical with, those for the variations of the elements in the theory of elliptic motion.

218. Cayley, “ On the Rotation &c.” (1846).—The latter part of the paper relates 
to the variations of the elements therein made use of, which are different from the 
ordinary ones.

219. Richelot, “ Eine neue Losung &c.” (1851).—The form in which the integrals 
are obtained by means of a function V, satisfying a partial differential equation, leads 
at once to a canonical system for the variations of the elements; these formulæ are 
referred to in the introduction to the memoir, but they are not afterwards considered.

220. Cayley, “ On the Rotation of a Solid Body ” (1860).—The elements are those 
ordinarily made use of, with only a slight variation occasioned by the employment of 
the “ departure ” of the node. The course of the investigation consists in obtaining 
the variations in terms of the differential coefficients of the disturbing function in 
regard to the coordinates (formulæ which were thought interesting for their own sake), 
and in deducing therefrom those in terms of the differential coefficients in terms of 
the elements.

Other cases of the motion of a solid body.

221. In regard to a heavy solid of revolution rotating about a fixed point not 
its centre of gravity, we have

Poisson, “ Mémoire sur un cas particulier &c.” (1831), and the elaborate memoir

Lottner, “ Reduction der Bewegung &c.” (1855), where the solution is worked out 
by means of the Elliptic and Jacobian functions.

222. As regards a heavy solid suspended by a string,

Pagani, “Mémoire sur l’équilibre &c.” (1839).

223. As regards the motion of a body resting on a fixed plane,

Cournot, “Mémoire sur le Mouvement &c.” (1830 and 1832).

Puiseux, “Du Mouvement &c.” (1848).

To these several others might doubtless be added; but the problems are so difficult, 
that the solutions cannot, it is probable, be obtained in any very complete form.

In conclusion, I can only regret that, notwithstanding the time which has elapsed 
since the present Report was undertaken, it is still—both as regards the omission of 
memoirs and works which should have been noticed, and the merely cursory examination 
of some of those which are mentioned—far from being as complete as I should have 
wished to make it. To have reproduced, to any much greater extent than has been 



584 REPORT ON THE PROGRESS OF THE SOLUTION OF [298

done, the various mathematical investigations, would not have been proper, nor indeed 
practicable ; at the same time, more especially as regards the subjects treated of in the 
second part of this Report, or say the kinematics and dynamics of a solid body, such 
a reproduction, incorporating and to some extent harmonizing the original researches, 
but without ignoring the points of view and methods of investigation of the several 
authors, would be a work which would well repay the labour of its accomplishment.
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