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825.
A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS.

[Chapters I to III, American Journal of Mathematics, t. v. (1882), pp. 137—179;
Chapters IV to VII, b., t. viL. (1885), pp. 101—167.]

THE present memoir is based upon Clebsch and Gordan’s Theorie der Abel’schen
Functionen, Leipzig, 1866 (here cited as C. and G.); the employment of differential
rather than of integral equations is a novelty; but the chief addition to the theory
consists in the determination which I have made for the cubic curve, and also (but
not as yet in a perfect form) for the quartic curve, of the differential expression dIlg,

B
(or as I write it dIl,,) in the integral of the third kind [ dIlg, in the final normal

form (endliche Normalform) for which we have (p. 117) / A dlls= f 5 dIlg, the limits
& a

and parametric points interchangeable. The want of this determination presented itself
to me as a lacuna in the theory during the course of lectures on the subject which
I had the pleasure of giving at the Johns Hopkins University, Baltimore, U.S.A., in
the months January to June, 1882, and I succeeded in effecting it for the cubic curve;
but it was not until shortly after my return to England that I was able partially
to effect the like determination in the far more difficult case of the quartic curve.
The memoir contains, with additional developments, a reproduction of the course of
lectures just referred to. I have endeavoured to simplify as much as possible the
notations and demonstrations of Clebsch and Gordan’s admirable treatise; to bring
some of the geometrical results into greater prominence; and to illustrate the theory
by examples in regard to the cubic, the nodal quartic, and the general quartic curves
respectively. The various chapters are: I, Abel's Theorem ; II, Proof of Abel’s Theorem ;
III, The Major Function; IV, The Major Function (continued); V, Miscellaneous
Investigations; VI, The Nodal Quartic; VII, The Functions 7, U, V, ©. The
paragraphs of the whole memoir will be numbered continuously.
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110 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

CHAPTER 1. ABEL’S THEOREM.

The Differential Pure and Affected Theorems. Art. Nos. 1 to 5.

1. We have a fixed curve and a variable curve, and the differential pure theorem
consists in a set of linear relations between the displacements of the intersections of
the two curves; in the affected theorem, a linear function of the displacements is
equated to another differential expression. I state the two theorems, giving afterwards
the necessary explanations.

The pure theorem is
2(z, y, 2" *dw=0.

The affected theorem is
E(w Y, 2h" " do 8‘;61 8‘132 %

012 e A
2. We have a fixed curve f=0, or say the curve f, or simply the fixed curve,
of the order n, with & dps, and therefore of the deficiency 4 (n—1)(n—2)—8, =p.
The expression “the dps” means always the & dps of /.

And we have a variable curve ¢ =0, or say the curve ¢, or simply the variable
curve, of the order m, passing through the dps and besides meeting the fixed curve
in mn— 28 variable points.

Moreover, dw is the displacement of the current point 0, coordinates (z, ¥, z), on
the fixed curve, viz. the equation f=0 gives

ﬂdw+%dy+gdz=0,

dz
Y Y uli
@ "ty Y +d 2 720
and we thence have
af  df df

Rl e z—ydz zdy : zde—axdz : x2dy— yde,

so that we have three equal values each of which is put =dw, viz. we write

ydz—zdy zde—ad: _ady—yds

&7 Cgrite i A
dxz dy dz

and dw as thus defined is the displacement.

¥ (n) ¢ ¢ (&) log Vay
¢ b () ¥ (&) bt

suppose, their ¢ belongs to the upper limit and corresponds to my ¢: the equation gives therefore

* For comparison with C. and G. observe that in the equation, p. 47, V=Ilog

av= —a{‘ + %0—2, agreeing with the formula in the text.

9
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825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 111

(, y, 2)»*=0 is the minor curve, viz. the general curve of the order n — 3, which
passes through the dps*; and the function (2, 7, 2)"~* is the minor function.

1 and 2 are fixed points on f, called the parametric points, coordinates (z, 7, z)
and (@, y., 2) respectively; and 012 denotes the determinant

z, Z‘/ > 2 H)
&y, Y, &
Lay Yo 2a

so that 012=0 is the equation of the line joining the points 1 and 2: this line
meets the fixed curve in n — 2 other points, called the residues of 1, 2.

(#, ¥, 2" =0 is the major curve quoad the points 1 and 2; viz. this is the
general curve of the order n — 2, passing through the dps and also through the residues
of il v

But further, the function (#, y, 2),"* is the proper major function; viz. the
implicit factor of the function is so determined that, taking 0=1, the current point
at 1, that is, writing (@, y, z) for (z, 9, z), the function (z, y, 2)," reduces itself
to the polar function (xgdi+3/2i+ Z Li—) /1, afterwards written n.17 12, of f: this

z, dy, dz
implies that taking 0=2, the current point at 2, the function reduces itself to the
polar function n. 127

¢, is what ¢ becomes on writing therein (z, v, 2) for (z, y, 2): and similarly
¢, is what ¢ becomes on writing therein (z,, v., 2) for (z, y, 2).

8 denotes differentiation in regard only to the coefficients of ¢; viz. writing
¢=(a,...Jz,y,2)" we have 8p=(da,...{z, y, z)", and similarly 6¢, and 8¢, =(da, ... Yz, y,, )"
and (da,...Qz,, y., 2,)™ respectively.

The sum = extends to all the variable intersections of the two curves.

3. As to the meaning of the theorems, consider first the pure theorem. The
variable intersections are not all of them arbitrary points on the fixed curve: a certain
number of them taken at pleasure on the fixed curve will determine the remaining
variable intersections; and there are thus a certain number of integral relations
between the coordinates of the variable intersections; to each such integral relation
there corresponds a linear relation between the displacements dw of these points, or
say a displacement-relation. It is precisely these displacement-relations which are given
by the theorem, viz. the equation

S(z, Yy, 2)"*do=0
breaks up into as many linear relations as there are arbitrary constants in the function
(@, y, z2)*, which equated to zero gives a curve of the order n —3 passing through the
dps; for instance n=3, 8 =0, the equation gives the single relation Sdw=0; but n =4,
8=0, the equation gives the three relations 2z dw =0, 2y do=0, 3zdw =0.

* This definition implies that the number of dps is at inost =} (r—-1) (n—2)-1, that is, that the fixed
curve is not unicursal. But see post, No. 21,
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112 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

4. It is of course important to show, and it will be shown, that the number of
independent displacement-relations given by the theorem is equal to the number of
independent integral relations between the variable intersections.

5. Observe that the pure theorem gives all the displacement-relations between
the variable intersections; we are hereby led to see the nature of the affected
theorem. Taking at pleasure on the fixed curve the sufficient number of variable
intersections, the coefficients of ¢ are thereby determined in terms of the coordinates

¢, , O,

of -the assumed variable intersections®, and hence the value of —T+_ is given as
1 2

a linear function of the corresponding displacements dw; and, substituting this value,
the affected theorem gives a linear relation between the displacements dw of the
several variable intersections. But any such linear relation must clearly be a mere
linear combination of the displacement-relations = (z, y, 2)"*dw =0 given by the pure
theorem.

Ezamples of the Pure Theorem—The Fized Curve a Cubic. Art. Nos. 6 to 12.

6. The pure theorem is not applicable to the case n =2, the fixed curve a conic:
it in fact gives no displacement-relation; and this is as it should be, for the variable
intersections are all of them arbitrary.

The next case is n=3, §=0, the fixed curve a cubic. For greater simplicity the
equation is taken in Cartesian coordinates. In general for such an equation, writing
in the homogeneous formule z=1, we have

_dx_ dy
TG
dy dx

the two values being of course equal in virtue of j—ﬁ dw+g—§ dy=0; taking the

df

former value and considering % as expressed in terms of z, let this be called P

(of course, P is an irrational function of «): then we have dw:%—?; and similarly

oy
: Dt -Pl ]
The fixed cnrve being then a cubic, let the variable curve be a line; this meets
the cubic in three points, say 1, 2, 3; and any two of these determine the line, and
therefore the third point; there should therefore be one integral relation, and con-
sequently one displacement-relation; and this is what is given by the theorem, viz.
we have 2dw =0, that is, dw, + dw,+dw; =0, or, what is the same thing,
da,
P,

d &e.

da,

P,

da,

P, =0,

+5 +

* The coefficients are determined, except it may be as to some constants which remain arbitrary but

which disappear from the difference —%’ + 6{;-’; this will be explained further on in the text.
1 .

2
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825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 113

The corresponding integral equation is the equation which expresses that the
points 1, 2, 3 are in a line, viz. considering ¥, ¥., ¥, as given functions of z;, @, ,
respectively, this is

@, Yy, 1|=0,
w21 y21 ]-
X3y Ys, 1 |

or, in the notation already made use of for such a determinant, 123 =0.

7. This equation dw, + dw,+ dw;= 0, where deo denotes %, has a peculiar inter-

pretation when we consider the coefficients of the cubic as arbitrary constants, and
therefore the cubic as a curve depending upon nine arbitrary constants*. In taking
1 a point on the curve, we in effect determine y, as a function of 2, and the nine
constants; and similarly in taking 2 a point on the curve, we determine 3, as a
function of #, and the nine constants; the points 1 and 2 determine the third inter-
section 3, and we have thus =z, determined as a function of #,, #, and the nine
constants.

Considering @; as thus expressed, we have da:3=g~'z—3dwl+g§3 dz,, an equation which
1 2
must agree with dw, + dw, + dw; = 0, that is, with da; = —-%dwl —%d@. It follows that
g 1 2
ad, idas Py : ! . ol I
we have -~ -+ -—=7357, and taking the logarithms and differentiating with regard to
day ihdpa e
d d dos | dax\ g ! : k
x, and @, we find Pt oy log (@1— d_w) =0, a partial differential equation of the

third order, independent of any particular cubic curve, and satisfied by ; considered
as a function of &, @, and the nine constants. Observe that starting from the
expression for z;, and proceeding to the differential coefficients of the third order, we
have ten equations from which the nine constants can be eliminated, that is, we ought
to have a partial - differential equation of the third order: and conversely that the
equation for ;,, as containing nine arbitrary constants, is a complete solution of the
partial differential equation: the complete solution of the partial differential equation
in question is thus the equation which expresses that 3 is the remaining intersection
of the line through 1 and 2 with a cubic.

8. The partial differential equation has a geometrical interpretation, or is at least
very closely connected with a geometrical property. Consider three consecutive positions
of the line, meeting the cubic in the points 1, 2, 3; 1/, 2, 3’ and 17, 2", 3" respect-
ively: the three lines constitute a cubic curve: the nine points are thus the inter-
sections of two cubic curves, or say they are an “ennead” of points: and any eight
of the points thus determine uniquely the ninth point.

* This theory was communicated by me to Section A of the British Association at the York meeting.
See B. A. Report, 1881, pp. 534, 535, [712], “A Partial Differential Equation connected with the Simplest

Case of Abel’s Theorem.”
OICT T, 15
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114 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

9. As a particular example, let the cubic be #*+y*—1=0; then y=v'1-—2
and dw:%?, =(—-——1 dxﬁ)v%*; and with these values we have as before the differential
relation dw, + dw, + dw,; =0, and the integral relation 123=0. I give a direct verification.
To find ,, y, the coordinates of the third intersection, we may in the equation of
the cubic write @, v, 1= A&, + u@, Ny; + pys, N+ p respectively, and then writing for
shortness 122 = &%z, + 9%y, — 1, 12°=2,2.>+ y,42 — 1, we obtain for the determination of
A, p the equation N.1°2 4 p.122=0.

This being so, from the equation 123 =0 we obtain by differentiation
p: {dml (?/2 = 3/3) g dyx (-7/'2 5 .Z‘s)} =0,

the sum consisting of three terms, the second and third of them being obtained from
the one written down by the cyclical interchange of the numbers 1, 2, 3. But we
have adz + y’dy,=0, and the equation thus is

dx, .
b y_igz (Y2 (Yo — Ys) + @2 (23— @)} =0 :

this will reduce itself to = %f ,=0, if only the three coefficients in { } are equal,
that is, we ought to have
Y2 (Yo = Us) + &° (22— 23) = Ys* (Ys — 1) + @ (@ — 22) = Y5’ (1 — 9) + @ (2 — ).
Comparing for instance the first and second terms, the equation is
= Ys (2 + 9a7) — @5 (2 + @7) + (@°2s + Y°e + 21287 + Y1y’) = 0,
or, as this may be written,
— (A + pye) (1 + 92°) — (Mg + pmy) (27 + @) + (N + p) (2%, + Y27y, + @)’ + y1ys*) =0,

where the whole coefficient of N\ is —a®— y® + 2%, + y:%Y,, which in fact is @2z, + y,%y,—1,
=122 ; and similarly the whole coefficient of w is 12*; the equation is thus . 122 4 4.122=0,
which is right. The first and second coefficients are thus equal. and in like manner
the first and third coefficients are equal; we have thus the required result,

e b5 0
W Yo Ys
10. In all that follows, the cubic might be any cubic whatever, but to fix the
ideas I take a particular form. :

Let the cubic be y*— X =0, X a cubic function (#, 1), or say even X =2.1—2.1 — k%,
then y = VX, do= (.ff, =:(/Jl%; and with these values we have the differential relation

* Writing f=2°+y*-1 we should have d;f:: 3y%, and therefore dw= lax

By 3y2; but the } enters as a common

factor in all the dw’s, and it may clearly be disregarded: the value in the text, dw=§g could of course be

obtained by writing, as we may do, f=1% (2°+y%- 1), and so in other cases.
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825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 115

dw, + dw, + dw, =0, and the integral relation 123 =0. This last equation is an integral
of the differential equation dw, + dw, + dw,=0; as not containing any arbitrary constant,
it is a particular integral.

But regard one of the three points, say 3, as a fixed point, that is, let the line
pass through the fixed point 3 of the cubic, and besides meet it in the points 1
and 2. We write dw;=0, and the differential equation thus is dw,+ dw,=0, while
the integral equation is as before 123 =0; this equation, as containing one arbitrary
constant, is the general integral of dw, + dw,= 0.

Let the variable curve be a conic; say the intersections with the cubic are
1, 2, 3, 4, 5, 6. Any five of these points determine the conic, and therefore the sixth
point; there is thus one integral relation, the equation 123456 =0, which expresses
that the six points are in a conic, and there should therefore be one displacement-
relation, viz. this is the equation =dw =0, that is, dw, + dw,+ dw; + de, + dw; + dws= 0.

We have thus 123456 =0, as a particular integral of
dw, + dw, + dw; + dw, + dw; + dw;=0.

If, however, we take 6 a fixed point on the cubic, then we have the same equation
as the general integral of dw,+ dw, + dw; + dw, + dw; = 0.

But taking also 5 a fixed point of the cubic we have as an integral of
do, + dw, + dw; + dw,= 0, the foregoing equation 123456 =0, which contains apparently
two arbitrary constants; and so if we also fix the point 4, or the points 4 and 3,
we have for the differential equations dw,+dw,+ dw;=0 and dw,+dw,=0, integrals
with apparently three arbitrary constants and four arbitrary constants respectively.

11. The explanation is contained in the theory of Residuation on a cubic curve.
Take the case dw,+ dw,+ dw;=0, with the integral 123456 =0, containing apparently
three arbitrary constants, viz. the relation between the variable points 1, 2, 3, is here
given by a construction depending on the three fixed points 4, 5, 6 on the cubic; it
is to be shown that two of these points can always be regarded as no-matter-what*
points. To see that this is so, take on the cubic any two no-matter-what points 4, 5 :
then according to the theory referred to, we can find on the cubic a determinate point
6’ such that the points 4/, 5" and 6" establish between the variable points 1, 2, 3, the
same relation which is established between them by means of the points 4, 5 and 6 ;
viz. whether in order to determine the point 3 we draw a conic through 1, 2, 4, 5
and 6, or a conic through 1, 2, 4, 5" and 6', we obtain as the remaining intersection
of the conic with the cubic one and the same point 3. The construction of 6 is,
through 4, 5 and 6 draw a conic meeting the cubic in any three points 1, 2, 3;
through these points and 4, 5° draw a conic, the remaining intersection of this with
the cubic will be the required point 6, and the point 6’ thus obtained will be a

" * The epithet explains, I think, itself; the poirt may be any point at pleasure, but it is quite immaterial
what point, and for this reason it is not counted as an arbitrary point. The most simple instance is that
of two constants presenting themselves in a combination such as c+c¢’: either of them may be regarded as
a no-matter-what constant.

15—2
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116 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

determinate point, independent of the particular conic through 4, 5 and 6 used for
the construction. Thus 4 and 5 are replaceable by the no-matter-what points 4" and 5
or, what is the same thing, two of the points 4, 5 and 6 may be regarded as
no-matter-what points, and the number of arbitrary constants is thus reduced to one.
And so in other cases, all but one of the fixed points may be regarded as no-matter-
what points, and the integral as containing in each case only one arbitrary constant.

But conversely, it being known that the integral of the differential equation con-
tains but one arbitrary constant, we can thence arrive at the theory of residuation.

12. We might go on to the case where the variable curve is a cubic; there
are here nine intersections; any eight of these do not determine the variable cubic,
but they do determine the ninth intersection; and there is between the nine inter-
sections one integral relation, and corresponding to it one displacement-relation Zdw =0,
that is, dw,+ dw,+ ... +dw, =0, given by the pure theorem. But as to this see further
on, where it is shown in general that the number of independent integral relations
is equal to the number of independent displacement-relations given by the theorem.

Ezample of the Affected Theorem—Fized Curve a Circle. Art. Nos. 13 and 14

13. The fixed curve is taken to be the circle #*+3*—1=0, and the parametric
points 1 and 2 to be the points (1, 0) and (0, 1) on this circle. The variable curve
is taken to be a line, say the line az+ by—1=0, meeting the circle in the points
3 and 4, coordinates (z;, ;) and (z, y,) respectively.

Starting from the formula

z(w Y 1)udo ])lodw 84)1 8¢2
012 e

where the summation extends to the points 3 and 4, (2, y, 1)%, is here a constant,
=2.12, that is, 2 (2,@ + %Y. — 1), which for the points 1, 2 in question is =—2. We
have 012 denoting the determinant

s S 1 b
[ 2 A0 |
/g T ¢
g £ il g _dz _O¢y _ada+ydb .‘___ da 3l
which is =—2—y+1; and do= 3y Also Pt W’ L and similarly
8‘;:2 i w—i. The formula thus is

Ridn ) o skt
y@+y—-1) a-1"b—

The coefficients @ and b are determined by means of the points 3 and 4, that
is, they are functions of a;, #,; and considering them as thus expressed, then (inasmuch
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825 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 117

dz

as there is no linear relation between the displacements #‘ and —* of the two

Ys Yy
arbitrary points 3 and 4 on the circle) the equation must become an identity in regard
to the terms in da; and da, respectively. It only remains to verify that this is so.

14. Writing P, Q, R=—1vy,+y,, @, —a,, @y, — 2.y, also L, and L, =2,+y,— 1 and
@, +y, — 1 respectively, we have a=P + R, b=Q + R, and the equation is found to be

dz, | da, 1

s 9l (Q—R)(B—P)

i {(@—R)dP +(R—P)dQ+ (P - Q) dR},

where, substituting for dy,, dy, their values in terms of da;, dz,, we have
dP, dQ, dR= l L3y — l zyda,, l y:;dx-z 7 1 3/4d-774, 1 (@52, + 3/';3/4) da, — ’1“ (-7«3“4 + ¥5Ys) da,
Ys Ys Ys r Y Ys ; Ya

and with these values, and by aid of the relations
Q-R, R—P, P-Q=al,—xlL, YsLs—y, Ly, — Ly+ L,

the equation is found to be

»‘%"_"'gx_ ﬂdf@_ b lea (-’L':x Ly + YsYs — 1)_ <£~’f‘.} 7C_l¢i> 3
ysLs ?/4L4 ('%Ls " .%L;) (%Ls & Z/3L4) f’/:;L:; 3/4114 :

viz. this will be true if only

L;L, (.'133.’1;'4 = — 1) - (@4L3 — & L.x) (3/4L3 o y:;L4) =10,
that is, , :
— &Yy L3 - X33 L3+ Ly L, (w0, + YsYs+ @Y+ 2y — 1) =0,

But from the values of L, L, we have xy,=4L2+L, xy,=31L?+ L;, and the
coefficient of L,L, is = L,L,+ L;+ L,; the equation is thus verified.

The example would perhaps have been more instructive if the points 1 and 2
had been left arbitrary points on the circle, but the working out would have been more

difficult.

The Variable Intersections of the Two Curves—Number of Independent Integral Relations.
Art. Nos. 15 to 19.

15. Suppose n=3, §=0(p=1), the fixed curve a cubic; and suppose successively
m=1, 2, 8,..., the variable curve a line, conic, cubic, &c.

If m=1, then two points on the cubic determine the line, and consequently the
remaining intersection with the cubic; hence there is one integral relation.

If m =2, then five points on the cubic determine the conic, and consequently the
remaining intersection with the cubic; hence there is one integral relation.
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118 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS.' [825

If m =3, then eight points on the fixed cubic do not determine the variable
cubic, but they do determine the ninth intersection. For draw through the eight
points a no-matter-what cubic y =0, the general cubic through the eight points is
x +af=0, and this meets the fixed cubic in the points xy=0, f=0, that is, in the
eight points and in one other point independent of the constant a and therefore com-
pletely determinate. Hence in this case also there is one integral relation.

So if m=4, then eleven points on the cubic do not determine the quartic, but
they do determine the remaining intersection. For draw through the eleven points
a no-matter-what quartic y =0, the general quartic through the eleven points is
X + (2, y, 2! f=0, and this meets the cubic in the points x=0, f=0, that is, in the
eleven points and in one other point independent of the constants of the linear
function (z, 7, 2z)!, and therefore completely determinate. Hence there is one integral
relation.

And so in general, the fixed curve being a cubic, then, whatever be the order of
the variable curve, there is always one integral relation.

16. Suppose next n=4, §=0(p=3), the fised curve a general quartic; and as
before suppose successively m=1, 2, 3,..., the variable curve a line, conic, cubic, &c.

If m=1, then two points on the quartic determine the line, and therefore the
remaining two intersections; the number of integral relations is =2.

If m=2, then five points on the quartic determine the conic, and therefore the
remaining three intersections; the number of integral relations is =3, and similarly
if m=3, the number of integral relations is = 3.

If m=4, then thirteen points on the fixed quartic do not determine the variable
quartic, but they do determine the remaining three intersections. For draw through
the thirteen points a no-matter-what quartic x =0; the general quartic through the
thirteen points is y +af=0, and this meets the fixed quartic in the points y =0,
/=0, that is, in the thirteen points and in three other points, independent of a and
thus completely determinate, and the number of integral relations is =0; and so in
general for any higher value of m, the number is still = 3. h

17. Suppose n=5, §=0(p=26), the fixed curve a general quintic; and as before
suppose m=1, 2, 3,... successively.

If m=1, then two points on the quintic determine the line, and therefore the
remaining three intersections; the number of integral relations is = 3.

If m=2, then five points on the quintic determine the conic, and therefore the
remaining five intersections; the number of integral relations is =5.

If m=3, then 9 points on the quintic determine the cubic, and therefore the
remaining six intersections; the number of integral relations is =6, and so if m=4,
or if m=>5 or any greater number, in the first case directly, and in the other cases
by consideration of the quintic X+af 0, &c., we find that the number of integral
relations is always = 6.
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825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 119

18. The reasoning is scarcely altered in the case where the fixed curve has dps;
thus considering the general case of a fixed curve n, 8, p:

If m=1, then 2—3 points on the fixed curve (this implies & 3 2) determine the
line, and therefore the remaining n—28—(2—38), =n—2— 8 intersections; the number
of integral relations is =n—2 — 8.

If m=2, then 5—3 points on the fixed curve (this implies 8  5) determine the
conic, and therefore the remaining 2n—28—(5—3), =2n—5—38 intersections; the
number of integral relations is =2n—5-38, and so for any value of m}»n—3, and
indeed for the values n—2 and n—1; here {m(m+3)—8 points on the fixed curve
(this implies & } 4m (m + 3)) determine the variable curve, and therefore the remaining
mn —28 — {m(m+ 3)— 8}, =mn—4%m(m+3)—38 intersections. Hence the number of
integral relations is =mn—4m(m+3)—6, that is, =p—3(n—m—1)(n—m —2). And
thus in the cases m=n—2 and n—1 the number is = p.

If m=mn, then $n(n+3)—1— 8 points on the fixed curve do not determine the
variable curve, but they do determine the remaining #*— 28 — {in(n +3)—1-4§},
=4(n—-1)(n—2)—34, that is, p intersections, and the number of integral relations is
thus =p; and so, for any higher value of m, the number is still =p.

19. The conclusion thus is
m P n —3, the number of integral relations =p—%(n—m—1)(n —m-2),
m=or >n-—2, & o =p.

The integral equations spoken of throughout are of course independent relations.

The Variable Intersections of the Two Curves. Nuwmber of Independent Displacement
Relations given by the Pure Theorem. Art. No. 20.

20. The number of displacement-relations given by the pure theorem is = number
of constants in minor function (z, y, z)*~%, which equated to zero represents a curve
through the dps, viz. this is always

fF(n=1)(n—-2)-8, =p.

But for m>n—2, these relations are not independent. For instance, for n=4, §=0,
m =1, the displacement-relations are

S (2, y, 2) dw =0, that is, Sz dw=0, Zyde=0, Zzdew=0,

and conversely from these last equations we have Z(z, y, 2)'dw =0. But in this case
the variable curve is a line az+ by +cz=0; hence writing (z, y, 2)' = az + by +cz, the
equation (z, y, z)' =0 is satisfied for each of the intersections of the line with the
quartic, and the corresponding equation X (z, y, 2)'dw =0 is an identity. Hence the
number of independent displacement-relations is 3 —1, = 2.

So for n=25, § =0, m=1, the displacement-relations are

S (z y, 22 do=0, that is, Z(a? g% 2% yz 2, wy)dw =0,
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and these six equations give conversely X (z, y, 2’dw =0, and in particular they give
Sz(z, y, 2)'do=0, 2y(z, y, 2)ldo=0, 3z(z, y, 2)'do=0. But if (z, y, 2)' denote
az + by + cz, then as before we have (z, y, 2)'=0, for each of the intersections of the
two curves, and the last-mentioned three equations are identities. The number of
independent displacement-relations is thus 6 —3, =3.

So for n=5, §=0, m=2. Here if the variable curve is ¢=(a,...J=, y, 2)’= 0,
then taking (z, y, 2)*=(a,...Q®, y, 2), the equation (z, ¥, 2z)*= 0 is satisfied for each of
the intersections of the two curves, and the corresponding equation 2 (z, y, 2)deo =0 is
an identity ; the number of independent displacement-relations is 6 —1, =5.

The reasoning is the same when & is not =0, and we see generally that for
m<n—2, or say

m P n —3, the number of independent displacement-relations
=p—t(n—m—-1)(n—m—2);

m = or >n — 2, the number is =p;

while for

since in this case the relations given by the theorem are all of them independent.
It thus appears d posteriori, that in every case the number of independent displace-
ment-relations given by the pure theorem is equal to the number of independent integral
relations.

As to the dps of the Fiwed Curve. Art. No. 21.

21. I conclude with a general remark applicable to the whole of the three chapters.
There is no necessity to attend to all or indeed to any of the dps of the fixed
curve. Suppose that the fixed curve has 8+ & dps, where 8, 8 may be either of them
or each =0, but attend only to the & dps, the & dps being wholly disregarded, and
accordingly let the expression the dps mean as before the 8 dps of the fixed curve.
No alteration at all is required: only, if & be not =0, then p=4§(n—1)(n—2)—¢ will
no longer be the deficiency. To obtain the best theorems we use all the &+&" dps:
but disregarding the & dps, we obtain theorems, as for a curve with & dps, which are
true, and may frequently be useful either in their original form or with simplifications
introduced therein by afterwards taking account of the & dps.

CHAPTER II. PrROOF OF ABEL'S THEOREM.

Preparation. Art. Nos. 22 and 23.

22. Starting from the equation ¢=(a,...Qx, y, 2)"=0 of the variable curve, we
have

3¢dw+d¢> dy + d¢dz+8¢> 0,

L i
dw x+dy y+dz 4 g
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where 8¢ =(da,...§z, y, zy". Let 7 denote an “arbitrary linear function, =az +by+ cz;
multiply the two equations by az+by+cz, =7, and —(adz+bdy+cdz), =—dr re-
spectively, and add: we obtain

(y dz — Zdy)( d‘;b g:(;)-f-(zdw a:dz)(c-g_ad_d’>

+(@dy — ydw)( f b52)+r8=0;

introducing dw, this becomes
af (,db _ d¢\  df ( d$ df dé ol
d"[d (baz‘cd‘y)*'@(cdx dz>+dz< dy l’dﬂ“&f"o’

or observing that «, b, ¢ are the differential coefficients d—-‘—-, dx ; d—T, the term in [ ]
dz’ dy’ dz
is J(f, 7, ¢), or say J (¢, f, 7), and the equation is
dwd (¢, f, T) + 760 =0,

where J (¢, f, 7) is the Jacobian, or functional determinant

 dp de do |
"de’ dy’ dz |
i & d_f! _d@. 7).
de’ dy’ dz |’ d(z, y, 2)’
| dr dr dr |

de’ dy’ dz | y

and we hence have
Gl — 18
RICY)
23. The tW(; theorems thus become
o 8¢
R Y

(@, y, 2> —78p 3¢1
2N TG ¢1+ 5.

But further, if in the first equation we write 7=z, and in the second equation we
retain 7, using it to denote the linear function 012, the equations become

TP
Xan ol

e =3 3 B,
2@ 9 TG D, bt

E(-’L‘ y, )n—s

C. XIL 16
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where, in the first equation, J (¢, f) denotes the Jacobian

dp d¢ | _d(¢ f)
de iady 3 ad (o )y
@ df |
| de - dy |

In these equations the only differential symbol is the & affecting the coefficients
a, b,... of ¢, ¢, ¢,; the equations are, in respect to the coordinates (z, y, z) of the
several variable intersections of the two curves, purely algebraical equations, which are
in fact given by Jacobi’s Fraction-theorem about to be explained. But for the further
reduction of the affected theorem I interpose the next three articles.

The Coordinates (p, o, 7). Art. Nos. 24 to 26.

24. The letter = has just been used to denote the determinant 012: there is
often occasion to consider three points 1, 2, 3 coordinates (z,, 11, 21), (%o, Y, 25), (23, Y, 25)
respectively ; and then writing p, o, 7 to denote the determinants 023, 031, 012
respectively, and A the determinant 123, we have identically

Az =2,p + 2,0 + 337,
A]/ . ylp + ygo- + Z/n'T;
Az=2zp +2,0+2T,

which equations, regarding therein the point 0, coordinates (z, y, z), as a current point,
are in fact equations for transformation from the coordinates (z, y, z) to the coordinates
p, o, T belonging to the triangle of reference 123. The points 1 and 2 have been
already taken to be on the fixed curve, and it will be assumed that 3 is also a point
on this curve.

25. If the function f, which equated to zero gives the equation of the fixed
curve, be transformed to the new coordinates (p, o, 7), the coefficients of the trans-
formed function are polar functions, each divided by V7 viz. the coefficient of p” is

—Vln 17, which by reason that 1 is a point on the curve is =0 (and similarly the
coefficients of ¢” and of 7" are each =0), the coefficient of p"1o is =—§1—nn. [Tl

. i 2 A
that of p"'7 is = ﬂ71.1"‘13; that of p"2g* is =%1}n (n—1)1"222; and so in

other cases. I write this in the form

1
f=gu("=0,..4p, o, 7)";
or we might also use the symbolic form

1 P
=% (pl + a2+ 73)"
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The terms independent of = contain, it is clear, the factor po, and separating
these terms from the others, the equation may be written

= %} po(n.1"12,...+Up, ¢)" 2+ terms involving .

26. The equations 7=0, (...+§p, ¢)"*=0, determine the residues of the points
1, 2, and hence the major function (z, y, 2),"% expressed in terms of p, o, 7, and
writing therein ==0, must reduce itself to (...+3p, o)** multiplied by a constant factor

which is at once found to be = for taking the current point at 1 we have

1 .
v'n—2’
(p, o, 7)=(A, 0, 0), and the corresponding value of the major function is thus
7,1”:)7,. 112, A2, =q. 1722, as it ought to be. We have thus

(Zia )t =Vlniz (n. 17712, ...+Qp, o) 2+ terms involving 7;

and we hence see that, for 7=0,

(w! Y Z)l‘zn_2= % »

an equation which will be useful.
The Preparotion for the Affected Theorem reswmed. Art. No. 27.
27. In the affected theorem instead of (z, y, 2z) we introduce the new coordinates

(p, o, 7). We have
J(¢f’r)=d(¢"ﬁ 7) d(p, o, T)
it d(p, o, 7) d(z, ¥y, 2)’

where the first factor is =fl((<::: {: )) , say that this is J (¢, f), the Jacobian in regard
to p, o: and the second factor is at once found to be = A% We have consequently
s ng
T fon) AT f)
and the equation for the affected theorem becomes
Sz, y, o) f:f}) =—A? (— % + 8(-::) g

where (z, y, 2)"* is to be regarded as standing for its value in terms of (p, o, 7).

Jacob’s Fraction-Theorem. Art. Nos. 28 to 31.

28. This is the extension of a well-known theorem, which, in a somewhat disguised
form, may be thus written: viz. if U be any rational and integral function (z, 1),

then we have
Aitrgidemg bk |
U “ao=o.J(U)’
16—2
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or, introducing an arbitrary constant 4 by the equation AU =X, say this is

A _l)_z 1
;Y_<_U_ z—a . J(U)’
where U’ is the same function (z, 1) of &' that U is of z: J(U),

’

T dd
Jacobian of U’, and the summation extends to all roots «' of the equation U'=0:

is the

obviously this is nothing else than the formula for the decomposition of ;—I into simple
fractions.
29. Take now U=(z, y, 1)*, V=(z, y, 1)*, functions of #, y of the degrees m
and n respectively, and assume
AU + BV. =X, a function (z, 1)™,
CU +DV =Y, » (y, 1,
viz. let X=0 and Y=0 be the equations obtained by elimination from U=0 and
V'=0 of the y and the « respectively. The forms are
A=@, g, Iy, B=(a g™ 1,
O (e, 3 TPs, | D= (omet 'y T,
where these equations denote the first of them that 4 is a rational and integral

function of the degree mn —m in « and y jointly, but only of the degree n—1 in y:
and so for the other equations. It follows that

AD — BC = (wmn—l’ ymn—l’ 1)2mn—m—n‘
The theorem now is

AD—BC_2 1
XY ~ Ta-a.y—y.JU, V)
where U’, V' are the same functions of (a/, ') that U, V are of (=, y); J(U’, V)
d(U, V),

is the Jacobian and the summation extends to all the simultanecus roots

A
', y' of the equations U=0, V=0.

30. For the proof, observe that AD— BC is a sum of terms of the form xyP
where a and B are each of them at most =mn—1; hence X being of the degree

a

@ : L .
mn we have T =a sum of fractions gl where &’ is any root of X =0; and

X

B
similarly %:a sum of fractions y—ly" where ' is any root of ¥ =0; multiplying

the two expressions and taking the sum .for the several terms \z2yf of AD — BC we
obtain a formula

AD—-BC _ K

g = F i
where the summation extends to all the combinations of the mnr values of &’ with
the mn values of y. But such a formula existing, the coefficients X may be determined
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in the usual manner, viz. multiplying by XY and then writing z =2, y =y, theie is
on the right-hand only one term which does not vanish, and we find

(AD - BO)yy =K (w - x’>x' (y 3 y')y” =K (% ’dy>x’y’ g

where the factor which multiplies A does not vanish.

We distinguish the cases where (2, ') are corresponding or non-corresponding
roots of X =0, ¥Y=0; viz. corresponding roots are those for which U=0, V=0, but
for non-corresponding roots these equations do not hold good; there are obviously mn
pairs of corresponding roots.

In the latter case (AD— BC) U= DX - BY; (AD—BCO)V=—CX + AY, and since
for the values in question X, Y each vanish, but U, ¥V do not each of them vanish,
we must for these values have AD — BC=0, and the foregoing equation for K gives
then K = 0.

31. The formula thus is
AD-BC _ K
XY ~Taz-a.y-y”

where the summation now extends only to corresponding roots #’, y’, for which we have
U=0, V=0. We have for K the foregoing expression, which, to complete the
determination, we write under the form

AD -BC=KJ (X, Y)yy;

this is allowable, for J(X, Y), =(%(Xw’—;;), differs from &%' %l? only by the zero term
_% (g Moreover, differentiating the expressions for X, ‘Y, and considering (z, ¥) as

therein standing for a pair of corresponding roots (#, %), the terms containing U, V'
will all vanish; we thus in effect differentiate as if 4, B, €, D were constants, and
the result is (AD—BC)J (U, V), or say this is (4D — BC)y, J (U, V’): hence, in the
equation for K, the factor (4D — BC),, divides out, and we have 1=KJ (U, V’);
hence the required formula is

L ol WA
XY  Ta—-d.y—v

the summation extending to all the simultaneous roots («, yyrortli=0, V=0

T, VY

Homogeneous Form of the Fraction-Theorem. Art. No. 32.

/ 4

82. For =z y, &, y we write ;, g, ';, §; supposing that U, V now denote

homogeneous functions (z, y, 2)", (#, y, 2)", and that we have
AU+ BV = X =i(ap 2)P, = an™ <4y
OU DV = Y s=(ywe) 0, i=8yPh st i,
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where the forms arve
A= (x, yﬂ-—l, z)m’n--m, B = (..\"‘}‘, ym—-l‘_ z}lﬂf&—ﬂ,

C.= (.’L'"_l, Y, I § i D= (wm—l’ Y, z)ﬂln——u,
AD - BC = (a,"““—l’ y’"m—'l, z)smu—m—n,

viz. the degree of A in (x, y, z) is =mn—m, but y rises only to the degree n—1,
and so in other cases; then the theorem becomes

gitin—2 (AD_ BO‘) ) z’m+u . y
XY T el —dz. yd -y b
o’ ([f’f V’ -
where J(U’, V') denotes the Jacobian D and the summation extends to the

simultaneous roots (&, ¥, ') of U=0, V' =0.

It is proper to introduce into the formula 7', an arbitrary linear function
az’' + by’ + ¢z’ of («, y/, 2): observe that, in the Jacobian, («, 3, z’) have always values
for which U'=0, V'=0: we have therefore

dU’ ,dl’  dU’
dm: +(9' d i d_a'
dV’_I_ dV’+ ,dV’
Cdd TY dy ds
PBOVIRARY | (//o0t o010 | 4000 W (L o
& A, 9 A, @) d@. Y
and if the expressions on the right-hand are for a moment called 4°, B, (", then
writing’ v = a2’ +by + ¢z, we have J(U’, V', v)=ad'+bB + c(’, =;;.G’, =;;,J(U’, V),
that is,

=0,

)

and thence

1)l ik 7

J(Lvr V.r fJ(Lr!'V.r _r‘)!

or the equation becomes

gintn—g (A_D ot BC) z'm+n—1 T 7 1l ( U’, " T’),

AR
P

XY wd —az.yd —y'z’

the summation being as before.

Resulting Special Theorems. Art. Nos. 33 to 35.

33. Reverting to the Cartesian form, we have

__(;‘1;_1_7_@):5”01 V’)(1+m’+ )(“ )

EJ(U} V,){1+H (‘;' §)+H(w 3;)+}

where H,, is the homogeneous sum of the order m,
H,(u, v)y=u+v, Hy(u, v)=0*+ uww+v* &c.
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The left-hand side is
1 &e. 1 de.
AD - BC ~) N
( ) ( it ( Bym'n—l + mn + >

an—l xmn y
and in AD — BC the terms of the highest order in (z, y), say (AD— B(), are
(4D — BC), = (zy)ym—m—ntl(q, 0, k—'-]ix’ yymtn—2,

There is thus on the left-hand no term which is in (2, y) of a higher degree
than —(m +n—2); hence on the right-hand every term of a higher degree than this
in (z, y) must vanish, viz. we must have

'8

0=3 2% so long as a+ B P m+n—3,

$G
J( U'
or, what is the same thing, we must have

1+
0= 2%——1)17,;3, say the (m +mn— 3) theorem,

where (2, 3/, 1)+ is the arbitrary function cf the degree m +n — 3.
34. Passing to the next lower degree —(m +n — 2), we have

1

1 5 xl yl
'Y ek WA g W~ 0 L A ool v
a8 (xy)m+n—_z (@, b,...k1Qx, y) p (U, V') Hypins (m ) y)

and if in (a, b,..,ktf=z, y)y™™* we consider any term ga™*+"?ymitn—i—¢  where

p+g=m+n—2, then we have on the left-hand the term -—g—, and the corre-
aBz?y?

sponding term on the right-hand must be

1 2P ./ ‘q
: J(U’ (T, V) a:Py‘I’
that is, we have

2 2P q J‘I
. B2 T, VY

But from the foregoing expression for (4D — BC),, it appears that (4.D— BC), contains
the term ga™ 2 ymn—1—¢ and it hence appears that g is the constant term of the
quotient (4D — BC), divided by a™»—1—2 ym»=1=¢ or as this may be written

g = const. of (AD( fng)jlwpyq,

comparing the two values of g, we obtain

const. of (A-Z)B (wg)c:zﬁ_wlpt/q 2 J(xUI-)/’:I/ fl[r/) ) (p =} qg=m +n - 2))

and we hence derive

Const. of (4D — BC), (2, yy™— _ 2($ 3/)"°+n_0

a3 (zy)mer? J (U, V)
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where (z, y)"*"—* is the general function of the degree m +mnm—2, and, of course,
(«/, y)y~n= is the same function of &/, . The two functions may be written
(z, y, 0y™"=2 and (2, g/, 0)"*"2; and this being so we may on the right-hand write
instead (2, 3/, 1y**"=2 for, by so doing we introduce in the numerator of the fraction
new terms of an order not exceeding m+n—3, and by the (m +n—3) theorem
already obtained the sum X of the quotient of such terms by J(U’, V') is =0. We
thus have

(AD <~ BOW{w, g Oy (& g, Lynen=s »
Const. of oB (g1 bk 74/ oy <o e, say the (m+n— 2) theorem,

where («/, y', 1)™"2 is the general non-homogeneous function of the degree m+n —2,
and (z, y, 0)""2 is obtained from it by attending only to the terms of the highest
degree m +n — 2, and therein substituting z, y for «/, ¥.

35. We may, it is clear, in the equations for the (m+mn—3) and for the
(m +n —2) theorems respectively, omit the accents on the right-hand sides; doing this,
and moreover in each equation transposing the two sides, the two special theorems are
z, y’ 1)m+n—3

g A =
3= T(T, Vit 0, (m +n — 3) theorem,

o2 @ 9, 1)m-'_n_2=const;. of (4D — BO), (@, y, Oy

A , (m +n—2) theorem,
@, 7) aB (y ™ Sn

Homogeneous Form of the Special Theorems. Art. No. 36.

36. Writing g, g for @, y, and introducing as before the arbitrary linear function

T=ax + by + cz, we at once obtain, U, V' being now homogeneous functions (z, y, z)™
and (z, y, z)" respectively, and the A, B, ¢, D being also homogeneous functions
accordingly,

s 2= 9, L4 AN 0, (m +n —3) theorem,

J(U, V)
M+~ A s " AN —
2 %:COHSH of (AD f}gcf()ox:\yz)";niilo) 2’ (m ey 2) theorem,
’ 5 i

where the suffix 0 denotes that we are in AD— BC to write z=0.

If in the last formula we change throughout the letters , y, z into p, o, T
(that is, consider U, V as given functions of p, &, 7), but retain 7 as standing for
the particular function Op + Oc + 17, then the formula becomes

EM)Tim——?:CODSt_ Of (.A..D —_B_Cj)o(p’ o, T m+n—2
J(U, V) 7 (i

, (m+mn—2) theorem,

where J (U, V) denotes afl((g’ :_/;), the Jacobian in regard to p, o.
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The effect of dps of the Curves U=0, V=0. Art. Nos. 37 and 38.

37. We must, in regard to the foregoing special theorems, consider the effect of
any dps of the curves U=0, V'=0.

Suppose one of the curves, say V, has a dp, but that the other curve U does
not pass through it; the dp is not an intersection of U, V, and the theorems are in
nowise affected.

If U passes through the dp, then the dp counts twice among the intersections
of U, V; at the dp we have J(U’, V')=0, and (to fix the ideas, attending to the
(m +mn —3) theorem) the sum zf%y;ﬂj will contain two infinite terms; these

v, V)
may very well, and indeed (assuming that the theorem remains true) must have a
finite sum, but except by the theorem itself, this finite sum is not calculable, and the

theorem thus becomes nugatory.

If, however, the curve (z, y, 2)™"*=0 be a curve passing through the dp, then
considering, instead, the case where the last-mentioned curve and U each approach
indefinitely near to the dp of V'; there are two intersections of U, V indefinitely near
to each other and to the dp; at either intersection, the numerator («, 9/, z)™*"= and
the denominator J (U, V) are infinitesimals of the same order, say the first, and the
fraction has a finite  value; the finite values for the iwo intersections have not in
general a zero sum, and consequently in the limit it would not be allowable to dis-
regard the intersections belonging to the dp.

38. But if the numerator curve (z, y, z)™*"*=0 passes twice through the dp
(that is, has there a dp), then reverting to the two consecutive intersections, at either
of these the denominator J (U, V) is as before an infinitesimal of the first order, but
the numerator (z, y, z)"+*=* is an infinitesimal of the second order, and in the limit the
value of the fraction is =0; we may in this case disregard the intersections belonging
to the dp; and so in general, the curve (z, y, 2)"*"*=0 passing twice through each
dp of U which lies upon V, we have

Z(.Z’, Ys z)m+n—3
el R
the summation now extending to all the intersections of U, V other than the dps in
question, which are to be disregarded. And the like in regard to the other theorem

g (4D = BO), (%, g, Oy+
o ,8 ( wy)mn—l .

(m, y, z)m+n—2

T KL

)3

=const. o

The Pure Theorem.— Completion of the Proof. Art. No. 39.
39. The theorem was reduced to

~2(asyll2)t 0
b3 2T = (),
J (¢ 1)
which is therefore the equation to be proved.
C. XII. 17
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The (m +n—3) theorem, writing therein ¢, £ in place of U, V respectively (the
degrees being as before m and n), is

< z (.:I), Y, z)m+n—3 g

Tl o

Here (z, 7y, z)"*"—* is an arbitrary function of the degree m +mn—3, and this may
therefore be put = (, y, 2)"* 8¢, where 8¢, =(da, ... J, y, z)", is a function of the degree
m; and since the curve ¢ =0 passes always through the dps of f, and varies subject
to this condition, the curve 8¢=0 will also pass through the dps; hence taking
(z, y, 2)»*=0 a curve through the dps, the curve (z, y, 2)"*8¢p=0 is a curve
passing twice through each of dps, and the (m +mn —3) theorem thus gives the equation
which was to be proved. This completes the proof of the pure theorem

S(z, y, 2)"*do=0.

The Affected Theorem.—Completion of the Proof. Art. Nos. 40 and 41.
40. The theorem was reduced to

(@, ys B)" 20 puf b1, 3
i b

which is therefore the equation to be proved.

The (m+n—2) theorem, written with (p, o, 7) in place of (z, y, z), and putting
therein ¢, f for U, V, is

, @, Ty AD — BO),(p, o, 0ym+n—2
5 (P g s (e ,
J(d}, f) cons (o) 3 ,8 (pa')m ey

where it will be recollected that the suffix (0) denotes that = is to be put =0.
Here (p, o, 7)™ is an arbitrary function of the degree m +#n—2, and this may
therefore be put =(z, y, 2)," 8¢, the two factors being each of them considered as
expressed in terms of (p, o, 7); and since each of the curves (z, y, 2),"2=0 and
8¢ =0 passes through the dps of f, the curve (z, y, 2),"*8¢=0 is a curve passing
twice through each of the dps. We have therefore

¢ (4D — BO), (z, v, z)m"‘28¢0’

n—2
S (xL;y"z)ﬁ L 5‘# = const. o

J(¢, f) aB (pa)"

where on the right-hand side (z, y, 2),"* is considered as a function of p, o, 7, and

we are to put therein v=0; it has been seen (No. 26) that the value is =fiA~2,
g

where f, is what f, considered as a function of p, o, 7, becomes on writing therein
7=0; the right-hand side thus becomes

= const. of (4D > B0)°ﬁA28¢°.
aB (po.)mn
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41. But for 7=0, we have
Ao¢o A Bof:) = ap™",
Oo¢o T -Dof:) B Ba.mn’

and hence

(4D - BC), f, = A,Ba™ — Cap™",
and the right-hand side thus becomes, say

A C
LA e gk Rl A e
A? const. of < =t "m) o, .

we may suppose not only =0, but also

oc=0: we then have ¢y=(z, y, 2)™, =( >m (CONEE TN L =(%>m¢l, and hence also
P m

8¢>0=(K> 56..

Similarly, in calculating the constant of -~ .8¢,, we may suppose not only 7=0,

B ’”170
but also p=0: we then have ¢,=(z, y, 2)™, —(—) (w3, Vo, 2T, =<%>m¢2, and hence

A
¥ (%)m&[)g.

Moreover, in the equations

Ao¢o Sg Bof:) =ap™,
C ¢'o + Doﬁ Bo.mn

it i 1 A Nl e n 4, AN
writing in the first equation o=0, we find 4, A ¢, =ap™, that is, &?@;"(*) 5;
3 1
and similarly writing in the second equation p=0, we find C, (%)m ¢.= Bo™ that is,
O i e
Bomn (E) $2' and the expression thus becomes

a4

giving the equation which was to be proved. This completes the proof of the affected
theorem

s (w1 #haE dw 84)1
012 (;b1 4)2

17—2
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CHAPTER III. THE MAJoR FUNCTION (z, ¥, 2),">
Analytical Expression of the Function. Art. Nos. 42 to 49.

42. The function has been defined by the conditions that the curve (z,y, 2),"*=0
shall pass through the dps, and also through the n — 2 residues of the parametric
points 1, 2: and moreover, that on writing therein (2, v, 2) for (#, y, 2), the function
shall become =n.1"12. Obviously the function is not completely determined: calling
it Q (or when required (,,), then if Q' be any particular form of it, the general
form is Q= Q' + (2, y, 2)* %012, where (z, y, 2)"® is the general minor function, viz.
(z, y, 2)"*=0 is a curve passing through the dps: the major function thus contains
$(m—1)(n—2)—8, =p, arbitrary constants.

Agreeing with the definition, we have the before-mentioned equation

P B

S (n.1"2,...+Qp, o)**+ terms involving 7,

viz. from this expression for Q it appears that the curve Q =0 meets the line through
1, 2 in the n—2 residues of these points, and moreover, for (z, y, 2)= (2, 1, z) and
therefore (p, o, 7)=(A, 0, 0), the value of Q is =».1712,

43. We can without difficulty write down an equation determining ' as a function
(#, y, 2)"* which, on putting therein 7=0, becomes equal to the foregoing expression
K’}tﬂ (n.172,...4+p, o) and which is moreover such that the curve Q' =0 passes
through the dps; which being so, we have as before, Q=Q"+ (2, y, 2)"*. 012, for the
general value of Q.

To fix the ideas, consider the particular case n =4, the fixed curve a quartic:
on putting therein 7= 0, should become

=$(4.132, 6.122 4.124Yp, o)*;

and it is to be shown that this will be the case if we determine €', a quadric
function of (#, y, 2), by the equation

(', Yy, iz ’ Q=0
1 (2, %, 2) s 4n132
2 (@) % 210%, Y %), 6.1
Vs, s, 2 JPRRE S0 A

7 P ey ) i) 0

where the left-hand side is a determinant of seven lines and columns, the top line
being %, 1?, 2%, 2yz, 2zz, 2xy, , and similarly for the second line; the third line is
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20,5, 2019, 22120, 2 (2 +1e2h), 2 (0@ + 21%), 2 (%Y. +2,y,), 6.1°2% and in each of the
last three lines we have six arbitrary constants followed by a 0. The equation is of the
form O 4+ MQ' =0, where O is a quadric function (z, ¥, 2)% and M is a constant factor.

44. If the quartic curve has a dp, suppose at the point a, coordinates (#u., Ya, 2a),
then in order that the curve (=0 may pass through the dp, we must for one of
the last three lines substitute (#., ¥a., 2.)% 0; and so for any other dp or dps of the
quartic curve. And the conditions as to the dp or dps (if any) being satisfied in this
manner, we may if we please, taking (ws, vs, 2s) as the coordinates of an arbitrary
point B (not of necessity on the fixed curve), write any line not already so expressed,
of the last three lines, in the form (g, s, 25)>, 0; the effect being to make the
curve '=0 pass through the arbitrary point B.

45. To show that the equation on putting therein 7=0 does in fact give the
required value, Q’=31—2(4s.132, 6.1%22 4.12>+{p, o)®, =P suppose, it is to be observed

that, effecting a linear substitution upon the first six columns, the equation may be
written V

i (p PO - )2 4 Ql ‘ — 0,
i 1 (Pl) gy, 71)2 ) 4' . 132
2(P1: () TIZZPQ) T, 72); 61222 |

\
1 (P‘.’,) gy, 72)2 ) 4.‘. 123 ‘l

(LI, b’, cl’ f/’ g/’ % A 0 ‘
where (p;, a1, ), (s, 02, 7,) are what (p, o, ) become on writing therein for (z, y, 2)

the values (z, 11, 2) and (@, ¥,, 2z,) respectively; viz. we. have (p,, oy, 7)=(4, 0, 0);
(p2;, 02, 7)=(0, A, 0); the equation thus is

Pt ad s 20, 4 27p, . 2po, 0 =
AN Rl ORI eI ) RO " R £

OFAEIO SR OF e O O LA a6 ] 393
OREEAS R0 00 f0 NS RO ] 98

clas MR ol S e e TR 0

and then by another linear substitution upon the columns, the last column can be
changed into Q'—®, 0, 0, 0, 0, 0, 0; whence writing =0, the equation becomes

Lp® i@ 50001 0y 11 Bpa, Q’—q)l:O,
ARG OB GO0 S 0N EE
O RO w05 TS HOIRE AR

AL L0, LRSS

’ ’
a’, b ) C" 510 h’s
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or, omitting a constant factor, it is

P, o, 2p0, Q'-P i=0,
AL 0K R 0
(g0t NS

0.7 % 0.0
that is, Q'—=®=0, or Q' =P, =Kl2(4~.132, 6.122%, 4.12*+%p, o), the required value.

46. Considering the equation for ' as expressed in the before-mentioned form
O + MQ' =0, the value of the constant factor M is

M= (@1, Y1, ) 5
(@, Y Zl}i“‘?» Yo, Ze)
(w21 Ya» 2,)*

R WA T 9T S

or if, instead of each line such as a, b, ¢, f; g, h, we have a line (%, ¥a, 2.)>, then we

have

M=| (2, v1; 2)° :
@1, %, 210, Yo 2)
@2, Y2, 25)°
(a5 Yar 2a)

(g, 18, 28)°

(®y, Yy> 2y)
a value which is
=it Y1y ' T, Y, & ’ T, Y, % Zay Yoy Z2a |,
Xy, Yo, 22 f Zoy Yo, 2o Zyy Yob 2o xg, Ys, 28
Lo, Yo, Za | @g, Yp, Zp Tyy Uy, 2y Zyy Yy 2y

or say this is =12a.123.12y.afBy.

47. It is obvious that the foregoing process is applicable to the general case
of the fixed curve of the order » with & dps, and gives always ', by an equation of
the foregoing form O + MQ’'=0, where [J is a function (#, y, 2)"® of the coordinates,
and M is a constant factor. Supposing that in the determinant for ', each of the
lower lines is written in the form (., ¥, 2.)"% 0, the number of the points a is
=4(m—1)(n—2), viz. these are the & dps, and § (n—1)(n—2)—38, =p, other points a.
The general expression of M is M=12a.1283 ... (a®3B"2...), viz. equating to zero a
factor such as 12a, this expresses that the point o is on the line 12; but equating
to zero the last factor (a"—*@"~%...), this expresses that the several points a, viz. the
dps and the p other points a, are on a curve of the order n— 3.
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48. Preceding the case n=4, above considered, we have, of course, the case n=3,
8=0, the fixed curve a cubic; the equation for Q' is here

T e G =10
&, Y, %4, 3122
Ts Uk, g, 817122

La, ya; Za,
giving
122.02a+122. 0al
12a of

1)
5"0'—

or if we write herein 3 for a, this is

122.023 +122. 031

4k = 123 ;

and we have hence the general form

22.023 +122. 031

1
1() =
$0 123

+ K .012,

where K is an arbitrary constant.

49. There is, however, a more simple particular solution 3= polar function
012 (f=a*+y* +2°, then 012 =zw 2,4+ yyy. + 22,2,), which, to avoid a confusion of notation,
we may write =012. We at once verify this; for, expressing the coordinates (z, y, z)

in terms of (p, o, 7), we have %Q'=6’i§: =%(122.p+122.a+ﬁ§.v), which, for 7=0

becomes = %{122 p+122.0}.

We must, of course, have an identity of the form

~— 122,023 +122. 031
012 = 123 + K .012,

~A—

3 ) 2
and to find K, writing here 0 =3, we have K =i—5§, or we have the identity

123012 — 123 012 =122 023 + 122. 031.

Single Letter Notation for the Polar Functions of the Cubic. Art. Nos. 50 and 51.

50. The notation of single letters for the polar functions is not much required
in the case of the cubic, but, in the next following case of the quartic it can hardly
be dispensed with, and I therefore establish it in the case of the cubic: viz. I write

23, 31, 12=F£, g, h, 23, 312, 12°=4, j, k; 123=1,
or, what is the same thing, the expression for the cubic function f in terms of p, o, 7 is

A3, = 3hp*c + 3jp*t + 3kpa* + blpoT + 3gp7 + 3fo’r + 1T
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an equation which, writing 0° instead of f, may also be written
A% 0*=(3h, 3j, 3k, 6L, 39, 3f, 3i{p’a, p*r, pa*, par, p7, o'r, aT?);
and I join to it the series of equations
A2, 01 =(0, 2h, 2j, k, 21, 9gQp? pa, pT, 0°, oT, T,
» 02=(h, 2k 21, 0, 2, 14 7 );
» 08=(j, 2, 29, f, 26, 0 e )]
A .012=(0, &, jGp, o, 7),
AO0IZ=(h k1T , )
» B=C b g% » )
» 02=( 0,0 , )
»B=@ LY L )
» 03=(g,7 00 , )

51. In particular, we have A.0I2= hp + ko + I, and the above-mentioned identity
123 012 — 123012 = 1:2. 023 + 12°. 031 is simply hp + ko + I — Ir = hp + ko.

Single Letter Notation for the Polar Functions of the Quartic. Art. No. 52.
52. I write here
3, 1, 12=f, g, h; 28, 31°, 12=1, §, k;
1223, 1223, 123 =1, m, n; 223, 3°1%, 122 =p, q, r;
so that the expression for the quartic function f in terms of p, o, 7 is
A4, f=dhp'a + 4jpiT + 6ppia® + 12lp%ar + bgpi®
+ 4kpa® + 12mpa®t + 12npat® + 4gp7 + 4f0’t + 670t + dioTs,
which, putting 0¢ for /, may also be written
AS. 0= (4h, 4j; 6p, 121, 6g: 4k, 12m, 12n, 4g: 4f, 6r, 4i+)
(P’o, p’1; pa®, plor, pr%, pa’, pa’T, paTi pTi, o'r, o®1% a7);
and I join to it the series of equations

A 0°1=(0; 3h, 3j; 3r, 61, 3q; k, 3m, 3n, g p*, p'o, p°r, pao, por, pT%, o o', a7 T),

» 02=(h; 3r, 3l; 3k, 6m, 3n; 0, 3f, 3p, 1) 5 ),
» 08=(g; 3l 3¢; 3n, 6n, 3g; £, 3p, 3i, 0] % )
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A2, 0212 =(0; 2k, 2j; 7, 2L, ¢ Qp*; po, pT; @° oT, T2,

s 012 =(h; 2, 205k 2m, nl b ),
» 0018 =(4; 2l, 2¢; m, 2n, g4 # )
» 0022 =(r; 2k 2m; 0, 2f, pll " )
08 sl s £ % 50 £ )
, 03 =(q; 2n, 29; p, 2, 0Q . ),
A. 01> =(0, h, j 8p, o, ),
L L X
, 018 =(3, 4, q¥ . )
w012 =(r, ke, mY .-, ),
s 0128=(l, m, vy , ),
» 013 =(¢g,n 90 ., )
» 02 = 0, 70 , )
» 028 =(m,f,p0 » )

. 028 =lmip s, ),
e OO Lo (ot O 1 )

which will be convenient in the sequel.

Major Function—The Fiwed Curve a Cubic. Art. No. 53.

53. It has been already seen that a simple particular form is %Q’:gﬁ: and
that the general form is Q =Q'+ K, 012.

Major Function—The Fized Curve a Quartic. Art. No. 54
54. It is to be shown that a particular form is

— 013, 023+ 0122, 012240212 1"22

%‘Q, = 1222

In fact, by the foregoing values of A.01°, &c., the numerator of this expression,
multiplied by A% is =

= (ha +j7) (ko +/7)

+ (hp + 1o + lt) (rp + ko + mT)

+ 7 (hp? + 2rpo + 2lpT + ka® + 2moT + n7?),
which is

= 2hrp? + 8r%pa + (hm —jk + 3lr) pr + 2kra*® + (— fh + kl + 3mr) o7 + (= fj + Im + nr) 75
and this, for 7 =0, becomes
=7 (2hp* + 3rpo + 2ka*).
C. XIL 18
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Hence for 7=0, we have
- 51—2(4sz2 + 6rpa + dka%),
that is,
=—A1;{4.132.p2+6. 1°2%. po + 4.12%. 0% ;

and Q" is thus a form of the major function (z, y, 2),> Of course the general form
is Q=0+ (z, y, 2)'.012.

Syzygy of the Major Function. Art. No. 55.

55. Writing now (z, y, 2)" =90, ; and taking on the fixed curve a new point 3,
consider the like functions Q, and Q,: it is to be shown that we have identically

0Qy.031.012 + Q,,.012. 023 + Q,,.023. 031 — (123)* f=023.031 .012 (=, y, 2)**,

where (z, y, 2)"* is a properly determined minor function; or, considering herein 0 as
a point on the fixed curve and writing therefore /=0, the equation is
Qu Q0 O

M S B i L n—3 ¥
023 tos1torz=@ % 2

56. Write for a moment X = Q,.031.012+ Q;.012.023 + Q,,.023.031; then %
being an arbitrary coefficient, we have X —kf=0, a curve of the order =, passing
through the points 1, 2, 3, and also through the residues of 2, 3, the residues of 3, 1,
and the residues of 1, 2; in fact, at the point 1 we have 012=0, 031 =0, and
therefore X =0; also f=0; and therefore 1 is a point on the curve. Again, at any
residue of 2, 3, we have Q, =0, 023=0, and therefore X=0; also f=0; and hence
the residue of 2, 3 is a point on the curve.

It is next to be shown that % can be so determined that the curve X —£kf=0
shall have a dp at each of the points 1, 2, 3. Supposing this to be so, we have
the line 23 meeting the curve X —kf=0 in the points 2 and 3, each counting twice,
and in the n—2 residues of 2, 3, that is, in »+ 2 points; hence the curve X —kf=0
must contain as part of itself the line 23, and similarly it must contain as part of itself
each of the other lines 31 and 12, viz. we shall then have X —kf= 023.031.012.(z, y, 2)"*;
and from this equation observing that the curves Q,=0, Q, =0, Q,=0 each pass
through the dps, it follows that the curve (z, y, 2)**=0 also passes through the dps:
hence, k& being found to be =(123)?, the theorem will be proved.

57. Taking an arbitrary point a coordinates (&, Ya, Za), and writing
d d

d
D=wa(7$+yagg+z¢£,

* This is the differential theorem corresponding to C. and G.’s integral theorem, p. 26, viz. this is
Sgn+ Sn¢+S¢e=1, a sum of three integrals of the third kind=an integral of the first kind.
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we have to find %, so that the curve D (X —kf)=0 shall pass through the point 1.
Observing that D023 = a23, &c., we have
D (X —kf ) = D€, 031.012 + Q4 (031 . 212 + a31. 012)
+a23 (Qy.012 4+ Q,,. 031)
+023 (Qy.al2 4 Qy,.a31 + DQ,,. 012 + DQ,,. 031}
— kDf,
and, to make the curve pass through 1, writing herein 0=1, we have
0=123 (' .al2 + Q' a31) -k (Df),
where the superfix (1) denotes that we are in €, Q,, and Df respectively to write
0=1. We have Qy'=n.1""3, Q)'=n.1""2, (Df)=n.1"1q, and the equation thus is
n.123 (1"13.al2+ 12, a31)—kn.1"2a =0,

But we have identically 1"'1.a23 + 1" 2.a31 +13.al2 =1""«. 123, where
1"11, =17 is, in fact, =0; the factor 1"« thus divides out, and the equation becomes
k=(123)*; viz. k having this value, the curve X —kf=0 will have a dp at 1; and
clearly by symmetry, it will also have a dp at 2, and at 3; the theorem is thus
proved.

The Syzygy, Fized Curve a Cubic. Art. No. 58.

58. The syzygy may be verified independently in the case where the fixed curve
is a cubic. Observe that the syzygy, if satisfied for any particular form of (, will be
generally satisfied; we may therefore take %Q,,z(ﬁ@. Writing then

10012
012 012’ _
and taking 0 to be a point on the cubic curve, we ought to have {023} + {031} + {012} =a

constant ; the value of this constant comes out to be = {123}, and the syzygy in its
complete form thus is

We have

= {012} suppose,

{023} + {031} + (012} = {123}.

A 023, A 031, A012 =lp + fo + ir, jo+lo + g7, hp + ko +1r,
and the equation thus is
lp +fa‘+£7+jp+la-+gr+hp+ka'+ 81'__;=0;
P d T
this, multiplied by per, becomes
hp'e + jp*t + kpa* + 2lpaT + gpr* + fo't + o7 =0,

which is, in fact, } f=0, the equation of the cubic curve.

Observe that the new symbol {012} is, in virtue of its determinant denominator,
an alternate function, {012} =—{102}, {012}={120]={201}. The syzygy is a relation
between any four points 1, 2, 3, 0 of the curve, and it may be also expressed in the

form
(123} — {230} + {301} — {012} = 0.

18—2
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The Syzygy, Fized Curve a Quartic. Art. No. 59.

59. Taking £,, as before, we have

30, —01%.02° 4+ 01°2.012* + 0%12. 1222

o2 = 012 172 = {0°12} suppose:

and then, taking 0 to be a point on the quartic curve, we ought to have
{0223} + {031} + {0°12} = («, y, 2)%, a linear function of (z, ¥, 2),

or, what is the same thing, considering the left-hand side as expressed in terms of
p, o, 7, the sum should be

=(p, o, 7), a linear function of (p, o, 7).

By a preceding formula we have

{0712} = A21 {2hrp* + Br°pa + hm — jk + 3lr) pr
+ 2kra* + (= fh + kL + 3mr) o + (= fj + bm + nr) 7%,
which is , :
12 {(35 hm—]k>P+<3 yl fh+kl> +(n+jil"3> T}+ 1 2hp* + 3rpo + 2ka*
r P A2 T

And hence, forming the sum {0223} + {0°31} + {0°12}, we have first a fractional part
which is found to be iuntegral, viz. this is

’

i {2fa‘2 +3por + it 27 + rp + 2p*  2hp*+ Srpo + 2/00'2}
A - :

p
A2: (2hp’a + 2jp°t + Brp%c* + 3qp*t® + 2kpa® + 29pT* + 2fa T + 3poir® + 2ieT?,
o 52;? (3 AY — 6lpor — 6mpar — bnpar?),

or since f=0, this is

= —Al-z (= 6lp — 6ma — 6nr).

We then have integral terms which are at once deduced from the above integral terms
of 0°12; collecting the several terms, we find

{0223} + {0°31} + {0°12} = :
2 mn—gk jn—gh hm—jk Jn—ik In—Ia kl—fh)
Az{p(l+ PR s )+a(m+ Boeis e i
+T<n+lm—fg+!ﬁ:ij+ hj:f!)},
q r

which is the required result.
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Preparation for the Conversion—The Symbol 9. Art. Nos. 60 to 63.

60. I use 0 as the symbol of a quasi-differentiation, viz. U being any function

of (z, v, z) oU denotes Jla', multiplied by the differential —gdac+§—l—r dy ddgdz; in
such a dlfferentlal the increments dz, dy, dz do not in genelal preqent themselves in
the combinations ydz — zdy, zdx — xdz, @dy — ydaz; but they will do so if U is a function
of the degree zero in the coordinates z, y, z (that is, if U be the quotient of two

homogeneous functions of the same degree); and this being so, we can by the equations

ydz—zdy _2de—adz _ady - ydz e,
R Py
dz dy dz

get rid of the increments, and 9U will denote a function of (z, y, 2) derived in a
definite manner from the function U. The symbol o will be used only in the case
in question of a function of the degree zero. Of course 9, will denote the like
operation in regard to (z;, ¥, 2); and so 9,, &c.; and we may for greater clearness write
9, in place of .

61. Consider then 6£ , where P, @ are functions (z, y, z)™ of the same degree:

' Q
we have
P i |
24 = G (P — PO),
and then L
dP dP dP 1 dP dP d

with the like formule for Q. Subsmtutmg, we find

af ragkal {d(Q P)(ydz—zdy)+d(Q )’zdw wd)+d(Q (zdy - I’/d“)}

Q mQde |d(y, 2) d(z ) i )
that is,
P_ 1 (df d(Q P) T .
QT mer {dw a(y, 2 T } mQ d(z, y, 2)’ @ @ P)
or say

P 1
aQ=_WJ(P’ Q, f).

62. As an example, consider

S {01R) w < a

iy’ 012, 012, 7).

The determinant is

e
d—w012, Y2 — Ya21 d

g
‘ @012, 2, &y — 25, , ]
|

d 012,
e @Y — Tl d~ |
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i 4 d == . d d gl
and the coefficient herein of s 012 is (22, — 2,2,) é - (w,y2—.z'2yl)a§ , which is

d d d d d, d,
= <w,£+yld—§+zlgl£)—xl (w,£+y,d—:jq‘+zgaé), =3(01.2,—-02.2);

and so for the other terms.

The determinant is thus

—~——

J S aRunsr g g dt g
i [021 <w2%+y2@+,zgd—z> —02 (.x, Gty ta EE)] 012
say this is
—3[0°1. B —0:2 D] 012.

But we have I 012= 123, Do12= 122, and the determinant is then = 3(0%1 .12:—0°2.122);
whence finally, writing 9, instead of 0,

021.122— 02,122
(012)

9,012} =—3.

63. By cyclical interchange of the 0, 1, 2, we have
122.0%2 - 012. 022

9, {012} =—3. o125 ,
02:.012—12¢, 01
2, {012} =—3. O3y ;

and thence adding, we find
> (0o + 0, + 0s) {012} =0,

an important property which, joined to the equation before obtained,
{023} + {031} + {012} = {123},

completes the theory of the function {012].

Conversion of the Major Function (Interchange of Limits and Parametric Points).
Art. No. 64.

64. Write in general

z, Y, 2)"?
( y012)12 = QO, 125

Q0,2 18 an alternate function in regard to the points 1, 2 (@ .=— @, z); and in
regard to the coordinates of the points 0, 1, 2, it is rational, but not integral, of the
degrees m — 3, 0, 0 respectively : it can therefore be operated upon with 9, or 9,, but
(except in the case n =3) not with o,
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The conversion relates not to the general major function (z, y, 2),"* but to this
function with the arbitrary constants properly determined, and consists in a relation
between two functions @, and @, , (each of them a function of three out of four
arbitrary points 1, 2, 4, 5 on the fixed curve), viz. the conversion is

a1Q4, 1= aale, 455

an equation which may be written in four different forms, viz. we may in the form
written down interchange 1, 2 and also 4, 5.*

The determination of the constants is a very peculiar one, inasmuch as it is not
algebraical ; viz. in the case of the cubic curve, about to be considered, it appears that

1
@, 1o contains the term f dwd, {036}, which is a transcendental function of the coordin-
2

ates of the parametric points 1 and 2.

The Conversion, Fized Curve a Cubic. Art. No. 65.

65. We may write @, .= {012} + K, where K is a constant, that is, it is inde-
pendent of the point 0, but depends on the parametric points 1 and 2. I assume K
to be properly determined, and give an & posteriori verification of the equation

1

0@, 12=0,Q;, 5. The value is K = f dwd, {036} — (123}, where 3, 6 are arbitrary points
2

on the cubic curve, and where in the definite integral, regarded as an integral

f Udu with a current variable u, the meaning is that this variable has at the limits

the values w;, u, which belong to the points 1 and 2 respectively: a-fuller explanation
might ‘be proper, but the investigation will presently be given in a form not depending
on any integral at all.

Substituting for K its value, we have

Qo o= (012] + U dw 9, (036] — {123}}
or, as this may also be written,
=~ (023} - (031} + [ ' dwd, {036).
We have thence ;
01Qs, 12 = — 0, {081} + 0, {136},
* The meaning of the property is better seen from the integral form: @, ., is a function of the points

4
0,1, 2 and @, 4 the like function of the points 0, 4, 5 such that / dw Qg 19= / dw Q, 455 Which equation

operated upon with 8,0, gives the formula of the text. And there is thus the meaning (alluded to in the
heading) that there exists for the integral of the third kind a canonical form (C. and G.’s endliche
Normalform), such that the integral is not altered by the interchange of the limits and the parametric points.
The expression for @, ,, mentioned further on in the text for the case, fixed curve a cubic, shows that in

4 X
this case the canonical form of the integral of the third kind is / dw [{012} + ( f dw 9, {036} - { 123})].
5 2
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and consequentl
; ¢ 0, Qs 12=— 10 {4'31} + 0 {136},

04Qs, ;s = — 0, {134} + 0, {436} ;
hence, observing that {481}=— {134}, &c., we have
01Qs 10— 0@y, 5= (0 +0,) {134} + 0, {136} — 0, {436},
=—0, {134} + 0, {136} — 0, {436},
which, observing that we have 0, {641} =0, is

=0, ({136} — {364} + {641} — {413}), =0,
the required theorem.

To avoid, in the proof, the use of the integral sign, we have only to consider
the required function @, ., as given by the foregoing differential formula

0,@Qy, 1o = —0, {031} + 0, {136},

for we have then the values of 9,Q, . and 0,Q, 4: the rest of the proof the same as
before.

The Conversion, Fized Curve a Quartic. Art. Nos. 66 to 73.

66. We have
QO, 12 = {0212} + (xr .% Z)l;

where (#, 7, z)' is a linear function of (z, y, 2), but depending also on the parametric
points 1 and 2, which is to be determined so as to satisfy the conversion equation

al Q4, 12 = a4Q1, 45+
Observing that we have {023} + {0°31} +{0°12] = a linear function of (=, y, 2), the
linear function (z, y, 20 of @, .. may be taken to be =@, ,,— {023} — {0331} — {0°12};
that is, we may assume
Q, 12 = (0°12} + O, 1, — ({0°23] + {031} + {0°12}),
=—{0%23} — {0*31} + O, 1,
where @, ,, is a linear function of (2, y, z), but depending also on the points 1 and 2,
which has to be determined. We have

al Qo, O T i al {0231} -t al®0, 125
and thence
ale, 3 - al {4231} = al®4, 12

aA Ql, 85" T a4 {1234} ol a4(")1, 455
giving an equation for ©,
a1®4, 12— a4®1, =0 {4‘231} — 0, {12343} §
here 4 is an arbitrary point of the quartic, and we may instead of it write 0, the
equation thus becoming
al ®o, 1255 ao®1, 0= 8, {0231} - ao {1230}.
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67. Of the terms on the left-hand side, the first is a linear function of (z, v, 2),
or say it is an integral function 0, and the second is a linear function of (2, ¥, 2),
or say it is an integral function 1': the given function on the right-hand side must
therefore admit of expression in the form ¢ (0%, 1, 3)—¢ (1%, 0, 3), where ¢ (0%, 1, 3)
is a known function, integral and linear as regards the coordinates (#, y, 2) of the
point 0, but depending also on the points 1, 3; and ¢ (1%, 0, 3) is the like known
function, integral and linear as regards the coordinates (z;, ¥, #) of the point 1, but
depending also on the points 0, 3. Moreover, since 2 and 5 are arbitrary points
entering only on the left-hand side, it is clear that 0,0, ,, must be independent of
2, and 0,0, ,; independent of 5; reverting to the cubic case, observe that here

j 4
8, 5= f dw?d, (036}, whence 2,0, ,= 2, {136}, and so 8,0, =2 {036}, and that the corre-
2

sponding equation thus is 0, {136} — 9, {036} =0, {031} —0, {130}, where the left-hand side
is =0, {013}, and the equation itself (0, +0;+0,) {031} =0. We then have

al®0, 1B ¢ (01, 1: 3) o= ao@)l, L ¢ (111 0: 3):

where the one side is derived from the other by the interchange of the 0, 1. The
solution therefore is

a1®0, h - ey ¢ (01; ]-) 3) ] X (Ua-_i) 3)’

a function which is symmetrical in regard to the points 0 and 1, and, inasmuch as the
left-hand is an integral function 0!, must itself be an integral function (0%, 1*), that
is, integral and linear as regards the coordinates (z, ¥, z) and (@, ¥, z,) of the points
0 and 1 respectively. We thus have

al®0, n= ¢ (01» 1: 3) i X (m; 3):
and thence Loy
32@)0, 2=—¢ 0y 2, 3)— X 0, 2, 3),

viz. the second of these expressions is, with its sign reversed, the same function of 2
that the first is of 1.

68. It follows that, taking a new symbol 7 for the variable of the definite
integral (in the cubic case ©,, was independent of 0, and there was nothing to
prevent the use of O for the current point of the definite integral), we may write

1 L

0, 12=f dw,P (7, 0, 3), where 0,P(1, 0, 3)=¢ (0%, 1, 3)+ X (0, 1, 3), an equation which
2

implies 9,P (0, 2, 3)=¢ (0, 2, 3) + X (0, 2, 3). But the first of these equations in P

is nothing else than the first of the equations in ©, ,,.

69. I have succeeded in finding ¢ (0%, 1, 3), but the calculation is a very tedious
one, and I give only the principal steps, omitting all details. We have to bring
0,0%18 — 0,1°03 into the form ¢ (0, 1, 3) —¢ (1%, 0, 3). From the value of

—012.08% + 0123.0132— 0213 . 1232
018. 1232 ?
XTI, 19

(0418}, =
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we find, by a process such as that of No. 62,

8, {013} = al, {— 0°32.01°— 0°3 .

1 (2 . 012[03%. 0123 — (0132)] )
q +[2.0°13.0132+ 1. 0%32. 0123 — 3. 0°12. 0%3?] 5
) ' ( 2.012(—012.03° + 0132, 0123)g)}

¢ \—2.013*(—01%. 03 + 0132.01%3) 5
Substituting herein the values 01°= % (ho +jr), &c., we have },_, multiplied by a cubic

function (p, o, T)*; writing down first the integral terms, and then the others, we have

2,(013) = 3, { (— 6hn + 5jm) + 3 (Aghl — Sgir — 2hij + o+ nd) + % (— 2¢%h? +-dghjn — 2j’n’)-]

+0 [fy —hp + 5 (2hal — 2hn* — 3ijr + jlp+2jmn) + % (2ghin — 2gh* + 2hijn — 2jln2)]

b j3jp i é(- Sk Birmces ik Zivt). ql (2g*hi— 2ghij — 2gjin + 2@'%)]}
(say this linear function of p, o, 7 is =UJ)
+ Aislaz {p*. 25* + p*a (6j1 — Bhg) + p*r . 3jq + poT (— 2gh + 6jn) + p7*. 2gj + a*. 245}.
70. The expression of 9,{1°03} is deduced from this by the interchange of 0, 1:
and I write

0, {0713} —9, {1203} = O —
+ &”i—a—ﬁ’ [p* {p*. 2% + p*a (— Bhq + 6jl) + p*r . Bjq + pat (— 29k + 6jn) + p7°. 2g) + a7*. 245}
— A3 {A%. 2(0%3?) — A% (— 3.0%2.0%3°+ 6. 023 .0%23) - A%r. 3. 0°3. 0°3*
+ Aot (—2.03%. 032+ 6.0%3.023%) + A72. 2. 03%. 033 — o72. 2¢. 0°3}],
where, and in what follows, the * denotes the function immediately to the left of it,
interchanging therein the 0, 1. It will be observed that the [J, qud linear function
of (p, o, 7), that is, of (@, ¥, 2), is a term of the required function ¢ (0%, 1, 3): the
remaining portion has to be reduced by means of the expressions for A?(0%3%), &c., in
terms of p, o, T.
71. We obtain
0, {0°13} — 9, {1°03} = O — *

— {0 (2fj — 3hp — Bkq + 18lm — 9nr) + 7 (- 3gr — 3jp + Imq)}

+ Kl_p {0 (12f1 — 12kn + 18m* — 9pr) + o7 (6fg — 6gk — 61 + 18mn) + 7*. 6gm}

A3P2 {a® (18fm — Ykp) + o>t (12fn — 8ik + Imp) + o* (4fy + 6vm)]
1

A” 3{0-4 47 + o't . 6fp + o' . 4fi}.
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The terms of the second line may be transformed as follows:

[% (2fj — 3hp — 3kq + 18lm — 9nr)

=3 7 (2fj— 3hp — 3kq + 18Im — 9nr) — »
As ) p q

4 Kls;, (0% (= 12f1 + 12kn — 18m? + 9pr) + o7 (= §g + 3gk + §ir — §lp — Imn)}

Ai . {0* (= 30fm + 15kp) + o*r (= 12fn + 12ik — 18mp) + o . — Inp}

+A—:;3{o"‘. =102+ a*r. — 15/p + 0. — 9p* + o7%. — 3ip},
and
é(— 3gr — 3jp + 9mq)
=455 (~ 397 — 3jp + 9mg) — »

1 d
+ AT’p {or (= $fq + 39k + §ir + §lp — 9mn) + 2. — 6gm}
A3p2 {07 (— Yfn + 3ik) + o7 (— 6fy — 6im) + 73. — 3gp}

+?A1—pé {o*T. —3fp + o*r*. — 6f1 + a7°. — 3ip} ;
substituting these values, the whole third line is destroyed, and we find
0, {0°13} — 0, {1°03} =00 — *
+%. —;—;h (2fj — Bhq — 8kj + 18lm — Inr) + T (— 8gr — 3jp + Imq)} —
1

+ &g {a® (= 12fm + 6kp) + o*r (— 9fn + Tik — Imp) + o* (— 2fy — Inp) +7°. — 3gp)

+ A%ps a4, —6f1 4 a37 . — 19fp + 0™* (= 2fi — 9p%) + o .  Bip).

Ultimately the last two lines of this expression are found to be

wd — 2hn + dgm + 20 — 2qr) + o (— 27 + 2hp + 2kq — 10lm + 5nr)
As P ) q J

+7(29r + hi — jp + Tin — 4mgq)} —

so that the whole is now a sum of three linear functions of (p, o, T).— *.
19—
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72. Collecting the terms, we have
0, {0°13} — 0, {1°03} =
1

A [p {(—— 8hn + 9jm + 21 — 2qr) + 3 (49hl — 3gjr — 2haj + 3°p + 2jin)

" ql,,(— 2g°h + dghjn— 2j’n’)}
) {% (~ hp + g oa B ) % (2hil — 2hn? — 3ijr + jlp + 2mn)

+ ql (= 2gh% + 2ghin + 2hijn — 2jzn2)}
+ 7T {1} (g7 + 2hi + jp + mq + 14In) + (11 (= 2ghn + 2gjm — 295l — 2jn?)

+ 32 (2g°hL — 2ghij — 2gjln + 2ijvn)}]

po—

73. The right-hand side depends on the points 0, 1, 3 and 2: viz. we have therein
p =023, A=123, &c., but the left-hand side depending on only the points 0, 1 and 3,
the right-hand side cannot really contain 2, and it must thus remain unaltered, if for
2 we substitute any other point on the quartic, say 6: the right-hand side may
therefore be understood as a function of 0, 1, 3 and 6, viz. p, A, f, &c., will mean
063, 163, 6?3, &c.: we have thus ¢ (0, 1, 3)= the above linear function with 2 thus
replaced by 6; say

$(0, 1, B)=1i[p( )Ha( )4r( )]

a given function of the points 0, 1, 3 and the arbitrary point 6, on the quartic curve;
we therefore write it ¢ (0%, 1, 3, 6). There is no obvious value for X (0, 1, 3) which
will produce any simplification: I therefore take this function to be =0; and the final
result is

@, 2= {0212} + O, 1, — ({023} + {0°31} + {0%12}),

where ©, ,, is a function integral and linear as regards the coordinates (#, y, 2) of
the point 0, but transcendental as regards the parametric points 1, 2; and containing
besides the arbitrary points 3, 6, of the quartic curve, its value being determined by
the differential formule

al®o, 12 = ¢ (Ol; 11 3y 6), a2®0, i T ¢ (Ol) '2a 33 6)7

where ¢ (0, 1, 3, 6) is a given function as above. I do not see the meaning of the
very complicated linear function of (p, o, 7), nor how to reduce it to any form such
as the simple one 0, {036}, which presents itself in the case of the cubic curve.

Cambridge, England, October 5, 1882.
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CHAPTER IV. THE Major FUNCTION (2, ¥, 2)," CONTINUED.

The Conversion, Fized Curve a Quartic, continued. Art. Nos. 74 to 82.

74. I resume the question considered ante Nos. 66 to 73. The general problem,
where the fixed curve is any given curve whatever, has recently been solved in a
very complete and elegant form by Dr Noéther, in the two notes “Zur Reduction
algebraischer Differentialausdriicke auf die Normalformen” and “Ueber die algebraischen
Differentialausdriicke, 2° Note,” Sitzungsb. der phys.-med. Soc. zu Erlangen, 10 Dec. 1883
and 14 Jan. 1884. I consider here the case of the quartic curve, n=4, and connect
his result with my former investigations.

We have the differential

(=, ¥, 21" do _ Qudew
012 sl C T

where Q,, or as I also write it Q (0; 1, 2; 3, 4, 5), is a rational and integral
function of the degree (n—2=)2 in the current coordinates (z, y, z): it depends also
on the parametric points 1, 2, which are points on the quartic, coordinates (z,, y;, z),
(%, Ys, 2,) respectively; and on (p=)3 other points 3, 4, 5 on the quartic, coordinates
(%3, Y3, %), (®sy Ya, 24); (@5, Ys, 25) respectively. The curve Q=0 is a conic, which is
taken to pass through the dps (none in the present case) and through the (n—2=)2
residues of the parametric points; and the function Q is such that on writing therein
(@1, %, 2) for (z, y, 2) it becomes = (rn.1712* =) 4.1°2: viz. we have Q (1;1, 2; 3, 4, 5) =4.1°2,
which implies also Q(2; 1, 2; 3, 4, 5)=4.12%: so defined, the function would contain
(p=)3 arbitrary constants, but these are determined so that the curve Q=0 passes
through the 3 points 3, 4, 5 on the quartic: and the function Q, =Q(0: 1, 2: 3, 4, 5)
is thus a completely determinate function, rational and integral of the degree 2 in
the coordinates (z, 7, z) of the current point, and rational in the coordinates of the
other five points respectively. I call to mind that 012 denotes the determinant
formed with the coordinates (z, ¥, z), &c., of the points 0, 1, 2 respectively: the like
notation is used throughout.

75. The function Q (0; 1, 2; 3, 4, 5) is, in fact, the function Q' of No. 43 with
only the further condition in regard to the points 3, 4, 5 of the quartic; viz. O is
the function determined by the equation

@,y,2) i 87 =0
18y, vl %) , 4.1%2
2 (@, %, 510%, Y, %), 6.1922
1 (%3, Yo, 2,)° R B

(@, Y5, 25)° : 0

@4 Yo, 20 S0

(@5, Ys, 2 , 0

d d d _
* (xﬂc—i;;J'—yziﬁ/_l’{'zed—i)f(xl’ Y1) 2)=n.1%12; gee No. 2.
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this is of the form
MQ+0O=0,
and as appears in No. 46, M is =123.124.125.345. Hence writing (J(0; 1, 2; 3, 4, 5)

for O, we have
—-0(@; 1, 2; 3, 4, 5)

123.124.125. 345

Q,=0(0;1,2;8 4 5),=

Hence further writing
Q. =Q0; 1,2; 8 4 By m i1 2L 55 0

so that the differential is Qdw, =Q(0; 1, 2; 3, 4, 5) dw, we have

B : ; _=03(0; 1, 2; 8, 4, 5
Q=00; L Hil& W T012.123.124.125 . 345’

which is of the form
_ 0012345
0'12:345°°
viz.  is a rational fraction where the numerator is of the degree 2, and the denom-
inator of the degree 1 as regards the coordinates (z, y, z) of the current point: but
the numerator and denominator are each of the degree 4 as regards the coordinates
of the points 1, 2 separately, and of the degree 2 as regards the coordinates of the
points 3, 4, 5 separately: that is, @ is of the degree 1 as regards the coordinates
(2, y, z), but of the degree 0 as regards the coordinates of the points 1, 2, 3, 4, 5
separately.

76. The signification of the symbol of quasi-differentiation 0 (applicable only to
a function of the degree 0 in the coordinates to which the differentiations have
reference) is explained ante No. 60. The function @ just mentioned is of the degree 0
in regard to the coordinates of each of the points 1, 2, 3, 4, 5; and it can thus be
operated upon by the symbols 9, 0., 0;, 9, 0; respectively. Observe, in particular, that
we have 0,Q (0; 1, 2; 8, 4, 5) = 0112345°, viz. it is of the degree 1 in the coordinates
of the points 0 and 1 respectively, but of the degree 0 in regard to the coordinates
of the points 2, 3, 4, 5 respectively.

= 0'12345°,

77. This being so, we may consider the function

H@©;1,2; 38, 4,5; 6,7, 8)=0Q(0; 1, 2; 3, 4, 5)
045
+63Q(1, 3) 2’ 6; 4‘: 5)3—4'_5

053
+a4Q(1; 4‘, 2; 3, 7, 5).4?3

034
+85Q(1, 5’ 27 3» 4‘: 8)'@’

where 6, 7, 8 are arbitrary points on the quartic; the functions

Q(1;8,2; 6,4,5), 9Q(1; 4 2; 3.7, 5, aQ(1; 5,2; 3 4, 8),
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are functions of the same form as 2,Q(0; 1, 2; 3, 4, 5), and derived from it by
changing in each case the current point 0 into the parametric point 1, and by further
changing in the three cases this parametric point into the points 3, 4, 5 respectively,
and replacing the corresponding point 3, 4 or 5 by the new arbitrary point 6, 7 or 8.
Further 045, &c., denote determinants as above; so that in H each of the last three
terms is, in fact, as regards the point 0, a mere linear function of the coordinates
(z, y, z) of this point.

We have 9,Q(1; 3, 2; 6, 4, 5)=1312645", and hence this function multiplied by
g—ig is =01123456°; and so for the third and fourth terms of H: thus each of the four
terms of H is = 01'2345678°, of the degree 1 in the coordinates of the points 0 and 1
respectively, but of the degree 0 in the coordinates of the other points 2, 3, 4, 5, 6, 7, 8
respectively.

Nother’s conversion-theorem consists herein, that the function
o M0 (DAt e Bl e L Ty
is unaltered by the interchange of the two points 0, 1; or putting for shortness

FECON L 2 RS s 60 NS = H(0),
the theorem is

sH0) = H; (1),
78. We have, No. 59,

30,  —01°,02° + 01°2. 012 + 0°12. 122
018 012. 122 i

, = {012},
or as for greater simplicity I write it = 0?12,

viz. 0’12 is now written instead of {0°12} to denote the function just given as the
012°
the conditions that Q,=0 is a conic passing through the residues of the points
1, 2, and such that Q,, on writing therein (@, ¥, z) for (#, y, 2) becomes =4.1%2:
hence the general form of the function satisfying these conditions is =2.012 {0°12 +
arbitrary linear function of (, y, z)]. The before-mentioned function Q (0; 1, 2; 3, 4, 5)
is a  function satisfying these conditions and the further conditions that the conic
Q=0 shall pass through the three points 3, 4, 5 on the quartic: these further
conditions serve to determine the linear function: and we at once obtain

$Q0; 1, 2; 3, 4, 5) 045 053 034

== ()2 N NS - | crak s RS s
012 = 0212 321234'5 4124‘53 512.534,

value of Q,, is thus =2.012.0%12, viz. this is a particular form of €, satisfying

viz. the value of Q given by this equation, on writing therein 0=3, 4, or 5, becomes
=0 as it should do.

www.rcin.org.pl



152 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

79. We thus have

QO; 1, 2; 3, 4, 5)=0212—3212£’2 A 4212%3— 5212%2;
and Nother’s conversion-equation becomes
0 {0212 — 3212 gig - 4’12‘%2—3 - 5712 %2}
+0; {1“32 - 6732 é—:g — 4232 %gg — 5%32 :1,—%;} . g%g
+ 0, {1“’4.42 — 3%42 :13:;2 — 742 %,{53':; — 5%2 —;—g—;} : g—gg
+ 0, {1252 — 3252 ;“:—i — 4752 i—gi; — 5%8 %} ; ggz
= 9, {1902 — 302 %%’ — 4202 i'—gg— 502 %f
+2,{0°32 - 632 g—ig — 4932 %gg —~ 532 gg{;} ; %
+ 04 {0242 — 3%42 g;g — 742 g:’:; — 5242 (5)?3;} ’ igg
+0, {0252 — 352 g%g — 4252 g-gg — 548 %ﬁ} : ;—gi :

an equation where the functions operated on with the 9’s are only functions such as
0212; for there is not any determinant operated upon containing the number which
is the suffix of the 0 operating upon it.

80. Taking all the terms over to the left-hand side, there are in all 32 terms :
but of these 3 +3 destroy each other, and 6+ 6 unite in pairs into 6 terms: there
are thus in all 74746, =20 terms: viz. multiplying the whole equation by 345, it
is found that the equation becomes

345 ( 0, 0°12 — 9, 1°02)

— 045 (— 0, 1?32 + 0, 3°12)

— 053 (— 9, 142 + 0, 4°12)

— 034 (- 9, 1252 + 0, 5°12)

or as this may

345

— 045

— 305

— 340

be written

where

012

} 012 ‘=B, 0212 - 9, 1°02, &e.
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—145( 2,032 —0,302) —145 032J
—153( 3,02 —3,402) —315 | 042 l
—184( 0,0%2—2,502)  —S841 | 052 }

+ 013 (=0, 542 +9; 4%52)  + 301 | 452 ]

+ 014 (=0, 352 +3,582)  +140 | 532 |

+015(— 2,432 4 0,342)  +015 | 342 )
=0, =9,

viz. the equation is

012 | of the sum being obtained by

the nine terms which follow the first term 845

the interchanges of 0, 1 (one or each) with the 3, 4, 5, each interchange giving rise

to a sign —.
81. In obtaining the foregoing result, we have, for instance, a pair of terms

RN RS L ORTHIBS L GE eI EBT
9,542 o , =0,6M2 T, =0, 542(- 013),

viz. this depends on the equation

137 .053 — 037 . 153 — 537 . 013 =0,

or say
— 137.035 + 037 . 135 + 013 . 357 = 0,

an identity which, in a form which will be readily understood, may be written

0137 =0.
013735

det.

Similarly, the two terms which contain 9;4?52 combine into the single term 0;4*52 (013):
and the two new terms taken together are

013 (— 0,5%42 + 0, 4*52) . = 301 l 452 | :

¢ XIL 20
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82. The proof of the identity,
3+ 345 \ 012 ‘=0,

depends on the property of the function
L012 ' =9,0°12 —, 1202,

enunciated No. 67, and proved & posterior: by the tedious calculation Nos. 69 to 73,
viz. in No. 67, writing 2 in place of 3, this is:—9,0°12—09,1°02 is equal to the
difference of two functions, the first of them linear in the coordinates (%, y, 2) of the
point 0, but depending also on the coordinates of the points 1 and 2; the second of
them linear in the coordinates (z,, 7,, z) of the point 1 but depending also on the
coordinates of the points 0 and 2. Or, what is the same thing, the property is

—
' 012 | =42+ Bmy + Cz— (Amwl i Bmyx o 00231);

where A,,, By,, C,; are functions of (@, %1, 2), (%3, ¥Ya, 2), and Ay, By, C, are the like
functions of (z, vy, 2), (@, Ya, 2).

012 ‘, but writing down only the

Substituting such values in the sum X + 345

terms which contain z, these are

345 (A1z — Apy)

—045 (Apz, — Aypay) — 145 (Apx — Ap;) + 301 (A, — Ayay)
—305 (Apz,— Apzy) — 315 (Aprx — Apry) + 140 (A g5 — A ;)
— 340 (425 — Apy) — 341 (Apz — Aps) + 015 (A p2, — Aga,).

This is
=  Agp(— 5,345 + 2,145 + 2,315 + x,341)
+ Ap( 345 — 2,045 — 2,305 — 2,340)
+ Ap( 2,045 — 2z 145 + 2,140 — 2,015)
+ Ay (— 2 315 + 2,015 + 2,305 — 2;,301)
+ Ay (— x 341 + 2,301 + 2,340 — 2,140),

where the coefficient of each of the A’s is identically =0: and similarly, the terms in
y and the terms in z are each =0. We have thus the proof of the identity
S + 345 1 012 ]:0,

that is, of the conversion-equation H, (0)= H,(1).
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The Syzygy—Fized Cwrve a Quartic. Art. No. 83.

I revert to the theory of the Syzygy, ante No. 59.

83. We have
i 4212 0—?§ — 5712 034

Q05 1, 25 3, 4, 5)=012 - 3122 — 412 = it

or if for convenience we take instead of 1, 2, the parametric points to be a, 8 coordinates
(Za; Ya, 2a) and (ap, yp, 2p) respectively, then this equation is

g i 045 . 0053 . o034
Qaﬁ—Q(()? a) B) 3: 4') 5)—Ozaﬂ—gzaﬂ3*5_42a3453—5aﬁ534‘

Considering a new parametric point , and forming the like functions Qg and @,
it is to be shown that we have identically

Qap + Qpy + @ya =0.

To prove this, observe that, in the equation at the end of No. 59, A, p, o, T denote
123, 023, 031, 012 respectively. Hence writing therein a, B, ¢ in place of 1, 2, 3

respectively, and putting A4, B, € for the coefficients (including therein the factor %2)
of p, o, T respectively, the equation is
0:By + 0%ya + 0228 = A . 0By + B. Oya + C.0ap,

where A, B, C are absolute constants (functions, that is, of the coefficients of the
quartic) each divided by (28y)>. We hence obtain

(Qoy + Qra+ Qus). 345 = 345 (A . 0By + B.0ya+ C.0aB)
— 045 (A .38y + B.3ya+ C.3ap)
—053(4 .48y + B. dya+ C. 4aB)

— 034 (A .5By + B.5ya+ C.5aB3).
On the left-hand side the whole coefficient of A is = 0; viz. the coefficient has
the value det. | 0345 , which is =0. Similarly, the whole coefficient of B is =0,
03458y \

and the whole coefficient of €' is =0: and we have thus the required result

Qﬂ? G Qva i Qaﬂ =0.

The syzygy is thus obtained in a more perfect form than in No. 59; viz by con-
sidering (instead of 0%f3) the new form @,s, then, instead of a sum which is a linear

function of the coordinates (z, ¥, z), we obtain a sum =0.

20—2
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The Fized Curve a Cubic—Syzygy and Conversion. Art. Nos. 84 and 85.

84. In the case when the fixed curve is a cubic (see Nos. 58 and 64), the analogous

formule are
2 < 92 i~
100 1, 2; 3)=12.0231;312 O 613 122 012 (see No. 49),

that is,
10 012 123

B = ols—1ag: =012} {128}

Q0. 1,°2:8) =

where 1, 2 are the parametric points: 3 any other point on the cubic: the brackets
{ ] are of course here necessary in order to distinguish {012} from the determinant
012. It will be remembered that {012} is an alternate function '

(012}, =— {102}, = (120}, &c.

If instead of 1, 2 we take the parametric points to be a, B, coordinates (%a, ¥a, 2a)
and (g, yp, 2s) respectively, then the formula is

Qs =Q(0; a, B; 3)={0aB] —{3ap}.

Hence taking on the cubic a new point v, coordinates (z,, vy, z,) and forming the
functions @, and @Q,, we have

@y + Qya + Qup = {08y} + {Oya} + {0aB]
— {38y} — {3va} — {348},
But by the formula No. 58,
{08y} + {Oya} + {0aB} = {aBy};

hence also
{38y} + {3ya} + {3aB} = {aBy}:

Qﬁy 7 an -+ Qaﬂ =0,

and we have thus

the syzygy for the cubic.

85. For the conversion, the definition of H is
H@©; 1, 2; 3,6)=0,Q(0; 1, 2; 3)
e e +0,Q(1; 3, 25 6)
viz. this is
H,(1)=H(0; 1, 2; 3, 6)=0, ({012} — (123}) -
+ 0; ({182} — {326)),
=0, {012}—(0,+0;) {123} — 0, {326},
which, in virtue of (9, + 0,4 0;) {123} =0 (see No. 63), becomes

H,(1)=29, {012} + 3, {123} — 9, {326}.
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Interchanging the 0 and 1, we thence have
H,(0) =0, {102} + 0, {023} — 9, {326}
Hence the difference H,(1) — H, (0) is
=0, {012} — 9, {102} + 9, {123} — 0, {023},

viz. this is

= (9, +0,) {012} + 3, ({123} — {230}),

where the first term is
=—az {012},

and the whole therefore is
=0, ({123} — {230} — {012})
=—0, {301},

in virtue of
{123} — {230} + {301} — {012} =0;

the whole is consequently =0.

We have thus
H,(1)—H,(0)=0,

the conversion-equation in the case of the cubic.

CHAPTER V. MISCELLANEOUS INVESTIGATIONS.

The Differential Symbol dw. Art. Nos. 86 and 87..
86. The definition is

ydz —zdy zdw—xdz=xdy—yd«’b'=dw,

4 ¥ T idr af
dz dy dz
and it hence follows that we have
de, dy, dz |
o I AN TV {
do = o

S g

dx dy

where (A, pu, v) are arbitrary constants or, if we please, arbitrary functions of (z, y, 2):
viz. the expression just written down is altogether independent of the values of
A, u, v: and is consequently equal to the value obtained by writing any two of these
symbols =0, that is, the expression is equal to any one of the foregoing three equal
values of dw. The expression was first given by Aronhold (1863), in the memoir

- presently referred to.
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It is to be remarked that, considering (A, u, ») as the coordinates of a point,

the denominator x% +[LZ—'§+ vg{ equated to O is the polar (n—1)thic of the point

A, @, v in regard to the fixed curve.

If instead of A, u, » we write bc’—0b'c, co’ — c'a, ab’ —a’b, where (a, b, ¢) (¢, V', ¢)
are constants, then the numerator is

= (ax + by + cz) (d/dz + b'dy + ¢'dz) — (¢’ + b'y + ¢'z) (adz + bdy + cdz),

or introducing p, o to denote the arbitrary linear functions az+by + cz and @'z +by+c'z
respectively, the numerator is =pdo — odp: moreover, observing that a, b, ¢ and o/, ¥, ¢’
are the differential coefficients of p, o in regard to the coordinates (=, v, 2), the
denominator is =J (f; p, ¢); and the value of dw is

pdo — adp

NS S

where, in accordance with a previous remark, the denominator equated to 0 is the
polar (n —1)thic of the intersection of the lines p=0, c=0 in regard to the fixed
curve.

Obviously, by taking for p, o any two of the three coordinates z, y, z, we reproduce
the original three forms of dew.

87. The last-mentioned form of dw suggests the expression for this symbol in
the case where the fixed curve, instead of being a plane curve, is a curve of double
curvature defined by two equations /=0, g=0 between the four coordinates (z, y, z, w):
viz. p, o being now arbitrary linear functions

ax+by +cz +dw, and dz+b'y+cz+dw

of the four coordinates, the expression is

pdo'—-o'dp_:
J(S, 9. p, 0)

and by taking for p, ¢ any two of the four coordinates #, y, z, w, we have for de
six values which must of course be equal to each other; it is easy to verify
& postertor: that this is so.

dew =

In the case where the curve of double curvature is not the complete intersection
of two surfaces, the denominator (regarded as the Jacobian of the curve and of the
arbitrary planes p, o) will have a definite meaning, but what this is I do not at

present consider.

The last-mentioned expression for dew will be applied further on to the case of
the quadri-quadric curve y*+a*=1, 224+k%?=1.
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Integral Formule. Art. Nos. 88 to 90.

88. In what precedes, dw has been used as a single symbol to denote any one
of the equal differential expressions

ydz—zdy zdz—axdsz _zxdy—yds,
T o G
daz dy dz

there is no quantity w. The expressions are of the order — (n—3) in the coordinates
(@, y, z), and since (z, y, z) are as to their absolute magnitudes altogether arbitrary
(only their ratios being determinate), a symbol such as

it —fdw _[ydz—zdy’
dy

would, except in the case n=3, be altogether meaningless. In fact, the integral

would be
' #a(Y) [ a()
69 Tl

where g is, by the equation of the fixed curve, given as a function of g; but the

other factor 2" is an absolutely indeterminate variable value, and the expression is
meaningless.

But we have integrals { Qdw, where @ 1s a homogeneous function of the order

n—3 in the coordinates (#, v, 2); and, in particular, we have such integrals where
(corresponding to the forms which present themselves in the differential pure and
affected theorems respectively) @ is either a rational and integral function (z, y, z)»%,
or a rational and integral function (z, y, 2)»* divided by a linear function (=, ¥y, 2)':
for in every such case, the form of integral is

Y
| 2(?)
z Y\’
¢<z’ z)
where ; is a given function of g, and the factor of d(g) is thus a mere function

of Z‘ More definitely, in the integrals f Qdw which are considered, @ is either a

minor function (z, y, z)"* or it is the quotient of a major function (z, v, 2),"* by
the linear function 012.
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In the case n=2, there is no rational and integral function (z, y, 2)"* but the
function may be of the form belonging to the affected theorem, viz. it is unity divided by
dw
ar + By + oz’
connected by a quadric equation (a,...Qz, ¥, 2)*=0: it will be shown presently that

this integral is obtainable as a logarithmic function.

a linear function (z, y, z)'; or say the integral is j where the (z, y, 2z) are

In the case n=3, we have the rational and integral function (z, y, z)"% =a
constant, or say =1, so that there is here an integral f dw: we do not call this o,
but introducing a new letter, say u, and fixing at pleasure the inferior limit of the

integral, we write u = '/ dw.

89. In the foregoing form Jde, so long as we retain the symbol dw, there is

nothing to show what is the variable in regard to which the integration is to be per-
formed ; we may, for instance, writing
2
4y
y Y

_dw == '—“E_fT* 5
dx

make it to be g, or in like manner to be any other of the six quotients. We thus

cannot attribute a walue to the inferior or superior limit of such an integral, but we
may take the limits to be each of them a point on the fixed curve: for instance,

1
if 1, 0 be points on the fixed curve, then the integral f Qdw means the integral
0

taken from the value at the point O to the value at the point 1 of the variable
in regard to which the integration is performed; or when there is no expressed
superior limit, then the integral is to be taken from the value for the expressed or
known inferior limit to the value at the current point (z, 7, z) of the variable in
regard to which the integration is performed. The actual value of the integral will
of course depend upon the path of the variable; but this is a question which is not
here entered upon.

If using Cartesian Coordinates x, y, we write for instance

_da Qdz
dw = —‘z—f, then / *:_17
dy ay

will denote an integral f ¢xdr in regard to the variable #, and the inferior and

superior limits will be as usual values of #; or if there is no expressed superior
limit, then the integral f ¢ode will be the integral taken from the inferior limit z, to
0

the current value a.
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We may, if we please, consider the coordinates (z, y, 2) as depending upon a
parameter &, viz. the ratios # : y : 2z may be regarded as given functions of &, and

the integral f Qdw, is then an integral f Qds, which taken from a constant inferior

limit up to the value & belonging to a given point 1 of the curve, is a given
function of s, or say of the point 1. But except in the case of the cubic (or
generally if p=1), we do not have the coordinates actually given as known functions
of a parameter s (say they are potentially known functions of &), and it is further
to be noticed the functions which present themselves are functions not of a single
point, but of p or more points: thus in the case of the quartic, n=4, p=3; we have

1 1 1
[  dw, f y dw, f zdw, each standing for a given function of the parameter s, but these

integrals do not present themselves singly, but in combinations such as

(/ 1+f 2*/'3+ f f)@ do, y do, zdw),

say these sums of integrals are w, v, w: each of the functions w, v, w is a potentially
known function of the parameters s, s, &5, sz which belong to the points 1, 2, 3, £
respectively, and is consequently regarded as a given function of these four points.

90. Consider as before, in the case of a cubic curve, the integral u = '/ dw:

it will presently be seen that for the general curve as given by a cubic equation
JS=0 of any form whatever, we arrive at a form of elliptic function: but the ordinary
elliptic functions sn, cn, dn connect themselves most readily with the cubic curve
y=x.1—2.1—k*2. We have here

RIS L (e 1

£l

¥ ' Nedez l—lx

or, in the equation u=/ dw, taking the inferior limit to be 0, say

u=f 3 dx
oNe. 1—z.1—kz

an equation which determines u as a function of z, or conversely, # as a function
of u. We might thence, by means of Abel’s theorem ‘as applied to the curve in
question, investigate the properties of the function =2\ (u) thus arising, and so establish
the theory of elliptic functions: but it is more convenient, treating the elliptic
functions as known functions, to write for Au its value; viz. to take for z as given
by this equation, the value #=sn>w: we thence have y=snucnudnwu; viz. these
values #=sn’u, y=snucnudnw, satisfy the equation y*=a.1—xz.1—k% of the curve,

and give, moreover, dw=du=1}ix . and we can with these values, and the formulse for

elliptic functions, verify any results given by Abel’s theorem. This will be done in
considerable detail: but at present I wish only to remark that the formule give the
coordinates x, y of a point on the cubic curve expressed as one-valued functions of

G X : 21

www.rcin.org.pl



162 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

a parameter or argument w: but that this argument u is not a one-valued function of
the coordinate #, or even of the coordinates @, y of the given point on the curve:
say the argument » has not a unique value for a given point (z, y) of the curve
There are, in fact, an infinity of values u=wu,+ 2mK + 2mK’, where m, m' are any
positive or negative integers: that this is so, depends on the multiplicity of values,
according to the different paths of the variable, of the integral

= i :
_fo'\/w.l—x.l—kzw’

or, regarding the elliptic functions as known functions, it depends upon the double
periodicity of these functions.

Aronhold’s Quadric Integral. Art. Nos. 91 to 93.

91. I reproduce the investigation contained in Aronhold’s paper ¢ Ueber eine neue
algebraische Behandlungsweise u.s.w.,” Crelle, t. LX1. (1863), pp. 95—145. We take f the
general quadric function (a, b, ¢, f, g, h{=, y, 2P*; az+By+yz an arbitrary linear

dew
az + By + yz
algebraic function of (@, y, z); viz. taking (& n, {) for the coordinates of either of
the points of intersection of the line az + By +rvyz =0 with the quadric (a,...Qz, y, 2)*=0,
and writing also

O =— (bec—f* ca—g° ab— 13, gh—af, hf—bg, fg—chfa, B, v),

then the theorem is

function of =z, 7, z: the theorem  is = differential of logarithm of an

d(D 1 (a’-'-ﬁw: .’% ZZSS' KB t)

U Mt e bl S T
az + By + vz Qd i az + By + vz ’

or, what is the same thing,

___dg______l (a’ "'Ziwl .% ZIE’ 7]) C)
‘{am+,8y+cyz—()log o+ By + vz + const.

It is to be observed, in reference to this equation, that the two sides respectively
are in regard to (a, B, y) homogeneous functions of the degree —1, and in regard to
(¢, m, & homogeneous of the degree 0; viz. on the right-hand side the effect of a
change in the absolute magnitudes of & #, { say the change into k€, kn, k&, is merely
to change by log % the constant of integration.

It is to be remarked also that the equation (a,...Q& », {0, y, 2)=0 represents the
tangent to the conic at the point (& #, &) of intersection with the line az + By +yz=0;
T
ax+ By + vz’
if (&, m, &), (&, m, &) are the coordinates of the two points of intersection respectively,
then in passing from one of these to the other we change the sign of the radical Q,

L and — (l) log BB L Y e st

calling the linear function in question 7', the value of the integral is ;—Zlog

and the two values thus are —l—loghl—
Q Coar+ By +yz
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Tl .
differ by a constant only; viz. we should have log (—aIiBly—-l-rW = a const. And, in

fact, T, and 7, being the tangents to the conic f at its intersections with the line
az+By+yz=0, we have it is clear f=AT\T,+p(az+By+y2) that is, (z, y, 2)

uh x :
122 =g constant, which is

referring to a point of the conic f=0, we have m)2

right.

92. We require the coordinates (£ 7, £) of an intersection: these are determined
by the equations af + By +4¢=0, (a,...3& 7, £ =0, or as these may be written

af +Bn ts=9,
(@€ + by + g§) € + (hE + b+ f§) m + (g€ +fn + 05) £=0;
we have thence & 7, ¢ proportional to the determinants
af+hy+ g8 hE+by+fE gE+fn+cf |,
a : B . G/

say these determinants are Qf Qn, Qf where Q is a value as yet undetermined. The
equations are « (hE+ by +£)— 8 (gE +/n + of)— QE =0, &e., viz. these are

(vh —Bg—Q)E+(yb —Bf In+(f—Bc )E=0
(ag —va  VE+(f —gh—Q)n+(ac —o  )E=0
(Ba—ah  )E+(Bh—ab  )yn+(Bg—aof — Q) E=0;

eliminating (£, 7, ¢), we have an equation which may be written

R Rty =0,
2 LAMRRN - SN, TR
AII P BII . CII s Q

that 1is, 2
A, B, C |-Q(BC"—B'¢'+C"A-CA" + AB— A'B)+ (4 + B’ + (") - ¥=0.
AL W
ek AN

We find very easily that the determinant and 4 +B'+C” are each =0; and the
equation thus reduces itself to

Q2=B/CN__BUC/ + C//A oy OAI/ L AB/ A A'B’
or substituting for 4, B, &c., their values,
Q=—(bc—f>...0a, B, v);

this being so, the ratios of & 7, { are determined by means of any two of the foregoing

linear equations.
21—2
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93. We may now verify the theorem; in the general expression for de writing
for A, u, v the values & 75, { the equation to be verified becomes

| dz, dy, dz
‘ z, Y., WS ; {(a,---lif’ n, §Vda, dy, dz) ad:1:+,8dy+fydz}
e I e Qla,...08 n 0« y 20 ax+By+qz |’

(az + By +v2) (a, ... 9@, y, 20E 0, §)
viz. this is
Q| de, dy, dz |=(a,..Q& n, {Qdz, dy, dz).(ax+ By + yz)

&y Y2 —(a,...0& n, {0, vy, 2). (adz + Bdy + yd2).
| ZR sl <
Here, on the right-hand side, the coefficient of dz is
(a& + hn + &) (az + By + v2)
—a {(a€ + hm + g8) @ + (hE + by + f8) y + (9 + fn + ¢§) 2,

which is :
=y (B (a€ +hn + g8) — a (hE + by +fO)}
—z {a (g€ + fn + c§) — v (a€ + hm + g0)},
=y.0¢—z.Qn,

=Q (y§—2m),

which is right; and similarly, the coefficients of dy and dz have the same values on
the two sides of the equation respectively.

Aronhold’s Quadric Integral deduced from the Affected Theorem. Art. Nos. 94 to 98.

94. Let the fixed curve be a conic, say f=4(a, b, ¢, f, g, h{z, y, 2)*> =0: and
let the variable curve be a line meeting the conic in the points 3 and 4. The

affected theorem is
12dw 6134 8~2§§

2012 =" 135 T 234’

where (@, y,, 2,) and (@, ¥», 2,) being the coordinates of the points 1 and 2 respectively,
12 denotes the constant (a,...Q@, 1, 2,0, ., 2,): and 012, &c., denote determinants
as usual.

The left-hand side is here

dw,  dw,)
i {3TQ+4T§}'

on the right-hand side, 8 refers to the variation of the constants of ¢, that is, to
the variations of the points 3 and 4; or we may write 8=d;+d,; the points 3, 4
are independent, and the equation, being satisfied at all, must be satisfied separately
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in regard to the variations of 3, and in regard to the variations of 4: we must

therefore have
dw, d134 d3234!
12—t =
312 134 234 °

and the like equation obtained herefrom by the interchange of the numbers 3 and 4.

95. The equation just written down relates to any four points 1, 2, 3, 4 of the
conic; and if for 3, 4 we write 0, 3 respectively, it becomes

12 do _(Log i d.023
0xg" ToBl" 023
which relates to the points 0, 1, 2, 3 of the conic: writing, as before, 023, 031, 012 = p, o, T,
this equation is
2 df) = — (_lg‘ + fdf

T ol ot
which may be verified as follows: the equation of the conic is f 23.07+31.7p+12.p5, =0:

pdo—adp f 12. 12 / do dp)
i , Where == =23 .0 + 31p, = —~;* that is, do = g ( +—),

dr
the equation in question.

we have do = g

96. We have, as a property of any four points 0, 1, 2, 3 of a conic,

23 1t =0l 2. 23 _-01 e 23 g__Ol.
123023 ~ 012.031° YA p~ ot R4y x’
hence considering 0 as a variable point, and differentiating the logarithms,

Gl
and the foregoing equation 12 < i %) thus becomes 12 d} =—dlog 071 , or
T. ag

restoring for r its value 012,

dw 01

Taking now az+ By+vyz=0 for the equation of the line 012; this meets the conic
in the points 1, 2, coordinates (z;, ¥, z) and (2., ¥., 2,) respectively: and we have

s Y = Y125 — Y2y, 210y — 2oy, Lplfy — H1Ys,

12=(a;"'§w]) yl’ leiw‘:) 3/2, 52)7
and from this last value

1= {(a', "'ixls Y, 3121-’”2: Yo 32)}2 —(a, ---ﬁxl; Y1, 21)2- (a; ---sz; Yo 52)2
(the second term being of course =0), viz. this is

_ 120=— (bc —f2, . --ﬁ:’hzg — Y221y, 5%y — 2%y, Hr1Ye — a0
=—'—(bC —fz: "'Ziay Bl 7)2'
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or say 12=—0, if O*=—(bc —f2, ...Qa, B, y)* as before: and the equation thus is

Qdw FE o (a0, %, 202, Y, 2)
oz + By + yz g az + By + gz

b

or finally, writing (& #, {) instead of (4, %, z) to denote the coordinates of one or
other of the intersections of the line az+ By+yz=0 with the conic, the equation
becomes

Qdw (a,...9E n, {l=, ¥y, 2)

aw+By+yz=d10g ax + By +yz

>

which is Aronhold’s quadric integral.
97. (The foregoing property, which may also be written

28 o 3 08
023.123 ~ 201.301°

is verified very simply in the case of four points 0, 1, 2, 3 of a circle: in fact
23 = @5 + Yoy — 1, =cos 23 — 1, =— 2sin*§ 23,
023 = 2 sin 4 23 sin 4 30 sin 4 02 ;
and so for the other like expressions; each side of the equation is thus reduced to
1 +sin 4 02sin 4 03 sin 4 12 sin 4 13.)
98. In particular, if the conic is taken to be the circle 2>+ %*—1=0, then for
the coordinates (—g, g) of the intersections with the line az + By +vy =0, we have
QE+qn +BL=0,
v€ —Qn+af =0,
BE —an +Qf=0,
giving Q*=a*+ B*+«*; and then
E:n:f=—F +o :aB8-yQ: ay+BQ
=—aB—qyQ : @ —* : By+aQd
= ay+BQ: By—ald: —a — B2
The formula then becomes
f da 1 Ex+qVl—a*—¢
— —=—————log Sl :
(az+BV1 =+ V1 —a¢ Va4 B — v az+BV1-a+¢

or, retaining , y for the values Vo2 + 32—, and V1 — a2, this may also be written

L, v(az+ By + ) + Q(Bz — ay + Q)

= log :

Q ax + By + v

The form of the integral is still such that the value is not very readily obtainable
by ordinary methods: the value just written down can of course be verified, but the
verification is scarcely easier than for the original more general form.
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In the very particular case a=0, 8=0, y=1, we have Q=¢; £:9:¢{=1:—12:0,
and the formula becomes

dz 1 :
fx/l - == log (z—1y):

—a? ?
viz. this is

sin—1x=1}7r+% log (& — i V1 — %),

which is right: for putting sin”'xz=wu, and therefore #=sinu, the equation becomes
i (u—%m)=log (sinu—17coswu): that is, cos (w— %)+ ¢sin (u — $7r)=sin u — 7 cos w.

Fized Curve a Cubic: the Parametric Points 1, 2 consecutive points on the Curve.
Art. Nos. 99 to 106.

122. 023 —122. 013

99. The major function (z, y, 2)4, is taken to be = 193 , so that,

calling the differential Qdw, we have
Q= 122,023 —122.013

123.012 i

it is required to find what this becomes when 1, 2 are consecutive points on the
curve, or what is the same thing when the line 012 is a tangent at the point 1.

I take for convenience the cubic to be f, =3 («*+1*+2*), =0. The coordinates
of 1 are (4, 1, #), those of 2 are (@ + 8z, y,+ 8y, 2+ 8z), or as for shortness I
write them (z,+a, ¥+ B, 2z +v), where a, B, v are considered as infinitesimals of the
first order: this being so, the denominator of  is at once seen to be of the second
order; it will appear that the numerator is of the third order; whence @ is of the
first order. {

100. We have

dw_ydz—zdy _zdz—zd: _xdy—yde

x? ! Y 2
and in analogy herewith we may write
hy—aB _ma—xzy  amB-—na,
R 1 ok TS e Rk L

: : &1 n 1
this being so, we have A

012=| 2, y, z |=(om®+yy’+22°) 8w,=01. 00,

r Y 4
a @y ’
and similarly 312=31%. dw,.

Moreover
023 =1l il v; +| @, y, 2z |=013+0813,

x Y 4 at &, b /

Z3 Y L3, Ys, 23

(S

£Q
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as the second term may be written; moreover

R2=a'@+a) +¥2 (1 +8) + 22 (s +7), = an®+ By’ + vzl
122=a, B+ 2+ 3 (1 +BY + 2 (2 + ), =2 (aw?+ By + y2?) + &, + B4 + 72,
and hence
122,023 — 122,013 = (2@ + By + yz,?) (013 4+ 0813)
— [2 (e + By + y2.%) + (o, + By, +9°21)] 013
== [(az®+ By + yz®) + (om + By + 'Yzzl)] 013

) +  (az® + By +vz?) . 0813,
or reducing by

3 (am’ + Byt + y2) + 3 (' + By + y'2) + (0 + B +97) = 0,
=+4(@+ B ++°) 013 — (%2, + By, + v*2,) 0813,
which is of the third order.

this 1s

101. We may show that each of the terms contains the factor (8w,)*: we have,
in fact,

wﬂ @
2 (o =a8 2 _ g — 2 toya—,
%z (8w, = :8 ”n ﬂ'Yylzl ) Z

2@, (8,)* = B'Y L - e 'Ya % + aIB y]

@ (8w,) = ya % v —aB —Zi + IB’Yé
&, &1 Y Y

hence, first multiplying by a, 8, v and adding, we have

(agr21 + Bents + yaryy) (S, = - (Byl +ozt) + 2 (vz, +a?) + —B (o + Byr)

3/1 N )
—_a + S
B’Y (ylzl 2% Y
— @+ B )
But in virtue of ax®+ By?+ qz°=0, the first line becomes = the second line, or the
two together are
=— 28y ( y_12 & zli)
Y14, lel 1Y :
which is =0 in virtue of #°+ y*+2*=0; hence the equation is

(ayr2 4+ B2, + yay y,) (S,)2 = — (o + B + 9%,

the required expression for the first term.

102.  Again, multiplying by @, y,, 2, and adding, we have

By a o .
3@y12: (8w, ) = ywlz‘l (¥ + 28 — a*) + ‘%-Tx (2 + o —y) + ’;lﬁ; (=2 + y* — 2°) — (0, + B, + v°21),
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where, in virtue of z®+ y*+ 2*=0, the first line is

2
=—— 2, + oyt + afBz’),
PO e M by

and this again is =—2(a%; + B, +v%): in fact, we have identically

Y12, (@2, + By + ve) = (az® + ,3.%2 + yz?) (2 + Bz, + ya, yl)
— (Byz, + Y2y, + aB21) @+ 9y’ + 2.°)
+ (Bya,* + yay,* + aBz’),

which, in virtue of az?+ By?+yz2=0, and 2+ y* + z° =0, becomes
Y14 (“25”1 + B2y, + ')’231) = (:3’)’5'5'14 A 7“:%4 = a132'14)-

Hence the equation is
32,9121 (0w, )* = — 3 (P, + By, + ¥*2),
or finally
@z o) =— (@ + By + 72),

the required expression for the second term.

103. Writing for shortness
athz + Bz, + yx Yy = 8 (2,4141),
122.028 — 127, 013 = {— 18 (2,%12,) 013 + 2,9, . 0813} (8,
and hence dividing by

we have

012.123, =012. 312, (Sw,)
we have
122,023 — 122,013 — 18 (2, %1, #).013 + 213,2,. 0313

Q="01z.1%3 01%. 31

But this can be further reduced: the numerator, multiplied by 3, is

=_(a3/121+321$1+')’x1y1) T2y 2 i 3-1'1%21 z, Y, 2 |,

2, Y, 2 @y o
[, L3, Ys» % T3, Ys 2 I
which 1s
= x g Yy : z dw,,
o (it —2°), »n @ —=d), =z (z®— yf‘)"
&3 ’ Ys s 23

where @, (3 —2%), v, (2° — @*), 2z (2> —y,*) are the coordinates of the tangential of the
point 1 in regard to the cubic, viz. the point of intersection of the tangent at 1
with the cubic. The determinant may for shortness be called 0£13; and we thus have

g 12:023-12.013_ 480, 0113
B 1 C S e LI O

where observe that 01:=0 is the equation of the tangent at the point 0: and
0f13 =0 is the equation of the line joining the tangential of 1 with the arbitrary
point 3. :

€L GET 22
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104. The identity just referred to is proved very easily. Comparing on each side
the coefficient of yz; — 1,2, the factor #, divides out and we ought to have

—(ath 2 + Bz, + yoy,) + 3za= (Y. — 2°) Sw,,
that 1is,

(3/13 - 213) Sw, = 2ay121 - )8319’1 — N Y, ¢
and, in fact, from 8w, =z, — 2y, 28w, = z,8 — y,a, we have
¥:® = 2°) 8w, = 31 (110 — @1y) — 21 (BB — ),

which is the value in question. Similarly the coefficients of zz;,—z2, @y, — 2,y are
equal on the two sides; and the equation is thus verified.

105. The proof has been given in regard to the particular cubic #*+ 3>+ 2°=0;
but it might have been given for the canonical form 2°+ y®+ 28+ 6layz=0: and from
the invariantive form it is clear that the result in fact applies to any cubic whatever.
The result is an important one: we see by it that when the points 1 and 2 are
consecutive points on the curve we must, in place of the differential Qdw, which is

; 1 .
evanescent, consider a new form ——Ogl? dw,, where, as already remarked, the denominator
represents the tangent at the point 1, and the numerator the line joining the tangential
of this point with the point 3.

106. We have
(028} + {031} + {012} = {123},
or writing this in the form
{012} — {312} + {028} — {013} =0,
suppose 2 is here the consecutive point 1+ &81; then

122,023 — 122. 013
012.312

{012} — {312}, =
becomes = {0t13} 8w,: we have also

{023} = {013} + 0, {C13} dw,,
and the result is
— {0¢13} +0,013 =0,

that is, 9, {013} = {0£13}. The form in the case of the cubic &*+ y*+2° + 6layz =0, is =

@ ) Yy 5 z
=i 0 (;%3 e 213)’ Y (22— -7713), 2 (“’13 e .%3)
Z3 , Ys s 23

3 (-’”12‘” + 9ty + 2122)('1'12"33 + ylys + 21223)

ie. the differential coefficient of {013} in regard to the parametric point 1 is = {0£13},
the symbol for the case where the parametric line is the tangent at 1.
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Fized Curve a Cubic: the Parametric Points corresponding points. Art. Nos. 107 to 110.

107. The parametric points 1, 2 are taken to be corresponding points, that is,
such that the tangents at these points meet at a point, say 3, on the cubic. We
may from 3 draw two other tangents, touching the cubic, say at the points 1’ and 2'.
The four points 1, 2, 1, 2’ are then such that the lines 12, 1’2" meet in a point,
say 4, of the cubic; and moreover 3, 4 are corresponding points.

We may take (, ¥, 2), =(1, 0, 0), (0, 1, 0), (0, 0, 1) for the coordinates of the
points 1, 2, 3 respectively: =0, y=0 are thus the equations of the lines 32, 31
respectively, and z=0 is the equation of the line 12, viz. we have z=012. Taking
= My=0, x— My=0, for the equations of the tangents 31, 32’ respectively, and {=0
for the equation of the line 1’2’ joining their points of contact, where ¢ is a properly
determined linear function of (#, ¥, 2), it is to be shown that the differential Qdw
may be taken to be _C_czlfn , and that this is =%<d~j—d—y> the affected theorem thus
assumes a special form, which will be noticed.

108. The cubic passes through the points (z=0, z=0) and (y=0, z=0), the
tangents at these points being =0, and y =0 respectively: also through the point
=0, y=0: its equation thus is

[, = g2°x + 2lzwy + 1%y + haty + kxy?, =0,
and writing
_xdy—ydz
W
dz

dw

we have

af - .
" s 2 (gzzw + lzy + 1z2y),

which, from the equation of the curve written in the form

z (gzz + loy + 1zy) + 2y (ha + ky + l2) = 0,

or say
z (gax + loy + 12y) + 2y =0,
becomes
—2zy¢
=

and we thus have i
o i ERpaow 1%
dm-—%yg(wdy y dz), %C<~’b y),
where {=hz+ky+1lz. To find the meaning of ¢ observe that the line z— My=0
meets the curve in the point (z=0, y=0), and in two other points determined by the
equation
' 22 (gm + 1) + 2zylM + y* (RM*+ kM) =0
this line will be a tangent if
(gM +3) (hM + k) — M =0,
22—2
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and we then have at the point of contact (hM+k)y+1l2=0; and writing this in the
form hxz+ky+12=0, we see that the equation =0 is satisfied at the point of con-
tact of each of the two tangents 2 — M,y=0, #— M,y=0; viz. {=0 is the equation
of the line joining the two points of contact. Moreover, from the equation of the
curve written in the foregoing form

z (gza + loy +izy) + 2yt = 0,

it appears that the lines z2=0, {=0, meet on the curve; or, what is the same thing,
that the line {= 0 passes through the residue of the parametric points 1, 2.

109. The function & at 1 becomes =%, and this is the value of 8.122; in fact,

3.1:2 = (xgdixl + y,diyl i d%)fl, (@, ¥, 2)=(0, 1, 0),
_dh
-2
=2z @, + 122 + ha?+ 2kmyyy, (@, Y, 2)=(1, 0, 0),
i

We have thus ¢ satisfying the required conditions for the major function: and the

differential Qdw may therefore be taken to be = g dw, that is, we have

_(dz dy
Qo=14(-7).
The affected theorem thus becomes

syl G- 6

110. The meaning of this will be better understood from the integral form.
Integrating each side, and assuming that the superior limits are given by a line ¢
which cuts the cubic in the points 4, 5, 6, and the inferior limits by a line +» which
cuts the cubic in the points 7, 8, 9, we find

wdxsws_ IOg 3/4.%.% -9 lOg ¢2 il

g X g Ty Y2 YsYs ;l": ¢1 i
that is,

Ly 5 y7y8y9= (¢l\b)2
ey YsYsYs  \Yay/

where ¢, Y, ¢, Y denote the values of the linear functions ¢, 4+ at the points

1 and 2 respectively. We have a cubic cut by the lines ¢, v, #, y in the points

4,5 6; 7,8 9;2 2,3 and 1, 1’, 3 respectively: where for the moment 1, 2’ are

written to denote the points on the curve consecutive to 1 and 2 respectively. Hence,

by a known theorem in transversals,

HIRIHIC) SRt )W
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that 1is,
ByZs%s YrYsYs __ ‘kl'\l'l’\”‘s PPy Py
Ty Ty YsYsYs  Yara Vs Prpr by y

which, dividing out the ¢4y, and writing 1, 2 in place of 1/, 2/, becomes
& (¢2\P‘1)2
b/’

agreeing with the result just obtained.

Aronhold’'s Cubic Transformation. Art. Nos. 111 to 119.

111. This was obtained in the paper “Algebraische Reduction des Integrals
f F (z, y)dx, u.s.w.,” Berl. Monatsb., April, 1861, pp. 462—468. I give in the first place

the analytical results, independently of the general theory, with the values for the
canonical form f, =} («* +y* + 2*+ 6layz), =0, of the cubic.

T sextic invariant, =1 — 202 — 805,

S quartie (Aronhold’s) = —4 (I — 1¥),

R discriminant = (1 + 88,

P = 3ho*0 = {—3l%® + (1 + 20%) By} = + &c.,
Q=120 = (a*+ 2[By) z + &c.,

B = fa?0 = (a? + 2lbc) z + &e.,

C = fa0? =a (2* + 2lyz) + &.,

D=f0? =2+ y? + 2° + 6layz,

where a, b, c=a(B* =), B (v —o®), v (o — ).

Then we have

2TQ + 6SPQ* + 8P*Q = — R} (60 — 8BD),

viz. this equation, where each side is a quartic function (z, y, 2)%, is an identity when
(a, B, ) are connected by the equation, fa', =a*+ B°++*+ 6laBy, =0; and further,

QdP — PdQ=—R}{a(ydz—zdy) +b (¢de— o dz) + ¢ (z dy — y dw)}.

Hence writing

610 2P _2((~3F2+(1+2P) By o + &)
“al a0l - 0@ (a2 + 21By) = + &c. :
we have’
| @ (\* — 381 — 27) = R¥ (602 — 8BD),
and

@dr, =2(QdP — P dQ)=—2E! {a(y dz — 2 dy) + &c..
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112. Supposing now that (#, y, z) are the coordinates of a point on the cubic,
then D=0; and taking the square root of each side of the first equation, we may write

@ VN =38\ — 2T =— R¥V6.C,

Q%N =— 2R} {a (y dz — zdy) + &c.).
We have
d _ydz—z2dy _zdr—wxdz _zdy—yds
CT P2y yp 2w 2+ 2y
whence
dw_a(ydz—zdy)+&c._

C

and we consequently have
dn 2

VN —8Sn—2I' W6
or, as this may also be written,
e e, . SRR S
VarN — 1290 —8T V6
which, if 128, 87 are put =g, g, respectively, takes the Weierstrassian form
dx

RO T g
VEN — g\ — g, Ve o
The conclusion is that for the cubic curve, taking A a quotient of two linear functions
of (, y, 2), the differential dw is transformed into d\ + square root of a cubic function
of A: viz. we have thus a form of differential, not the same, but such as that which
belongs to the ordinary theory of elliptic functions, and which has been adopted by

Weierstrass as a canonical form.

113. The transformation depends on the arbitrary point («, B, ) of the cubic:
the point (a, b, ¢) is the tangential of this point, viz. the point of intersection of the
tangent at (a, B, ) with the cubic: we can from (a, b, ¢) draw four tangents to the
cubic, viz. the tangent at (a, B3, y) and three other tangents: the equations of the

2
four tangents being gg 3 =§{%§ A ©, A, Ay, Ay respectively; where A;, Ay, Ag are the
roots of the equation A*— 38\ — 27'=0.

Suppose for a moment that (a, B, ) is a point not on the cubic curve, and
write 4 =o®+ 3 +4*+ 6laBy. We have

AD* +4AC* +4B°D — 3B*(* — 6ABCD =0,

for the equation of the six tangents which can be drawn from the point (a, B, ¥)
to the cubic: when (a, B, ) is on the cubic, 4 =0, and the equation becomes
B*(4BD —3(C%) =0, where B=0 is the equation of the tangent at the point (a, B, v):
throwing out the factor B?, we have 4BD—3(C*=0 for the equation of the four
tangents from (a, B, ) to the curve; viz. the equation of the four tangents is

2TQ4 + 6SPQ* + 8P*Q = 0,
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or, as this may be written,
Q2P —MQ) (2P — MQ) (2P —1,Q) =0,

viz. the equations of the four tangents are as is mentioned above; it was, in fact, by
these geometrical considerations that Aronhold obtained his results.

114. The foregoing expression for QdP — P dQ), say
QAP —PdQ=(1+8P) {a(ydz—zdy)+b (zde—axdz)+c(zdy — y dz)},
may be verified without difficulty. Writing for a moment
QdP—-PdQ= (Az+ By+ Cz)(Ldz+ Mdy + Ndz)
—(Adz + Bdy + Odz) (Lz+ My + Nz)

= (BN—-CM)(ydz— zdy)— &ec.;
we have
BN -CM= {—3P8+ (1+ 2P) yal (v* + 2laB)

— {— 8B+ (1 + 2) a3} (82 + 2lya)
= — 60aB* + (1 + 20%) ay’ + 6bary® — (1 + 20) a’,
== (1+88) a(8~v)

= —(1+8)a,
which proves the theorem.

115. T content myself with a partial verification of the identity
27Q* + 68PQ* — 8P*Q = — (1 + 80°7 (6C* — 8BD).
Writing herein #, y, z=1, —1, 0, we have D=0, and the equation becomes
27Q¢ + 6SPQ* — 8P*Q + 6 (1 + 8 C* =0,

where now

Q=(a—p)(a+B~2ly), P=(a—p){-3F(a+B)—(1+20)}

C=a+b—2lc, =(a—RB)|—aB-aB -y -2y +aB + L),
which, putting therein — o*= a®+ 3* + 6laBy, becomes

= (= B) (a+ B —2ly).

Hence writing
X=a+B—-2ly, Y==-380(a+B)—(1+2F)y,

we have

Q P, 0=(0-BX, (a-B)Y, (a—pyX:
substituting these values, the factor (a —8)*X divides out, and the equation becomes :
2TX3+ 68X2Y —8Y*+6 (1 + 8B);(a—B) X =0.
lTo complete the verification, observe that we have Y+ 38X =—(1+8F)q, whence
Y =1+ 8BP o +9(1+ 8B 1y X + 27 (1 + 8I5) Iy X2+ 271°X7,
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and herein —«®=a® + 3+ 6laf3y, whence

-y +aBX =(a+LB)P=(X +2yy= X+ 6ly X* + 1202y X + 81%,
that is,
— (14 8) = X3 + 61y X2 + (120%* — 3af3) X.
Hence the equation to be verified becomes
27X + 68X°Y —8 (1 + 8 [X? + 6lyX? + (121%* — 3aB) X]
— (1 + 8B)2 9Py X
—(1 + 8% 27l'y X
—275X?
+6(1+8P)2(a—BrX=0;
viz. throwing out the factor X, this is
(27— 8 (1 +8)* + 2160°} X* + 6SX Y — 48 (1 + 82 Iy X + 216 (1 + 8F) Iy X

— (1 + 88 {96*y* — 24aB — T20p* — 6 (a — B)*} = 0,
where the last term is :
=+ 6 (1 + 81 {(a + B)* — 4l
viz. this is
=6 (1+ 85> (a+ B+ 2ly) X,

and there is again the factor X which can be thrown out: the equation thus becomes
[27 — 8 (1 + 8% + 21606] X + 68Y — 48 (1 + 80%)* ly + 216 (1 + 80%) Iy
+6 (1 + 8% (a+ B + 2ly) = 0.
This may be written
[27'—8 (1 + 8% + 2160°] X + 68 [— 312X — (1 + 80%) y] —48 (1 + 81%)* ly
+ 216 (1 + 802) ly + 6 (1 + 81 (X + 4ly) =0,
or, finally, it is
[27 — 8 (1 + 8%+ 2160° — 18/2S + 6 (1 + 8] X
+[—6071S—48 (1 + 8 + 21602+ 24 (1 + 8P)] (L + 8B) ly =0

substituting for 7, S their values 1— 20{* — 81¢ and — 47 + 4J* respectively, the coefficients
of X and (1 + 80°) ly are separately =0, and the equation is thus verified.

116. The foregoing equation 7\=6—M regarding therein A as an arbitrary parameter

2|
S0 ’
and (z, y, z) as current coordinates, is the equation of an arbitrary line through the
point (a, b, ¢) of the cubic: it meets the cubic in two other points depending, of
course, on the value of A; and the coordinates of either of these is thus expressible,
irrationally, in terms of A, the expressions involving the radical ¥A*—3S\ —27: from
the values of @, 7, z in terms of A, we should be able to deduce the foregoing equation
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2 = __L
V6 VAP 38\ — 27"
instead of being an arbitrary point of the cubic, is a point of inflexion of the cubic;
and it is easy to see ¢ prior: why this is so: in fact, if we assume

The expressions assume a peculiarly simple form when (o, 8, v),

z:y:z=u+aVA:v+BVA: w+yVA,

where u, », w are linear functions and A a cubic function of A; then the locus is a
cubic curve, and corresponding to the value A=, we have @ : y : z=a : B8 : v, viz.
the curve passes through the point (2, B, ¢): moreover, it can be shown that this
point is an inflexion of the curve; expressions of the foregoing simple form thus only
exist in the case where the point (a, B, y) is an inflexion; and the formul® referring
to an arbitrary point (a, B, ) of the curve are necessarily of a more complex form.

117. To work this out, we start from the foregoing equation

_ 6ha*0 2 ({—3Fa® + (1 + 2P°) By} 2 + &e.)
Y (a® + 2By) » + &e.

A

which, putting therein
; L=\+60 M=I\—(1+2b),
and
A, B, C=La*+2MBy, LB+ 2Mya, Loy + 2Map,

becomes Az + By + Cz=0, the equation of a line through the point

a, br c, =“(483—“Ya), 'B(,Yﬂ_as), T(QS'—BS):
as before: and we have to find the intersections of this line with the cubic

&+ 3 + 2° + 6leyz = 0.
C*(a* + y*) — (Aw + By)* — 61C* (Aa+ By)ay =0:

We have

the cubic function contains as we know the factor bz—ay, and in the remaining
quadric factor it is easy to calculate the coefficients of 2* and #*: we thus obtain the
identity

O (a* + y*) — (Aa + By) — 61C*(Ax + By) zy

= (bz — ay) {[(— B* — 6lya) L* + GayL*M — 88 M*] «*
+2H @y
+ [(— & —6laB) L*+ 68yL*M — 8a>M*] 3*},
from which the as yet unknown coeflicient 2H is to be obtained. This is most easily
effected by assuming @, y=a, —@3; values which give
P+y=a—8, Az+By=L(a—p) bz—ay=-—aB(«-p:
the whole equation becomes divisible by a*— 3° and, omitting this factor, we have
08 — L} (a® — B°) + 61C*LaB
=af {[20°8 + 6ly (o + B%)] L* — 6y (a® + B°) LM + 16a*3*M*} + 2Ha?3",
C. XiL 23
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where for C' is to be substituted its value Ly*+ 2MaB. We may also reduce by
o' + B+ 4°+ 6laBy=0. The left-hand side is

O — [# (@@ + B) — 4B L + 61CLaB,

which after reduction is found to contain the factor «@; and omitting this factor and
reducing also the right-hand side, the whole equation becomes

L# (— 6ly* — 36Fy*aB + 4o237) = L3 (— 6loy* — 360*y*a8 + 24782
+ LM (69" + 24ly°03) + LM (6 + 361y*23)
+ LM (12y%aB + 2412832
+ M3 (803%) + M3 (16a23?)
+2Haf ;

omitting here the terms which destroy each other, the equation again divides by af
and we thus obtain the value of H; and the required identity is

O (@ + y*) — (Aw + By)' - 61C* (4w + By) wy
= (bz — ay) {[(— B — 6lya) L + 6ayL*M — 8/3:M"] a*
+ [ aBL? — 6l LM + (62 + 12la3) LM* — 4aBM?] 22y
+ [( = o0 — 61By) L + 68y LM — 8aM?] ).

Hence putting for shortness

A = (a® + 61By) L — 6B8yL*M + 8a2 M3,
B = (B + 6lya ) L? — 6oy L2 M + 882 M3,
N aBL? — 6ly* L2 + (69 + 12laB) LM* — 4aBM?,

the equation in (z, y) is
Ba? — 2Hay + Ay* =0,

giving

or say
@ y=.§§+’\/‘§j?—‘.’lw§3 2B

We find without difficulty, reducing always by &'+ 3° + o+ 6l2B8y =0,

HE-AB) = Uy L

+ (= o + 4By ) M
+( 6Py — 4aBy* + Hap?) LM
+ (= 4yt + 24P2aBy? — 423 ) LEM?
+ (= 20 — 16laBy* + 24la*B?) LPM*
+ ( — 8aBy* — 16la*B?) LM?
+( _ Sag) M,
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which is
=(IL — M) (I*+ 6LLM? + 2M*) (y*L + 203 M.

. IWL-M=1+ 8P,
L+ 6LLM? + 2M* = (1 + 80%) (A* — 88\ — 27,
and the equation thus is
$(9* = AB) = (1 + 8L (W — 38X — 27) [(y2 + 20aB) N + {61y* — 2(1 + 2I) aB} T,
showing that the solution involves the radical ¥A* —3S\ — 27

But we have

118. If (a, B, y) is the inflexion (1, —1, 0), the expression for \ is here

-6l — 61y —2(1+21%) 2

et z+y—2z ¥

the equation in (z, ¥) is
(L + 8M?) a2 + (2L* + 241LM* — 8M?) ay + (L* + 8M*) y* =0,
or, as this may be written,

(L + 6LLM? + 2M*) (@ + y)? + (— 6LLM? + 6M?) (2 — ) = 0,
say
(L + 6LLM® + 2M) (@ + y) = 6M* (UL - M) (a — y)';

viz. we thus have & 2
VA =38 — 27 (¢ + y) = MV6 (2 — y),

or, substituting for M its value,
x=~6 (In— (1 +28)} + V2 — 35\ = 2T,

y=~6 {In— (1 + 205)} — VAP = 38n + 27,
whence also %
2z =N6(\ + 6),

these values satisfying identically

A+6B)(z+y)—2[n—(1 +2P)] z2=0,

and
@+ 1P+ 2° + 6layz = 0.
119. Starting from these values we, in fact, easily obtain
— V6 dr
o d S e . X
maY =Y = 35 — 2T
(IN 4+ (— 8 — 63) A* + (— 1202 + 120%) A 4 (— 81 — 921* — 8I)},
22+ 2lay=—2 {Do.},

and hence

_wdy—yde _ 3V6dr
T 242wy VA —3Sh—2T

The same result might of course have been obtained from the values of @, z or y, 2,

the factor which divides out being in each of these cases irrational.
23—2
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The Cubic =z (1 —z)(1 — k*). Art. Nos. 120 to 130 (several sub-headings).

120. The curve is a semi-cubical parabola, symmetrical in regard to the axis
of #; and if, as usual, #* is taken to be real, positive and less than 1, then the
curve consists of an oval, and an infinite portion which may be called the anguis.

(See Figure.)
0 R\, fEnr
K’

The equation is satisfied by

2=sndu,
y=snwucnudnw

Observe that the periods for these combinations of the elliptic functions are
2K, 22K’ ; in fact,
sn (u+2K)=—snwu, sn(u+2K)= snu,
CIx i) =—cnu, cn 1 =—cnu,

dn = dnw, dn 2 = —dnw,

”»

whence the sn® and the sn.cn.dn are each unaltered by the change of w into u + 2K
or u+2K'. Hence to a given point (2, y) on the curve, the argument u is not =
a determinate value u,, for it may be equally well taken to be =wu,+ 2mK +2miK’,
where m, m’' are any positive or negative integers whatever: we express this by w=1,,
or say w.is congruent to u,. But when u is thus given by a congruence u=u, where
u, has a determinate value, the point on the cuve is uniquely determined. It is,
however, to be noticed that a congruence 2u=u, does not uniquely determine the
point on the curve: there are, in fact, four incongruent values of w, viz.

Yu, du+ K, buo+1K', fu,+ K 41K,
and the point on the curve is thus one of the four points belonging to these values
of u respectively.

121. If, to fix the ideas, we select for each point of the curve one of the con-
gruent values of the argument, we may assume for the oval, u real: at 4, u=0;
from A to B above the axis u positive and at B, = K; below the axis u negative
and at B, =— K; there is thus a discontinuity, KX, — K at B, but the two values
are congruent. For the anguis, u=1¢K’+ real value »: above the axis » positive, viz.
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at infinity »=0, and at C, = K; below the axis v negative, viz. at infinity v=0 and at
0, =—K: there thus is a discontinuity ¢K’'+ K, iK'~ K at C, but the two values
are congruent. Observe that for points opposite to each other in regard to the axis,
the arguments are, for points on the oval u, —u; for points "on the anguis <K'+ v,
1K’ —wv: but that we have 1K' —v=— (K —v).

122. The pure theorem gives for three points u,, u,, u; in a line
du, + duy + duy, =0

and thence u,+ u,+u;=C. The constant C cannot have a determinate value (for if
it had, then assuming the values of «, and w, at pleasure u, would have the determinate
value =C—u, —u,), but must be given by a congruence: or, what is the same thing,
assigning to C any admissible value, we must instead of wu, + u,+u, = C, write
u +u,+u;=C. Taking any particular line, for instance the tangent at 4, we have
Uy, Uy, U3=0, 0, :K’; whence C=7K’; and we have u,+ u,+ u; =<K’, viz. this is the
relation between the arguments w,, wu,, u, belonging to the points of intersection of
the cubic with a line: in particular, for a line at right angles to the axis, we have
Uy, Us, Us=0, —a, 1K' or =1K'+B, <K' — B, 1K’ (according as the line cuts the oval
or the anguis): and the congruence is in each case satisfied. But I shall in general
instead of = use the sign =, understanding it as in general meaning =, and only
replacing it by this sign when for clearness it seems necessary to do so.

Writing sn w,, cnw,, dnw, =s,, ¢, d,, and so in other cases, the condition in order
that the three points may be in a line is

8% sod, 1[|=0,
8% 8Cds, 1 |
8% &Gy, 1 |

a relation which must be satisfied when the arguments are connected by the fore-
going relation w, + u, + u;= 1K'

We can show from this equation alone that s and s,c,d, are expressible rationally
in terms of s2 s,cdy, 8% $:c.d,; in fact, writing therein #;, y in place of s? s.¢d,,
&c., we thence have z;, y;, 1 =A\a, + uas, Ay, + pys, M+, and substituting in

Yyt = a3 (1 — ;) (1 — k2wy),

we obtain an equation Au (FA + Gu) =0, that is, FA+ Gu=0, or say A, u=G, —F, and

thence
Gz, — F: Gy, — Fy,
&y =85 = ‘xé 0 sz » Y= 8363y = %IT___Fy .

The values of F, G are easily found to be
| F =92+ 2y, — 2, (1 — ) (1 = w) =2y (1 = IPmy) (1 — ) — (1 — @) (1 — By @,
G =290+ 4t — 2 (1 = @) (1 — o) — 2, (1 = ) (1 — 1) = (1 = @) (1 = Ky
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or, as these may also be written,
F=- (yl T .%)2 + (2, — “‘2)2 {1 + k24 & ($1 = 972)} + (xl — %) @,
G=—-h—9)+ @ -zl {l+EB+E @+ @)} + k2 (2 — @) @,

where of course i, ¥, @, ¥, should be replaced by their values s, s,6.d;, 82 8:C:dls.
This is, in fact, the ordinary process of finding the third point of intersection of a

cubic by a line which meets it in two given points.
Writing <K’ —u,=u, and s, ¢, d for the sn, cn, dn of u, we have

1 «d e
83, 03: d:‘-=_IZ'S.) ,E) ;7
whence

1 cd
gradiii A
5= jag 85Cydy = st

and the determinant equation becomes
82,80y, 1 |=0,
8?  83Cady, 1
; Bl o T R T ‘

that 1is,
(1 = k*s*s?) s,y — (1 — k2s%8,°) SoCady — (82 — 87) %}l =0,

corresponding to the relation w=w,+u, of the arguments. This is easily verified :

have
igd scydy — sycd Vil se,dy — s,¢d il e N
G T PP A R e [ OPT R 8,Coly — 8501y’

the equation thus becomes
(scody — ssed) ¢ dy — (seydy, — syed) eadsy — (8,2 — 85°) csil =0,
that 1s,

8 — 85

cd {— 850,y + 816, — S } =0,
which is right.

The Four Tangents from a Pownt of the Cubic.

we

123. Suppose that the line is a tangent to the cubic, say the line touches the
cubic at the point %, and again meets it at the point w: then instead of w, u,, u,

we have u, u, w: and the relation becomes 2u + w =1K".

Here w being given, w is uniquely determined: viz. given the argument u of the

point of contact, we have a unique value for the argument w of the tangential.
given w, we have 2u=1K'—w; and we have thus for u the four values

3GK —w), Do.+K, Do.+iK’, Do.+K+ iK',

But

corresponding to the four tangents which can be drawn from the point w to the cubiec.
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The tangents are real for a point of the anguis, and for such a point we may
write w =14K’+v, where v is real and included between the values + K; the corresponding
values of u are

wm=—3%v, w=—4v+K, w=—3v+:K', wy=—fv+K+iK': -

the first and second of these belong to tangents to the oval, the third and fourth to
tangents to the anguis. We may further distinguish a tangent according as it passes
between or does not pass between the vertices B and (: say in the former case it
is intermediate, and in the latter case extramediate: and we then see that, for the
tangents from the point «K’+ v of anguis,

u=—%v for intermediate to oval,
u=—4v+ K , extramediate to oval,
u=—3%v+ iK' , extramediate to anguis,

u=—4%v+ K +1K , intermediate to anguis.

124. We may make a corresponding division of the real lines which meet the
curve in three real points: any such line meets the oval twice (and then of course
the anguis once), or else it meets the anguis three times: and taking the arguments
to be u,, u,, u;, we have

F(u+us+uy)= 3K’ for intermediate line meeting oval twice,
i = 11K + K , extramediate line, Do.,
1 =—$iK' , extramediate line meeting anguis three times,

» =—1iK'+K , intermediate line, Do.

125. Returning to the tangents, the point ¢K’+» may be an inflexion: we have
then the point of contact of the intermediate tangent to the anguis coinciding with
the point <K' +wv; viz. ‘K +v=—}v+K+1K', or say =— v+ K 4K : that is,
v=+2K; or iK' +2K and «K'—3K are the arguments for the real points of inflexion,
above and below the axis respectively.

126. Write for a moment the equation in the form y*=Bz+ Ca*+ Dz*; then if

(a, B) be a point on the curve (B*=Ba+ Ca’+ Do), and we consider the intersections
of the curve with the line y — B=m(z —a), we find for the remaining two intersections

B+ C(z+a)+ D (2*+ az + o®) = 2mpB + m* (z — a).

If the line be a tangent, this will be satisfied by #—a; the condition for this is
2mB = B+ 20a + 3Da?, and supposing this satisfied, then throwing out the factor z—a
we obtain C+ D (z+2a)=m? giving Dz=m*>— C—2Da for the coordinate z of the
tangential of the point (a, B3).

In the case of an inflexion, z=a; and we have

(B + 202 + 3Da2)?

mt =0+ 308, = Tt oD’
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giving for a the equation
3Dt + 4CDo* + 6 BDo— B> = 0,

or for B, C, D writing their values 1, — (1 + £*), &* this is
Sktat — 4k (1 + k) o® + 6k*a* — 1 =0

for the z-coordinate of the inflexion. There is one negative root, and one or three
positive roots; but only one positive root giving a real value of B, and corresponding
hereto we have the two real inflexions on the anguis.

It should be possible, from the formule of No. 122, writing therein (@, ¥.) = (2, 1),
to arrive at the foregoing result, say Dz, =m?— C—2Dx,; but the functions F and ¢
present themselves in vanishing forms, and the reduction is not immediate.

127. The general condition for an inflexion is 3u=¢K’: the nine inflexions thus
are’ w=1K', inflexion at infinity, w =K'+ 3K, the two real inflexions, and besides
u=+ 1K', u=+ 3K + 2K, six imaginary inflexions.

The Sextactic Points.

128. The vertices 4, B, (' are each of them a sextactic point: in fact, writing
the equation in the form g*=a2—(1+ k*)a*+k%®, we see at once that the conic
y*=a — (1 +k*)2* meets the curve in the point A counting six times: and there is
obviously a like proof for the vertices B and C respectively. Hence, for the six inter-
sections with any conic whatever, we have the condition

Uy + U+ Uy + U+ Us + U =0

and for the sextactic points we have the condition 6u=0. This gives the 36 points
u=31(2mK + 2m"1K') or say =4 (mK + miK'), m=0, +1, +2, 3, m'=0, +1, +2, 3: but
among these are included the 9 inflexions (each of these being an improper sextactic
point, the conic becoming the tangent taken twice) and there remain 27 points: among
these are included the three vertices (u=0, K, 1K'+ K), points of contact with the
tangents from the inflexion at infinity; and of the remaining 24 points 6 are real,
viz. these are the points =+ 1K, + 2K on the oval, and the points ¢K"+ } K on the
anguis: these are, in fact, the points of contact of the tangents from the real inflexions,
viz. the three tangents from the inflexion ?K’'+ 2K touch the oval in the points
2K, —1K, and the anguis in the point ¢K'— 1K ; the three tangents from the
inflexion 1K’ —2K touch the oval in the points — 3K, 1K, and the anguis in the point
1K'+ 1 K.

Formule Relating to the Tangents from the Vertices.

129. I annex some formule relating to the tangents to the curve from the
vertices 4, B, C respectively. We have from each vertex four tangents say p=0, o=0,
symmetrically situate in regard to the axis, and p’=0, ¢’=0, symmetrically situate in
regard to the axis: the line joining the points of contact of p, o is a line 7=0 at

www.rcin.org.pl



825 ] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 185

right angles to the axis, and that joining the points of contact of p’, ¢’ is a line
v =0 at right angles to the axis.

Vertex A, Tangents Imaginary, Coordinates of Point of Contact.
pros1=y—i(l+ha y+iQ+B)s ketl;  o=—1, y=3 LD
p,o, "=y—i(l-k)e, y+i(Q -k, —ke+1; z= ]].{':, y=i_z(lk:l£);

the equation of the curve is

f=y—2Q—-2)(1-k=e), =poc—ar’, =p'c —ar? =0.

Vertex B, Tangents Imaginary. Contacts.
pro, T =y—(k—ik)(1-a), y+k+ k)1 —a), ke —(k—1k); w=1“%’ y=¢%‘(k+ik'),
p o, T =y—(k—ik)1—2z), y+(Fk—ik)1-2), ka —(k+k); z= 1+]]:/, —+-»—v(k'—-zk),
the equation of the curve is
f=po+(A—-a)r =p'c’+(1 —2z)7, =0.
Vertex C, Tangents Real. Contacts.
o, T=Y—4——s : — kx), i o 11—/ £ o i

BigpiE Sl 7 /c'( R gl e m SRS Y

’ ’ /il 1 . o _1,, pra ikj .

Boi Tl i k!(l k2$) :’/+ k’(l 'Icw) x_l““’k’/: w’_l_k,/a Z/‘I'_"k_m

the equation of the curve is
/" = po — (1 - k‘%‘) T, =p’o" —(1 - ](}2.77) v, =0.
130. These linear functions p, o, &c., considering therein #, y as denoting

sn*w, snwcenvdnw, respectively present themselves as the numerators and the denomina-
tors of some formule given No. 105 of my Elliptic Functions (1876), see p. 76: viz. we have

1 1-ke+1+K)y
i St s oy 7 ey a7 o

which is
1 .
R i AN |
s T T ; l—k’ —, (vertex C);
y+ i (1—Fo)
} e 1 (14+E)z+7
sn-(u+%zK)=Zr %i—;ﬁ’
which is
__ly—1(+kea e T :
SThytid+ bz’ 07 AL i e
iy k + 1k k —ik
+z'1 z+ (k—1
e (-4 2 fE) = —m+((,’c+zlc;§
(oFboau 24
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which is
k=i y+k+ik)(1 —2) k=K
ok oy+ k=) -2)’ T

g, , (vertex B).

Observe here that, in the second formula, we have a pair of tangents p, o which
belong to a chord 7 through the inflexion at oo; but in the first and third formule
we have tangents o, o’ not forming such a pair. This is as it should be, for the
zero and infinity of sn®(u +4¢K’) are w=—4iK’, u=4%iK’, which belong to points in
lined with the inflexion at infinity: but for sn®*(u+ 4 K), the zero is uw=--{K, and
the infinity is u =<K’ —}K, which do not belong to points in lined with the inflexion
at infinity : and the like for sn®*(u+ 4 K +4iK’). :

Fized Curve a Quartic in Space, the Quadri-quadric Curve y*=1—a* 2*=1—k%>
Art. Nos. 131 to 135.

131. It is assumed that A* is real, positive, and less than unity : the curve may
be regarded as the intersection of the two cylinders

2+y:=1 BP+22=1,;
but there is through it a third cylinder 3*—k%*=4%k™ The cylinder A%+ 2*=1, or
say the horizontal cylinder, has for its section an ellipse axes llc and 1 respectively :

and it is pierced by the cylinder #*+ 7*=1, or say the vertical cylinder, in two detached
ovals (of double curvature) lying on opposite sides of the plane of xy: only the upper
oval ABA’B’ is shown in the figure.

Each of the vertices A, A’, B, B’ is an inflexion*, viz. a point such that the
osculating plane at that point meets the curve in the point counting four times.
We may consider two generating lines of the horizontal cylinder, each meeting the
oval in two points; the plane through the generating lines meets the curve in these

* There are in all 16 inflexions: 4 in each of the planes #=0, y=0, 2=0, and 4 in the plane infinity.
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four points, and when the generating lines come each of them to coincide with the
tangent at A, we have the osculating plane meeting the curve in the point 4
counting four times. The like reasoning, with two generating lines of the third
cylinder, shows that the vertex B is an inflexion.

132. The equations are satisfied by writing therein #, vy, 2=snu, cnu, dnw: the
periods are here 4K, 4¢K': hence, at a given point on the curve, the argument is not
u = a determinate value u, but it may equally well be taken to be =wu,+ dmK + 4m' iK',
where m and m' are any positive or negative integers: we express this by u=u,, or
say u congruent to u,. For the upper oval, « may be taken to be real, and to be
=0 at B, positive for the half oval BAB, and negative for the half oval BA'B’;
having the values + K, —K at A and A’ respectively, and the discontinuity 2K, —2K
at B, these two values being congruent. For the lower oval, we have u = 2K’ + real
value .

For the intersections of the curve with a plane, we have

duy + duy + dug + duy=0; whence w,+ uy+ u; +u,=C;
and by taking the plane to be the osculating plane at B, we find 0 as a value of
the constant, and the relation thus is w +u, +u;+u,=0. Writing as before sn
enuy, dnw,, =s, ¢, d, and so in other cases, the relation between the elliptic functions is

By Loy din k] =00,
s O eyl el
A A S | ‘
Sl isols et

It is important to remark that, given three of the points, the fourth point is
determined uniquely: that is, the equation really gives s, ci, d,, each as a rational
function of the s, ¢, di, 8, ¢, do, 85, €3, ds.

In fact, we may write s =N\ +AS+ N;s;, and similarly for ¢, and d,, and
1=X\+4 A+ A;: substituting in s2+cf—1=0, ks +di—1=0, we have

X?shzha'i‘ X:n)\'s)\l 1 X12X1h2 g O:

Y23 » +Y31 » +Yl2 2» =O:

where .
Xe=88+cc—1, Yo=kss,+dd,—1, &c.;

we thence have
Nodg 2 Mg 7\'1)"2=X31Y12—X12Y31 : Xerz:z—Xstm : X‘.r.st"‘X:nY::s
= 4, 3 A, 3 A4,, suppose ;
that is,
A XS T N A A A LA Ay

and consequently
=—sn (g +U+u), =A A8+ A3 4,85, + A, 4,8+ (A4;+ 4,4, + 4, 4.),

84 I
04 w1 cn ( » ) 5 ”» cl + ” c'?. + » 03 == ( » )r
d,‘, = dn ( » ) e e d1+ ) d~2 Hal .3 d3+ ( » ):

24—2
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which are the required expressions. If u;=0, and consequently s, ¢;, d;=0, 1, 1, the
resulting expressions give the sn, cn, and dn of wu, +u,; but the expressions are in a
very complicated form, not easily identifiable with the ordinary ones.

133. The determinant equation may be written

('5'1 —8) (03d4 b CAdS) + (Ss — 8 ) (cld2 i Cedl)
+ (¢ —¢y) (dysy — dysy) + (¢35 — ¢5) (dy 83— dssy)
+ (di— ) (8365 — 8405 ) + (ds — dy) (8162 — 82¢,) =0,

and, in fact, each of the three lines is separately =0. This appears from the following

three formulae :—
sn (U, + Us) _ &=
en (uy + uy) —dn (wy, +u,) ¢ dy — eod;’

sn (u; + ) RO
en (uy + up) + 1 Td 8y — dasy’
1
sn (u; + u,) 8 o 70_3(70{l —dh)
dn (u, + u) + 1 i gies~ 8,0

which are themselves at once deducible from the formulse

1
sn (U, + Up) =87 — 82, =— (e2—c), =— e (d?—d?), +(8:6:d>— 8y01dy),
en (U, + ) = 8,6,ds — 8,05, = Do.
dn (u, + w,) = sid, ¢, — 8,dsc, =+ Do.

In fact, the numerators of cn (u, +u,)+ dn (u; + u,), en(u,+u)+1, dn(u;+u,)+1, thus
become = (s,+8,) (e1ds — xdh), —(c;+ ¢,) (dysy— dosy), (dy + dy) (8162 — 85¢,), respectively: so
that, taking the numerator of sn (u, +u,) under its three forms successively, we have
by division the formule in question.

134. The above three equations, putting therein u, +u, =—2u, and reducing the
functions of 2u,, become

1l cd, s8-8 ;L

; —¢)(d,—d
o M2 BT R iy g (A B

™ (dr8 = do81) (816 — 8,01)°

_%=_cl-cﬁ Ecz_ (d,—d,) (8 —sv)
Cs a8, —dyps,’ & ' lon e (16— 8201) (cldz —cd)’
kﬁ&c"‘ ot M 1 (81 —8) (?1 —Ca)

= it 2l ) \ pls
d, " ek vl e e

equations which must of course give each of them the same value for s?: the equations
belong to the relation w,+u,+2u,=0, viz. (s;, ¢;, d;) are the coordinates of a point

of contact of the tangent plane drawn through the two given points (s, ¢, d,) and
(82, €, dy) of the curve.

www.rcin.org.pl



825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 189

135. Write

dribre, f; 9, h =8 =8, ¢,—¢c, dy—ds, ¢,dy—cyd,y, dyS,— dssy, 86— 861,

al, b5 ¢ fl» 9', h’=6‘3—8_,, Cs— Cy, dy—dy, Cyd, — Cydy, dys, — dyS;, 36, — 8465,
so that (a, b, ¢, f, g, h) are the six coordinates of the line 12, and o/, V', ¢, f', ¢/, IV
are the six coordinates of the line 34. The determinant equation is nothing else
than the condition of the intersection of the two lines, viz. this is

af’ +d' f+bg' +bg+ch+ch=0.

By what precedes, it appears that not only is this so: but that we have separately
af +ad' f=0, by’ +bg=0, ch’+ch=0, viz. these three equations are satisfied by the
coordinates of the lines 12 and 34, which join in pairs the intersections 1, 2 and
3, 4 of the quadri-quadric curve by a plane. But this is a geometrical property
depending only on the four points being in a plane: and it is thus a result of
Abel’s theorem that, when the arguments are such that

U+ Up+ Us + U= 0,
then not only the original equation, but each of the three equations, holds good.

The Cubic Curve zy* — 2y + (1 + k*) 2 — k*%* = 0. Art. Nos. 136 and 137.

136. Writing the equation in the form
(wy—1p=(1—2a*)(1 - k%), or say ay—1=—V1—21—k%?,

we see that the general form is as shown in the figure: the real portions of the
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curve lie between the values z=— o, —%; -1, +1; and %, ®. The curve may be

made to depend on elliptic functions in two different ways: we may write

8 T 2 SN, v
) T 14k enyodno’
1—cnudnw 7 s,
= = 14+ k-1 —k)sn?
J S 4 1+k& cnlvdnlfu{ L ( Penitol,

where the functions sn, cn, dn belong to the modulus &, and the functions sn,, cn,, dn,

to the modulus 6, = Ellg The first mode is obvious; as to the second, observe that
the formule give
e _”_1,'_ B o g g =z'(1—lc)2 SN, % ¢n, v
y kx_l-i—k cn, v dn,v e dh 1+k dn,v ’
_ VL BMY o gy L] 4 ) Svdme
g e 1+% 0111vdn1v(1+k) ot M S en, v

whence
Y —ka* =—(1 —k)*sn,’v;
and therefore
2 =201 -k snfv
bt g 1+%  cowdno’
which is also the value of 2y — (1 + k*) #, as it should be.

We find, moreover, dw, =du, ____12_2:-%;
2w
u = T‘n .
are the elliptic functions of v to the modulus #: we have

and thence, u, v each vanishing together,

Writing for shortness s, ¢, dy to denote snv, emyo, dmw: that is, s, ¢, d

(2iv n>___ 2 s
s T 1+kcd,’

20w 1 2
cn( i k>=(1+k)01d_{1+/c+(1—lc)sl},

1+k’
dn(f’l”— k)=’-1vf~f{l+k—(1—k)s,2}.
1+k° (1 +£k)cd,
L 1-k ?
187. To bring these into a known form, for & write S then 6 is changed

into %, and the formul® become 1%

; g
sn, (L+k)yw=>A+k)? od’

AL, ¥
cn, (1+lc)w—c—d(l + ks®),

" 1
dn, (1 + k) o = c_d(l — ks?),
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where the sn,, cn,, dn, refer to the modulus 8, and s, ¢, d denote snwv, cnw, dnw,
modulus %.

But from the formule, p. 63, of my Elliptic Functions,

isn (u, k) 1 dn (u, k)
cn(u, k)’ cn(u, k)’ on (u, k')’

sn (2w, k), cn (tw, k), dn(w, k)=

and herein for » writing (1+4%)v, and for £ writing 6, = by whence % becomes

1 1+%°
2k

R S and fy'=—1;k we have

1+k°
et e R Sy o G i R ey da(l b e g),
en(L+/kv, y) * en(l+kv, ) cn (1+kv, 4)

and the formule above obtained are

bll(].-l-k’v ) (1+k)s
i g g =(1 +k‘) = giving sn (1 +4kv, ) =" T
s 1 ST cd
AR SIS, b e SR Torbb ) e
en (1+ kv, ) = ed ) BALTI ) T
dn(l +k‘v S 1 — ks
—— cd(l 107 ) S dn (1 +kv, 5) = T e’

en (14 Ic'v v)

where, as before, s, ¢, d denote sn(v, k), cn (v, k), dn (v, k): these last are, in fact, the
formule of the second line of the table, Elliptic Functions, p. 183.

Fized Curve the Cubic y*=a (1 —xz)(1 —Fkz): the Function {0'1'0}. Art. Nos. 138 to 142.

138. It was shown, No. 65, how for the affected theorem, when the fixed curve
is a cubic, the form of differential is dw multiplied by

(012 + U dw?d, (036) — {123}}

the last term being the properly determined constant K, attached to the variable
term {012}, in order to obtain a standard form of integral. The object of the present
articles is to show what these formule become for the before-mentioned form of cubic
curve 9=« (1 — ) (1 —k*z), which is most directly connected with elliptic functions: and
to exhibit the connexion of the formule with the ordinary formule for elliptic
integrals of the second and the third kinds respectively.

189. We have, in general,

Zﬁ,z, I+ &) @@, — (2 + @) + 119 B ) \
{012} 012’ ={+a[-1+1+F) (o, + z,) +| @, %, 1]
+ Yy Y+ ) RN | ’

www.rcin.org.pl



192 A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. [825

Taking here 2, =6, for the point, coordinates z,, ,=0, 0, we have

o —a+(1 + k) @ty |

YRy y
and if, retaining 1 to denote the point coordinates (z,, ) belonging to the argument
u,, we write 1° for the point belonging to the argument u +¢K’, then the coordinates

S |
o Txp’

{016} =—

of 1’ are and the formula becomes

{01,0} _n + kPax? — (1 + k) 2z, ;
Y + 1Y

the numerator hereof multiplied by = is =y (zy, + @y) — k*z*, (# — ), and we thence
have
2, P o
gy e o)
@ Yy — @,y
which, substituting for @, v, @, % their values in terms of u, %, is

cnudnw
- - — k2 -
T k? snw sn u, sn (u— ).
" ; et i :
Operating on each side with o= =0,, we obtain
1

0, {010} = I* sn® u, — k* sn® (u — wy),

the differentiation being, in fact, that which occurs in establishing the fundamental
property of the elliptic integral of the second kind

E 3 )
Zu=mu (1 - ]—.{) +lc2fosn wdu:

viz. we have
Zu—Zu, — Z (u—uy) = — k2 snusn u, sn (v — ),
and thence

0, [— A2sn wsnu, sn (u —w,)] = — Zuy + Z' (w — wy), = k*sn®u, — k? sn® (u — w,).
Observe that, 1’ referring to u, + &', the subscript 1 might be written 1’.

The same result should of course be obtainable by the differentiation of the
expression of {01’60} in terms of z, y, #,, y,. We have

om =2y, Oyi=1-2(1 + k) 2, + 8k, =8 ;
and we thence obtain

2 k
0, {01'6} =@yl—+w—l§5§ [— 2 (@y, + 2, y) (@ — 2m,) @y, + @@y (% — @) (2, + 2yy,)],

where the term in [ ] is found to be = a(wy,+a,y)*— a2, (2~ a;)*; whence the

equation is
Pz, (2 — )

{ = k2r —
0,{016} = k*x o +oy)

giving the foregoing result.
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140. To introduce into the formulee 1 instead of 1/, we have only to write
u, —tK’ instead of u,; putting also for shortness s, ¢, d, s, ¢, d, for the functions of
u and w, respectively, we thus obtain

cd s
w1a) __?+élsn(u—ul)’

where observe that, interchanging » and wu,, we have

Ol b,
8  ssn(u—uw)’

{108} = —

that is, {106} =— {016}, as it should be. The formule may be written

1 _ s'ydy + s%ed . :
{016}, =— {106}, = seydy + s,cd ssysn (u—u,)

and
1 1
0, {016} = gt SH{(—@t——-fz)’
whence
1 1
0, {0160} = — 5 o4 s_rP(fu‘—iu;) :

we have, moreover,
s s
(012} = {126) + | u =) " on(u— )’
and
1 1

Gy 1933) sn? (u—u,)  sn?(uw—u)’

which last equation gives (9,+ 0, +9,) {012} =0, as it should do.

141. Supposing that the differential dII,, is defined by the equation

dI1, = du (012} + du U:dua3 036 — {123}} :

we have
4 4 4 1 '
f )i A f du (012} + [ du [ f du 3, (036} — {123}] ;
5 5 Js 2 ,
and thence
4
X f dT1,, =3, {124] +2, (136} — 3, {123},
5
=0, {134} — 0, {316},
" LIRINE 0o i biidunX. TR
© |sn?(u, —uy) sn? (uy — uy) sn? (u; — u,) " sn? (uy — ug) |’
) 1 k. 1 i
Tosn? (us—ug)  sn®(u, — uy)’
o vXTT. 25
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or establishing between the constants wu,, u, the relation sn®(u;— u,)= KI—{-IE , this
becomes
E L
=1 —I-Z—Ic2sn2(u4—ul+zK),

which is
O (uy— uy + iK’) © (s — uy + 1K)
® (uy— ty + 1K) O (uy— up + 1K)’

- 32 34 10g

where © is Jacobi’s theta-function, see my KElliptic Functions, p. 144. The expression is,
in fact, =—0,0,log 0 (uy—u, +1K’), =¢(uy —u, +¢K’), if for a moment ¢v=0,"log Ov.

But we have
log ®v= log;\/zler+ 30 (1 - TE{> —k2fo fosn’ vde?,

that is, ¢v=1— IE{ —I?sn*v, and consequently we have ¢ (uy—u, +1K’)

E e
% 1_E—Icﬂsn2(u4—u1+%K)-

142. In connexion with the same curve y*=z(1—2)(1 —Ak*), we may establish
the identity
Th LY k@),

PRI +_
du, &,—x du z,—x

where as before z, y=¢* scd, and #,, y,=s? s,¢;d;. We have

(2, — =) g%i - Z—':i =(82— ) {1 —2(1 + ) 82+ 3k%,*} — 282 (1 — s2) (1 — &%)

=— =82+ 2 (1 + k*) s%,* — Bk*%s* + k*s,° ;

and similarly
d dx
(z— ) (ﬂz it I ol $— 82+ 2 (1 + &) s%s,® — 3l*s's® + k*sS.
The difference of the two functions on the right-hand side is = A* (s — §*)*; which
is = k*(@,— ), and this divided by (2, — z)* is =&*(#, —«); the identity is thus verified.

Fized Curve the Quartic y*=(1 — a*) (1 — k*%*). Art. Nos. 143 to 145.

143. This is a curve having a tacnode at infinity on the line 2 =0, as may be
seen by writing the equation in the homogeneous form y%*= (2* — a*) (2* — k%) ; we have
as it were two branches having the line infinity for a common tangent at the point in
question. The equation is satisfied by # =snu, y=cnwudnw, values which are unaltered
by the change of w into u <+ 4mK + 2m'tK’, m and m’ any positive or negative integers;
in regard to this curve, the sign = is to be understood accordingly. I consider with
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reference to this curve only the affected theorem, in the particular form in which it
most readily connects itself with the ordinary theory of the integral of the third kind.

B’ &‘ A Vi

144. I consider the differential %”ﬂu

012 is a line parallel to the axis of y: taking its equation to be #—a;=0, and

putting for shortness: X =+1—2?.1—k%* X,=v1—a?.1~kr? the parametric points

are taken to be (@, VX,), (#,, —VX,), and the residues are the intersections with the

two branches at the tacnode. The conic (z, 7, 2)% =0 1s to satisfy the conditions of
passing through the two nodes of the tacnode, and through the two residues, that is,

again through the tacnode twice—in all, four conditions; and we have thus the form
2 (x—0z)=0, containing the arbitrary constant 6. The major function itself is then

easily determined, and putting again z=1 we arrive at the form

in the particular case where the line

VX, 2-0 do
o —0 x—a VX'

If the limits are taken to be two points on a line parallel to the axis of #, or what
is the same thing, if the limits in regard to # are #, —x, we have the integral

f’” VX, -0 do _(* VX, ”'9+“’”,_+?>_0_lw
gy —0 w—a VX' owl-—@(w—wl z+a/ NX’
j‘” VX, &*—x0 dz
=2 . e T e
v —0 F-a? NX
We have
¥l ok )_ & — 0,0
z <w,2—ac2 2, —0) z2—ar. 2 -0’
and the integral thus becomes
f" VX, wda OVX, [*dax
=—2 e ""'4—'_+ 4 MR I )
o ay (22—)VX  m(x,—0) o VX

25—2
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Taking here z=snu, z, =sn (a + 1K), =k—sil-a,’ we have dz=cnu dnw du=VX du, and

the result is

[“ VX, 2-0 dw 9 k*snacnadnasn®udu 2ksnacna
2, —0 z—2a »  1—Ik*sn?asn’u 1—%dsna

—xwl;ew_w; ﬁ=_

where on the right-hand side the first term is =—2II(u, a), if II (u, @) be Jacobi’s
form of the integral of the third kind, see my Elliptic Functions, p. 143.

145. It is to be observed that the proper normal form is not II(u, @), but
I (u, a)— uZa; say this is II (u, a). We then have

I (u, a)=TI(u, a)—u l:a, (1 - %)—Ic”fsn?ada],

and thence

= _k*snacnadnasn®u E 2[ L
011 (u, a) = B PR —-a(l—l‘{>+k‘snada,

04 Ou I (u, @)="Fk?sn*ud, 1—/*sn*asn®u

K

snacnadna (1—E)+k28n2a;

or, if for shortness we write snu, sna=s, o, this is

ks?[1 — 2 (1 + k*) a® + 3k*a*] + k's'® < B

= Fga)y 1- )+ ko

0400 11 (u, @)=

which is
k{4 o) (1 +ks%0?) — 2 (L + k) 0%} (1 . @) 4
4 (1 = I*s’a®)? !

K
or, this being symmetrical in regard to s, o, we have

0a0uIl (u, a)=0,0,1I (a, u),
and thence by integration, and a proper determination of the constants,

II (u, a) =TI (a, w).

CHAPTER VI. THE NODAL QUARTIC.

Nodal Quartic ; the General and Flefleecnodal Forms. Art. Nos. 146 to 148.

146. For a cubic, or other curve of deficiency 1, we are concerned with single
points on the curve, and corresponding thereto with functions of a single argument
(elliptic functions): but for a curve of deficiency 2, we have to consider pairs of points
on the curve, and functions of two arguments: there is thus a marked change in the
form of the results.
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The most simple curve of deficiency 2 is the nodal quartic, n=4, p=2. Using
homogeneous coordinates, the general form is Az*+ 2Bz+ C'=0, where
A= @, j, kY=, v),
B = (l; m, n, OI.Z', y)3’
C=(p g r s the, v,
and where we write also
B — AC = (I —ip) (z - ay) (« — by) (= — cy) (« — dy) (z — ey) (= — fy).

Clearly the equation of the two tangents at the node is 4 =0; and the equations
of the six tangents from the node are z—ay=0,..., 2—fy=0: at the points of
contact we have Az+ B=0, viz. this is the equation of a mnodal cubic, the node and
the two tangents there being the same with the node and two tangents of the
quartic. Hence the node counts as 6 intersections, and there are besides 6 inter-
sections which are the points of contact of the 6 tangents respectively: say these are
the points @, b, ¢, d, e, f: the coordinates of the point « are given by the equations

a;:y:z:a:l:—gﬁ(:—g—“),

where 4,, B,, C, are what A, B, C become on writing therein @, 1 for z, y: and
similarly for the other points.

147. An important special case occurs when B=0; say we have here
A =i(a—ey)(z—fi)
B =0,
O =p(@—ay) (2 —by) (x—cy) (@ — dy),
or, omitting the factors ¢ and p,
(z—ey) (z = fy) 2= (z — ay) (z — by) (z — cy) (z — dy).

The origin is here a fleflecnode; the tangents z—ey=0, z—fy=0 count as two of
the six tangents from the node, and there remain the four tangents

z—cy=0, z—dy=0, z—ay=0, z—by=0;
the four points of contact are the intersections of the curve with the line z=0.
148. The general nodal form depends on 11 constants, but by writing az+ By,
vz + 8y, ez in place of z, y, z, we introduce 5 apoclastic constants, and so reduce the

" pumber to 11 +1 —5, =7. Similarly the fleflecnodal form depends on 7 constants, but
we reduce the number in like manner to 7+1—5, =3: the final form might here

be taken to be
2zy = (z —y) (2 - by) (z — cy) (z — dy),
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but it is more convenient to retain the original form

2 (@ —ey) (z = fy) = (= — ay) (@ —by) (& - cy) (v — dy),
bearing in mind that this is reducible to the form just referred to, and thus depends
virtually upon only 3 constants.
It is a general property that a curve of deficiency p greater than 1 can be by
a rational transformation reduced to a curve of that deficiency depending upon 3p —3
parameters: in particular, if p =2, then the form depending upon 3 parameters may
be taken to be the fleflecnodal quartic as above: and I proceed to show how the
general nodal quartic can, in fact, be reduced to this fleflecnodal form.

Reduction to the Fleflecnodal Form. Art. Nos. 149 to 152.

149. Consider the general nodal quartic Az*+2Bz+C=0: take £=0 for the
equation of the line joining the points of contact of the tangents z—ey=0, 2—fy=0;
and then writing z=§ y =, let the curve be transformed in the first instance from
z, 1, z to the new coordinates & 7, &

Writing A4, for the value (4, j, k{e, 1), which A assumes on putting therein
(e, 1) for (z, y) respectively, and similarly 4, B,, B, for the other like values, we
may take

AeAf(e_f)§=‘w Wb TR
ed,, 4,, — B,
Sy Ay = By
=—a(4.B;— AsB,) +y(ed. By —fB,Ap) +z (e —f) A4y,

say this equation is &= — Az — uy + 2, the values of A, x being

N =A¢Bf_— .AfBe “=‘—€A¢§[ifBeAf
(e —f) A4y’ (e=f)4.4; ’
and therefore
xe+p=—§e, xf+p,=—%.

e

150. * From the values & & n=— A —puy+ 2, @, y, we obtain z, #, y =+ NE +un, &, n;
and the transformed equation is

A" (E+ME+un) + 2B (E+ME+pun) + " =0,

A = @0 j, kZE ),
B = (I, m, n, oTE n)’,
C'=(p, ¢ 7 s tIE )
say this equation is 2&*+ 2BE+ € =0, where
A=A
B=A"(A+mun) + B,
€ =A" A+ pn)y + 2B (M + pun)+ C,

where
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and thence
B —AC =B — A'C", = (I*~1ip) (£ — an) (£ — bn) (E—con) (€ — dn) (£ —en) (E—/n).

We have here 8, = A’ (M +un)+ B, a cubic function (£ #)° containing the factors
E—en and £—fy: in fact, writing & »n=e, 1, it becomes A, (\e+ )+ B,, which is =0;
and similarly writing & 5 =£, 1, it becomes A;(\f+ p)+ By, which is =0. Calling the
other factor LE + Mn, we have thus

B = (& —en) (£ —fn) (LE + Mn),

and thence

AC = (&~ en)* (& — fin)? (LE + Mn) — (I* — ip) (€ — an) (& — bn) (€ — on) (€ — dny) (E— en) (§ = /),
= (E—en) (& —fn) [(€ — em) (€ — /) (LE + M) — (& — ip) (& —cn) (€ — dm) (€ — en) (€ — /)]
Hence € contains the factor (¢ —en)(€—/fn), say we have
€ =06 (&—en) (E—fn) (E—en) (§— ).

151. In the equation AL*+2BL+E =0 of the quartic curve, writing {=0, we
find € =0, that is, (E—en)(E—fn)(E—en)(E—¢n)=0: but ¢{=0 is the equation of
the line joining the points of contact of the tangents £—en=0, £—fnp=0; hence
E—en=0, £—¢n=0 are the lines drawn from the node to the two points e ¢ which
are the residues of these two points of contact. We now have

0 (£ — en) (E— pn) = (& — en) (& — fn) (LE + Mn) — (I — ip) (€ — am) (E—bn) (€ —cn) (£ — dn),
and thence
0=(c —e)(e —f)(Le + My —(I*—1ip) (e —a)(e —b)(e —c¢)(e.—d),
0=(¢—e)(d—f) L+ My~ (E~ip)(p—a)(p=">)(d—c)(—d),

which equations determine L and M; and then with these values of L, M, and for
9 substituting its value (¢, j, kU & 7)° the equation must become an identity.

We have in what precedes, by the transformation z=¢+A+un, z=§ y=n,
passed from the form Az*+ 2Bz+ C'=0 to the form

AE+ 2B+ € =0,

A= (1, 5, k)(E 70

B= (E—en)(E—fn) (LE+ My),

6 =6 (E—en)(&E—fn)(E—en) (E— dm),

viz. B and @ have here the common factor (£&— en) (& — fn).

where

152. Assume now o e
I (X —eV) (X —-¢Y]
fimsat b Ay Wy

and therefore conversely

X, Y Z=E§ 9, LE+M7]+9(E"€"I)QE— ¢’7);
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then in the new coordinates (X, Y, Z) we have the equation

6 box, Tro{E7IESeny

XL
Z-LX-MY

+0(X —e¥) (X —fY) (X —eV) (X -4Y)=0,

+2(X —eTV) (X -fV)(LX + MV) 6"

that is,
(@ g, kYX, YPO0(X —eY)(X —¢Y)

+2(X —-eV)YX —fY)Y(LX+MY)(Z—-LX — MY)

+ X—-eVVX-fY)Z-LX-MY) =0,
where the second and third lines together are

=(X - e¥) (X fY) (22— (LX + MY},
and the equation thus is
(X —eY)(X —fV) 2+ {06, j, kYX, TP (X - ¥)(X - ¢T)
v—(X—eY)(X—fY)(LX+MY)2} =l
But the term in { } is identically
=—P—=—p)(X —aY)(X -bY)(X —cY) (X -dY),
and the equation thus becomes
X —-eV)X—fY)Z22—(P-p)(X —aY) (X -bY)(X —cY)(X-dY)=0;

viz. the original equation A2+ 2Bz+ C=0 of the general nodal quartic is, by the
equations

—e¥)(X — ¢T)

Z-LX -MY

o)y, =X, VARG
or conversely

X, Y. 2=b i Ly iy Qe GNgy)
Z2— Nz — py

transformed into the fleflecnodal form as above.

It originally appeared to me that the fleflecnodal form. was more easily dealt with
than the general form; and I effected the transformation for this reason: there is,
however, the disadvantage that the six points a, b, c, d, e, f enter into the equation
unsymmetrically ; and I afterwards found that the general form could be dealt with
nearly as easily, and in what follows I use therefore the general form. The transform-
ation is given as interesting for its own sake, and as an illustration of the theorem
in regard to the number of constants in a curve of deficiency p.
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Application of Abel’'s Theorem. Art. Nos. 153 to 157.

153. Taking the fixed curve to be f, =4 (42*+2Bz+ (), =0, we have

af g
A =Az+ B=V(z, y),

if for shortness we write

(@, y)=B"—AC, =(B—1p)(z—ay) (z—by) (z —cy) (z — dy) (z — ey) (x — fy),

and we thence have
P L ek L
Viz, yy
The minor curve (#, y, 2)**=0 is an arbitrary line passing through the node, that
is, the point z=0, y=0; and the pure theorem thus gives the two relations
Szdw =0, 2ydw=0; where the summation extends to the intersections of the fixed
curve Az*+2Bz+ (=0 with the variable curve ¢.

The variable curve is taken to be a cubic Az+ B=(a, B, vy, 6Q=, y)’, or say
Az + B=Q, where Q is a given cubic function (#, y)*: viz. this is a nodal cubic, the
node and the two tangents there being the same with the node and the two tangents
of the quartic: hence it meets the quartic in the node counting 6 times, and in 6
other points, say these are the points 1, 2, 3, 4, 5, 6: hence the differential relations are

2 dw, + @ dw, + 2dw; + 2 dw, + z5dw; + z;dog = 0,
11dw, + Yy dw, + ysdw; + y,dw, + ysdw; + ysdws = 0.

154. Observe that the intersections of the cubic with the fixed curve are given
by the equation Q*=B* - AC, or say Q*=(z, y), an equation which determines the
ratio « : y for the six points respectively; and the ratio z : z is then determined
rationally by the original equation Az+ B=(. Instead of regarding  as a given
function, we may, if we please, take 1, 2, 3, 4 given points on the quartic: we then
have four equations for the determination of the coefficients (a, 3, ¢, 8) of the function
Q; viz. these equations may be taken to be

(@ B, v, 8) (=, y)'= "/(7"’”1:_.%_)6:‘
()@ g)r=Vm, g
C » )@, g =V, u),
( » ) (@, ya)f = V(T,m_)“

Q is hereby completely determined: and this being so, the remaining intersections
5 and 6 are also completely determined: there are thus between the six points 2
integral relations, which agrees with the number, =2, of the differential relations obtained
above. .

0 XIL : 26
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155. If we now assume
du =z, dw, + 2,dw,, du = z;dw,+ z,do,, du’=zdw,+ 2dw,,

dv =y, de, + ppdw,, dv = ysdoy + Yudoy, AV’ = y,dw, + ysdew,,

or say
’ ” fm f'“ ’“w(a:dy—ydw)
wu, w, U = < . R . e G
o’ Jap’ Jaa Nz, y)r
e e o)
w 'l V(@ yy
that is,

u=<f+/)ﬂ£iy—w_w> ,,=(/‘+f‘)m.v___—m,

« Jo) T N, gy « Jo/ Nz gy

where a, B are points assumed at pleasure on the quartic: and similarly for «', v': u”, v”:
then u, v are hereby determined as functions of the points 1, 2: and we may con-
versely regard the points 1, 2 as determined in terms of the two arguments u, wv.
We might, selecting any two symmetrical functions of the degree zero, for instance,
- ‘fz, %, represent them as functions ¢ (u, v), Y (w, v); and then 1 oand 2 will
B Y %y % Y2

be functions of ¢ (u, v), Y (u, v). But instead of this selection, it is proper to consider
the ratios of six functions depending on the points @, b, ¢, d, e, f respectively: viz. we
assume

\/(-131 — ayy) (@ — aye) : \/(-Tl — byy) (@2 — bys):.. : “/(wl:'ffll)("”z -f.%)
= A (u, v) ; B (u, v) {51 F(u, v),

and of course 3, 4 will be in like manner determined by means of the corresponding
functions of «, ¢, and 5, 6 by means of the corresponding functions of «”, »". The
squared functions A B, C® D* E* F*® are proportional to given linear functions of
&%y, BYs+ B, Y., and are thus connected by three independent linear relations.

156. The differential relations then become

du+du +du’ =0, dv+dv +dv”' =0,
and we have consequently
u+ W+ wW'=I v+ V4 VvV =J

where 7, J are constants which are determinable as definite integrals by the con-
sideration that, when the cubic is taken to be Az+ B =0, the six points 1, 2, 3, 4, 5, 6
coincide with the points of contact a, b, ¢, d, e, £ 1 do not at present see my way
to a proper development of this point of the theory: but in explanation of the nature
of the result, I assume for the moment that by a proper determination of the inferior
limits a, B, or otherwise, we may take /=0, J=0. We then have v’ = —u—u/, v'=—v—2';
and the integral equations, which determine the points 5, 6 in terms of the points
1, 2 and the points 3, 4, then in effect determine the functions A4, B, &ec., of
—u—w, —v—2v, or say those of u+u, v+ in terms of the like functions of
(u, v) and of (@, v): viz. these equations give the addition-theory of the functions
A (u, v), &c.
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157. We may, in the first instance, disregarding altogether the consideration of the
arguments wu, v, &c., attend only to the algebraic functions such as v (;lfdg/i) (wg;&y;), &e.,
of the coordinates of the pairs of points 1, 2; 3, 4, and 5, 6; and we can in regard
to these develope a proper theory. This depends only on the equation Q=V(z, »);
it will be convenient to assume herein y =1, and slightly modifying the form, to
write it

(@ B, v, & lp=VNa—z.b—z.c—z.d—zx.e—2.f—2;

and accordingly to consider the functions ~¥a —a,.a—w, &c. These are called the
single-letter functions A, &c., but there are certain double-letter functions 4B, &c.,
which have also to be considered; and I will, in the first instance, show how these
present themselves in connexion with the cubic curve.

Origin of the Double-Letter Functions. Art. Nos. 158 and 159.

158. The cubic curve Az + B= may be taken to be a curve through two of
the points of contact, say the points @, b; these will then be two out of the six
points, and taking the remaining four points to be the pairs 1, 2 and 3, 4, we have
single-letter functions of 3, 4 presenting themselves as double-letter functions of 1, 2.
In fact, the equation of the curve is

Az + B=A\(z— ay)(z — by) (z — ky) ;

for the intersections with the quartic we have A (z—ay)’(z—by)(z—ky)*=0% or
throwing out the factor (2 — ay) (2 — by) and changing the constant A, this is

(@ —ay) (@ — by) (2 — ky) =\ (2 — cy) (x — dy) (@ — ey) (@ — fy) =0;
and the quartic function must be a multiple of
(@, — @y (@y: — 22y) (2Ys — Bsy) (2Ys — 24Y)-
Putting each of -the y's equal 1, we have the identity
(@ — ) (=) (k— 0 — X (o — @) (d — ) (e — #) (f — ) = s (a1, — @) (23— @) (@ — 2) (2, — ) ;

and hence, introducing a notation which will be convenient, ¢ —#=a, o —z =a,, and
so in other cases, we have by giving different values to # the equations

a, b k?=2Ac,d; e, f,, (@a—c)(b—c)(k—c)*=uc,cycyey,

agb kot = Acgd,ef;, (a—d)(b-d)(k—d)*=pd,d,dyd,,
agby k.2 = Negdge,f;, (a—e)(b—e) (k—e) =pee.eze,
a,bk2=Ac,d,e,f,, (a—f)O—fF)(k—f)r=phttf,

—A(c—a)(d-a)(e—a)(f—a)=muaa,a,a,

—A(e—b)(d—b)(e—b)(f—b)=pb,b;bsb.
26—2
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We have thus
(a—c)(b—c) (c—k P GGy
(a—d)(b-d) (d-—k) ~ dydyded,’
and
k? _asbye,d e f;

2 a,bc.dsef,’

which last equation, writing for a moment «, 8 =Va,b,e,d, e f;, \/alb;é;agez_fz, gives

ke — a,
lc—.%:g’ whence % (y — 8) =@,y — 2,8, and thence

c—k_ ye—8¢ _ \/ _C;C—g {\/avzlgc;dl e, f, — Va,b,c,d,e,f)}
d—k  «od,—8d,  vd,d, (Va,b,d,c,e,f, — Va,bd,coenfs}

or, substituting in the first equation, we have

Va—o)b—c) Vabadefi-vabadef Ve

V@—d)y(®—d)  Vabydscierf — Vabidice.f, Vdyd,

159. Considering the duad DE as an abbreviation for the double triad ABC.DEF,
the expressed duad being always accompanied by the letter F, we are thus led to
the consideration of the double-letter functions

s

&y — &y

AB,= (Vab fiedse, - Vabofiediel], &,

in connexion with the already mentioned single-letter functions 4, = Va,a,, &e., viz.
in this notation the equation just obtained is

Cs _ (a—c)(b—c) DE,,
-D:;l— (a’_d)(b_d) C 1-.’,

and it thus appears that, the points 3, 4 being obtained as above from the given
points 1, 2, then the quotient of two of the single-letter functions of 3, 4 is a
constant multiple of the quotient of two of the double-letter functions of 1, 2.
Observe that the points 3, 4 are derived from 1, 2 by means of the two points a, b:
we have DE standing for ABC.DEF, CE for ABD.CEF, and if the two functions
were represented by ABC, ABD respectively, then the form would have been

Cu_ [fla=c)(b—c) ABOC,

D, 'V (a—d)(b—d) ABD,’

which is a clearer expression of the theorem; the apparent want of symmetry of the
first form arises only from the arbitrary selection of the letter F to accompany the
expressed duad, and is at once removed by substituting for a duad DE the triad
ABC.DEF which is thereby signified. The denominator factor @, —&, is introduced in
order to make the degree in #; or x, equal to that of the single-letter functions.
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The Addition Theory. Axt. Nos. 160 to 163.

160. We have the six single-letter symbols 4, B, U, D, E, F; viz. A,,=Vaa,, &c.:
and the ten double-letter symbols AB, AC, AD, AE, BC, BD, BE, CD, CE, DE, viz.

ABy= 1 (Vabifiode,— Vabhade), &,

2, — @,

these 16 functions being connected by algebraical - relations which are immediately
deducible from these expressions of the functions in terms of ,, #,. The problem
is to express the functions of 5, 6 in terms of those of 1, 2 and of those of 3, 4.
The relation between the variables @, @, @, @,, @5, #; consists herein that we have
@y, @, &, Ty, 5, x5 as the roots of the equation

(az® + Bz* + qz + 8P =N (a—2) (b— @) (c — @) (d — ) (e - &) (f —2)=0;
or, what is the same thing, it consists in the identity
(@ + B+ 4w + 8F = A (a—2) (b — ) (6= @) (= @) (¢ = 0) (f = )
— p (@, — ) (2 — ) (25 — ) (@ — &) (25 — ) (% — 2) =0.

Again, it may be expressed by the plexus of equations

1 10N 4% H [, 3ok T, 1 =),
%, @&, z; , Zy Z5 L
?, z? , z? zg, g, xg
zd, xp, xF, af, s, @
|
{ '\/Xl’ ’\/Xz; N/X-s, ’\/Xn ’\/Xm /\/Xs 1

where X,=(a—a)(b—a)...(f—a), &c.; these are equivalent of course to two
equations, and serve to determine z;, #; in terms of =, x,, @;, ,.

161. The solution is, in fact, as is given in my paper “On the addition of the
double S-functions,” Crelle, t. LxxxvIiL (1880), pp. 74—81, |[703]. Writing successively
r=ux, X, X, Ty, We have

axy’® + B + o, + d=vA VX,

az,’ + By’ + vy, + 8=vVA VX, i

az,® + Bag® + oy + 3 =VA VX,

azd + Brd + yr, + 8 = A VX,
which equations serve to determine the ratios a : B : 4 : & in terms of ), @, @, #,;
and we have then the two like equations

oxs® + Bas + yas + S =VA VX,

oz + Bxg + yzs + 8 = YA NV X,

which determine the symmetric functions of z;, .
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If, reverting to the identity, we write therein for instance z=a, we find
ad® + Ba* + ya + & = ‘\/;AHA:MAM)

which equation when properly reduced gives the proportional value of Ag.

162. Calling for a moment the function on the left-hand side Q, we have

& el ol AN A R0
o X DR V) WV,
‘ 7 KRS M R RV WV D, ¢
S A T RV SRV D,
BT AR R A QO
that is,
Q'lad tel w0 TENN B w e LA X =0,
z’, @, @, 1 ! e o) [ Vi X,
T p s T 7Bl SRR AR i 5.
o Ul e it v R R Y .6 !
@t ihaM v Al 0 l
viz. this is

Q (2 — @) (81 — @) (@1 — @) (@ — @3) (22 — @) (@5 — 2,)

=—VANWVX, 20—y @y — Ty By — O By — Xy Ty — O —
VX, By By — O By — By By — Ty — Ty O~ 2,
VK, BB — ) B — Ty A — By O — Ty Ty — D,

+\/X,.a—w1.a—w.z.a-—x,,.w?—wa.wz—w‘.zs—w,},

or, as this may be written,
Q.= 0 — Xy By — 2y T — 2

Vi.a—a.0—a,

[825

= _ - {mz—x3.w._,—w4.a—a:2.N/Xl—(wl—ws.xl—m.a-wl.\/X;,)}

&y — &y

We have here VA .a —,. @ —x,= VA A%,, and the function

1

{wg—ms.wg—m4.an,\/X; —(vy— @y, — @y .0y '\/Xg)},
&y, — Ty

which multiplies this, is without difficulty found to be

_A12

= c"_d—'&‘:‘b-b‘_hc 2 {C —-d. BZ“BEH # 012 . .Dm},

www.rcin.org.pl



825] A MEMOIR ON THE ABELIAN AND THETA FUNCTIONS. 207

where the summation extends to the three terms obtained by the eyclical interchange
of the letters b, ¢, d: these being a set of three out of the five letters other than a.

Similarly VA.a—z .a—m, is =Vr A%, and the function which multiplies this is

— _'A:“
Te—d.d=b.b—c

S {c—d . B, BE,C, D).

The expression for Q thus contains the factor A,,4,: but we have
Q, =ad +ba +ca+d, =Vud,Audy;
this equation contains therefore the factor A,,4,, and omitting it we find

_._:/i%(xl_-’l/'g.évl—-T.;.wg—w3-w2—$4)(c_d‘d_b'b_C)A“
S 2 {C —-d. B2:uBE12012-D12} ir Alzz {C -d. B2‘2BE3‘C"MDH}’

where, as before, the summations refer each to the three terms obtained by the
cyclical interchange of the letters b, ¢, d; these being any three of the five letters
other than «: and the remaining two letters ¢, f enter into the formule symmetrically.
The formula thus gives for A, ten values which are of course equal to each other.

By reason of the undetermined factor %, the formula gives only the proportional
value of Ay ; viz. combining it with the like formule for By, &c., we have determinate
values of the ratios Ay : By:.. : Fy. But this being understood, we regard the
formula as a formula for each single-letter function of z;, #, in terms of the single

and double-letter functions of ,, #, and of =z, =, respectively.

163. We require further the expressions for the double-letter functions of , .
Consider for example the function DEy, which is

=1 Wa,efabe — Vdedabyer;

X5 — &g

then multiplying by A,ByCy, = Va,bsc,asbec,;, we have

1” {aebsce "/:Ys — azbyc, \/X;},

Zs — &g

DEA . BeCr—

or recollecting that y/A v X, and Ay X, are = az® + B + ya; + 8 and azg’ + Bag + vy, + &
respectively, this may be written
VA DBy Ay BuCla = —— a0 — @y . b— y. 6 — . (atr® + Bir? + iy + )
= %
— (@ — ;. b — 5. ¢ — @) (azd + Bag + ya, + )}
Using the well-known identity
br—ws.c—%. d — g

5 2 il 3 2 e
azsd + B + ya, + 8 =3 .ad® + Ba*+ ya + 8. b—g.c~dd~a !
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where the summation extends to the four terms obtained by the cyclical interchanges
of the letters a, b, ¢, d: and the like identity for az?+ Bag@+ ya+ 6: there will be
terms in a0’ + Bat+ ya+ 8, ob®+ Bb* + b + 8, ac® + Bc* + yc + 8, but the term in
ad? + Bd*+yd + & will disappear of itself. After some easy reductions, the result is

V% DEy A By 2 22 H B LUEH R by 0,

where the summation extends to the three terms obtained by the cyclical interchanges

of the letters a, b, c. We have aa®+ Ba*+ya +8 =V . AyAy Ay, and similarly for the
other two terms; the whole equation thus divides by A, B;Cy%, and we find

Vu i} ’\/,u,
-~ DE, = s s—a a5 () -E b c. AuduBuCu)
: ; o ; : ’\/y. N/,u. Vi
in which equation, if we imagine A A gl e Bt XA 056, each replaced by its value in

terms of the single and double-letter functions of w,, @, and #;, #;, we have an equation
of the form

Va i 1

— (X =y Wy — @y Ty — By By — X)) DBy =
oy By — Xy By — Xy Ly — g . Xy — Xy

where M is a given rational and integral function of the single and double-letter
functions of #,, @, and @,, @#,. The factor on the left-hand side has been made the
same as in the formula for the single-letter functions A, &c., and to do this it was
necessary to bring in on the right-hand side the factor

1

Ly — Xy Xy — By . Ly — Xy o Xy — Ly

this disappears in the expression for the ratio of two double-letter functions; but it
enters into the expression for the ratio of a single-letter to a double-letter function,
and it then requires to be itself expressed in terms of the functions of @, @, and
@, ®,: it 1s easy to see that we have

s (Az B“lz —A 123234) (A 0212 A 120234)
(a—b)y(a—cy

By— By By — By By — Ly By — Xy =
where the summation extends to the three terms obtained by the cyclical interchanges
of the letters @, b, ¢: these being a set of any three out of the six letters.

We have, in what precedes, obtained the expressions for the ratios of the 16
functions A, ..., Fy, ABy, ..., DEgin terms of the ratios of the like functions of #;, ,
and a,, x,.
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CuaprEr VII. THE Funcrions T, U, V, 6.

The present chapter is substantially a reproduction of C. and G.s seventh section,
“Die Function T%”, borrowing only from the next section the definition of the
theta-function; but for greater simplicity I consider for the most part, the case, fixed
curve a quartic, n =4, p= 3.

Integral Form of the Affected Theorem. Art. Nos. 164 to 169.

o n—2
164. Writing for shortness @9, gi%—g(f

a
f dII,, which present themselves in connexion with the affected theorem: the notation
¥

=dIl,,, we are concerned with the integrals

is explained, Chap. V.; a, ¢ are points on the curve, f; the variable may be any
parameter serving for the determination of the current point, and the integral, taken
from the value which belongs to the point @ to the value which belongs to the
point @, is represented as above by means of the two points @, ¢’ as limits of the
integral. It is assumed that the integral is a canonical integral having the limits and

a 1
the parametric points interchangeable, f dll, = f dIl,y: see Chapter IV,
a 2

165. Writing for shortness

a b o sl oy
(["'/ +f +'-'>dnl‘2= <a/ ’ / )dnrz»
Ja b ¢ a,b,c,...
then if ¢, 4 are curves each of the order m, the former of them intersecting the
fixed curve f in the points @, b, ¢,..., and the latter of them intersecting the same
curve in the points «', ¥, ¢,..., and if ¢,, Y, ¢, ¥, are what the functions ¢,

become on substituting therein in place of the current coordinates the values which
belong to the parametric points 1, 2 respectively; the theorem becomes

[y o) amamtog 220

The superior limits may be interchanged in any manner, and so also the inferior
limits may be interchanged in any manner. If a superior limit coincide with an
inferior limit, the two may thus be considered as belonging to an integral which
will then have the value 0, and the coincident points may therefore be omitted from
the expression on the left-hand side: and so in the case of any number of coincidences.

166. If the intersections of the curves ¢, Y and the parametric points are
situate on a curve of the order m; then taking the equation of this curve to be
¢+Mp=0, we have simultaneously ¢+ A, =0, ¢, + A, =0; whence ¢, =y ¢,, and
the logarithmic term disappears: viz. the theorem becomes

”(‘a, b, c/,..:> dl'[l?=0.

JNas b el
O,) X1, 27
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167. Suppose that the curves ¢, 4 are each of them a major curve, that is, a
curve of the order n —2 passing through the & dps, and consequently besides meeting
the curve f in n(n—2)—28, =2p +n — 2 points : the theorem is

G5 iDy Cosides e P
f(a,, bl, C’, > dHu— IOg ¢1"l"2,

where the numbers of the superior and of the inferior points are each =2p+n — 2.

168. Suppose further that the curves ¢, 4, being major curves as above, pass
each of them through the n—2 residues of 1, 2; they besides meet in (n—2)(n—3)
points, viz. these are the & dps and (n—2)(n —3) — & variable points: these (n—2)(n—3)
points lie on a minor curve, that is, a curve of the order n—3 passing through the
dps; and the minor curve together with the parametric line 12 make together a
major curve, passing through the intersections of ¢, ¥ and also through the parametric
points 1, 2: viz. these points and the intersections of ¢, yJr are situate on a curve of
the order n—2; the logarithmic term thus vanishes. The intersections of ¢ with the
fixed curve are the & dps, the n—2 residues and 2p other points, say these are

a, b, ¢c,..., a*, b ¢ ...; similarly the curve y» meets the fixed curve in the & dps, the
n—2 residues, and in 2p other points, say these are d, ¢, f,..., d%, €, f* ...: the
theorem 1is

f(a, biiay i L o Rl
M R R I

where there are 2p superior and inferior points respectively.

) dIl, =0,

169. I introduce the definitions: a minor curve meets the fixed curve in the
dps and in 2p—2 other points, called “cominors”: a major curve passing through
the n—2 residues of the points 1, 2, meets the fixed curve in the & dps, the n —2
residues and in 2p other points, called “comajors in regard to the points 1, 2.”
Observe that p—1 of the cominors determine uniquely the remaining p—1 cominors;
and similarly p of the comajors determine uniquely the remaining p comajors.

The foregoing theorem thus is that the sum / ( )dl‘[12 is =0, when the superior

points and the inferior points are each of them a system of comajors in regard to
the parametric points 1, 2.
Fized Curve a Quartic. Art. No. 170.

170. It would be easy to go on with the general form; but as already mentioned,
I prefer to consider the case, fixed curve a quartic, n=4, p=3. A minor curve is
here a line meeting the quartic in 4 points, which are “cominors”; the major curve
is a conic, and if this passes through the residues of 1, 2 it besides meets the
quartic in 6 points, which are “comajors in regard to the péints 1, 2”7 Two points
and their residues are cominors, but this is only by reason that n—3=1.

The Function T. Art. No. 171.
171. In conformity with C. and G., I introduce the functional symbol

@, b, ¢, [18,b,0,..
N e A L R L
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so that 7' denotes a function of the parametric points, and of the sets of superior
and inferior points respectively. The foregoing theorem for the quartic thus is

a, b, ¢, a%, b%, ¢*\ _
Ta(g e, f, &, ¢, f*)"o'

fa.+ ax_2/‘a—fa 3 d

)
a ax vd ax ax

Observing that

and so in other cases, this may be written

a,b,c_ a,b,c d’e’f .
2T12 (d, e, f) by le (ax’ bx’ cx) e Tm (dx, ex’ fx) )
and if, as a definition of 7%, (e, b, ¢), we write

Tw(a’ b, c)=T12<a vbs C>’

arios, o
where a*, b*, ¢* are the comajors of @, b, ¢ in regard to 1, 2, then the equation is

a,.0, ¢

2T, (d, e f

viz. the function of the (2p+2=)8 points 1, 2, @, b, ¢, d, e, f is here expressed as
a difference of two functions each of (p+2=)5 points: Ty, (a, b, ¢) iz regarded as a
function of the 5 points 1, 2, a, b, ¢, because the remaining points «*, b*, ¢* depend
only on these 5 points.

>= Tw(a; b, C)— Tm(d: 2 f):

The Function U, Art. Nos. 172 to 175.

172. We consider on the quartic the points & p; 1, 2, 3; and take f, f’ for
the cominors of 2, 3; g, ¢ for the cominors of 3, 1; and A, A for the cominors of
1, 2. We write

& =T€F(1» 2, 3);

Tl = Tl#(f} .ﬁ f’)’ T2 i th (E’ 9, !]'), T3= Tsu(f; h: hl);
it is to be shown that there exists a function U (1, 2, 3; §), such that
SU=1% {81+ 8T+ 8T, + 8Ty},

viz. considering £ 1, 2, 3 as variable points on the quartic, the whole infinitesimal
variation of U is the sum of these parts, where §;7 is the variation of 7' when only
g is varied, &7} the variation of 7) when only 1 is varied, and similarly for 8,7,
and 8,7,. We consider in the proof three other points 4, 5, 6 on the quartic; .and
taking [/, I’ for the cominors of 5, 6; m, m' for those of 6, 4; and =, o' for those
of 4, 5, we writc further

X,=T.. (4 L V), | Xe=Toui(6) my ml);  Xy=Ty, (65 0y 0
27—2
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and it then requires to be shown that

123 |

27 =[(4g) Mt 4704, 5, 6)
_ [/E56 423,156
¥idirad ‘/(423) A, +log - 293
oot s u31 . 264
3T - X) '[ <531> AL, +log i a3
545 ;/,12 345

’}(T XJ) f(612 dH3#+l g - 123,

where w23 is the determinant formed with the coordinates of the points w, 2, 3
respectively: and so in other cases.

173. We have
12,78 | i
Tu(y 5 6) =300 2 8)= 70 (s 5, 6)
that is,
=3T - 3T:. (4, 5, 6),
and thence the above value of 4 7.

The affected theorem gives

2, 3 il
| (szc 5) hu=Tog 77",
where F'=0 is the equation of the line through f, 7', 2, 3; and F,, F, are what the
function # becomes, on substituting therein for the current coordinates the coordinates
of the points 1, u respectively. And similarly L=0 is the equation of the line
through ¢, 7, 5, 6; and. L,, L, are what the function L becomes by the same sub-
stitutions respectively. The values of F,, F, are 123, u23: those of L,, L, are 156,
w56 ; and the logarithmic term is thus
i gy.23 156
u56.123°
We then have

e om [ L) = (83 g [0 Y,

and in this last expression for #(7)— X,) substituting for the second term the
logarithmic value just obtained, we have the required expression for 4(7)— X,): and
those for 4(7,— X.) and % (7;— X,) are deduced by mere cyclical permutations of the
letters. :

174. Returning to the assumed relation 8U =4 {87+ 8,7, + 8,7, + 8,7} ; in order
to the existence of the function U, it is only necessary to show that 7'— 7, con-
tains no term in 1, £ that is, no term depending on both these points, and that
T,— T, contains no term in 1, 2: for then, by symmetry, the like properties hold in
regard to 7'—1,, T'—=1T,, T\ =T, T,— T, respectively, and the assumed expression is a
complete differential, from which the function U may be obtained by integration.
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175. To show that 7'— 7T, contains no term in 1, &

T
For T, the only term in 1, & is { dIly,,
V4

i A S ; [am,,

v 4

and it is to be shown that the difference of the two integrals contains no term in
1, & Considering on the quartic the two new points 8, €, the first integral is

1, ) 1 8 1
f (8 4) (AT ) =f 0 f dllg + f T,
> 8 4 /i

and the second is

£ e ¢ ¢ é
f( i 4) (dnls + dIISp.)y =f dHIS +f dns,‘ +f dH,s,,,.
€ 4 "

€,

Hence in the difference the only terms which can contain 1, § are

1 3
f EyT i f dIl,
) €

and this is =0: wherefore there is not in the difference any term in 1, &
This proves the property for 7'— T,. The property for 7, — 7, is proved in a similar
manner.

Theorems n regard to the Function U. Art. Nos. 176 to 179.
176. Theorem (A). To prove

we have :
& ¢

U, 23 H-U 2 3; w=[ aU=i[ ar
" ®

=%T§#(1’ 2: 3)—%]1##(1, 2’ 3);

and Gt e syl B OV any. where dl, w0, vid. considering this 88, derived
(23 lx 2x 3>< [ g

from dIlg,, = Q. dw, by making the point £ coincide with w, then when £ is indefinitely
near to u, the numerator and denominator of @), are each of them infinitesimal of
the orders 3 and 2 respectively, and thus the function ), ultimately vanishes (see as
to this, Chap. V. Art. Nos. 99 to 106). We have therefore 7,,(1, 2, 3)=0, and the
required theorem is proved.

177. Theorem (B). To prove
U, 23, )-U4 2, 3; HH=3Tu (& £, /") (B)

where, as before, f, f* are the cominors of 2, 3, that is, 2, 3, £, /' lie on a line, we
have

U, 2 3; §-U@, 2 3; g):deU:%fllel
. =3Tw(& f, ) —3Tw(E 1 )
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the point w is arbitrary, and it may be taken to coincide with 4; but we then have
Tu(& f, f/)=0, and the theorem is thus proved.
178. Theorem (C). We have
Tox (& £, f))+ Tux(n, b, K)=0; ©)

where £, 9, 1, 2, 3 are arbitrary points on the quartic; 1%, 2%, 3% are the comajors
of 1,2, 3 in regard to & #, viz. the points 1, 2, 8, 1% 2% 8* lie on a conic which
passes through £, #' the residues (or cominors) of £ n: f, f' are the cominors of
2, 8; and k, k' are the cominors of 2%, 3%

Taking 6, 6 for the cominors of 1, 1%, the four lines &n&y’, 11%06', 23ff" and
2%3%kk’ form a quartic cutting the fixed quartic in the 16 points: but of these,
g 7,1, 2 3, 1% 2% 8% lie in a conic: hence the remaining 8 points 6, &, & =,
fo f' b K lie in a conic; that is, & =, £, f, k, ¥ lie on a conic through 6, &, the
residues of 1, 1%, or they are comajors in regard to 1, 1*; whence the theorem.

179. We have
From A. From B.

& S f)=UE S5 D-UE S f5 19, =UQ, 2,3; H-U71%23; &),
YT (m, b, K)=U(n, kb, ¥; 1)=U, k, k; 1%, =T, 2%, 8; 9)-UQ*% 2, 3; 7);
viz. we have thus two expressions for each term of the equation (C),
Tux(& £, f)+ Tux(m, k, K')=0.
In particular, we have Theorem (D)
U@1,28; -U@1%2,38; §=-U(1, 2% 3 9+ U1* 2% 8 9). (D)

Again, we have T (1, 2, 3)+ T (1% 2% 89)=0; where 1, 2, 3, 1%, 2%, 3* are
comajors in regard to £ #: and

37,(1,2,8)=U0(@1,2,3;8€-U@1,2,3;m9),
1T, (1% 2% 89)=U(1* 2% 8 § - U1 2% 3 9);
whence Theorem (E),

UQ,2 8; §§-UQ, 2, 3; n)==-U@1% 2% 8 £+ U@A% 2% 3% 9). (E)

The Function V. Art. Nos. 180 to 182.

180. It is convenient to consider U as a logarithm, say

-U@1,2 8; &) =logV (1,2, 8; &, or V1, 2, 3; E)=exp.—U(1, 2, 3; &);
V, like U, is a function of the (p + 1=)4 points 1, 2, 3, £ on the quartic.

The equation (D) thus becomes

Vi,2,8; 8- ¥7a%2,8;5 8
VS 25850 V(1,258 )
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where 1, 2, 3, 1%, 2%, 3 are comajors in regard to & #: the equation shows that, in
Va2 3; § ; . g
VX 2 55 1)’ we can without alteration of the value interchange a
pair of points 1, 1* out of the system of comajor points; and it of course follows
that we can in any manner whatever interchange these points, so as to have any
three of them in the numerator-function and the remaining three in the denominator-

function. In particular, we have
V{2 3; 8 _Vay 23§
L BAR L Y e F  BE TE A
The equation (E) becomes

POL2.5: B T8 )
V(1,2 8; 0 ¥Q@52,9;§’

the function

and multiplying we find

21,2 3; H=12(1% 25 8% 9),
that is, V' (1, 2, 3; &)=+ V(1% 2% 3%; g), the sign being determinately + or determ-
inately —, according to the precise definition of the function V.

181. Considering » and also 1%, 2%, 3 as fixed points on the curve; but & as
a variable point (that is, the parametric line &y as rotating about the fixed point %),
the points 1, 2, 3 are then determined as the remaining intersections with the quartic of
the conic which passes through the points 1%, 2%, 3% and through the points &, 7', which
are the residues of £ 7. And by the theorem just obtained it appears that, & 1, 2, 3
thus varying, the function V' (1, 2, 3; &) remains constant. This comes to saying that
V, considered as a function of the points 1, 2, 3, £ satisfies a certain linear partial
differential equation of the first order, having a solution . V=F(u, v, w), an arbitrary
function of wu, v, w, determinate functions of the points 1, 2, 3, & And if we can
find u, », w functions of these points such that they each of them remain constant
when the points 1, 2, 3, £ vary as above, then the arbitrary function of w, v, w will
remain constant for the variation in question and will thus be a value of the function V.

182. It is easily seen that such functions are

u, v, W= (J1+f2+f3—ff)wdw, y dw, zdw,

the inferior limits being given points which are regarded as absolute constants. For

by the pure theorem, we have
3 (2, y, 2ldo =0,

where (z, 9, ) is an arbitrary linear function, and where the summation extends to
all the intersections of the quartic with any given curve. Writing

i 1 1
p=fwdw, fydm or fzdw, that is, p1=f zdw, fydw or fzdw,

the inferior limits being any absolutely fixed point on the curve, and similarly
Ps, &c.; the integral form of the theorem is Zp= constant. And applying the theorem
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successively to the parametric line, and to the conic which determines the points
1, 2, 3, we have
Dt +Pq + g + py = const,

P+ Py + D1+ Ps + Ps + Prx + Pax + pyx = const.
Taking the difference of these equations, we have

Pr+ P+ P — Pe + Prx + Pax + Pyx — Py = coust.,
viz. the points », 1%, 2%, 3% being fixed points, this is

P+ P2 + p; — pg = const.,

that is, the functions u, v, w defined as above are each of them constant under the
variation in question.

The Function ©. Art. Nos. 183 and 184.

183. The function V' (1, 2, 3; ¥) of the (p+1=) 4 points 1, 2, 3, £ is thus a
function of the (p=) 3 arguments

1 2 3 3
u, v, W, =(/+[ +f —f )-wa, ydw,zdw.

Disregarding a constant and exponential factor, we say that it is a theta-function of
these arguments, and we write the result provisionally in the form

vV, 2 3; £)=0 (u, v, w),

the more precise definition of the theta-function being reserved for further con-

sideration.

184. It appears by what precedes that a sum of (p=)3 integrals f (g:;‘) dil,;,

otherwise called 7%, (g’ 2’;), is in the first place expressed (see No. 171) as a difference,
=4Ty(a, b, ¢)— 4T (d, ¢, f), of two functions 7' Each of these is by Theorem (A)
(No. 176) expressed as a difference of two functions U, that is, as the difference of
the logarithms, or logarithm of the quotient, of two functions V: such function V is
according to its original definition a function of (p+1=) 4 points, but in such wise
that the function is expressible as a function of (p=) 3 arguments, and so expressed
it is a O-function of these arguments: and the final result thus is that the sum of
(p=) 3 integrals / (g’ 2’ ;> dIT,, is equal to the logarithm of a fraction, whereof the

numerator and the denominator are each of them a product of two ®-functions.
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