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ON A THEOREM IN THE DIFFERENTIAL
. CALCULUS.

By E. W. Hobson,

SUPPOSE it is required to express the result of the
operation
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where F, ¢ are any functions, and f, is a rational integral
homogeneous function of degree n in the differential operators ;
it 1s clear that the expression can be exhibited in the form
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where x,, ¥ +++y X.., denote functions of the p variables,
the form of these functions being independent of the form
of F, and depending only on f, and ¢. To determine the
functions y, we may take F to be of any form which is
convenient ; let ' {¢} = ¢" the n"™ power of ¢, we have then
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where on the right-hand side %, A, ..., %, are all put equal
to zero after the operation is performed.
Using the Binomial Theorem, we have
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operating on both sides of this equation with

f (_Q 29 ,Q)
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we obtain an equation which must be equivalent to (1);
comparing the coefficients of ¢", we have
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where %, %, ..., k, are all put equal to zero after the operation
is performed.

We have thus obtained the following theorem—
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where P= (2, + by 2,4 by voey 2,4+ h) = G (245 Ty 00y Ty
and %, h,, ..., h, are all put equal to zero in the result.

Tt is clear that the coefficient of Z—n"—_ﬁrv in (2) may be
expressed in the form ¢
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The particular case of the theorem (2) in which there is

only one variable z, so that f, (£)=c%=; is given in

Schlémileh’s Compendium der hiheren Analysis, Vol. 11.
- I shall now consider a case in which the theorem (2) takes
asimple form; let ¢ (z,, 2,y ..oy 2 ) =2, + 2.} +...+ 2, =p’; in

d"TF
this case the coefficient of . or ———= is
dé d(p)™
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where k:=0, A= vy b =0; the only term in this ex-

: : I
pression which does not vanish is
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for this is the only term in which the degree of the operand
in Ay Ay .ouy h, is the same as that of the operator in
N R
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It is easily seen that if £, , are two functions of the same
degree n,
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it follows that the coefficient of g—)-‘:; is equal to
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then the above expression is equal to
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we have thus obtained the following theorem :—
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where v’=a_’+_3:+ +E.
oxp T O oor axpn
and P=z'+z’+..+z

. The theorem (3) I have given in a paper* “ On a theorem
in Differentiation, &c.,”” where it is deduced from the theory
of Spherical Harmonics.

* See Proe. Lond., Math, Soc., Vol. xXx1V., p. 67
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In the particular case F'(p*) = p?* the theorem (3) becomes
i (a 0 a> 1 (=1)"(p-2) p(p+2)...(p+2n-14)
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It is well known that —%_—, is a solution of the equation

v'V'=0, and it follows at once that
0 0 g\ 1
P (a—xl) a_x,’ (8] 5_;?) p_’;’
satisfies the same equation, we see therefore that the expression
on the right-hand side of (4) satisfies the equation v’V=0;
now it can be verified at once that if V, (@), @, ..., x,) is a
solution of the differential equation, so also is

V(@ @y o0y )
M +p=3 ?

we see therefore that the expression
&
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satisfies the differential equation v*¥'=0, when f, denotes any
homogeneous integral function of degree = in the variables
Ty &gy ooy 2, All the solutions of v* V=0 which are rational
algebraical ‘functions of the variables may be obtained by
giving f various values; for example, the zonal harmonic is
obtained by putting £, ="

A case of (3) which is of considerable importance is
obtained by taking f, (2, @, ., z,) to be a solution of
V'V=0; denoting the solution by S’A(ml, Ly ooy 2,), the
theorem (3) becomes
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In particular, we have
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Where, as before, p* denotes 2," + 2,* +...+ 2
Christ's College, Cambridge.
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