
LINKED TWIST MAPPINGS : ERGODICITY
by

Feliks PRZYTYCKI

Institut des Hautes Etudes Scientifiques 35, route de Chartres91440 - Bures-sur-Yvette (France)February 1981IHES∕M∕81∕2O

*) . . .' The author gratefully acknowledges the financial support of the StιftungVolkswagenwerk for a visit to the IHES, during which this paper was written.

www.rcin.org.pl



- 2 -
Contents
§ 0. Introduction’ § 1. Ergodicity of toral linked twist mappings.§ 2. Ergodicity of linked twist mappings (l.t.m.’s) built with strong, at least double twists, a general case.r § 3, Graphs of linkage of l.t.m.’s. ,,'w√√4..1, § 4. Other observations :Density of periodic and homoclinic pointsb) Further generalization of l.t.m.’s, compositions of Dehn twistsc) Perturbations of a twist by a "saw”d) Bifurcations of the toral automorphism

www.rcin.org.pl



- 3 -
§ 0. Introduction

In the paper we study ergodic properties of a simple class of conservative dynamical systems (piecewise smooth homeomorphisms of surfaces) called linked twist mappings.
Using elementary geometry we prove that if the twists are strong enough, then together with the fact that Lyapunov exponents are nonzero, this implies the l.t.m. and all its powers are ergodic, so Bernoulli. We define and study a large family of l.t.m.’s. But let us start with the2 2following example : Let T be the standard torus K ∕Z × Z and let. . 2P , Q be closed annuli in T defined by

p = {(x,y) ∈ T :yo < y < yl , x2Q = {(xsy) ∈ τ : xθ < X £ x1 , y arbitrary}arbitrary}
Take any nonzero integer k and a linear function f J <yθ>y∣ > ÷ <θΛ>(or<k,0> if k < 0) which satisfies the properties f(y ) = 0 , dff(y∣) = k . Call the number α ≈ the slope. A (k,α)~twist map (or k-twist map) F on P is defined by

F(x,y) = (x+f(y),y)
so F is the identity on both components of the boundary of P and rotates each circle y = constant by an angle f(y) . Similarly, by inter­changing the roles of x and y , we define an (£, β)-twist map (or twist map) G on Q

G(x>y)≈ (x,y+g(x) ) , with the slope
Extend F and G to P II Q by the identity to F and G .The toral linked twist mapping is the composition

www.rcin.org.pl



- 4 -
H = Hc = GoF on P ∪ Qf,g 2Observe that H preserves Lebesgue measure on T ' . We shall considerH together with this measure. In § 1 of the presented paper we prove

Theorem A : If a toral linked twist mapping H is composed from (k,α) - and (£, β)-twists where k and £ have opposite signs, ∣kj , ∣fc∣ _> 2 and lα∙βl > constant C ≈ 17.24445, then H and all its powers are ergodic.1 1 oIn fact H is a Bernoulli mapping. □
At the end of § 3 we show how the assumptions ∣k∣ _> 2 , |£| >_ 2 can be weakened. Toral linked twist mapping were introduced by Easton [51 (However it seems that the basic phenomena were observed earlier by Oseledec, see [9, ch. 3.8] ) From Wojtkowski’s paper [13] it follows that assumed ∣αβ∣ >4 H is almost hyperbolic. So P U Q decomposes into a countable/ ∙,-C / % φ -J ∙ *, 1 <"family of K-comρonents. In view of that, the ergodιcιty of all powers ofH in Theorem A implies that H is a K-system and even a Bernoulli system. (We add to the paper an Appendix,in which we explain what we mean by some of the properties mentioned above and state some facts from Pesin Theoryj p j ι k - s /for mappings with singularities [15],[10] , useful in this paper).

r⅛t γ. ,r ,Burton and Easton in [2] and Wojtkowski in [13] proved almost hyρerbolicity and ergodicity for the case k and £ have the same signs. In their case, global stable and unstable manifolds intersect each other since they are very long and go, roughly speaking, in different directions.
Here the global stable (unstable) manifolds, although internallyvery long could have a very small diameter in P U Q . On Figure 0.1 we show what could happen with subsequent images of a local unstable manifold γ under iterations of H .
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Figure 0.1
We prove however that this is not so, that piecewise linear global stable (unstable) manifolds contain segments winding along the whole annulus P (Q) . A similar ρhonomenon appears in an example studied by Wojtkowski in [14] .
We can replace P by a finite family of pairwise disjoint annuli {P∣} in a surface M (more exactly it is enough if we have smooth embeddings of the interiors of the annuli into M). Similarly we can replace Q by {Qj} and assume that P^ and Qj intersect transversally (strict defini­tions will be given in § 2). Let us assume also that U P. U U Q. is con-1 ∙ J1 J nected. See Figure 0.2.

Figure 0.2
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6
We. call a composition of two mappings : » k^~twists on sJ P.iwith I.-twists on l∣ Q. a linked twist mapping, l.t.m. (we may omit the j 2assumption about linearity of twists and assume only they are C -functions.
We assume the existence of a measure on U U UQj > equivalent to the Lebesgue measures on the annuli, with upper bounded density, inva­riant under our l.t.m. We consider l.t.m. together with such a measure.In § 2, we prove (and state exactly) the following

Theorem B : A 1. t.m. which is built with twists sufficiently strong (ι.e. the slopes are sufficiently large), for which ∣ki∣,∣β.∣ > 2 , is aBernoulli system.
Sufficient strength of the twists depends only on geometry of the intersection P. ∩ Qj . Our l.t.m.’s generalize both : toral linkedtwist mappings ( [2], [4], [5]) and an example of Bowen [1] , presented on Figure 0.3. (The invariant measure is the Lebesgue measure on the plane).

Wojtkowski proved that in the case of the Bowen l.t.m. if the twists onP and Q are strong enough, then the Bowen l.t.m. is almost hyperbolic.Theorem B implies that if additionally ∣k∣ , jf∣ _> 2 then it is Bernoulli - (At the end of § 3 we show how the latter assumption can be weakened).
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is devoted to looking for assumptions about geometry of intersectionsP. ιP. ι

in P. and Q. (not only interior geometry of the intersections j" J, as in Theorem B) or about the topology of U P. U U Q. which i 1 j J>2 in Theorem B. We connectcould replace the assumptions ∣ki∣ , ∣tjwith the pair ({P∙},{Q.}) some graphs and define and study their ,,tran∙ 
-l jsitivityn. From considerations in this paragraph it immediately follows

Theorem C : Let {A.}.J∙.π be a family of circles embedded into a1 1 l,4∙∙∙.,psurface M , pairwise disjoint. Let <B.}. be another such family.J J 1, ∙ ∙ ∙ , Qin generic position. More exactlyAssume that the pair ({A^},{Bj})andassume that the. circles A. ι
is

least one A. ι or(respect. Ai) in B.Jexactly iftwo
intersect transversally and for at q(respect. B.) intersects U B.J j=l Jpoints, then these two points are not

B.JA. ι
antipodalthickness (respect. Bj) .of the annuli is small enough then every (reasonable) l.t.m. onA. ι Thicken the circles to annuli. If the

§ 3 ∩∩

their union is Bernoulli.. □
Beautiful examples of l.t.m.'s on compact surfaces are provided by some Thurston ρseudo-Anosov diffeomorρhisms, constructed with the use of ’’good" pairs P.f transversal families of circles, see [17, § 6] . Thurston thickens each family of circles to fill up the surface, rather than to make narrow strips, as in Theorem C .
In § 4 we describe briefly some facts concerning linked twist mappings, which we hope to study in more detail in the future :

a) We prove that for almost hyperbolic l.t.m. (as considered in Theorems B and C for example) hyperbolic periodic points and homoclinic points are dense in the whole domain :b) We can further generalize l.t.m.’s . We can consider a composition of a 
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finite number of families of twists alternately on the annuli ⅛i> and {Q.} (rather than to compose two families only), so that every annulus is twisted at least once and all twists on it go in the same direction. We prove that under analogous assumptions as in Theorem B, the mapping is Bernoulli .This allows us to construct Bernoulli, piecewise linear homeo­morphisms in every isotoρy class of orientation preserving homeomorphisms on every compact orientable surface. This is due to the fact that our twists are exactly Dehn twists and Dehn twists generate all classes of isotopy of orientation preserving homeomorphisms (see [3] or [ill)- (We can use at least double twists ∣ki∣,∣Jψ >2 since every Dehn twist isisotopic with D^+1°D^ where α , a’ is a pair of homotopic, embeddedcircles). We must of course blow up the annuli together with the invariant measure to obtain a set of measure 0 in the complement. (In case of Thurston’s examples mentioned before, these homeomorphisms can be done pseudo-Anosov).We compute an upper estimation for measure entropy. This implies that if the annuli are thickened circles but thickness tends to 0 (situ­ation like in Theorem C) then the measure entropy tends to 0 .

c) If two annuli P. , P. (or Q. , Q.) have a common boundary circle S ,then in the definition of l.t.m. H we do not need to assume that H∣g - i<We can prove almost hyperbolicity of H under the same assumptions aboutslopes of twists as in Theorem B. The proof is the same.Consider an example on T^ . Take F(x,y) = (x+y,y) ∙ Define a : JR—→-IR , a(x) = C∙ (min(x-[x],[χ]+t∙x) --∏) ( jχ] means the integral part of x , C > 0 is a constant). For any integer n > 0 let us define
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n-sawan . jg —’■JR , a∩(χ) ~ 2 n∙a(2n∙x) . Let us define the "2 2Aft : τ ÷ T , An(x,y) = (x,y+a^(x)) and consider the linked twistmapping = A^oF .

The study of the above example has been suggested to me by Wojtkowski, see [13] . For C > 4 , is almost hyperbolic. Wojtkowski proved alsoin [14] , that assumed C > 4,0329... H , for n = 0 , is Bernoulli .n
• . . β 9This implies immediately, by finite covering that for H , n > 0 , T decomposes into at most a finite number of ergodic components. In § 4. c) we fill a gap and prove that Hn , for every n > 0 , is Bernoulli This gives an explicit C°-arbitrarily small perturbation of the twist F , which is a Bernoulli system.

d) Using examples of Burton-Easton type one immediately obtains Bernoulli• . 2diffeomorphisms on T (preserving Lebesgue measure) which are not Anosov but belong to the boundary of the space of Anosov diffeomorphisms (in the∞C -topology). This simplifies the Katok construction [7] . Continuing by the Katok method one obtains a rich family of Bernoulli diffeomorphisms2on the disc D
I started to do the present paper at IMPA, Rio de Janeiro, and I would like to thank IMPA for the hospitality there. I also want to thank Maciej Wojtkowski for stimulating discussions.
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§ ∙ Ergo die, ity of toral linked twist m appings. Proof o fTheorem A .
nates We may assume2 on T , taking the α∣ = ∣β∣ . Otherwise we may change the coordi-
torus (χ,√f∣J∙y) . Then we consider the

may assume that α > 0 . Let us repeat according tocoordinates

DGoDF of almost hyperbolicity of H . The matrix (-. , for α > 2j is hyperbolic. Its

andLet
for

λ± 2+. ∕T^. 2' α +2±yq -4a2the expanding eigenvectorus denote this number by (ξpξ2) satisfies ξ√¾

2In 1R let us take the cone C = {(x,y)any positive integers s,r, DGsoDFr(C) ⊂ C There — < 0}. Of course y —exists λ > 1such that for any sequence of positive integers s , r n’ n

•Z . We

L .
: L <

there exists a vector v ∈ C for which
and
(We consider the norm, maximum of coordinates.

Denote P ∩ Q = S . For almost every

λn

One can

for n > 0

take λ
we define the

>

x ∈ Ssequences (r ) , (s ) » n > 0 as follows : r1 > 0 is the first time n π 1 rιx hits S under F , sχ > 0 is the first time F (x) hits S under • sι rιG s r2 > 0 χs the fi-rst ti-me G oF (x) hits S under F , and. . -1 -Iso on. Similarly, for G , F , r ,s , for n < 0 are defined.n n
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Then, operators in the formulas (1) correspond to the operators D∕ιn on vectors tangent to S at x , where h denotes the induced mapH ,5 : s______ >- S (i.e. the first return map) .s For almost every x ∈ S its H-orbit hits S with positive frequency (this is a corollary from Birkhoff Ergodic Theorem (see [2,

Lemma 4.4]).
This fact, (1) and the analogous facts for H and also the

fact that almost every point z ∈ P U Q hits S under H and H'1 ,

imply the existence of two H-invariant, measurable,tangent vector fields Vu , Vs and a measurable function Λ on P U Q with the following pro­perties : for almost every x ∈ P U Q , Λ(x) > 1
∣∣DHn(Vμ(x)) ∣∣ > (Λ(x))n.∣∣vu(x) ∣∣ ∣∣DHn(Vu(x)) ∣∣ <(Λ(x))n,∣∣Vu(x) ∣∣ ∣∣DHn(Vs(x) ) ∣∣ > (Λ(χ) )n*∣∣ vs (x) ∣∣ ∣∣DHn(Vs(x)) ∣∣ <(Λ(x))n∙∣∣Vs(x) ∣∣

for n > 0for n < 0for n < 0for n > 0
In particular this proves that Lyapunov exponents are nonzero almost everywhere. Now we can refere to Pesin Theory in Katok-Strelcyn version. This gives existence of local stable and unstable manifolds γδ(x) , yU(x) for 
almost every x € X and absolute continuity.

[See Appendix. In fact our case is simpler than what it can happenin general and we could proceed directly. Using the Borel-Cantelli Lemma we could show the existence of γδ^7(x) . Absolute continuity of the families
γ8'υ'∖x) (even almost everywhere, not only on each of an increasing sequence of sets almost exhausting X) follows easily (see [13]) from the obvious fact that γ8(υ∖x) are linear segments] .
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Hence P U Q decomposes into a countable family of K-components.
We shall often consider the induced map h = H$ = G<,oFg : S-----⅜ S

h is uniformly hyperbolic (i.e. with a constant hyperbolicity coefficientλ > 1) on its domain of continuity and differentiability. The local stabls (u) ,and unstable manifolds for n are of course the same segments γ (x)as for H . (One could consider h directly from the beginning. (K--S)conditions for h. hold, but checking (K-S,1) is not so trivial as for H since Sing h is complicated).
According to the Appendix, to prove ergodicity of h and its powers, it is enough to show that for almost every x,y ∈ S ∕ιm(γu(x)) intersects h (γ (y)) for integers m,n large enough. The same concernsH .
For any segment γ we denote by £^(y) and ^-v(γ) the length

/ of theaxes. orthogonal projections of γ to the horizontal, respect, vertical segment γ c^^y(γtl(x)) , theWe shall prove that for any linearimage F g(γ) , which is a union of linear> (γ) (for a constant δh v )joins the left and right sides of S . In
segments, contains aindependent ofthe latter case,

segment γ,Y / j ordue to
of > 2 , G(γ,) contains a segment joiningS (Figure 1.1) (We the upper and lower side
andof

segment in S joining the uppershall call any

> 1

''∙X
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------------------------------ ‘1. We get a sequence 01 seg-■xponentially growing length. So it must finish with a v-segment or an h-segment. j⅛jwe continue iterating with F and G alternately we find an pv-segment or v-segment alternately at each step (since |h|>|£|_> 2) ∙* “~1 sThe same happens for all sufficiently high iterations of H on γ (y). v-segments and H contain h—segmentsv-segments.sufficiently large. be. thea segment

(this case if fully analogous

Hm(γu(x)) contain

has just been discussed.
3 (Fiσure -l-r2Y.

intersects S . Then
But the h-segments intersect

Otherwise we act on γt with Gg and so on ments of e:

for all m5,nConcluding :

Figure 1.3.

mιF (γ) contains an
let us fix mlfirst time when F (γ) h-segment. This case ffilThe right side of F (γ) intersects SmlThe left side of F (γ> intersects Sthe case 2) ). mlBoth sides of F (γ) intersect S

/

Figure 1*2. ⅜.

LS RSτI i3j2 ■ .C ∖ Px x X X X > X X X- P 1,,ιl 2 the F-orbit <∖f p pl p22 P SQ
the assumption (*) that mιdoes not contain any h-segment. We divide F '(γ)^S into three mιI , I2 , I3 . Let us denote F (γ) ∩ S = <

We study the case 2) and make Fs(γ)intervals
Mong Ij the rotation number f(y) changes by α* s°,
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for any integer n >0 such that < or ^(ip there exists a horizontalcircle in P , intersecting I„ on which the rotation number is -- for £ nan integer m . So thereneriod r T∙7⅜q + 1 ]v 2The distance d between
exists an F-periodic point. It divides ∑2 into I?the different points of the

p ∈ ∑2 with the and 1*2 (Figure z‰2).F-orbit of p ,Orbp(p) , is at least
1

“WLet us denote the last (to the right) point of in S by pχand the next one (to the right) by p2 (Figure 1.2). Let m2 > 0 be the ι∏2first time when F z"(p) is between ρ and RS - the right side of Sm(Including p and p1 . Observe however that F (p) / p . Otherwise p -mwould have its F-orbit disjoint with S . But F (p) ∈ γ ⊂ S , a contra­diction) .
We denote J = I" ∣J I and J = F(J 1 ∖ S) foro z j m m— im = 1,2,...,m2 . Then

,√L√ i '≈inω+⅛(12u M > M12 u t3)+ α'tvσ2u 13n
for m

∩ S)
..,m2 .mF (p)

L (Jh ι∏2 > d . If is between ρ and LS (the left side of S) m2F (p) ∈ Sv^{ρχ} , then , then
(2) Mjm fl S) Z ≈Un(<Mh (I" ∪ I3) + α∙<tv(I,2 ∪ I3)).

m2Assume F '(p) = pχ . Let dist(pχ,RS) = τ*d .
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Then dist(RS,p2) = (l-τ)∙d . We have either (2) satisfied or5 (J ∩ S) = τ,d and J ∩ S touches RS with its right end. h ι∏2 m2Define 5θ = Iχ ∪ I’ and ? = f<V1 "-S) f°r m = 1>'∙>m2≈
We have either

£(J n S) > min((l-τ)d , α,Jt (I-∣ U I∣) + λ∣∕1ι u 12^ h ι∏2 ” v -l z∙
or J ∩ S touches LS with its left end (the number (l~τ)d appears m?because there can exist m : 0 < m < for which Fm(p) = P2>∙ So due to
assumption (*) ,

Thus in order to have ⅛⅛ U fl -the following inequalities hold : δ,β (γ)v it is enough that

(4)
(5)

d _> δ∙^v(γ)
α∙Hv(I3) + 2√i3) Δ δ∙S>v(γ) 
a∙tv(I1) ÷ S!∙h(I1) > δ'<!√γ)

For (3) it is enough that a∙jςz(I2)1+ a∙ ∖7-(12^ > δ,^v(γ) or
(6) δ∙λv<v)- a(l-δ∙λv(γ))
We can assume here l-δ*^v(γ) > 0 since assumption (*) implies
(7) Ay(γ) ’ (L+α) < 2
and L+α > -1+√171'> 3 . We can replace (4),(5) by
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(8) (and (9)) <5∙ Jlv(γ)— L+2α
(due to the fact that γ EC- the The work would bealso done if

δ∙ ^v(γ)
which follows from L(γ)
There exists δ > 1 and ma partition of F (γ) ∖ S into I , I, 13satisfying (6) , (8) , (9) or the inequality (10) is satisfied if
(11) jv(γ) = 4

∑ l(i.) >1 (^)(——+ ~jr~ +i=l V α(l-^(γ)) 2α+L -T-)α+L
We divide both sides by £ (γ) and due to (7) we obtain the condition
(12) 1 α+L

w 2

1 2

1 >
(recall that L = -(~⅛ + ∖∕(y)2-l

In the case 4) the situation . . mιis simpler. F (γ) divides intoI∣ , ∑2 , I^ as on Figure ⅛(13) — δ*^v(γ) » or 1.3. We need either £ (I ) > fi’£ (γ) , or
ħ I - v£^(^)-^ (½) _ (γ) ∙ (The sufficiency of

2the last inequality follows from the following: Lift everything to 3R , denote
<¾Zr>M t,v*g *two consecutive components of the lift of Q by Qχ and Q? . Then ^(ip hasa components I of its lift between left sides of and Q9 or between

S - a contradiction).
right sides of <4 andof the lift of T J which'mlq £ S . But F (q) ∈ γ ⊂

Q2 ∙ Otherwise I would intersect a componentwould imply the existence of an F-fixed point
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or (L+ a) ∙ £(Iβ)or α,

that
2 δ'

δ∙ H (γ) V
(L+α) ∙ ⅛v(1∣) > δ ’ £ ( γ)— v

>

>
For that it is enough if 3Σ i=l £ (I.) >v ι 2 1( γ) (_£_ + 2)v ,' vL+α α'£v
i.e. , 2 1<13> 1 2
(12) is satisfied for α > % ≈4.152643 ;(13) is satisfied for α > 3.239 α2 ~17,24445 in the statement of

θ -------2s.------<≤P

Remark : If £ (γ) is small, v then in (13) we can write (L+m^oι) instead
of L+ a , where m1 is large. So (13) can be replaced by

1 11 > —a
Also (12) can be replaced by

a∖ 22a+L 1a+L 5»

p, o since we can omit ^y(Y) in the denominator of the ratio γφy of (11).
(14) holds for a > ≈ 3.183590 .

i > 1 +a +

<⅛∕ In this case the W>images of any unstable segment YU (z) , form sufficiently large, contain segments larger than a constant. Does it imply that there exists a decomposition into a finite number of K components >
www.rcin.org.pl
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§ 2. Ergodicity of linked twist mappings . Proof of Theorem B

We denote
P(y’,y";a) = {(χ,y) ∈κ2∕a≡ × {o} : y1' y _5 y” }
Q(x’,x”;b) = {(x,y) ∈>2∕{O}×bZ : x' < x < x"}

(y∙) , (yp , (ai) such thatTake any sequences of numbers
h < y'∙*j 1 , a.1 > o , i = 1,. ..,p and (χ,.)Jx'. < x'., , b. > 0 , j = 1,. • ∙ ,q ∙j j J

such that
Denote

Q. = Q(x,. ,x’.’;b .) J j j jTake any smooth surface M and smooth embeddings
÷ M ,e. : int P. - ι ι E. J : int qγ ÷ M

such that
= 0

and all thefor x < χJ

e. (int P. ) ∩
E.(int Q.) ∩ ι xι

e.(int P.) J JE.(int Q.) J Jcircles e^({y = const.}) for y^< x'.,Jtions we shall omit

for i
for i

y < yVintersect transversally. In the future, andto Ej ({x= const.}) simplify nota-the symbol int before P. , Q. when1 J we act with

= 0
<

+ j≠ j J

e. , ιEj respectively.
For each C∙ . ~ a connected component of e.(P.) ∩ E.(Q.)i Jfa ι ι j Jdefine the coordinates : we

⅞js(z) = (E71(z)χ , e71(z)y)
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(subscripts x,y denote here x-th and y-th coordinates respectively).

Denote the set of all pairs (j ss) (respectively (i,s)) for
which C.. exists byιjsCard = p(j) ∙

Q . (respect. . Denote Card vA q(i) ,
Our subsequent assumption is that forthe mappingsbounded first φ, . 6e. . Φ. .

1JS I 1JSderivatives and oE.Jthe and the inverse mappings have upper E∑1J"1mappings e^ °E. , 
J

oθi have upper
bounded second derivatives.

Finally we assume thatWe calllies of ({ei}i=l,...,pannuli.
PU e.(P.) i=l, {E.}. 1 )j j=l,...,q

We introduce more notation : Denote

on each
c. = c. , ∪ . C..j≡ 1 (i,s)ecP ljs disioint union R ≈ U R2 .i, j, s.Denote Φ(C.)=R.ι ιC. .ιjs

. Let ιjs , Φ(Cj) =

C. . = C ,ιjs≈ Φ.. (C.. ). Define ιjs ιjs> equal to Φ..
-l J bRj , e^1(Ci) = P. i E^1(C1)= Qj∙

and U (i,j,s
R. . =ιjsC→R be

Define functions qλ , ψ. on the sets P∣ , Qj respect, by the

∪
5

Φ :

formulas :
Φ0ei(x,y) = (Φi(x,y),y)
ΦoE^(x,y) = (χ,Ψj(χ,y))

Define functions φ∣ , ψj on the sets R^ , R^ respectively by
(Φoe.)" 1 (χ,y) = (Φ∙ (χy),y)X —(ΦoE.) l(x,y) ≈ (x,ψ!(xsly)) .1 JWe denote by ∣ζ∣ the supremum over its domain for any function ζ
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Now(ki

for

2.0 -
we shall define the twists. On each P. take a (k.,α.)-twist F.ι 11 ιis a nonzero integer, on is a real number) defined as follows

F.(x,y) = (x+fi(y),y)
2f. a C -function defined on <y!,y'., > ,ι ∙71 ∙71 , such that f.(y.,) = 0 , ι j ιfi(y7) = k. a. .ι ι

(i.e.α. ι
df.Assume the function —:— is nowhere dyk. > 0) define the slope α. ι r ιdfsup j— .f ∙t dy<y[,y^>

inf<y∙,y,{>
zero. If it is positive df.-τ-≡- .If k. < 0 ,dy ι

Define F , G :Take on each Q. aJ∪ e.(P.) U ∣ι ιι
(£.,βj)-twist
W?

G.J by defined analogously.

F(z) forfor ei(Pi)P∪ e.(P.)i=l 1 1
G(z) fE.G.E.1(z)J J J for

for
Define a linked twist mapping (l.t.m.) as H = G°F . Consider H together

∪ j
zz
z
z

∈£
∈

U j to thewith an H-invariant probability measure ∖> on U e.(P.) U .11* 1 such that on each P. the measure e√v) is equivalent and such thatmeasure v∣ , with bounded density with respect to v.each Ej(v) has the analogous property. (Assume of course that such a measure v exists.)
Now Theorem B takes the form

Theorem B : Fix a pair of transversal families of annuli ({e.l,{E.l) ι J
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If an l.t.m.i l,...,plarge enough

H on ∪ e.(Pi) Ui β.)-twists, J Conditionand (JU, to satisfy
EΛQj) is built from (k^, cu )-twists.= 1,... ,q where ∣cubelow, then H is almost

If αi > satisfy the stronger Condition E and

arehyperbolic.
k. ιthen H all its powers are ergodic. So H is a Bernoullisystem.

Condition

9

(Hl) sgn αi = sgn αi for every i = 1,...,ρ(H2) sg∏ β,j = sgn β. for every j = ι,∙∙∙,q(H3) hi βj ∣ > (l+μ^)(l+μj) where
dψj dy

for every pair (i,j) such that ej∕pp
0ti

∩ Ej (Qp ≠ 0 . Here we dφ^ dq√ -1 dq‰ dy ∣ dx ∣ ∙ dy
denote

Γ7α.,β. bound the slopes of the induced mappings l i Jtively in the coordinates Φθe.^ , Φ<≈Ej . We could <fPp.>¾.1 ~ replace respec-(similarly
.fS√ rs,'

H :

∪j j
H

9

9

β∖) by smaller numbers
dφ!They have clearer geometric meaning, sincesupremum of cotangents of angles between the horizontal circles denotes in fact, the

{y = const.} ⊂ Pi and images of the vertical circles {χ = const.} ⊂ Qj in P. , i.e. e.1°E.({x = const.}) ⊂ P. for j ∈ 3. r]X 1 J χ X
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Condition E
(El) sgn ou = sgn on = sgn on for every i = 1,...,p
(E2) sgn 6. = sgn *3. = sgn 3. for every j = 1,...,q

J J J(E3) ∣cn,β. ∣ > (max(X(i) , l+μ. ) ) ,max(Y(j ), l+μj ) for every pair (i,j) J 1such that ej∕pp ∩ Ej (Q-p ≠ ∙ Here we denote
~ , dt⅛ cM ^1αi = (sgn αi)∙(∣αi∣-(2∙q(i)+3∙X(i)) |—1)* ⅛~1

dψ,. dψ,. -1βj = (sgn 3j)∙(∣3j ∣-(2*p(j)+3∙Y(j)) ∣~j~∣)∙ ∣~j~∣
X(i) , respect. Y(j) is the largest solution of the equation

(We treat Cai 
α.

1

2q(i)X
2p(j)Y

as
p<j)Y-3p(j)

__2__X-p.
2_ j+-----Y-ir

, respectively

artificial πsubslopes". For toral linked twist

÷
+

>

+

mappings, see [4] and Thurstonexamples [17 § 6] Φoe. = φoE.
1

= identity. So
Remark : Conditions H and have a local character. If we treat theembeddings e^ , E^Conditions H , E as charts on the manifoldabout each individual α.

1

U e.(P.) U U E (Q ) ,
j- J- J Jdepend only on the geometry

J

E
αi ’

and topology (i.e. number of components) of the intersections e.(P.) ∩ E.(Q .) 1 1 J Jfor all j for which this intersection is nonempty but do not depend onQ.’s which are far away. The same concerns the β.,s. j J
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Proof of Theorem B :

The idea of the Proof is similar to that of Theorem A. Howeverone should modify it a little since for each horizontal annulus P^ thenumber of components of intersections with the vertical annuli Qj , number denoted by q(i) , can be greater than 1 (similarly it can happenthat ρ(j) > 1). The fact that({x = const<})circles {y = const.}
the images of the vertical circles,

isometries leads only
need not be orthogonal to the horizontal fact that the maps e.⅛. need not beι jto new constants in the estimations.and thein P. ,ι

Almost hyρerbolicity
It is enough to prove that Condition H implies that the inducedmapping h = Hfπ has nonzero Lyapunov exponents and to check the (K-S)7j, ≈ φhφ 1 on R .(see Appendix). We shall considerφp∖,φ"1 , G = ΦGpΦ~x. Of course h ≈ GoF . Denote V ζ⅛-z(w) (respect. Zγ(w)) the horizontal (respect, vertical) coordinate a vector w in euclidean coordinates, denote the basic vectors at z ,

conditions for HDenote also F =sbyofby ax (z) ’ (z) ∙If α∣ is positive define oJ
• '"'lnegative a: = sup1 zCRiis defined analogously.⅛ °r ⅜∞ ’ for(Remember that F

infz∈Rii = 1and (T are
⅛ df ⅛(z) ∙ if. for j=l,..,qdefined and diffe-,... ,P

rentiable only out of a closed, nowhere dense, subset of R of zeromeasure. For simplicity of notation we will not make distinction betweenthis domain and R ).

We shall now estimate the slopes a? » βj by passing throughthe original coordinates on P^ and .
Assume for example > 0 . Take any point z ∈ R. and assume
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m > 0 is the first time when Fm((φoe.) i(z)) ∈ p. . Then

⅛ Dr⅛∞ = ⅞ D(Φoθi->Fn,oe71oφ-1)(A(z)) =

(1)

dφ!= Zh D(φoe.oFm)(-^(2)∙-A(φoe.)~1(z) +-A(φoep-∖z)) >dφ.,> Zh D(φoei)((-t(z)+αi)∙^(Fmo(φoe.)''1(z))+-^Fn,,>(φ..e.Γ1(z)) > dφ^ dφ! -1 dtp.~ ∣ dy ∣ r ai^ ∣ dx ∣ ~ ∣ dy ∣ ^ ai
If we assume the last term is greater than 0 , which is just Condition Hltion α. > 0 ι then sgn oJ - sgn (besides, we have used the assump- in the last inequality above, which can be false withoutthat). ou < 0 can be treated similarly. Analogously we show that Condi­tion H2 implies sgn = sgn .
Take for every z ∈ , for i = 1, . .. ,p , the cone^z ~ : I √?21 — εi^ , f°r a positive number ∈. .Take for every z ∈ R" , for j = 1,...,q , the cone

Cz = {(ξ1,ξ2) ε τzRj φ1∕ξ2∣ < εj} ,
for a positive number εj . Assume that for any pair (i,j) such that ei(P.) ∩ Ej (Q ) i⅛ 0

Then for every z ∈ RDF( U C ) ⊂ ∪ CZ z∈R z z∈R
, C ∪ CZ = T R z zand DG( ∪ CZ) ⊂ ∪z∈R z∈R

So, in order to obtainC^ it is enough if
and DF( ∪ C)∪ ∪ C ≈ 0z∈R z z∈R z

DG( ∪ Cz)z∈R ∩ ∪ Cz = 0z∈R
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(2)
(on

One can easily compute that for this.
> (1 +
> (1+

l)eidφ.1 11 dφ!1 1∣ dx ' 1 dx
dψi dψ!1 jdy ∣ 1 dy

the horizontal circles of P. , the ι F.’s ι

it is sufficient that
and

are rotations, so restric-ted R∖ the module of the horizontal intervalsare bounded above by
μi

dφ!^dΓ
TheSo,
(3)

dψ.J y dψ,.Jyif for all pairs (i,j) such that e∙[(ppnumbers = play the analogous role∩E.(Q.)

then there exists a system of positive numbers {ε^, ε^, } ,,...,q satisfying (1), (2) and the family {C }zsuch that
D¾ U C ) ⊂ z∈R z Uz∈R c z

(One can take α'ιBut (3) follows from (H3).ei ∕d+μi) , εj =
βj

For any w ∈ C? , Zh<DF(w)) ∕v(DGoDF(w)) = Zv(D‰) > εj∙ε.∙Zv(w) 
This and the analogous consideration for

>> εiZv(w) and£ (w) V
h 1

for the maps Gj ).
t 0

. Here z

of the cones,

∈ Ki , F(z) ∈Rj.
imply that Lyapunov exponentsof lι , hence h. , are nonzero. Since almost every z ∈ ∪ θi(P^) U UE.(Qj)
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hits C with positive frequency, then Lyapunov exponents of H are posi­tive. The (K-S) conditions (see Appendix) forThe assumptions that the second derivatives of H are trivially satisfied, -ι r,-ιe.E. , E. e. , φ. , ψ.ι J J ι ι □density of the invariant measure with respect to Lebesgue measures onandpi- Q. are bounded above, J have been fixed especially for this aim.
Ergodicity :

Assume Condition H is satisfied and choose a system of posi­tive numbers {ε^,εj} , i = 1,...,ρ l¾l 2 d+Pi)εi , ∣f∏ ∣ _> (l+ιP)∙εj
which e.(P.) ∩ E.(Q.) ≠ 0 . Denoteιi∙ J J

, j = 1,...,q such thatand ε.,ε-} >1 for all i , i forι jmin{ε∣^ ∙ εj : e^(Pp ∩ E )≠0 } = Δ > 1 .
any localC. . ιjsset
(4)

We shall compute an additionalunstable manifolds for H , γ, by definition) either F^(γ)C.., ι which joins left and right ι j s

condition for= γυ(z) wherecontainssides of

α. ι
a curveC. .l ,ιj s,

so that forC. .
1JSinside aor(γ ⊂ z ∈Y

(If we assume > 0 then £^ , respect. £^ , denote here the hori­zontal, respect, vertical lengths of upper oriented curves in . Moreexactly we consider inside P^ , respect. , only curves which trans­versally intersect the horizontal circles, respect, intervals. Then £^ means the x~th coordinate of the upper end minus the x-th coordinate of the lower end of the curve so the horizontal length, £^ , can be as well positive as negative. £ , the difference between y-th coordinates is here positive. If α. < 0 we change the sign of £^ .)
We shall compute analogously a condition for so that forany curve γ ⊂ C. . , γ ⊂ Fr(γu(z)) , G,-,(γ) contains a curve γ, ⊂ C. , . , ιjs C C ' ι is
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which joins the upper and lower sides of or
(4') 
(For β. we consider the right side orientation on curves transversally inter­secting vertical circles or intervals).

So, beginning with γll(z) and taking successive images underwe obtain at each second stepFC ’ GC ’So we will finish with a curve γs ⊂ G^<>F^> ... upper and lower sides of a C.l., t or γπ ⊂
j- Jjoining left and right sides. Since we assume11≡in(p.q)(γ.) t or Hπincp'q⅛c(γ")all i,j thenwinding around all annuli

a curve Δ-times longer.
o GC°FC(yU(z)) j°i-ning

the proof (seeFigure 1.1. in 1). This e.(P.) , which will finish ι ι ,is the unique place we use the assumption that
Fix , assumeend of the proof we shall α. > 0 9 fix γ = γll(z) ⊂ C. . . Until the1 1Vousually omit the subscript i .

§2
i

Make the assumption * that F^,(γ) does not contain any curvejoining left and right sides of any C. - for (j,≡) € ∙
be the smallest m > 0 for which Fm(γ) hits C (i.e.mιfor some (j∣*sp wp∙ Either F (γ) ⊂ C (denoteor it hits C. with its upper end (or with the jlsl

Figure 2.1
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Let us consider the second case. Denote e 1(γ) = I . Denote ^mι ml -11/ ~ F (F (I) ∩ θ (C. )) . Take the sequence ofjιsι curves

There may not exist anyend. Denote this case by
However let us

^m∖√fm.
for ra > ml

m > for which(ii).
consider the case when

hits C with its lower
such an m exists .byDenote the first such-1 ^"m2 e F z(Jr∏2point. DenoteDenote Io ∩ C)empty or is onewhen there is a nondegenerate

m2 and the appropriate Cjghappen that I xIt maythat case by (iii) . Consider
by(I 0nowcurve in between I and o 14Divide it into three curves ii 12 ’ 13 as on FigureThere exists an F-ρeriodic point t ∈ 12between the points of

(5)
(we recall that a
By assumption (*)
(6)

c. j2s2 .U I4) isthe case
2.1.with the minimal distance "dπOrb(t) (the F-orbit of t) satisfying

a.£ (Io) v 2α∙β (I9)1+—Σ-J-aa. ι is length of the annulus P.).1
α,β (I) < 3,a v

Otherwise a continuous function (F(z)-z)x-th coordinate would have growth on I at least 3a . So F(I) would intersect I in at least three points. So between the first and the third intersection it would fully intersect every set e'^1(C. ) for (j,s) ∈ □∙ .j s *ι

Jm

d >

m ⊂ I
I

5

www.rcin.org.pl



29
that d(One could now deduce from (5) and (6) , replacing I (in (6)) by I„ , α∙λv(I2)-r—— , We shail however use (5) and (6) later in a better4>way) .
in int Denote left
constants ofP. by LS.1 J , sLS.j,s -variable to the x-~th

and right components of the boundary of e ∖Cjg) 
,RSj. θ respectively. Observe that the Lipschitz RS. treated as graphs of functions of the y-thJ , svariable are bounded above by W dφτ

functions are even differentiable since the mappingsbounded second derivatives, but that is not important
1 dy-1 pe. °E .1 J here).

(thesehave upper
Denote by S^. the horizontal circle in P.1 containing our Fperiodic point t .
We denote

t.
J>s

S t∩
for (j,s) ∈>7i .

The point t divides into Ij> and ∑2 (see Fig. 2.1) .Denote I∣ - I3 U I’ and = I3 ∪ I” .mt. - F (t) and j1s1pl
Denote rmin((Jlh(F l(I3)) + or Jtv(Ip-W,λv(I3)-η,λv(I)-rχ) + r1,d+r1) .In the above formula we denote

η , ε∣dφs ∣ + ∣⅛* dy ' 1 dx 1
This coefficient is motivated by the fact that if for any m and I c I such that Fm(T) ⊂ e ∖c) ,
(7) Hh(F°,(I)) > η∙tv(D then
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(7') ⅛h(Φ=e(Fπl(I))) > ε∙⅛v(I)
(Proof : Join the ends of φ0e(Fm(l5) by an interval I ⊂ R . Then

⅛(Φ>e) 1(I) < ∙fv(I) +∣⅛⅛w ■ a
If (7,) were false, then

A< (l∙¾1 dy 1 ÷l⅛-' dx 1 λvd) = ηHv(i)
which would contradict (7). )

In definition of P1 ’ if / ∙ ∖ ∙t q (i)q(ι) = 1 , we mean •—⅜⅛—r = +∞ n q(ι)-lWe assume
(8) pl > rl
In fact we shall need more.

Due to the term r^+d in definition of , for each (j,s)∈Jjthe arc(t. -p1,t. -r ) ⊂ S contains at most one point from the setJ »s 1 J,s 1 tOrb(t) . For the pair (j ^>θ∣) such an arc contains no points fromOrb(t) , since its right end belongs to Orb(t) .
There exist numbers ρ2 , r2 such that P∣ 2 P2 > r2 - rι , ^°r each (j,s) ∈ JL

(t. -ρ9,t. -r9) ∩ Orb(t) = 0
J , » Z. J s b Z.and

p2~^- qζl) ’
Denote by mQ the first m > m1 such that Fm(t) ∈ ∪ <t. -rn,t,. >3 1 (j,s)∈q l's 2 j'sDenote the case m,^ 5? m^ by (iv). Now let us consider the case
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m2 < m3 . In this case, we repeat the above construction on the rightsides of the sets

Denote
C. . js m2r1, = F z(t) - t,.1 j2s2

Assume
(8') pl > r’
and as before find ρ2 , r? such that

P{ > p2 > r2 - rl
for each (j,s) ∈Λ

(tj α+ro>t∙ c+p-P fl 0rb<t) = 0 j, s z j , s zand 1 q(i) (Pj-rp
Let be the first m > max(m3,m2) such thatm,F (t)∈<t s ~r t∙ +r∙>j4,s4 j4, 3

for a pair (j4,s4) ∈ □j .
Define

J(m1) ≈ F 1(ip and
J(m) = F(J(m-l) *s-e ∖C)) for m3 < m < m4 . m2J,(m2) = F (Ip and
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J'(m) * F(J,(m-l)∖e 1(C)) for m

We have
< m < m, .— 4

miZh(J(m)) > min(Zh(F i(ip)+α∙Zv(ip , mZh(J,(m))> min(Zh(F 2 (I[))+α*Z ^(I ’ ) ,m4If F (t) ∈<t. -r9,t, > then∙54,s4 2 j4,s4
raι≈ min(Zh(F (ip)+α∙Zv(ip-W∙ev(I*)-r2 , P2"2W^v (I' )-r2) .

For (4) it suffices if this is greater than or equal to η*Zv(I) .
For the first term in the minimum bracket, this follows from (8). (The complicated formula defining pj has been adjusted especially to this aim).
Rewrite the inequality for the second term

(9) p2"r2~2w*zvαP ≥ τl*zv(1)
Similarly, in the case F ∖t) ∈<t,. ,t! +r,>J , s . 1, s . 2j4 4 j4 4that : for (4) it suffices
(9,) p^-r^-2M∙Zv(ip > η∙fv(I)ra4If F (t) ∈ (t. ,t! ) then eitherJ , s ι . s .j4 4 j4 4J(m4) ⊂e^1(C. )j4 4 or J (m.) ⊂ e J(C. >

9 J / s /j4 4
by assumption *. This leads to the inequalities A > η,f (I) and_ , vA’ >_ ∏*^v(I) , which follow from (9),(9,). (8), (8 ’), (9), (9 ’) follow from
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the inequalities

(10)
(ID

α∙Z (I1)-2N∙Z (Iζ)-η∙Z (I)__X_2--------- v_3__d--------- 2N-£ (II) > η∙∕(I)q(i)-lif q(i) >1 , or
a,Zv(Ip~2W∙Zv(Ip > η∙^v(I) if q(i) = 1 ,k-⅛λ - 2W£ (I') > η∙Z (I)q(ι) vx 3' — 1 v 'and analogous inequalities (10*), (11') with I’ instead of I^ .

We can replace (10) and (10') by
(12,12,)
Inequality (11), due to (5), follows from

(assuming the denominator of the right side ratio is positive).

1 q(i) α∙tv(I2)α,ς(i)1 +------ ~-----aThis is equivalent to q(i)∙(η+2W)Zv(I)> —— ------------------------- —q(i)(η+2M)Z (I) “(i- a )
Now we use (6) for Λv∙(I) in the denominator and obtain asufficient condition :

(13) Zv(I2) > (-⅛y-3(η+2N)) 1(η+2WRv(I)
together with the assumption that the right side of (13) is positive.For (4) it also suffices that
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(14) ^h(Φoe(F l(I4)) > ε∙Zv(I)

or that the analogous inequality (14') hold for I and m instead 0 2of I4 , ι∏ι respectively.
Tne vectors tangent to the curve φoe(I) belong to the cones∣ξ∣∕ξp∣ < ε . This allows us to replace (14), (14’) by

(15,15’) A∕14(0)^ 2". (α “ ε,]i) 1∙ε∙Zv(I)
We add the inequalities (12),(12’), (13),(15), (15'), divide by f (I) and obtain
(16) 1 _> 2q(i)∙(α-2Wq(i)) 1.η+q(i)∙(α-3∙q(i).(η+2N)) 1(η+2W)

÷ 2(α-ε∙μ)
The conclusion is, that if this inequality is satisfied and the terms α-2N∙q(i) and α-3q(i)∙(η+2M) are positive, then either (15) or (15,) is satisfied, or there exists a partition of I ∖ (I ∪ I ) into

O Zμ11,12,13 suc*1 that (12),(12') and (13) are satisfied. This implies the inequality (4).
The inequality (16) implies (4) also in the omitted cases (i)- (iv). Indeed in the case (i) I = I4 and we need only (15). In the case(ii) I - I? (J I3 U I4 and we need (12), (13) and (15). In the case(iii) I = Iθ U I4 , we need (15) and (15l). In the case (iv) also the same inequalities as in the main case suffice (we even do not need (12,)).
We shall replace (16) by stronger, but simpler inequalities. Observe that

ε)
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Denote 3i~j + ε = ε and (α-2 J-™-: ∙q(i) ) . ∣∙^⅛Li dy 1 — 1 dy ' h " 1 dxα > a.) , we replace (16) by (observe that
(17) 1 > (2q(i).α i+q(i) (ot~3q(i) ε) 1 + 2(a-μ∙ε) i) ε .
Denote

a = Xε
(17) holds if X_> X(i), the largest solution of the equation

I = 2q<i> + _a£L + _2_ X X-3q(i) X-μ
cyj | d(DIf we denote α = a ~ X(i)∙3∙∣~∣ , then using (18) we concludefinally that if

(19) (L > X(i),ε^ , 
then (4) holds.

By an analogous consideration for G. one obtains for (4,)the condition
Γ'*-,' > Y(j)∙εj

The proof is finished. By assumption (E3) we can find a right system r j 1 .iεpε j, , 1 ~ 1,...,p , j = I,...,q , defining for example
I Q⅛Σ I iεi ≈ ∣αij / max(X(i),μi+l) 

εj = ∣ J. ∣ / max(Y(j) ,μj*+l) □
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§ 3. Graphs of linkage of l.t.m.*s
Definition 1 : For any pair P = ({P.}versal families ι i- 1 j ∙. * j p of annuli define a (nondirected) ) of trans-, {Q.}. 1 j j=l,...,qgraph Γ(P) as followsThe vertices of . For any pair (P.,Ql)Γ(P) are the sets P. and Q. ι Jedges joining P^ with as the number of components ofintersection P. ∩Q. . (There are no edges joining P. with P∙ or Q. with1 j 11 12 'ι
we take as many theQj2)∙
ofByto

We shall use the notation v^ , i = ls..,ρ+qΓ(P) , v. = P. for ι ι i = 1,...,p , v^ for for the vertices
u. .ιjsthe component C. . if iι,j-p,stogether with the chosen direction

we shall denote the edge joining< p < j >from v. ι toΓ(P) gives two directed edges). The set of allbe denoted by Ll(P) .

Notation 2 : For any l.t.m. H on P we calllower and upperγ ⊂ ^m(γu(z)) , sides of C.. and such that for ιjsa v-curve. Analogously we call γand
h ≈and

°f Cijg » Y ⊂ Fc°Jιm(γu(z)) , an is the induced map). We shall use the same ET1(γ) ∙
right sides

Definition 3 : For any l.t.m. H on Pto the graph Γ(P) a set U (H) of newoP^ with itself by(j,s) ∈ » for every v-curve γan edge denoted u. .
11

the samefrom the C.. (and in all other ιjsdefinition of twists). Weweights'* of u. .
11

v.J , correspondingif j < ρ < i ,
u.

a curve γ ⊂ C. .1JS joiningsome z ∈ C , m > 0 »⊂C.. joining leftITSh-curve (Recall thatterminology for e∕(γ)
define a graph Γ(H) by addingedges as follows : join any vertex(or u^^∣) if fθr every⊂ C. .ιjsc.., ,IJ sdefine
9

9a
Fq(y) contains an h-curve inbut this immediately followsset W(u..) of ’’admissible nas follows : a nonnegative integer n belongs to W(u^.)
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an h-curve γ, ⊂ Fn(γ) ∩ C. . , , such , C ' ιj s'Similarly we join Q. with itself byand any h-curve γ ⊂ Q. .ι J s(i,s) ζji

v-curve γ ⊂ C.. there exists ιjsthat γ' = Fn+1(F^1(γ')) . 
up+j>P+j 6 Uo® , G^(γ) containsW(u., . ) is defined analogously asj+p,j+p δ 7priori obstruction to

if for anya v-curve inC. . .ιjs(There The setis no a W(u..) for i11 < P*u.. existing but with W(u..) = 0). ιι 6 nDenote U(H) U(P) ∪ Uθ(H) .
Definition 4 A sequence (r) n of elements of U(H) (or U(p>) is calleda walk on Γ(H) (or Γ(P)) if for any two consecutive elementsrkWe = u .

1JScall a we have» r< , -∣ — u. ,., 5 k+1 ι j swalk with weight a walk on j = iτ and (i,s) ≠ (j,,sl)∙
of the form u. . ∈ U (H) , W(u,.) ≠ιι o 11

Γ(H)0 and such that foran admissible each elementweight w ∈ W(u,^)is chosen. Then we write u^^(w). By length of a walk (r )wecall the number———— n∙of the indices n for which rn ∈ U(p) , minus 1 . (So, we do not computeedges u^. , they are introduced artificially to allow us, after walkingu.. ,
JIS

to turn back and walk u.. ).
1JSwe mean the length of the underlying By length of a walk with weightwalk plus double the sum of allweights of its elements of the form u. . .11Definition 5 : We call Γ(H) (or Γ(P)) transitive if for every two elements u.. , u., ., , ∈ U(P) there exists a walk, on Γ(H) (or Γ(P))ljb 1 J swhich begins with u.. and finishes with u.,., , .ιjs ι J s’We call Γ(H) (or Γ(P)) strongly transitive if there existsan integer N such that for any N > N and u.. , u., . , t ∈ U(P) whereo — o 1JS1JSi > P > j , i’ > P > j there exists a walk with weight, on Γ(H) (or Γ(P)) which begins with u. . , finishes with u.,., , , with length 2N .1J » 1 J sNotation 6 : The degree of a vertex v^ in the graph Γ(H) (or Γ(P)) is the number of edges incident with v^ (the edges u^^ are computed doubly!)
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We use the notation ^eg^v^ for Γ(H) and degpV^ for r (P) ∙
Lemma 7 : 1. If for each vertex v. of Γ(H) degu(v.) > 2 (i.e. Γ(H)
—----------- 1 Hi —has no ',ends',) and forΓ(H) is not a cycle), at least one vertex v^ , de⅛(v^ ) > 3 (i.e.o othen Γ(H) is transitive.
2. If additionally one of the following conditions holds :0-) For each i , degp(vp >. 3 ,(ii) For each i if degp(v^) = 1 , then there exists u. .

11
∈ U (H) withoW(u..) # 0 . There exists i such that o for an integerm > 0 .

(iii) In(ii) replace condition about io by degp(vi ) > 2o and W(u. . )3 1.1o1oThen Γ(H) is strongly transitive.
The same is true for Γ(P) (with H replaced by P , the con­ditions (ii): and<'.(iii) omitted). o

Proof 1. Transitivity : Since Γ(H) is connected there exists a walk fromu. . or u.. (Le. the■ nondirected edges) to ιjs jls f,find a walk from u.. to ιjsstart walking at
u.,.. . or u.... , . So we need to ι j s JISu.. (and from u.,., , to u.,.. f). J1 s i j s j i s. Since for every v. , deg (v.) >

1 H 1 —

Weu. . = u. .11S 1 l-1sj o 1 owalk from u. . tok1k+lsksuch that
u. 2 we

first integerLet whichfor . If then fromv. backto v.
n be thev.1 nv.

can.always continue a

in-2
v. ι n we can continue walking
u. , k =1k+l1k+2sk+lthere exists m , 0 < m < n ,

ilioso (see FiSure 3∙1)∙

0,1,∙.
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If m = 0 then we have a cycle C (Figure 3.2), but there exists k : 0 κk < n such that v. is incident with a third edge u . 1kWe walk along this u . Next, we always manage to continue a walk so thatafter some time we are back at C . Then we walk along C backward tou. .1,1 s looStrong transitivity : To prove this, it is enough to find a finite familyof cycles, i.e. periodic walks with weights,with lengths 2Nχ , 2N2,..,2Nr ,where the highest common factor of N,,...,N1 r (Np...,N^) == 1. Considerthe three cases (i)-(iii) :
(i) Let for each i = 1,...,p+q , degp(v^) > 3 . Choose any u. . ∈U(P)

1 1 So 1 oAt v at o least two different directed edgesdifferentu. . ,1l12slu. .ι , ι s-1 o -1C2 by

u. . , u., . l1 , 1 S , 1 , 1 s _-1 o-l -1 o -1: from u. . finish. At v_ at least two different directedι, ι s 1loou. ., , , different from1l12slui is ui1i,s, atld ui'1 i s' ui is ui1i's1' t0 cycles ci and olol21 -lo-l olo 121walks w^ and w^ respectively (see Figure 3.3.)wχ
u. . , start. Extend the walksι11 sloou.

C1

Figure 3.3
Denote 21L = length(C,) , 2N^ = length(C,7) . Either (N1,N2) = 1 which proves the Lemma, or we consider the cycle

with the length
2N3 = 2(N1+N2-1) . Then (N ,N2,N3) = I .
(ιi) Assume deg (v. )=1, {mjm+l} ⊂ W(u^ i ) . Then u. . (m) can be r 0 00 1o1oextended to a periodic walk with weight, with some length 2N . If we
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replace, in this walk with weight, u,^(m) by u..(m+l) , then we obtain n ,length 2(N+1) . But (N,N+1) = 1 .
iii) Assume degp(v^ ) > 2 , 1 ∈ W(u. o walk with weight going through . . ). Thenι ιo o...u.. ,

Ji so
there exists a periodic

But we can enlarge its length byv.ι o2 taking ... ui j's-∙∙∙ <j≠io ≠ j'>∙ oju.. , u..(l) , u..f l... □Jis 11 lj,s'Proposition 8 : If the l.t.m. HB except the assumption satisfies all the assumptions of Theorem> 2 and if r(H) and Γ(H ½ aretransitive, then H additionally H is strongly transitive,then all powers of H are ergodic, so H is a Bernoulli system.
Proof : Take any z ∈ C for which there exists a local unstable manifoldu∕ ∖ γ (z) ∙ By the proof ofγ ⊂ C∙'o 1 j sojo o integer nθ > 0such that Theorem B there exists an h-curve, (or v-curve) n(or γθ ⊂ H °(γtl(z))) for anλ ∏ u γθ ⊂ FH °(γ (z))
(V = (u.ι ,ι +p,s o’jo r’ o

. For every u.. ∈ U(P)1J sui ÷p,j ,s )>∙∙∙'uijs> on the grapho jo o j
there exists a walk(or Γ(H) .

thesay
Assume γ'oconsecutive edges is an h-curve, for example. Denote byof this walk with omitted elements ofthat r^ has property (γ) if there exists an h-curve

⅛-=ci(rk),j(rk),s(rk) ^C°h^2°W
9

* ?

when r, = u. , or a v-curve γ1 ⊂ C. , . .f λ , x ∩(k-l)∕2 - 1<rk^<rk>+P∙s<rk> k ι(rk).J^k)>≡⅛)ft °Gc(γo) , when rfc = uj j s ∙ ≡Y the definition ofproperty (γ) then r∣ζ+∣ has property (γ) . So, bywalk if r1 has ktransitivity, insome m every C..ιjs. By Theorem B for Hthere exists a v-curve γ cftm(γu(z)) for and transitivity of Γ(H ½ ,if for z ’ ∈ C a local stable manifold 3γ'(z,) exists, then there exists
C. .1ljlsl right sides of C. .11J χs

, an integer m > γ c h m(γs(z5)) joining left and rn(∙^lJ ιs j) uThis implies that h (γ (z)) intersects0 and a curve
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⅛^m(γs(z')) ∙ So k and H are ergodic.

Assume now that W is a walk with weight, γ ⊂ C. . is ato o 1 1 so o o= u.. satisfies : i > p > j . Then there exists a v-curve 1JS r — jγ⊂C.z ∖∙∕ ∖ / λ ∩ )lθngth((V) (this key fact follows imme-'n 1<rn),j(r∏),s(r∏) oy ydiately from the definitions of a walk with weight and its length, these
v-curve and rn
definitions were adjusted especially to this aim).

Concluding, by strong transitivity of Γ(H) , for any C. andcN - an integer sufficiently large, there exists a v-curveN . . . . kγ ⊂ C.. ∩ H (γ ) . This yiedS ergodicity of the mappings 1Γ for every1J s ointeger k . □
[Instead of graph Γ(P) onegraph dΓ (P) defined as follows : theedges u. . ofιjs Γ(P) . There exists astarts at u. .1JS and ends at u.,.t , ι J s’The graph Γ (H) is defined by adding

can consider its derived directed dvertices of Γ (P) are directed directed edge in Γ^(P) which 
if j = i’ and (i,s) / (j,,s,). new edges to Γ^(P) as follows :We add a directed edge which starts at u.. and ends at u.. if for ιjs jisP. and (i-p,s) ∈ J. when i > ρ> j or Q. and (i,s)∈J p when J J J Pj > p > i , the property described in Definition 3 is satisfied. ForΓc∖p) and Γ*^(H) a walk is defined in a standard way .]

Lemma 7 and Proposition 8 give the topological condition about P (i.e. degp(v^) > 3 for i = 1,...,p+q) which implies that every l.t.m. on P satisfying the assumptions of Theorem B , even except Ik.I , |£.| >2I 1ι I J I _is Bernoulli. If P does not satisfy this condition, then the question of whether H is Bernoulli reduces to studying the existence of u^^ , and studying the set W(u.J . Proposition 9 will be devoted to this question.But first, we introduce more notation.
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- 42 -Number the q(i) components of e.i(C) in and denote themZ ∙ X ∙j , starting from any component and going to theQ-} by LS-^ , RS^ respectively.Qθ,...,Q'the left and right sides of right. DenoteDenote byS(yθ) the horizontal circle S(yθ) = {(x,y)∈ P^ : y = yθ} . Since for any two points zpz2 ∈ there exist two arcs in S(y) joining them,we fix that (z ,z?) denotes the arc oriented to the right, with the begin at , the end at z^ . ^(zpzp denotes its length.
Denote P(P.)= max inf Jl(RS⅛S(y) ,LS-5+' (m°d q(1)) ∩ S(y)) .1 j=0,... ,q(i)-I y∈(y[,yV)
Proposition 9 : For H a l.t.m. satisfying assumptions of Theorem Bexcept > 2 , for 1 < i < p the existence of u.. follows

11from each one of the following conditions :
1. > 22. , where P. ∩ Q. ≠ ι J 0 ;3. p(pi> i⅛ a. ιIn the case 1, W(u..) 30

11
. In the case 3., if t>(p.) > -⅛- -ι — n+1 ιa.for n > 1 , then W(u^) 3 n . (We leave writing the analogous conditionsfor p < i < p+q to the reader).

Proof : The case 1. is explained on Figure 1.2. Inx'.,-x,. εi = max(ei> ⅛d0
j 1 j 1(19. §2) with ε., instead of ι⅛. > 0 (the case ι

inequality (4) in § 2 for the case 2. we need theε ∙instead of ε∙ . This ιfollows from the inequalityConsider the case 3. Assume for example ε. ∙ιk. < 0 is ιanalogous). Assume P(pi) > nn+1 a. ι for n > 1.
Lift F.ι : pi = Kχ<y!,y7> so that F ∣{(x,y) :y=y! }

÷ P. to ι≈ identity.× {0}
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lake any v curve γ ⊂ Q∙∖ 0 < j < q(i) , and choose a covering curve γ in a component Qj of the set covering Qj . Denote the consecutive components covering (mod <l(i)) , q.1 ±2 (mod q(i))Qj il , Q^±2 ,..., the left and right sides of by LS^ , and
the lines IR × {y} by S(y) . For any two points lying on the same line we use the standard relations < and < . Denote by j such j atwhich the maximum in the definition of V(P.) is attained. There exists (x1,yχ) ∈ Y such that F(x1,yf) ∈ R?^0 (pro­
vided j < jθ , otherwise we replace jθ by jθ+q(i)) .Since ∣F*°(x1,y1)-Fm 1 (χj ,y^) ∣ = ∣F(xj ,y1>-(x1 ,y.p ∣ for any integer m , we have

θ41÷l 
r ∩ sz(y1)j j +l-q(i)< (n+l)∙∣RS ∩ S(y1)-LS 0 ∩ S(yχ)∣ < aχ ,,nι+l fJ +1 ~ j +1hence F <x1>Y1) 1 ls ° ∩ ≡(yj) and Fn(x1,yχ) < LS ° ∩ S(yχ) .So there exists (x2>y2) € ~ such that y2 > yl and ^^x2,y2^ e

∣F (x2,y2)- RS o ∩ S(y2)∣ > a.~n+I ~jo+q(≈-)hence F <⅛y2 — RS ∩ s^yp '
andandBut

We conclude that the curve γχ ⊂ γ(x2,y2) has the property that Fm(γ1) ∩ Qj = 0 for every m =1,..,n j = 0,...,q(i)-l and F (γχ) contains an h-curve in each
with the ends at (xχj y∣)

Qjthis means that n ∈ W(u..) . □
11Theorem C follows immediately from Theorem B, the case 3 ofProposition 9. (if degp(vχ) = 1 we need P(Pχ) > -∣a. for i < p and2,'' ^θi-p) — 3^ '°i~p ^0r * > P » if degp(v^) =2 it is enough to replace
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-j by --), Lemma 8. and Proposition 9.
Remark : It is also true under the assumptions of Theorem C (but with theqproperty 'tif A. intersects U B, in exactly two points then these two1 . . j=1 jpoints are not antipodal in A∕* assumed for every A^ and respective property for every B.) that h. ≈ H,1 , the induced mapping is Bernoulli.

J LTo prove it, one needs consider walks without weight, i.e. not consider weight in the definition of length. This gives information about the curves ∕ιn(γυ(z)) instead of Hn(γυ(z)) . Strong transitivity of Γ(H) follows in this case from the fact : deg,τ(v.) > 3 for each v. (we leavebH ι — ιa proof to the reader). □
To show bow to apply the above results we shall study the exam­ples from the Introduction.

Example 1 : Consider H , a toral linked twist mapping, with twists as strong as in Theorem A but not necessarily satisfying ∣k∣ , ∣β∣ > 2 .We shall discuss the following properties which H may additionally satisfy:
(a1) ∣ α ∣ > 1√Γ ∙ i 0 (b1) ∣b∣ > ∙y1 -y∩√Γ,∙ 1 o1 o yι^■yj o 1 o χ. -x1 o
(a2) 1 (b2) 1xι'-x o - 2 yΓyo < ^2
(a3) xΓ-x o 1- 3 (b3) yΓyo < 13
(a4) ∣k 1 2 2 (b4) |£| > 2 •

The graph Γ(P) looks as in Figure 3.4.
Γ(P)P QFigure 3.4 Figure 3.5
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If one of the conditions (a^) , i ≡ 1,...,4 and one of the conditions (K) , i ≈ 1,...,4 is satisfied, then Γ(H) and Γ(H~1) are transitive so H is ergodic (the induced map h. = is evenBernoulli). See Figure 3.5.
If the conditions of one of the following sets of conditions aresatisfied :

(i) <(a4),(b4)} > (ii) {(a2),(b2)j(azi)}(iii) {(a2),(b2), (b4) } > (iv) {(a3),(b2)}(v) {(a3),(b4)} > (vi) {(b3),(a2)}(vii) {(b3),(a4)} 9

then Γ(H) is strongly transitive, so all powers of H areergodic, hence H is Bernoulli. The graphs Γ(H) in some of the above cases are presented in Figure 3.6. (numbers on the edges joining P (respect. Q) with itself denote admissible weights)

Figure 3.6.

1,2 0 c∙—O
case (v)

Example 2 : Consider H , the Bowen example (see Introduction) with twists as strong as in Theorem B, but not necessarily satisfying ∣kj , j£∣ > 2 . Discuss the following properties :
(a) t>(P) > la (c) P(Q) > ∣b
(b) ∣k∣ > 2 (d) £ > 2
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(We recall that (a) (analogously (b)) means that no circle {y = const. }⊂P-1contains a pair of antipodal, points contained in e oE(Q).)

The graph Γ(P) is presented in Figure 3.7.
P* *Q

Figure 3.7.
If one of the conditions (a)-(d) is satisfied;, the Γ(H) is strongly transitive so all powers of H are ergodic, hence H is Bernoulli. (Also h ≈ Hp∩^ is Bernoulli). The graphs Γ(H) in these cases are presented at Figure 3.8.

1
case (a) case (b)

Figure 3.8.
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§ 4. a) Density of periodic and homoclinic points

Assume H be an l.t.m. (but omit the assumptionAssume also that Condition H (from Theorem B, § 2) is satisfied (whichgives almost hyperbolicity). Then hyperbolic periodic points of P qhomoclinic points are dense in U e.(P.) U LJ E. (Q.) (we keepi=l 1 1 j=l j jtion from § 2). This follows easily from Pesin Theory. The technique which
H andthe nota-

gives it as a by-product has been worked out by Katok, see [8] . However,we shall give a sketch of proof :
Denote Denote by vuπ G u<s>(ε) = {z the H-invariant measure under consideration.
differentiable manifold ∈ C : there exists a local unstable (stable) u(s)γ (z) with z in its middle, length(γu∞) > ε}

Then for each point x ∈ C and small <5 > 0 (δ<< ε) thereexists a ball B(y,δ) ⊂ C close to x , such that
vll(B(y,δ) ∩ Gu(ε)

Denote B(y,<5)
∩ Gs(ε) ≠ 0 .

n ^n2∩ Gu(ε) ∩ Gs(ε) = B . There exists z ∈ H (B) ∩H (B) ∩ Bfor n.j, , ∩2 large enough and n]∕n2 ~ ,
Take a small rectangle S n -n1 -n_ nH i(γs(H i(z))) U H 2(γu(H 2(z)) built using the crossand curves with tangent vectors in thehorizontal (respectively vertical)(these cones are complements of the H-invariant cones C, (resp. C ) h vzcones (resp. C ) from § 2.).See Fig 4.1.

S
Figure 4 . 1
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An argument like use of the λ-lemma, and standard geometric... n2 "nlreasons, yield the existence of a periodic point in H (S) ∩ H (S).To prove density of homoclinic points use two rectangles , in twoneighbouring discs B(ypε) , BCy^e) , Figure 4.2.

Our proof of the density of periodic (and homoclinic) points in fact is right for any measure preserving dynamical system H with singu­larities, satisfying Katok~Strelcyn (K-S) conditions (see [10]) with Lyapunov exponents almost nowhere 0 (density in support of the measure, of course).
It seems that even Katok’s [8] estimate for entropy

h (H) < lim sup ∏ log(Card Per H) holds. (Katok has confirmed my VH n÷∞ nopinion) .
It is an intriguing question whether existence of at least oneperiodic point in C implies density of Per H , even without assumingexistence of a good invariant measure υHT2) . For the case when all the K,have the same sign (on the torus[4] . He has used the fact that if the globalfolds of a periodic point p , Y^lob<P) » Yglobother, then they have a nonempty intersection. Here I do not know how 

this has been proved by Devaneystable and unstable mani-(ρ) pass close to each
to exclude the following possibility (see Figure 4.3)
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b) Fur t-her genera l izat-ion of . linked ■ t'w ist mappi ng s
Take a pair of transversal families of annuli P = (<Pi),{Qj})as in Theorem B (more exactly, take a pair of embeddingsFor a positive((e∙}∙ 1 „ , (e-}∙1 rt) » see § 2.) .ι i —1,...,p j j l,...,qfor every n = O,1,...,N-1 choose J(P,n) ⊂ {l,...,p}• ∙ »P andJ(Q,n) ⊂ {1,...,q} . Assume that

For each i ∈ J(P,n)j ∈ J(Q,n) take an(respectivelyare the same.P∪ e.(P.) U . 1 11 ι = l

integer N ,

N-lUn-0
N-lUn≈0

take a

J(P,n) = {l,...,p}
J(Q,n) = {l,...,q}
k. -twist ι,n F. on P. ι,n ι , for each£. -twist J,nj) the signs of that for each iQ. . AssumeJ(resp. £. ) , n = O,...,N-1J »nn

e. ι
F. e.∖x) if x ∈ e.(P.) and i. ∈ J(P,n) ι,n ι ιιF(x) n x otherwise .
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G,π(x) =n if x ∈ E.(Q.) and j ∈ J(Q,n) J J

otherwise.
Define H = G.τ π °F.τ °...<>G °FN-l N~l o o
Assume finally that H preserves a measure v = v equivalent to HLebesgue measures on , Q. with upper bounded densities.

We prove that assuming the twists are sufficiently strong (moreexactly assuming Condition H from § 2 for all pairs of twists F. ,
1 , TT1G. r such that e.(P.) ∩ E.(Q.) ≠ 0) H has almost everywhere nonzero Lyapunov Jιι J Jexponents.

For every n = 0,...,N-l defineH = G oF o...bG eF ≡G °F 0...°G °Fn n n o o N-l N-l n+1 n+1the H -invariant measure (G α...<>F )5fc(vττ) ∙ n n 0 * H(mod N). We have
. Consider HnFor a fixed together withdenotem1 = n+k+1 k G oFmN-l mN-l 0...°G F“ m o For everyj ∈ J(Q,n) denote -1G o m o -1.oG (E.(Q.) ∩ ra∙ 1 J J ι-l j jDue to this definition every point

Ut∈J(P,mi)∈A(j,n) , under the
et(Pt))) .

induced mappingat least once undergoes(Hn> A(j,n)at the end undergoes the vertical horizontal twist, bytwist F , andt,m.ιpositiveLyapunov exponents for n)hits A(j,n)starting in A(j,n)
G. . This gives J , ft. Since almost every H^-trajectorywith positive frequency, we can deduce

Hn m o
(

za

n

that almost every z ∈ A(j,n) has a positive Lyapunov exponent.
For almost every z ∈ Ue£ (P.) ∪ ∪E.(Q.) there exist s,n,j J Jsuch that Gn°Fn°'‘°goofo°H G anc^ j ∈ (only pointsin circles where rotations F^, o...oFθ are rational can behave differently).
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Next for almost every z ∈ E√Q^) exists s > 0 such that (Hn)a(z) ∈ A(j,n) if j ∈ J(Q,n) , thereThis proves that almosthas a positive Lyapunov exponent. Ana­logously we prove that the second Lyapunov exponent is almost everywherenegative.
In fact we can prove also a generalization of the ergodic partof Theorem B.

Theorem : Assume that Condition E is satisfied (replace q(i) by q(i)∙N and ρ(j) by ρ(j)∙N) and Ik. ∣ , I £. I > 2 . Then H is, ι, n , j , n ■ —Bernoulli.
Sketch of proof : We proceed as in the proof of Theorem B. The difference is that we consider an unstable arc γ ⊂ C.. and its images underι j sFθ,. .. ,F^^,Fθ, . . . ,F pFθ, . . . and so on, instead of under F all thetime. Next we consider only intersections of the imagesF o n oF θHk(γ) ⊂ e. (P.) O ’ 11 with such that j ∈ J(Q,n) . (We findan H-periodic point t ∈ γ and consider its orbit under

We reach the situation when there exist (or Q.) , k , nand C.. such that F o...≡G oF °Hk(γ) ∩ C.. (γ = γυ(z) , a local ιj s n o o ιj sunstable manifold) contains an arc joining the left and right sides ofthe C. . (we call it an h-curve) and j ∈ J(Q,n) (or G oF o..oF oHk(v)1Js n n ocontains an arc inside a C.. ιjs joining its lower and upper sides (a v-curve) and i ∈ J(P,n+l(mod N))) . Then G oF o n n oF °Hk(γ)o ' containsan arc joining left and right sides of the C..ιjs winding at least twicearound E.(Q .) (or... we start to omit the second case). We shall callsuch an arc a spiral. Denote the above indices by k ,n ,io o o
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We call a subset A cz {l,...,ρ+∏} an F —set if *k,n1) For every i ∈ A , i j< p one of the following conditions is satisfied :a) contains a spiral ;b) Every C.^ such that (j,s) ∈ contains either an h-curve, or a v-curve and then j+p ∈ A . The set of v-curves is nonempty.

2) For every i ∈ A , i > p one of the following conditions is satisfied
a) E. (Q. ) contains a spiral :i"P i—p ~ ’b) Every such that (j,s) ∈3 p contains either a v-curveor an h-curve and then j ∈ A . The set of ħ-curves is nonempty.
All spirals and v,h-curves in this definition are contained in the set F 0...oG °F oHk(γ) .n o o ,,

We call A ⊂ {l,...,p+q} a G -set if it satisfies the above
K.j πconditions but with G °F o ... °F *Hk(γ) rather than F o...og °F oHk(Y)n n o ∏ oo yWe find a sequence of F - and alternately G, -sets . Weκ>n k,nstart with the G1 -setk ,no, o

ao ^ {p+jo}
When a G1 -setk,n

A im+1
Am is

A U {i :mP+j ∈ A
defined one can easily prove that
there exists j such that e.(P.) ∩ E.(0.)≠ (/)

1 1 J J, ei(Fj) G fj) contains a v-curve in
____ πkz s . .is an F1 , -setk,n+lAnalogously we defineeasily prove that for all

Gn°Fn°“ ∙°f0°h (y) and i∈ J(P,n+l(mod.N))} if n < N--l or an Fτz 1 rt~set
K+l, 0A if A m+1 inm sufficiently lai F1 -set. One cank,n= { 1, . . .,p+q}

if nis ane A mSo for every kFor j ∈ J(Q,N-1) , E. (Q.)j j
sufficiently large {l,...,p+q} is a G1 κ, -set. k,N-l

• . k + 1contains a spiral Sk ⊂ H (γ).
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Now we repeat the whole consideration for a local stable manifold γs(z,) and obtain for an £ (large) , in H ∖γs(z,)) ∩ E^(Qj) an h- curve or a spiral, but twisted in a different direction than .(It may happen that J(Q,N-1) = 0 . Then we replace N-l by any n such that J(Q,n) ≠ 0 and consider H insteadof H.ButH^andH are conjugate).We shall estimate the measure entropy h (H) for the almosthyperbolic H .
Proposition : Assume that υ((F 0...0G oF ) i(C)) < εn 00 — andv((G oF 0. . . n n . oGooFq) ∖c)) < ε for every n = 0,...,N-l (in particularv(C) <ε) . Assume that the slopes of the twists are bounded above by-1C^∙ε . Then

ħ (H) < 2N √Plog(2N C2C2e~5/2)
(here C? is an upper bound for ∣∣D(E . ⅛e. ) ∣∣ , ∣∣D(e. ¼ .) ∣∣) .

- J 1 1 1

Proof : Denote by λ (x) , the positive Lyapunov exponent. DenoteP qU e.(P.) U U E.(Q.) = X . We know that i-1 11 j-ι j j
(1) h^(H) < ∫ λ+(x) dυ(x) , see 115], [10] or AppendixxDenote by χ^ the characteristic function of C . For n=0,...,N-l denote

Denote = {x ∈ X : there exists n

1 k-1×n,Pw = -j ∙ -*-lim 7- . k Σ£=ok-÷∞ 1 k-1χ ^(χ) = lim 7- Σn,Q 1 kk→∞ £=0(for almost every x , lim exists by
χroG o...oG of (H£(x))tn o o
χf,oF o...oQ op (ll∖x)) andC n o o∙
the Birkhoff Ergodic Theorem).

Xn q (χ) 21 ∙ Dθnθte X2 = X x X^we have v(X^ _< 2N √εi . λ+(x) < log
such that χ d(x) > √ε, orn,i∙ —. Since ∫ χn,p(x)dv(x) £ ε , -ιx2NC]C2e for almost every x ∈ X so

www.rcin.org.pl



- 54 -
(2)

for every

∫ λ+(x)dv(x) < 2N√ε1 log(2NC Coε 1)
∙A-^j 1 Z

Take an arbitrarily small <S > 0 an p(Q)^k) = Card : 0 -1 λ < k For almost every x ∈ ×2 f 0 < n < N-l , (Gn°)Fn°'"GoOFo°H<1(x) eC} < k'(∖z≡+δ>k > k(x) sufficiently large.
So the 2Nk consecutive iterates of x under F ,G , .... G o’ o N-l’Fθ,... divide into at most = 2N∙k(√ε+δ) blocks and on each blockwe twist in the same annulus. So∣∣DHk(x)

has not here a strict sense since a Riemannian metric on X hasnot been defined. So we need to use the constant C^) .
λ+(x) = lim i log∣∣DHk(x) ∣∣ < lim ~ 2Nk(√≡,+ δ) log(C1 Co (√ε+δ) 1ε 1) . k÷∞ k-χ≈ i 2Since δ has been chosen arbitrarily we can neglect it. So

λ+(x) < 2N √ε log(C1C2∙ε 3/2)
Thus using this, (1) and (2) we have

h (H)v ∫ λ (x)dv(x) + ∫ λ (x)dv(x) xι x2
2N v^log(2NC2C2ε 5/2)

<
<

c) Perturbation of twist by ,la saw"a
We keep the notation from the Introduction. We proveft “ ft∩ ~ A oF and all its powers are ergodic.
We introduce more notation. Choose lifts A , F of

that
A , F to n

www.rcin.org.pl



55
ir2 . Denote H = A®F . Denote L = {(x,y) £>{(x,y) ∈ JR2 : x = s,2 n+2 n ¼ , ∈ ]R2 : x = s ∙ 2 n} ,

denotes the strip betweenand R s and Q' the strip between s every integers . We show how identityon the dottedschematically on Figure. 4.4 according to arrows
∖

i
1
ii

IJ-n- -12 1i
s+1 R _s + 1 1

When we consider an oriented curve embedded into JR we

R sL s R s

δdenote by b(δ) , e(δ) the points of the beginning respectively the end of the δ . By Pr , resp. Pr we denote the orthogonal projectionsx yon x-th , resp. y^th, axes. Let v be the expanding eigenvectorof the matrix DA(z)<,DF for z ∈Q' and (ξ1,ξ9) = (DA(z) °DF) (v) for
S x Zz EQ . Of course ξ π / ξo >0 . Denotes 12s+(z) = {(η1,n2) ∈ TzBz : ξ1∕ξ2 < ηt∕η2}

Observe that for each lift to JR" of a local unstable manifold,γ (z) , for every integer n , and every point z’ of differentiability of Hn(γu(z)) such that z, ∈ ∪ Q , the tangent space4, s∈Z sτz,εn(7u(z)) <=≡ O') .
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Take a point z ∈ T for which γtl(z) exists. From [14] it follows that if C > 4,0329... then there exists an integer mθ > 0 and a segment γ ⊂ Q which joins L with R for an integer s andm

• O 11covers a segment in H (γ (z)) ; see Figure 1. Orient γ from Lg to Rg and denote this oriented segment by gθ . We shall construct by in­duction a sequence of piecewise linear, oriented curves ,k = 0,1,... such that g^ ⊂ H (γ) .
Denote the first (last) segment of g. by g1 (g1 1) (with K K,O K∙, jLorientations inherited from g^) . Assume that there exist s(k,0) , s(k,l) such that b(gk,0) ∈ Ls(k>0) , e(gk(0) ∈ Rs(k>0) , b(gfcj1) ∈¼(k>υ and e(gkjl) ∈ Rgfk υ .Since length (Prχ F(gfc0)) = length(Pr (gfc θ)) + 2 n 1 > 5'2 n 1, there exists s such that F(g1 ^) intersects L and R . (Here andk, 0 s suntil the end we use only the inequality C > 4). Denote by s(k+l,O) the smallest such s . Similarly define s(k+l,l) as the largest s such that F(gv 1) intersects R
Finally define
gk+j = A<>F(gk) X ({(x,y) e X,°i⅜k θ): x < s(k+l,0)∙2 n} ∪

∪ {(x,y) ∈ A<>F(gk 1) : x > s(k+l,1)∙2~n+2^n~1}
with orientation transported by AoF from g, . K.Observe (!) that for k = 0,l,...

pryucgk+l,in"prycecsk,in > C’4 and

Observe also that the sequence of acute angles between (or
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and the x-axis is decreasing with growing k .

This and (1) imply for every k > 1
(2) Pryb(gkjl)-Pryb(gkj0) = Pry e(gfc l) - Prye(gk 0) > 0 .

From this, or directly, we deduce that for k = 1 , g^ θ /■ ,i.e.  s(k,O) < s(k,l) . This and inductive reasoning with use of (2) give s(k,O) < s(k,l) for every k > 1 . So, for every k > 0
(3) prxb<≡k,P ^ prxbuk,(2 ≥ 0
(1) and (3) imply

d ι s t ( P r χ ( g k 1) , P r χ ( g k θ)) ,d ι s t(Pr y ( g P r y (g k 0)) ----- ¼ ∞
k->∞• — £ — £ gIf we do the same construction with F , A and γ (z,) we obtain a similar sequence of curves, but in (2) the inequality must have different direction than in (3). This shows for example that there is no2H-invariant circle embedded into T . But we still do not know whether sufficiently far H-images of γtl(z) intersect sufficiently for counter­images of γs(z,) (see Figure 4.5, fortunately H ^(γjs(z,)) cannot go'∙~karound H (γ) as on that Figure, see consideration below). We shall prove

Figure 4.5.
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Denote by Wfc the rectangle between Ls(fc Q) , Rg(fc and the two horizontal lines containing b(gfc,θ) and e(gfc j) respectively.
Our aim is to show that for every k > 1 there exists a piece- S∣t c~ E∣, which satisfies the following properties : 

to the lower side od Wr , e(g ) belongs to the
2. the line ffc0 = b(gfc) + τ'(ζ1,ξ2) lies left of the line⅛,ι “ e⅛)÷τ∙(ξ1.⅛) ;
-∙ 8∣c ts contained in the parallelepiped W. between lower and upper 

wise linear curve
1» b(gk) belongs upper side . of W1

drawn only schematically, the fact that it is piecewise linear, with the segments in the prescribed sectors has been neglected).
Existence of such a gR would allow to finish our proof.Indeed, the length and height of lξ tend to ~ when k÷≈ , but theangles are fixed. For a local stable manifold γs(z') we could similarly find the curves contained in lifts of H~5(γs(z,)) , for large £to I< lymg inside corresponding left twisted (rather than right twisted) parallelepipeds W1,s, joining the acute angles of W1’? The sides of W1,s

& - £
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would get large with £ large and we could choose lifts so that lower s ∙ ∙ends of g were inside the δ £give the desired intersection triangle » see Figure 4.7. This would of H °(γli(z)) with H ∖γδ(zt)) .(This part of proof goes more or less as for the Burton-Easton example).
Proof of existence of g^ :

We start with definitions. Let g be any oriented piecewise2. 2linear curve embedded into 1R' , g : < t ’, t" > ÷ K , t’ < t” ,oriented from g(tf) to g(t") .Define a mapping φ(g) : < t ’ , t,f> ÷ S^^ (S^ = {z ∈ K: ∣z∣ = 1}
is the unit circle) as follows. Let tl = t < tη < ...< t < t = t" o 1 m m+1denote the consecutive points at which g is not differentiable. Chooseε : 0 < ε « min (t. -t.) . Definei=O,...,m 1+1 1

Φ(g)(t) = Dg ~~-(t) ∕∣∣Dg~(t) ∣∣mfor t ∈ U < t.+ε,t. -1-ε> ∙ For t = τ(t.-ε)+(l-τ)(t.+ε) , 0 < τ < 1 , ι=0i=l,...,m :
τ*Φ(g)(t.-ε)+(l-τ),Φ(g)(t.+ ε)Φ(g)(t) --------------- ≡---------------------------- ------∣∣ τΦ(g) (ti-ε) + Q-τ)Φ(g) (ti÷ε)∣∣

for t ∈ < t’, t,+ε > ≈
Φ(g)(t) = Φ(g)(t,+ε)

and finally for t ∈ (tn-ε,t,5) '
Φ(g)(t) = Φ(g)(t"-ε)

Define the index ind(g) = ----- (log φ(g)(tπ)-log Φ(g)(t’)) where log2πi
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means its branch continuous along the curve Φ(g)(∙) . Clearly it doesnot depend on ε .

Define a mapping ψ - Ψ(g,b(g)) : <tf,t,'> ÷ as follows :For t ∈ <t,,t'+ε> , Ψ(t) = Φ(g)(t) , For t > t,+ε ,Ψ(t) - (g(t)-b(g))∕∣∣g(t)-b(g) ∣∣ .
Define an index with respect to b(g) :

indb( j(g) = 2⅛(l0g Ψ(g)(t")-logψ(g)(t")) .
Denote by ]g , g with reversed orientation. Define an index of g with respect to e(g) indθ^(g) ≈ -ind^^-(g)

Lemma 1 : ind(g) = indb^(g) + indθ^(g)
We go now back to our curves gfc , taken together with parametrizations gfc : <0,l> ÷1R2 .

Lemma 2, : a) For every k > 0 , t ∈ (0,l> , ind(gk) = 0 , ind(gk∣ £ θ∙b) ∣in⅛(gk)⅛ 1 4 > ∣inde(gk√⅛>∣4 ∙
Proof : Goes by induction with respect to k . To prove part b) use also inequalities (2) and (3).

Now, having Lemma 2s we can forget about our dynamics and deduce^ . . 2existence of g^ only from properties of curves in K .
Fix k _> 1 . Let us blow up b(g^) , θ(gk) t° smal1 discs Dθ ,2D, . Consider a universal covering X of ]R ∖ (int Dθ U int D^) and alift W° ⊂ X of int(W, ) . Denote $ = cl(βo) . Denote by ∏ the projec-2tιon onto 1R 2By Lemma 2b) there exists an isotopy Γ : <0,l> × <0,l> ∙÷IRsuch that Γ1 = Γ(l,.) = gk , Γθ = Γ(O,.)=Δ, Γ(s,t>Γg(t) = Γθ(t) for
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t ∈<0,ε>∙ U<l-ε,l> for a small ε and

Γ(<O,1> × (0,l)) ⊂]r2 ‰ {b(g^) ,e(g^) } (∆ on <ε,l-ε>is defined as linear, see Figure 4.8).

Figure 4.8.
, wherekeeps the endsthe curve embedded into X

on X soand ∆(<0,l>) ⊂by C-∣ (respect. C^)
rs√ z . rs(°) , Γe(l) fixed). Denote , inside Fr(^) ,joining the points a^ and a^ through a3 (respect, through aθ ,a2 ’at,) , Figure

Let t = t? be the first parameter for which Γ^(t) ∈ ∙tLet t - t^ be the last parameter t < t2 for which (t) ∈ Cj .We define g = ∏oK∣ k ]∣< tquired properties. f-X = and prove that it has the re-] > l2j, kΓγ c] , c 2> 

(4) implies immediately that for"4 < lpdb(gk∕gk∣<O,t>

(4) . Γ-1(< t1∙t24 5-) c
ingout

This follows from the following : C disconnects X into X1 contain- 2 iis the first time when Γ^(g) goesof X^ . Now we use similarly the fact that disconnects X^ .t 1 t2 ,every t , t^ <_(5) X4 ,) <
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(sincetained h∣<in $ and πoγ obviously has property (5))-θ is homotopic with fixed ends, to a curve γ fully con-

small Since *f-t ∣ n j1 1 < o, t2>ε > 0 , there exists a homotopy h : ≤0,l> × <0,t2> ÷ X1 suchcX- , which is simply-connected, then for a

and s ∈ <0,l> , ∙∏∙°h i is linear ando∣<ε,t2~ε>h(<0,l> × < ε , t2-ε>) ’
Denote by B the group of all covering transformations on X(i.e. b ∈ B if πob = id). Let e be the neutral element of B. Then if b ∈ B ∖ {e} we have

boh1(<0,t2>) ∩ h1(<O,t2>) = 0
since iroh^ = gfci<Q t > has no self-intersections. But each b°h? begins 1*2 j^at I∙,r(X) and the rest is contained in int(X) , So we can improve the1 11nomotopy h to h so that hθ = hθ , h^ = h^ and additionally to all properties of h described above, h^ satisfies :
h (<0,l> × <0,t2>) ∩ U boh1(<O,t9>) = 0 . This implies that1 b∈Bx{e} zπ h (<0,l> × <0,t2>) / ⅝(t2) * so

indgk(t2) ^gk∣< p,t2>^ > “ 4^
By Lemma 1, this and (5) imply
(6) 12
hence by Lemma 2 a) for is not differentiable at (t2)8k ct2 , then by int sgk(t2) ■ (if ≡kwe mean the left sidet = t2 ’ τ⅛
tangent space).
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Observe that g^(t,p belongs to the upper side of W , K.(otherwise if it belonged to the left side hence in (6) by - -∣- , a replace by - ~ .

we might estimate in (5)from below by 0 ,that in (6) we can contradiction). This implies
(In fact one can easily prove even that ind(g ) = 0κ ∣ < u 9 L 2 > but it needs going back to the dynamics of H).

We prove that g^ lies left of ]_ ∙ Assume that thereexists t3 such that t3 _< t3 < t^ and g^(t3) ∈ ∣ ∩ W^ (seeFigure 4.9). Choose the largest such t„ .

Figure 4.10
Then andindg(t3d≡1 , ind(g.g(tq)(gk|<t3,t2>) 'k ∣ <t3, t2>)' θ rentiable at t3 , otherwise we couldSo, using Lemma . We canslightly

indg(t2√sassume that 1 I ) < 0 .'k∣<t3,t2>g. is diffe-- okrotate £, 1 aroundk,l
< 0

g^(t^) in the negative direction. Soind(g.'k∣ <0, t3>)+ lnd⅛l <t. gives ) = ind(g.3’2 ’k ∣ <0, t2>) which using (6) with

But
the

ind(g.'k∣<O,t^>^ >
for this index the values between and 0 are forbidden, since

ind(g
dvector D ( (t„)) is directedgk,1 I r, . ) > 0 , which contradictsκ'<U,t3>

left of 0xk,l SoLemma 2a .

14
14 4
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Now observe that ∣ind(g ∣ )∣ <± (t>yk ∣ < t χ, 19 > ∣ 24.10),hence by Lemma 2a) T , (g ) ∈ i∏t St z x gk<tp 3 gk(t1)k∣<O,tχ> = 0 ∙ τ° Prove that gk lies right of similarly to the proof that it lies left of ^k χ .

Lemma 1, see Figure. In fact evenind g. ⅛,o we proceed
d) Bifurcations of the toral automorphism

Take a mapping ∏2f,2g : TZ-------→ T2 as described at the beginning of the Introduction, with the annuli P ≈ Q = τ2 and (T-functionsf(y) , g(x) such that f = g (after change of dκfX to y), —--(y) = of(y) = y for y = 0 , i , 1 and dfz .d7<y> > 0 for 1 dyy ½ 0,~ , 1 (seeFigure 4.11).

From [2] it follows that H is Bernoulli. Repeat briefly the rest of Katok construction, [7] . Act on T2 with the involution inv(z) = -z . It commutes with H . T2∕inv is a sphere S2 (wer»g2introduce on T ∕inv a smooth structure around four singularities of action by inv : (0,0) , (0,∣), (∣,0), (∣,1)) . Neκt rem0ve from s≡ a pole, for example the image of (0,0) from T2
take On T2

as above we can study an even , *- dfzl.but assume ~τ~(-z-) >dy 2
simpler example H_ , where we f ,g0 (see Figure 4.12) and g = id.fDenote by X a vector field on S1 = K/& which pushes from the point

< ∣CN to 0 and 1 (i.e. X(t) = (-sin 2πt)∙a∕at ) and Xfc its flow.
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Consider the two-parameter family of functionsf = s∙id + (l-s)∙(foX.) for s,t ∈ JR , s < 1 .t, s t —We obtain an intriguing two-parameter family of diffeomorphisms on T2

H(t,s) = Hft,s,gWe describe below some properties of H(t,s) :
1. For 0 t ∈ 1R , H(t>s),s are clearly Anosov diffeomorphisms.
2. For s are Bernoulli (by [2] ) but not Anosov, since

< s < 1 ,
DH(t,O)(0)
3. For 0with the algebraic automorphism are topologically conjugated

■) ■
< s < 1 , A =

This follows from the fact that H(t,s) is homotopic to A which allowsexistence of a continuous functionto prove semiconjugacy i.e. the2 2
h. : T------ ¼∙ T such that fioH(t,s) = A°h . In fact h. is a homeomor-, . . . ~ 2phιsm since a lift H(t,s) of H(t,s) to IR is expansive with cons­tant of expansiveness arbitrarily large. See [16] .
4. Measure entropy with respect to Lebesgue measure h^(H(t,s)) is a continuous function of (t,s) for 0<s<l,t∈]R .
This follows from the fact that stable and unstable subbundles dependcontinuously on (t,s) for s > 0 . For (t ,s )-→(t ,0) we can prove n n opointwise convergence (almost everywhere) of stable (unstable) subbundles es(u) θf H(tn,sn) to those of H(tθ,0) . Next use the formula

h (H(t,s)) = [ log∣(DH(t,s)∣ ∣∣ d«.(x)T2 ∣ Eu(x)It is easy to prove also that subbundles Es^l'^ are continuous
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on a set of full measure. This holds, in fact, for all linked twist mappings considered in this paper.
5. Fixed s : 0 < s < 1 , h(H(t,s))---- —¼ 0 . (The proof is similart÷+∞to item b) of this paragraph). This together with 3. and 4. shows that for any number α s 0 < a < k (A) ≈ log(-there exists an Anosov diffeomorphism A^ isotopic and conjugated to A , preserving Lebesgue measure such that k (A ) = α .

Z α
6. If we take the pointwise limit A = lim H(s,t) we have k (A ) ≈ 0 ,° t-x>o " obut Aθ is not defined on the set {(x,y) ∈ T2 : y = ∣} of measure 0 .However one can find a lot of entropy zero homeomorphisms of the formo∙ ^∙n the b°undary (in C -topology) of the space of smooth Anosov diffeomorρhisms conjugated to A .

For example take Hf where f is the standard Cantorfunction, i.e. the monotone function of <0,1> onto < 0,l> defined onco athe Cantor set C = {x ∈<0,l> : x = ∑ --~∞ a ∞ ⅛n n=l 3nf( Σ —--) = Σ ------ . Then H_ ., satisfiesn=l 3n n≈l 2n f'ldAppendix] with Sing(Hf ij) = < 0,l>χC and 
, an = 0,2} by(K-S)-conditions [seeits Lyapunov exponentsare zero.

(This is not strange since Lind and Thouvenot proved in [12]that any ergodic automorphism of the Lebesgue space is equivalent to a homeomorphism on T preserving Lebesgue measure, topologically conju­gate to A with conjugacy isotopic to identity. Since a conjugating homeo­morphism can be C°-approximated by a smooth diffeomorphisπ⅛ see [6, Appendix] , then Lind, Thouvenot homeomorphisms belong to the C°- boundary of the smooth Anosov diffeomorphisms isotopic to A).
7. The above constructions can be done for any orientation preserving
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J 2 .hyperbolic automorphism A : T ’------- * T . This follows from the fact,s,1 t1 st11 n.n z see [18] , that we can decompose the matrix A as follows: A=x±a b ..a b <up to conjugacy) where a = (; J ’ k = » tj,sj > θ f°r

j = 1,...,n . (I due this remark to discussion with J.H. Przytycki).
Question : What happens to the Lyapunov exponents and measure entropyof H(t,s) when s< 0 ? (Observe that after s passes the bifurcation... 1 2 parameter 0 and gets negative, an elliptic motion around 0 ∈ T occurs).
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Appendix
We prove in this paper ergodic properties of mappings usingthe so-called Pesin Theory, but in a more general situation than consi­dered by Pesin in [15] , since our mappings have singularities. Pesin Theory for maps with singularities has recently been considered by Katok and Strelcyn [10] , but the results are still in the form of a preprint, so for the comfort of the reader we list them below.

Katok-Strelcyn, (K-S) conditions
Let X be a complete metric space with a metric p . LetN ⊂ X be an open subset which is a Riemannian manifold with a Riemannian metric inducing P jN ∙ Assume that there exists a number r > 0 such that for each x ∈ N, exp restricted to the ball B(x) = B(x,min(r,dist^(x,X∖N))) is injective.
Let μ be a probability measure on X and φ be a μ -2preserving, C - , 1-1 mapping defined on an open set V ⊂ N , into N. Denote singφ = X ∖ V .

(K-S,1) There exist positive constants a , C-j such that for every ∈ > 0
μ(B(singφ,ε)) < Cχ εa

B (singφ,ε) means the neighbourhood of singφ with radius ε

(K-S,2) ∫ log+ ∣∣Dφ(x) ∣∣ dμ(x) < ∞∫ 10g+ ∣∣Dφ 1(x)l∣ dμ(x) < ∞
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(K-S,3) There exist positive constants b such that for everyx ∈ X ∖ sing Φ

∣∣D2 Φ(x) ∣∣ < C2(dist(x, sing φ) )
Φ(x) ∈ B(z)}).
Remarkby the : If Φ = Φ o...oφ n 1 we can replace the (K~S) conditions for φanalogous conditions for each φ^ separately, with Sing φ,, and
Theorem : a) If φx ∈ XL there exist satisfies the (K-S)-conditions then for almost every
unstable manifolds Lyapunov exponents and there exist local stable and γδ(x) , γtl(x) Denote by Λδ^u∖k) the set of
points where the number of negative (positive) Lyapunov exponents computed with multiplicities is equal to k (i.e. dim γδ^u∖x) = k) . Consider Λδ^u∖k) ifs(u)z1 .Λ (k,m) increasing the families {γs^u∖χ)

μ(Λδ(u∖k)) > 0 . Then for a sequence of sets with m which exhaust almost all of Λδ^u∖k) , : x ∈ Λs^u∖k,m)} are absolutely continuous.
Γ ∙ ∖ ∖[I cannot refrain from explaining how to use in the proof the∖ ∖ ∖key condition (K-S,1) . Take for an arbitrarily small <5 the sequence∞B = B(Sing Φ , (l-δ)n). By (K-S,1) , ∑ μ(φ^n(B ))< ∞ . Hence byn=0 the Borel-Cantelli Lemma for almost every(l-δ)n

μ(φ (Bn))<x ∈ X , dist(φn(x) ,sing⅛) >for all n > n(x)exp, to small ballsoφoexp to(X) φn(χ)<5 , n = 0,1, . . .. ,

sufficienlty large. When we pass with φ ,in the tangent spaces, we extendφ and prove the existence of stable manifolds nwhich shrink quicker than (l-δ)n and then the

ι
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exp n∕ ∖ Φ (x) are stable manifolds for φ in X ∖ Sing φ] .

( / /

b) If we assume additionally that the measure jj is equivalent to theRiemannian measure on N and all Lyapunov exponents arealmost everywhere different from 0 , then X decomposes into a count­able family of positive measure μ , Φ -invariant, pairwise disjoint
wherej . «j(1)

A.1 ι , Φ is ergodic and. permutes Λ∙Λi ιthe above situation we0 for j ≠ j’such thatA? ∩ Λj ' =ι ιΛj is j∙isometimes call the system almost hyperbolic andinto a countable family of ^-components). say that it decomposes
If additionally for almost every z,z' ∈ n such that Φm(γu(z)) ∩ φ"n(γs(zτ)) ≠ 0 there exist integers

ofis
.-n

X we have only one set = (i.e.ergodic.
then in the decompositionN = 1) . In particular φm , X

d) If additionally for almost all points z,z' EX and every pair of integers m,n large enough Φm(γu(z)) ∩ Φ~n(γs(z,)) ≠ 0 then allpowers of Φ are ergodic. This implies j,(l) = 1 so φ is a ∕-K-4 ‰>rn system.
Remark : [oral communication of F. Ledrappier]. In fact such K-systems are Bernoulli systems. This follows from the fact that every finite regular partition of X is weak Bernoulli. This follows from the adap­tation of the demonstration of the analogous fact for Anosov diffeomorphisms given in part 1 of M. Ratner ’’Anosov flows with Gibbs measure are also Bernoulli ". Isr. J. Math. 17(1974) pp. 380-391.
Theorem : If φ satisfies the (K-S)-conditions then
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h (Φ) 5 f λ*(×) dμ(x) μ X

where λ+(x) denotes sum of the positive Lyapunov (with multiplicities)at x .
If we assume additionally that μ is equivalent to theRiemann measure on N then the Pesin formula for entropy holds :

hμ(φ) = ∫ λ+(x) dμ(x)

www.rcin.org.pl



72

REFERENCES

[1] R. Bowen, ”On Axiom A diffeomorphisms” Proc. C.B.M.S. Regional Conf. Ser. Math. No 35, Amer. Math. Soc., Providence R.I.[2] R. Burton, R. Easton, "Ergodicity of linked twist mappings", Global Theory of Dynamical Systems”, Proc., Northwestern 1979, L.N. in Math. 819, pp. 35-49.[3] M. Dehn, "Die Gruppe der Abbildungsklassen,' Acta Math. 69, (1938), pp. 135-206.[4] R. Devaney, "Linked twist mappings are almost Anosov”, Global Theoryof Dynamical Systems , Proc. Northwestern 1979, L.N. in Math. 819, pp. 35∙ 49. z∕2√-[5] . R. Easton, "Chain transitivity and the domain of influence of aninvariant set”, L.N. in Math. 668, pp. 95-102.[6] D.B.A. Epstein, ’’Curves on 2-manifolds and isotopies" Acta Math.115 (1966), ρρ. 83-107.[7] A. Katok, "Bernoulli diffeomorphisms on surfaces” Annals of Math.110 (1979), pp. 529-547.[8] A. Katok, "Lyapunov exponents, entropy and periodic orbits fordiffeomorphisms", Publications Mathematiques, IHES, 51 (1980)pp.B7~ 1∕⅛A. Katok, Ya. G. Sinai, A.M. Stepin, "Theory of dynamical systems and general transformation groups with invariant measure", Itogi Nauki i Tekhniki, Matematicheskii Analiz, Vol. 13 (1975), pp. 129-262 (In Russian). English translation : Journal of Soviet Mathematics, Vol. 7. No 6 (1977) pp. 974-1065.A. Katok, J.-M. Strelcyn, "invariant manifolds for smooth maps
• . . . . τ''f','' ^ ’ r- >with sιngulaιrιes, I. Existence, II. Absolute continuity”, preprint, "The Pesin entropy formula for smooth maps with singularities" preprint.

www.rcin.org.pl



~ 73 -
[11] F. Laudenbach, ‘‘Presentation du groupe de diffeotopies d’une surface comρacte orientable”, Expose 15, Asterisque 66-67, (1979), pp. 267-282.£12] D.A. Lind, J.~P. Thouvenot, “Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations” Math. Systems Theory 11.3. (1978) pp. 275-282.[13] M. Wojtkowski, "Linked twist mappings have the K-property" Proc, of Intern. Conf, on Nonlinear Dynamics. New York, December 17-21 (1979), (to appear).[14] M. Wojtkowski, "A model problem with the coexistence of stochastic and integrable behaviour" preprint Warsaw Univ. (To appear in Comm. Math.. Phys.)∖y" [15] Ya. B. Pesin, "Lyapunov characteristic exponents and smooth ergodic theory", Uspehi Mat. Nauk 32, 4 (196) (1977)pρ. 55-112. English translation : Russian Math. Surveys 32.4. (1977) pp. 55-114.[16] J. Franks "Anosov diffeomorphisms" Global Analysis, Proc. Symp. Pure Math. 14 (1970) pp. 61-93.[17] W. Thurston, "On the geometry and dynamics of diffeomorphisms of surfaces, I", preprint.

www.rcin.org.pl


	F. Przytycki: Linked twist mappings: ergodicity.
	Contents.



