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§ 0. Introduction

In the paper we study ergodic properties of a simple class of
conservative dynamical systems (piecewise smooth hdmeomorphisms of surfaces)

called linked twist mappings.

Using elementary geometry we prove that if the twists are strong
enough, then together with the fact that Lyapunov exponents are nonzero,
this implies the 1.t.m. and all its powers are ergodic, so Bermoulli. We
define and study a large family of l.t.m.'s. But let us start with the
following example : Let T2 be the standard torus RZ/Z x Z and let

P, Q be closed annuli in T2 defined by

= {(X9Y) € T2

e}
I

x arbitrary}

«
A
«
A
o

= {(an) € TZ

o
[

y arbitrary}

"
| A
»
| A
>

Take any nonzero integer k and a linear function f :~<y0,y1>-+<0,k>
(or <k,0> if k < 0) which satisfies the properties f(yo) =0,
f(yl) = k . Call the number ¢ = %% the slope. A (k,a)-twist map (or k-

twist map) F on P is defined by

F(x,y) = (x+£(y),y) >

so F 1s the identity on both components of the boundary of P and

rotates each circle y = constant by an angle f£f(y) . Similarly, by inter-
changing the roles of x and y , we define an (%,8)-twist map (or £-

twist map) G on Q

G(x%y) = (x,y*+g(x) ), with the slope g = %% .

-~

Extend F and G to P U Q by the identity to F and G .

The toral linked twist mapping is the composition
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H = =AA U =
Hf,g GoF on P UQ
Observe that H preserves Lebesgue measure on T2 . We shall consider

H together with this measure. In § 1 of the presented paper we prove

Theorem A : If a toral linked twist mapping H 1is composed from (k,o) -

and (%,B)-twists where k and ¢ have opposite signs, ki ,]e] > 2 and

|a-8| > constant Co e~ 17.24445, then H and all its powers are ergodic.

In fact H 1is a Bernoulli mapping. O

At the end of § 3 we show how the assumptions |k| > 2 ,[2] > 2
can be weakened. Toral linked twist mappings were introduced by Easton [51
(However it seems that the basic phenomena were observed earlier by Oseledec,
see [9, ch. 3.8] ) From Wojtkowski's paper [13] it follows that assumed
|aB| >4 H is almost hyperbolic. So P U Q decomposes into a countable
family of Kiéomponents. In view of that, the ergodicity of all powers of
H in Theorem A implies that H 1is a ﬁ—éystem and even a Bernoulli system.
(We add to the paper an Appendix,in which we explain what we mean by some
of the properties mentioned above and state some facts from Pesin  Theory

P
for mappings with singularities [15],[10] , useful in this paper).

Burton and Easton in [2] and Wojtkowski in [13] proved almost
hyperbolicity and ergodicity for the case k and £ have the same signs.
In their case, global stable and unstable manifolds intersect each other

since they are very long and go, roughly speaking, in different directioms.

Here the global stable (unstable) manifolds, although internally
very long could have a very small diameter in P U Q . On Figure 0.1 we
show what could happen with subsequent images of a local unstable manifold

y under iterations of H .
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Figure 0.1

We prove however that this is not so, that piecewise linear
global stable (unstable) manifolds contain segments winding along the whole
annulus P (Q) . A similar phonomenon appears in an example studied by

Wojtkowski in [14] .

We can replace P by a finite family of pairwise disjoint annuli
{Pi} in.a surface M (more exactly it is enough if we have smooth embeddings
of the interiors of the annuli into M). Similarly we can replace Q by
{Qj} and assume that Pi and Qj intersect transversally (strict defini-
tions will be given in § 2). Let-us assume also that y Pi U Q Qj is con-

i j
nected. See Figure 0.2.

Figure 0.2
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We call a composition of two mappings : - ki-twists on Pi
i

with Qj-twists on U Qj a linked twist mapping, l.t.m. (we may omit the

J : 2
assumption about linearity of twists and assume only they are C -functions.

We assume the existence of a measure on U Pi UUQj , equivalent
to the Lebesgue measures on the annuli; with upper bounded density, inva-
riant under our 1.t.m. We consider l.t.m. together with such a measure.

In § 2, we prove (and state exactly) the following

Theorem B : A 1.t.m.which is built with twists sufficiently strong (i.e.
the slopes are sufficiently large), for which |ki|,|2j| > 2, is a
Bernoulli system.

Sufficient strength of the twists depends only on geometry of the
intersection P. N Qj . Our 1l.t.m.'s generalize both : toral linked

twist mappings ([2],[4], [5]) and an example of Bowen [1] , presented on

Figure 0.3. (The invariant measure is the Lebesgue measure on the plane).

Figure 0.3

Wojtkowski proved that in the case of the Bowen l.t.m. if the twists on
P and Q are streong enough, then the Bowen l.t.m. is almost hyperbolic.
Theorem B implies that if additionally |k| , 2| > 2 then it is Bernoulli.

(At the end of § 3 we show how the latter assumption can be weakened).
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§ 3 1is devoted to looking for assumptions about geometry of intersections
P.1 n Qj in Pi and Qj (not only interior geometry of the intersections

Pi n Qj » as in Theorem B) or about the topology of U PilJ U Qj which

1 J
could replace the assumptions Ikil 5 |2j| > 2 in Theorem B. We connect

with the pair ({Pi}’{Qj}) some graphs and define and study their "tran-

sitivity'. From considerations in this paragraph it immediately follows

Theorem C : Let {A.}

. }. be a family of circles embedded into a
1'i=1, «...,p

surface M , pairwise disjoint. Let {B.}. be another such family.

13=1,...,q9

Assume that the pair ({Ai},{Bj}) is in generic position. More exactly

assume that the circles Ai and Bj intersect transversally and for at

q

least one circle Ai or Bj if Ai (respect. Bj) intersects U B.
P 9=l

(respect. U Ai) in exactly two points, then these two points are not

i=1
antipodal in Ai (respect. Bj) . Thicken the circles to annuli. If the

thickness of the annuli is small enough then every (reasonable) l.t.m. on

their union is Bernoulli .. o

Beautiful examples of l.t.m.'s on compact surfaces are provided
by some Thurston pseudo-Anosov diffeomorphisms, constructed with the use
of "good" pairs of transversal families of circles, see [17, § 6]
Thurston thickens each family of circles to fill up the surface, rather

than to make narrow strips, as in Theorem C .

In § 4 we describe briefly some facts concerning linked twist

mappings, which we hope to study in more detail in the future

a) We prove that for almost hyperbolic 1.t.m. (as considered in Theorems
B and C for example) hyperbolic periodic points and homoclinic points are
dense in the whole domain :

b) We can further generalize 1.t.m.'s . We can consider a composition of a
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finite number of families of twists alternately on the annuli {Pi} and
{Qj} (rather than to compose two families only), so that every annulus
is twisted at least once and all twists om it go in the same direction.
We prove that under analogous assumptions as in Theorem B, the mapping is

Bernoulli .

This allows us to construct Bernoulli, piecewise linear homeo-
morphisms in every isotopy class of orientation preserving homeomorphisms
on every compact orientable surface. This is due to the fact that our twists
are exactly Dehn twists and Dehn twists generate all classes of isotopy of
orientation preserving homeomorphisms (see [3] or [11]). (We can use at

least double twists ‘ki],{lj| > 2 since every Dehn twist D is

n+l p i

isotopic with D o where o, Q

M is a pair of homotopic, embedded

circles). We must of course blow up the annuli together with the invariant
measure to obtain a set of measure O in the complement. (In case of
Thurston's examples mentioned before, these homeomorphisms can be done

pseudo-Anosov) .

We compute an upper estimation for measure entropy. This implies
that if the annuli are thickened circles but thickness tends to O (situ-

ation like in Theorem C) then the measure entropy tends to o .

¢) If two annuli Pi’ Pj (or Qi’ Qj) have a common boundary circle S ,
then in the definition of l.t.m. H we do not need to assume that H|S = id.

We can prove almost hyperbolicity of H under the same assumptions about

slopes of twists as in Theorem B. The proof is the same.

Consider an example on T2 . Take F(x,y)= (x+y,y) . Define
a:R—TR , a(x) = C* (min(x-[x],[x]+Fx) —%) (x] means the integral part

of x , C>0 1is a constant). For any integer n > 0 let us define

‘i www.rcin.org.pl
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a_ tR—=1R , an(x) = 2_n-a(2n-x) . Let us define the 'n-saw"
An i Tz————+ T2 ; An(x,y) = (x,y+an(x)) and consider the linked twist

mapping Hn = An°F :

The study of the above example has been suggested to me by Wojtkowski,
see [13] . For C > 4 , H is almost hyperbolic. Wojtkowski proved also
in l4] , that assumed C > 4,0329... Hn , for n =0, is Bernoullil
This implies immediately, by finite covering that for H , n>0,T
decomposes into at most afinite number of ergodic components. In § 4. c) we
fill a gap and prove that Hn » for every n > 0, is Bernoulli This gives
an explicit Co—arbitrarily small perturbation of the twist F , which is

a Bernoulli system.

d) Using examples of Burton-Easton type one immediately obtains Bernoulli
diffeomorphisms on T2 (preserving Lebesgue measure) which are not Anosov
but belong to the boundary of the space of Anosov diffeomorphisms (in the
Cm—topology). This simplifies the Katok construction [7] . Continuing by
the Katok method one obtains a rich family of Bernoulli diffeomorphisms

on the disc D2 .

I started to do the present paper at IMPA, Rio de Janeiro, and I
would like to thank IMPA for the hospitality there. I also want to thank Maciej

Wojtkowski for stimulating discussions.
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§ 1. Ergodicity of toral linked twist mappings. Proof of

Theoreq_é .

We may assume |o| = |B| . Otherwise we may change the coordi-
nates on T2 , taking the coordinates (x,VL%[.y) . Then we consider the
torus IRZ/Z b vﬂ%[-z . We may assume that o > O . Let us repeat according to

[2] and [14] the proof of almost hyperbolicity of H . The matrix

DGoDF =(1 cl)) o (1 Of') = [ ¢ , for o > 2  is hyperbolic. Its
-a 0 1 -0 —ol+

eigenvalues are

Al
R
+ 2

1]

and the expanding eigenvector (gl,gz) satisfies gl/gz —C%)+VQ%)Z;1 .

Let us denote this number by L .

X

In ]R2 let us take the cone C = {(x,y) : L < = < 0}. Of course

for any positive integers s,r, DGSoDFr(C) < C . There exists ) > 1

such that for any sequence of positive integers ST, » 0= O

there exists a vector v € C for which
| Sn rn Sl rl n
|[DG "eDF “o...eDG "eDF “(v)| > A" ||v|| for n > 0O

and

s 1 T 1 s r =1

| (DG ""oDF ~“e...oDG "eDF ™) (v)|| < A"[v|| for n < o0 .

(We consider the norm, maximum of coordinates. One can take )\ = | X X

Denote P N Q =S . For almost every x € S we define the

sequences (rn), (sn) » n>0 as follows : r, > 0 1is the first time

1
r
x hits S under F , s, > 0 1is the first time F 1(x) hits S wunder
s; T,
G , r, > 0O 1is the first time G "oF "(x) hits S wunder F , and
so on. Similarly, for G_l, F_1 > T a8 s for n <« O are defined.
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Then, operators in the formulas (1) correspond to the operators
Dh® on vectors tangent to S at x , where h denotes the induced map

Hg = S —— S (i.e. the first return map).

For almost every x € S 1its H-orbit hits S with positive
frequency (this is a corollary from Birkhoff Ergodic Theorem (see [2,

Lemma 4.41]).

This fact, (1) and the analogous facts for H_l and also the
fact that almost every point z € P U Q hits S under .H and H-l s
imply the existence of two H-invariant, measurable, tangent vector fields
v, v® and a measurable function A on P U Q with the following pro-

perties : for almost every x €P UQ, Ax) > 1

HDHn(Vu(x))||> (A(X))n.HVU(x)II for n >0
HDHn(Vu(x)) 1 <(A(x))“-Hv'u(x) | for n <O
D™ (VS ) || > (G [VvE G || for n <0

Hh

or n>0 &

[|DH™ (v () || <G|V () ||

In particular this proves that Lyapunov exponents are nonzero almost every-
where. Now we can refere to Pesin Theory in Katok-Strelcyn version. This
gives existence of local stable and unstable manifolds Ys(x) s yu(x) for

almost every x € X and absolute continuity.

[See Appendix. In fact our case is simpler than what it can happen
in general and we could proceed directly. Using the Borel-Cantelli Lemma
we could show the existence of Ys(u)(x) . Absolute continuity of the families
Ys(u)(x) (even almost everywhere, not only on each of an increasing sequence
of sets almost exhausting X) follows easily (see [13]) from the obvious

u
fact that ys( )(x) are linear segments] .
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Hence P U Q decomposes into a countable family of K-components.

We shall often consider the induced map h = Ho = Gg°Fg: S — S .
h is uniformly hyperbolic (i.e. with a constant hyperbolicity coefficient
A > 1) on its domain of continuity and differentiability. The local stable

S(u)(X)

and unstable manifolds for h are of course the same segments vy
as for H . (One could consider h directly from the beginning. (K-§)

conditions for h hold, but checking (K-S,1) is not so trivial as for H,

since Sing h  is complicated).

According to the Appendix, to prove ergodicity of h and its
powers, it is enough to show that for almost every x,y € S hm(yu(x))
intersects hﬁn(ys(y)) for integers m,n large enough. The same concerns

H =

e

For any segment vy we denote by Qh(y) and Qv(y) the lengths
of the orthogonal projections of y to the horizontal, respect. vertical
axes. We shall prove that for any linear segment vy c{%f:)(yu(x)) , the
image Fs(y) s which is a union of linear segments, contains a segment y'
}withf £h(y') > 5-gv(Y))i%or a constant & > 1 independent of y,j>)or

y' joins the left and right sides of S . In the latter case, due to
|2[ 22 , G(y') contains a segment joining the upper and lower side
of S /(Figure 1.1) f(We shall call any segment in S joining the upper

and lower sides of S a v-segment and joining the left and right sides

of S an  h-segment.) Q'

l
N
T

Figure <1, 2,
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x I, x

\b

/ ments of exponentially growing 1ength. So it must finish with a wv-

N’)Q}’; ) l-'t!l = 13 =

o

Otherwise we act on y' with Gg and so on./We get a sequence of seg-

-

segment

|
or an h-segment. Ff%we continue iterating with F and G alternately we

—"

find en |h-segment or v-segment alternately at each step (since k], |2]> 2)-

The same happens for all sufficiently high iterations of H_1 on Ys(y).

Concluding : Hm(yu(x)) contain v-segments and H ™ contain h-segments

for all m,n sufficiently large. But the h-segments intersect v-segments.

r b
P4 }15! So let us fix a segment vy c}hﬁ&Yu(x)) . Let m, > 0 be the
! i m

first time when F 1(y) intersects S .

Then we have four possibilities

m

1). F 1(y) contains an h-segment. This case has just been discussed.
m =
2) The right side of F l(y) intersects S (Fiecure 1=2).

m

3) The left side of F 1(7\ intersects S (this case if fully analogous

to the case 2) ).
my Lf
4) Both sides of F ~(y) intersect § (Figure 1+37)

N——

LS RS ' ;
Iﬁ’} ” Q ; Q
I I3 | — \ P S S
x x X \X x X x X ' 1 ﬁfz
I! I; the F-orbit of p p p 11/,,/4”’JL’/’/ 3 \
9 1 2 -
P| S
q ’
Figure 2 S Figure 1.3. Ly |
We study the case 2) and make the assumption (*) that Fs(y)
m
does not contain any h-segment. We divide F 1(y)\S into three intervals
m .
I
Il’ 12’ 13 . Let us denote F "(y) N S ='% F

% {/{Along I, the rotation number f(y) changes by ,ailv(lz) . So,
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for any integer n > 0 such that < m'lv(Iz) there exists a horizontal

: " ; : : i ] m
circle in P , intersecting 12 on which the rotattzon number is = for

an integer m . So there exists an F-periodic point p € 12 with the

. 1 . . 3 T " g
period [-ETE;?T;T + 1] . It divides I2 into 12 and 12 (Figure A.2).

The distance d between the different points of the F-orbit of p ,

Oer(p) , 1s at least

1
[ +1]
atg (L)

Let us denote the last (to the right) point of OtbF(p) in S by Py

and the next one (to the right) by P, (Figure 1.2). Let m, > 0 be the
first time when sz(p) is between p and RS - the right side of §
(Including p and Py - Observe however that sz(p) # p . Otherwise p
would have its F-orbit disjoint with S . But F-ml(p) € yc S, a contra-

diction).
. ”" =
We denote Jo I2 U 13 and Jm F(jm_1 ~ S) for
m = 1,2,...,m2 . Then
3 : " " R T
LU 2 min(d+ey (TH U I,) , 0 (I3 U I+ ae (TN U 1))

for m = 1,2,...,m2 J

m
A "”}f F 2(p) is between p and LS (the left side of S) , then
Yo g
QY(J nNsy>d. If F “(p) € SN{p,} , then
T m, - 1

2 Q« 3 ” o "

m
Assume F 2(p) = p; - Let dist(pl,RS) =1°d .
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Then dist(RS,pz) = (1-1)+d . We have either (2) satisfied or

(Jm ns) =rtd and Jm NS touches RS with its right end.

'3
h 2 2

Define J =1.UTI! and J_ =F(J
(o] m m-

1 9 ~S) for m = 1,..,m2 3

1

We have either

7 Q . ' ]
zh(sz N's) > min((l-1)d , @ va(I1 U 12)+Rh(11 U 12))

or Jm NS touches LS. with its left end (the number (1-T)d appears
2
because there can exist m : O <m < m, for which Fm(p) = pz). So due to

assumption (*) ,
zh((sz U sz) n s) > min(d, a2 (T+8 (I3)),
52
Thus in order to have Qh((Jm U 3; ) N8S) > G'RV(y) it is enough that

2 2
the following inequalities hold :

'l i
o T® 42 88,00
\V/
(4) a g (1) + 44(I5) > 88, (¥)
(5) asg (T;) + 2(1;) > 2 (Y)
o a-QV(IZ)
For (3) 1t 1s enough that m = 8 Q,V(Y) or
v 2
p 8+ 2, (1)
(6) R AR LT G A o)
We can assume here 1—6‘2v(y) >0 since assumption (%) implies
(7) g, (7)) (Lra) < 2

and L+a > -1+yI7'> 3 . We can replace (4),(5) by
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, 6-2,(v)

(due to the fact that vy € C - the cone L < — < 0) The work would be

Rk

also done 1if
3u(I,) > ¢ sav(y)

which follows from

—

I —

- Grlv(y)

m
! There exists ¢§ > 1 and a partition of F l(Y) ~ S into Il’ 12, 13

satisfying (6) , (8), (9) or the inequality (10) is satisfied if

4
(11) (0= 5 eI > (D ——— s 2w Ly

i=1 v a(l—QV(y)) 20tL at+L

We divide both sides by Qv(y) and due to (7) we obtain the condition

1 " 2 1

+
2 2a+L at+L
a(l f;?

(12) 1 >

(recall that L = —C%) + V{g;zj;

m
In the case 4) the situation is simpler. F 1(y) divides into

Il’ 12, 13 as on Figure 1.3. We need either zh(Il)-i G'Qv(y) , Or
lh(I3)_z 6'Qv(y) , or th(Iz)—l (12) > G'QV(Y) . (The sufficiency of
: : . 2
the last inequality follows from the following: Lift everything to R™, denote

O wmed %
two consecutive components of the 1ift of Qby(h-andQ7 . Then /F(Iz) has

a'components T of its 1ift between left sides of QI and Q, or between
right sides of Q1 and Q2 . Otherwise 1 would intersect a component
of the 1lift of 12 » which would imply the existence of an F-fixed point

-m
1 . .
q¢€ S . But F (qQ) € y© S = a contradiction).
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'\~ 1 For this it suffices that

L+ o)+ 4, (1) > & 4, (Y

or (Lra)- 2 (1) > 62 (V)

or a2 (1) > g2 (V) .

For that it is enough if

2 2 1
Q'V\Y) = .Z. Q/V(Ii_) > Q’V(Y) (m + E) ;
i=1 .
l.e.
2 1
(13) 1 > e + -a .

(12) is satisfied for o > o e~ 4,152643

(13) 1is satisfied for a > % e~ 3,239 &
= 32 ~17.24445 in the statement of

This gives the constant C
2 0 S

lbéf“’“‘j‘??w
t
ﬁ?heorem A7 O
If QV(Y) is small, then in (13) we can write (L+m1a) instead

Remark :
is large. So (13) can be replaced by

of L+a , where my

15 =
a

Also (12) can be replaced by

V- 2 1
1> — 4+ —— + ——
2041, o+1, B

| s -

since we can omit lv(Y) in the denominatp#r of the ratio l—li(y) of (11).

' o
(14) holds for a > uzriﬁ 3.1?%?90 .
awmec .f;) In this case the P(Qiimages o% any unstable segment Y (z) , for ’
0

m sufficiently large, contain segments larger than a constant. Does it imply

that there exists a decomposition into a finite number of K-components ?
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§ 2. Ergodicity of linked twist mappings. Proof of Theorem B

We denote

{x,y) €]R2/az x {0}:y" <y <y"}

P(y',y";a)

Q(x',x";b) {(x,y) EIRZ/{O}><bZ 1 = e ot

Take any sequences of numbers (yi) ) (yg) s (ai) such that

yi < yg > a5 > 0O, i=1,...,p and (x!) , (xg) s (bj> such that
J
x3 < XH , bj 50 0] 5y ) B D@
Denote

== ¥ ", - ' ",
Pi = P(yi’yi’ai) s Q_] Q(Xjaxj;bj)
Jake any smooth surface M and smooth embeddings

e. : int P,-——M, E, :int Q. — M
1 1 ] ]

such that

1]
S8

ei(lnt Pi) n ej(lnt Pj) for 1 # j i

]
S

Ei(lnt Qi) n Ej(int Qj) for 1 # j s

and all the circles ei({y = const.}) for yi <y < y; and Ej({x==const.})
for x} <x < xg intersect transversally. In the future, to simplify nota-
tions we shall omit the symbol int before Pi’ Qj when we act with e: »

Ej respectively.

For each Ci:

§s - a connected component of ei(Pi) n Ej(Qj) we

define the coordinates

i

-1
ljs(Z) = (Ej (Z)X ey (Z)y)

.. www.rcin.org.pl
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(subscripts x,y denote here x-th and y-th coordinates respectively).

Denote the set of all pairs (j,s) (respectively (i,s)) for
which C exists by J (respect Jj) Denote Card :J = q(i)
ijs i : i i >

Card ji = p(3).

Our subsequent assumption is that for (j,s) E‘Ji 5 (i,8) 6;]3

the mapplngs Qijsoei . ®ijs°Ej and the inverse mappings have upper
bounded first derivatives and the mappings e; oEj s E}loei have upper
bounded second derivatives.
p q
Finally we assume that U e,(P,) U U E.(Q.) 1is connected.
i=1 * j=1 3
We call ({e.}. , {E.}. , a pair of transversal fami-
i71=1,...,D ] J=1,...,q) P
lies of annuli.
We introduce more notation : Denote U Cijs =C,
‘ i,],s
G sSJEJ C..=C; o u . C. =¢) and R =@, (C;.). Define
Js % ] (i,S)EJJ Js Js ] J
R as the disjoint-union R = U R..S. Let ® : C—R be equal to Qi’s
Lis ’ j j -1 -1 %
on each Cijs .Denote Q(Ci)=Ri , ®(CY) = R, e; (Ci) = Pi i Ei (¢H= Qj.

Define functions @, wj on the sets P.1 3 Qj respect. by the

formulas :

®oei(x,y) (QQ(x,y),y)

¢°Ej (X’Y) = (X,UJJ- (X’y)) .

Define functions mi s wi on the sets Ri’ RJ respectively by

(@oe)” (ry) = (0} (x9),Y)

(moEi)“Hx,y) = (9] Goy)

We denote by |C| the supremum over its domain for any function ¢ .
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Now we shall define the twists. On each Pi take a (ki,ai)—twist Fi

(k. 1is a nonzero integer, oy is a real number) defined as follows
i

Fi(x,y) = (x+fi(Y) ,Y)

for f.1 a Cz-function defined on <yi,y;>' , such that fi(yi) =0,

£, = Ky,

df.
Assume the function TE% is nowhere zero. If it is positive
df.
(i.e. k., > 0) define the slope a. = inf -1 . 1f k.< 0 s
1 1 o dy 1
df <Yi»¥i>
6. = sup —=— .
dy
L} "
Vsl Yisde

Take on each Qj a (Qj,Bj)-twist Gj defined analogously.

-~ ~

Define F , G : u ei(Pi) U 9 Ej(Qj);) by
1 J
F(z) = pafia. i) for 12 & Bl )
{ S e | %
z for z ¢ U e.(P.)
3 i
1=1
. =
G(z) = (E.G.E. (2 for z € E.
(z) [ 38555 (z) J(Q )
¢ 8 {Q:)
z for E.(Q.
\ z o j QJ

Define a linked twist mapping (l.t.m.) as H = GoF . Consider H together
with an H-invariant probability measure Vv on g ei(Pi) U g Ej(Qj)
such that on each Pi the measure ez(v) is equivalent to thi Lebesgue
measure v, , with bounded density with respect to vy and such that

each E?(v) has the analogous property. (Assume of course that such a

measure Vv exists.)
Now Theorem B takes the form

Theorem B : Fix a pair of transversal families of annuli ({eil,{Ej})
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If an 1.t.m. H on g ei(Pi) U ? Ej(Qj) is built from (ki,ai)—twists,

i=1,...,p and (Qj,gj)—twists, j=1,...,q9 where |ai| » |B.| are

j
large enough to satisfy Condition #H below, then H 1is almost hyperbolic.
If a; s Bj satisfy the stronger Condition E and Iki' s

|£.| > 2 then H and all its powers are ergodic. So H 1is a Bernoulli
41 2

system.

Condition H :

(HL) sgn a} = sgn o for every 1 =1,...,p
(H2) sgn %} = sgn Bj for every j =1,...,q
(H3) |'&'.l-’é'jl > (1+ui)(1+u3) where
de. de! . di. dy.
= iﬂ|'|“&| W o= |_Lpi‘.\_wl|
L1 dx | " dx g dy | " I"dy ’

for every pair (i,j) such that ei(Pi) n Ej(Qj) # @ . Here we denote

deo: dal =¥ do.

~ . 1 1 1
a; = (sgn ;) (o |- ITETI)"TEFI o Idy 1)
dy: cfhp:'.| - d¢,j

By = (smn 8- (g |- Dl - I D)

[Q.,B. bound the slopes of the induced mappings (F.)_ (G.) respec-
i*#; 'p; %5
tively in the coordinates Doe. d)oEj . We could replace a& (similarly
E}) by smaller numbers
dwi dwi -1
(sgn o) (Jog |2+ |57 " g5 :
d@i

They have clearer geometric meaning, since |75;| dencotes in fact, the

supremum of cotangents of angles between the horizontal circles
{y = const.} c P.1 and images of the vertical circles {x = const.}c Qj

. . -1 - .
in P. , i.e. e; °Ej({x = const.}) < Pi for j € Ji N
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Condition E

(E1) sgn 3} = sgn E; = sgn a, for every 1 =1,...,p
(E2) sgn %% = sgn E; = sgn Bj for every j =1,...,q
J
(E3) iii-§j| >(max(X(i),1+pi))'max(Y(j),1+uJ) for every pair (i,j)
such that ei(Pi) n Ej(Qj) # @ . Here we denote
; T BT
a, = (sgn ai)'(lai|-(2'Q(1)+3'X(l))|7§7|)'PE;-|

dw! dw! -1

B, = (sen 8 ([8; |-2'p()*+3-Y()) |- 1!

1]

X(i) , respect. Y(j) , is the largest solution of the equation

29(1) , _q@) , _2

X X-3q(1) x.ui s respectively

2p(i) , _p() , 2
Y Y-3p(j) -1

(We treat El : %} as artificial "subslopes'". For toral linked twist

mappings, Devaney generalized toral 1l.t.m.'s, see [4] and Thurston

b

examples [17 § 6] (lboe.1 = @oEj = identity. So ii B a} = ay

Remark : Conditions H and E have a local character. If we treat the
embeddings e Ej as charts on the manifold U ei(Pi)U UEj(Qj) s
Conditions H , E  about each individual ay depend only on the geometry

and topology (i.e. number of components) of the intersections ei(Pi)f}Ej(Qj)

for all j for which this intersection is nonempty but do not depend on

Qj's which are far away. The same concerns the B.'s.
J
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Proof of Theorem B :

The idea of the Proof is similar to that of Theorem A. However
one should modify it a little since for each horizontal annulus Pi the
number of components of intersections with the vertical annuli Qj 5
number denoted by ¢(i) , can be greater than 1 (similarly it can happen
that p(j) > 1). The fact that the images of the vertical circles,
ezlEj ({x = constl}) 1in Pi , need not be orthogonal to the horizontal

circles {y = const.} and the fact that the maps e. Ej need not be

isometries leads only to new constants in the estimations.

Almost hyperbolicity

s

It is enough to prove that Condition H implies that the induced
mapping h = HP has nonzero Lyapunov exponents and to check the (K-S)

conditions for H (see Appendix). We shall consider T = ¢h¢rl on R .

-~ - ~ ~ -1 ~ ~ o~
Denote also F = &F @ . » G = QGC¢ *. Of course h = GeT' . Denote
()

by Eh(w) (respect. Zv(w)) the horizontal (respect. vertical) coordinate

of a vector w in euclidean coordinates, denote the basic vectors at z ,
R ]
by i), & (@

A T . ~ 3 .
If a; 1s positive define . ;;; Eh ¥ 3y (z)! 5 1E
~ 25,91
negative a! = sup £ DF 2(2) , for i=1,...,p . B
b zeR. R oy ]

is defined analogouély. (Remember that F and & are defined and diffe-

for j=1,..,q

rentiable only out of a closed, nowhere dense, subset of R of zero
measure. For simplicity of notation we will not make distinction between

this domain and R ).

We shall now estimate the slopes &1 3 ﬁ} by passing through

the original coordinates on Pi and Qj

Assume for example a, > 0 . Take any point =z € Ri and assume
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m >0 is the first time when Fm((¢»ei)_1(z)) € P.1 . Then

.

~a _ om lo_li -
zh DF 3;(z) = zh D(c’f:»oe].L F ce, o0 )(ay(z))

deo!
m 1 . 9 -1 ) -1
= fh D(@oeioF )6757(2) 3;(@061) (Z)+'§;(¢oei) (z)) >

> £, D(® )((d—mi—(zw )2 (Fm (@oe. ) L (2)+ -2F (are ylezy >
e zh °i dy 47 i 3y i =

dq% dqﬁ -1 d@i -
(=Pl ) sf2] - |

lv

If we assume the last term is greater than 0 , which is just
Condition Hl , then sgn a; = sgn a (besides, we have used the assump-
tion a} >0 1in the last inequality above, which can be false without
that). a, < O can be treated similarly. Analogously we show that Condi-

tion H2 implies sgn E} = sgn Bj

Take for every =z € Ri » for i =1,...,p , the cone
Cz = {(51,52) € Tz Ri g lgllgzl E-Ei} , for a positive number e;

Take for every =z € R3 , for j =1,...,q , the cone

c” = ((g,6,) € TR ile /e, <y,

for a positive number ¢J . Assume that for any pair (i,j) such that

ei(Pi) n Ej(Qj) £ 0

(1) e.0ed > 1

Then for every =z € R 5 Cz §] c? = TZR . So, in order to obtain

DFk U Cz) c U ¢* and DG( U Cz) c U C it is enough if
Z€R z€R z€R Z€ER B

DF( u c,)u u c =0
Z€ER Z€ER ©
and

DG(U ¢ n u c* =9
Z€R ZE€R
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One can easily compute that for this, it is sufficient that

s dq& dq%
lal| > A+ |l 5 Deg and

‘ (@ dy, dy! 3

Bl > 1+ | e

YTy e ¥

(on the horizontal circles of Pi , the Fi's are rotations, so restric-
ted to these circles, they have derivatives 1 . In Ri the module of

the derivatives of F& and F;l restricted to the horizontal intervals

are bounded above by

l| _ dipy  do;
| w = gl e

p dy. dyi
The numbers UJ = |_3}| |—3%| play the analogous role for the maps E} ol

So, if for all pairs (i,j) such that ei(Pi) n Ej(Qj) # 0

3) c|a‘;1-|§‘3|>/<1+ui><1+ui) > 1

then there exists a system of positive numbers {ei,gJ} s A ® Loweend

j=1,...,q satisfying (1), (2) and the family {Cz} of the cones,

SJ such that

| DR( U Cz) c U CZ .

3 Z€R 2€R

| (One can take e, = |&1| /(T+ps) et = |§}|/(1+UJ))

But (3) follows from (H3).

For any w € C,, £ OFW) > e£ (w) and
£,(08DF(w)) = £, (DR(w)) > ej-ai-zv(w) >£,(w) . Here z € R, , F(2) erl.

This and the analogous consideration for h‘l imply that Lyapunov exponents

of T » hence h , are nonzero. Since almost every z € U ei(Pi) U LJEj(Qj)
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hits C with positive frequency, then Lyapunov exponents of H are posi-
tive. The (K-S) conditions (see Appendix) for H are trivially satisfied.
-1 -1

The assumptions that the second derivatives of ei'Ej s Ej e > W 5 ¥

and density of the invariant measure with respect to Lebesgue measures on
Pi’ Qj are bounded above, have been fixed especially for this aim.

Ergodicity :

Assume Condition H is satisfied and choose a system of posi-

tive numbers {gi,eJ} s, 1=1,...,p , j =1,...,q9 such that

iv

]31[ > (1+ui)ai , lﬁgl (1+3)+ed  and Ei.EJ >1 forall i, j for

which ei(Pi) n Ej((%) # 0 . Denote min{gi~gj: ei(Pi) n Ej(Qj)#O} = A>1
We shall compute an additional condition for a; SO that for

any local unstable manifolds for H , vy = yu(z) where z € Cijs

(y < Cijs , by definition) either %fy) contains a curve y inside a

set C.., . which joins left and right sides of (.., , or
ij's ij's

) 8@ 51 (") > ey £, @ (1)

ijs

(If we assume a; > O then Kh , Trespect. Ev , denote here the hori-
zontal, respect. vertical lengths of upper oriented curves in Ri . More
exactly we consider inside Pi s respect. Ri , only curves which trans-
versally intersect the horizontal circles, respect. intervals. Then Eh
means the x-th coordinate of the upper end minus the x-th coordinate

of the lower end of the curve so the horizontal length, £ , can be as

h
well positive as negative. Kv » the difference between y-th coordinates

is here positive., If @, <0 we change the sign of Zh )

We shall compute analogously a condition for Bj so that for

any curve y < Cije s Y C ﬁc(yu(z)) s aC(Y) contains a curve y' < C.,.._,
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which joins the upper and lower sides of C.,. , or

4" 2,05 () 2 8 (@ (D)

(For Bivuaconsider'thc right side orientation on curves transversally inter-

secting vertical circles or intervals).

So, Beginning with Yu(z) and taking successive images under

FC R GC , ... we obtain at each second step a curve A-times longer.

So we will finish with a curve y' c aco%f S aCOFC(yu(z)} joining
or Y'c ﬁcoaco i O 6C0§C

upper and lower sides of a C:'jfs'

joining left and right sides. Since we assume |ki| " |£j| »2 for
all i,j then Hmln(P’q)(y') , Or Hmln(p’q)&c(y") , contains curves

winding around all annuli ei(Pi) , which will finish the proof (see

Figure 1.1. in § 1). This is the unique place we use the assumption that

Fix 1 , assume @, > 0, fix vy = yu(z) c Cij . . Until the
oo
end of the proof we shall usually omit the subscript i .

Make the assumption * . that Fo(y) does not contain any curve

joining left and right sides of any st: = Cijs for (j;s) € :k i
Let my be the smallest m > O for which fm(y) hits C (i.e.
.m . m
F 1(Y) n C. # @ for some (j.,s,) E;J.). Either F 1'(Y) cC (denote
118 1 1
this case by (i)) , or it hits C, with its upper end (or with the

LA |
lower end, which is an analogous case) as on Figure 2.1.

\

=i

)

Figure K 2.1 |
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Let us consider the second case. Denote e-l(y) = I . Denote
-m, m

I, =F l(F 1(I)'ﬂ e—l(C. )) . Take the sequence of curves
* J1%1
m
o
Jﬁ = F “dv)
,1_
J, =FQ,_,;~0 for m>m,

There may not exist any m > m, for which Jm hits ( with its lower

end. Denote this case by (ii).

However let us consider the case when such an m exists.

Denote the first such m by m, and the appropriate (. by C.
Js Jr8,
Denote IO =e F (Jm NC) €I . It may happen that I ~ (I0 U, is
2
empty or is one point. Denote that case by (iii) . Consider now the case

when there is a nondegenerate curve in I between IO and IA

Divide it into three curves Il, 12, 13 as on Figure 2.1.

There exists an F-periodic point t € I, with the minimal distance 'd"

between the points of Orb(t) (the F-orbit of t) satisfying

a.lV(Iz)

a-lv(I

(5) d )
1+ 2

1AY

a

(we recall that a = a; is length of the annulus Pi)'

By assumption ()
(6) a'g (I) < 3-a |

Otherwise a continuous function (F(z)-z)x-th coordinate would have growth
on I at least 3a . So F(I) would intersect I 1in at least three points.
So between the first and the third intersection it would fully intersect

-1

every set e (st) for (j,s) € ;E ;
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(One could now deduce from (5) and (6) , replacing I (in (6)) by 12 s
a2 (1,)
v T2

7 . We shall however use (5) and (6) later in a better

that d E

way) .

)

Denote left and right components of the Boundary of e_l(CJ.S
in 1int Pi by LSj ; ’st . respectively. Observe that the Lipschitz
’ 3

constants of LS, s RS.
J’S J’S

||
variable to the x-th variable are bounded above by N = !%%%] (these

treated as graphs of functions of the y-th

functions are even differentiable since the mappings e; °Ej have upper

bounded second derivatives, but that is not important here).

Denote by St the horizontal circle in Pi containing our F-

periodic point ¢t .

We denote

t. = LS. ns g t! = RS. ns
Js8 Js5 t Js8 ]S t

for (j,s) 6\71 .

The point t divides I2 into I) and I; (see Fig. 2.1).

Denote I' =1I_ UI! and I! =1I,U I" .

1 1 2 3 3 2
4
Denote T, = t. - F “(t) and
il 3.8
" 171
(1)

o = min((4(F "I * a i, (AP-N"2, (1P-n"2 (D-1;) Hshy + 1), avr)

In the above formula we denote

do'

|

|+ |dLD
y 1

This coefficient is motivated by the fact that if for any m and I < I

such that Fm(T) (= enl(C) 5

s

(7 2, (B (1) > n"e (D then
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(7") g (@ee(F (D)) > e* g (1) .

"~

(Proof : Join the ends of ®oe(Fm(f5) by an interval I < R . Then

~ d 1 -~
(D g (D =4 .

=12 do'
8y, (@oe) (1) < I—gg,'
If (7') were false, then

; de' do' -
A< ( |—d$;—| 432 2 (D

1]
3
=
<
N
>
N

which would contradict (7).)

In definition of Py > if q(i) 1 , we mean

We assume

(8) Ql > rl

In fact we shall need more.

Due to the term r1+d in definition of Py > for each (3,s) E;k

the arc(t. -p,,t. -r.) < § contains at most one point from the set
jss "1 73,8 1 t

b

Orb(t) . For the pair (jl,s1 such an arc contains no points from
Orb(t) , since its right end belongs to Orb(t)
There exist numbers Py s Ty such that Pl 2Py > Ty 2T, for
each (j,s) € J;
(tj,s~p2,tj’s—r2) n orb(t) = ¢

and

~p. W 1 (p.-1,)
P27t T T P17
Denote by m the first m > m such that Fm(t) € U <t. -r,,t' >.
3 1 ! J,s 277],s
(i,8)EA

Denote the case m 2m

9 by (iv). Now let us consider the case

3
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m, < my . In this case, we repeat the above construction on the right

2
sides of the sets C.
js

m

2
Denote r! =F “(t) -t!
L 1939
m
' = min((8 (F 2(I))+arL (ID-NLLI!)-n-L (I)-r!)-
o1 h 1 vl 1 v 1
. Q(i) ] ]
TR + r o d+r1) .
Assume
(8") P By

and as before find pé ,ré such that

of 2 ol 528 &) :

(S

for each (j,s) E;Ji

(t!

j S+ré,t! S+pé) N orb(t) = @
bl

Js
and

1_v=1 Vot
7Ty = g P17T1)

Let m, be the first m > max(ml,mz) such that
T4
F t) € Lt, ~Y gt} +r)
(t) <J4,S4 2 _]4,53 2>

for a pair (j4,s4) € :& i

Define
m1
J(m,) =F l(13) and
J(m) = F(J(m—l)\~e"1(C)) for m< m<m .
)
J'(mz) =F (Ii) and
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J'(m) = F(J'(m—l)\eﬁl(C)) for m,< m< m

2 4 °
We have
.l
Zh(J(m)) > min(th(F (Ié))+a‘£v(lé) > pz-N'EV(Ié))=A
m2 . :
Zh(J'(m))g min(ﬂh(F (Ii»+“%\ﬁli)’ pé—N-Ev(Ié))=A'
M4
If F "(t) €-<tj4,34—r2,tj4,sg> then
=1 . -
£, (J(m,) n e (€5 ) 2 Ary-NL (1) =

4274
Ty
= mln(ﬂh(F (13))+a'£V(I3)-N'£V(13)—r2 . pZ-ZN'ZV(IB)-rZ)-

For (4) it suffices if this is greater than or equal to n'KV(I)

For the first term in the minimum bracket, this follows from
(8). (The complicated formula defining P has been adjusted especially

to this aim).

Rewrite the inequality for the second term

= = . ' -
9) P 2N KV(I3) > EV(I)
"
Similarly, in the case F “(t) € <t! St +r£> for (4) 1t suffices
EEVAARR VAN

that :

' [ : ' 3
“") py~Ty=2N KV(II) > n EV(I)

A
If F "(t) € (t. . o o . ) then either
3454 345,

], 8

-1 -1
Jm) ce "(C, . ) or J'(m)ce (C. )
: Y474 ‘ 1474

by assumption *. This leads to the inequalities A Z.”.KV(I) and

Al > n’ZV(I) s which follow from (9),(9'). (8),(8'),(9),(9') follow from
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the inequalities

o £, (13)-2N £ (13)=n" £, (D)

2N g (T5) > £y (D)

q(i)-1
) if q(i) >1 , or
(10)
K 'l (13)-2N-L (1) >n-L (1) if q@) =1,
d s
(11) -c-l—(—;) = ZNEV(I:S) Z H'ZV(I)

and analogous inequalities (10'), (11') with Ii instead of Ié .

We can replace (10) and (10') by
(12,12") £,(I301y) 2 (a{%y - 297t n £, (D)

Inequality (11), due to (5), follows from

1 o KV(I?)
0 N - . 2 .
q(1) . oL (L) > (n+2N) £, (1)
a

This is equivalent to

q(1)- (2N £ (1)

£ (1,) >
q (1) (n*+2N) £, (1)

a(l - 5 )

(assuming the denominator of the right side ratio is positive).

Now we use (6) for KV(I) in the denominator and obtain a

sufficient condition :
o s |
(13) KV(IZ)'E CE?TT“'3(n+2N)) (n+2N)KV(I)

together with the assumption that the right side of (13) is positive.

For (4) it also suffices that
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|
(14) & @oe(F “(1,)) > e (D)

or that the analogous inequality (14') hold for IO and m, instead

of I4 > My respectively.

The vectors tangent to the curve ®oe(I) belong to the cones

[El/ﬁzl < e . This allows us to replace (14), (14') by

(15,15") 6, 00) 2 G- e e (D

We add the inequalities (12),(12'),(13),(15),(15"), divide by FV(I)

and obtain

(16) 1 > 2q(1) - (a=2Nq (i) " e g (i) - (a=3-q (1) - (n#2W)) L (+2N)

+ 2('&‘—e-u)-1-a

The conclusion is, that if this inequality is satisfied and the terms
a-2N-q(i) and 0-3q(i)-(n+2N) are positive, then either (15) or (15")
is satisfied, or there exists a partition of I ~ (IO u I¢) into
Il,iz,l3 such that (12),(12') and (13) are satisfied. This implies the

inequality (4).

The inequality (16) implies (4) also in the omitted cases (i)-
(iv). Indeed in the case (i) I = IA and we need only (15). In the case
(i1) I = I2 u 13 U I4 and we need (12), (13) and (15). In the case
(A1) I = I0 U I4 » we need (15) and (15'"). In the case (iv) also the

same inequalities as in the main case suffice (we even do not need (12')).

We shall replace (16) by stronger, but simpler inequalities.

Observe that

do" dop! o 1 d dip”
n+2N < 3"&%‘ + |-a“.:(_--f-l; <3 |E‘§|+ ) |G|
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=]

Il
Q

't '
Denote 3[%%| +e=¢ and (a—2|%§}{'q(i))-!%%%| (observe that

a > a) , we replace (16) by

17 1> (2q(1).0 *q() (e-3q(De) L+ 2(au- ) e

Iv

Denote

(17) holds if X > X(i), the largest solution of the equation

Lo 2@, _q@) 2

X X-3q(1) X-u
o G do :
If we denote a=aqa- X(1)-3-[E§| , then using (18) we conclude
finally that if
=" .
(19) a; > X(i) e :

then (4) holds.

By an analogous consideration for Gj one obtains for (4')

the condition
LARERION

The proof is finished. By assumption (E3) we can find a right system

{ei,eJ} s 1 =1,...,p 5 J=1,...,q » defining for example

e, = |a.l| /max(X(i),uiﬂ,)
ej = I?jl /maX(Y(J'),ujﬂ) o
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§ 3. Graphs of linkage of 1l.t.m.'s

Definition 1 : For any pair P = ({Pi}i=1 5 10 F ) of trans-

-++»D i'i=l,...,q

versal families of annuli define a (nondirected) graph T(P) as follows :

The vertices of T(P) are the sets P.l and Qj . For any pair (Pi’Qj)
we take as many edges joining Pi with Qj as the number of components of the

intersection P, NQ. . (There are no edges joining P. with P. or Q. with Q. ).
i) g ) I 12

We shall use the notation V.o, i=1,..,ptq for the vertices

of r(P) , Vh = P.l for 1 =1,...,p , v, Qiup for i = p+l,...,p+q.
By uijs we shall denote the edge joining 4 and vj , corresponding
to the component C. . 1 O <] g, . if j < <1i,
e 1,]7PsS =P el B 1-P,J]s5 TXP
together with the chosen direction from v, to vj (so each edge of

r(P) gives two directed edges). The set of all directed edges Wy will

be denoted by U(P) .

Notation 2 : For any l.t.m. H on P we call a curve yc CijS joining
lower and upper sides of Cijs and such that for some z€C , m>0,

y © hm(yu(z)) » a v-curve. Analogously we call vy c Ciis joining left

and right sides of Cijs » Y C fCOhm(yu(z)) , an h-curve (Recall that

h = HC is the induced map). We shall use the same terminology for egl(y)

and E;l(y) .

Definition 3 : For any l.t.m. H on P define a graph T(H) by adding

to the graph T'(P) a set UO(H) of new edges as follows : join any vertex

P. with itself by an edge denoted wu.. (or u..
i ii i

11) if for every

(3,8) € Ji , for every v-curve vy C Cijs s fc(y) contains an h-curve in
the same C.ljs (and in all other Cij's' , but this immediately follows
from the definition of twists). We define a set W(uii) of "admissible

weights" of wu.. as follows : a nonnegative integer n belongs to W(u..)
ii ; ii
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if for all (j,s) , (j',s") E‘Ji and v-curve vy < Cijs there exists

an+l a1,
o (Fo () -

- ' o v
an h-curve «y' < Fc(y) n Cij's' such that vy

m

Similarly we join Qj with itself by UO(H) if for any

1 :
P+],pt]

(i,s) E\Jl and any h-curve vy c C. ép(y) contains a v-curve 1in

ijs’

C.. . The set W(u. .
ijs et Wluy, ., j*p

(There is no a priori obstruction to u. . existing but with W(uii)

A
Yo

) 1is defined analogously as W(uii) for 1

@) .

L]

Denote U(H) u(p v UO(H)

Definition 4 : A sequence (rn) of elements of U(H) (or U(M) 1is called

a walk on T(H) (or T(P)) 1if for any two consecutive elements

r, =u we have j = 1i' and (i,s) # (j',s').

k

We call a walk with weight a walk on T(H) such that for each element

ijs * Tkl T Yitj's!

of the form u., € UO(H) s W(uii) # ¢ and an admissible weight w € W(uii)

is chosen. Then we write uii(w). By length of a walk (rn)wecallthe number

of the indices n for which r € U(P) , minus 1 . (So, we do not compute
edges ussos they are introduced artificially to allow us, after walking

Usig to turn back and walk uijs)' By length of a walk with weight

we mean the length of the underlying walk plus double the sum of all

weights of its elements of the form us. -

Definition 5 : We call T(H) (or T(P)) transitive if for every two

elements u,. , u,,.,., € U(P) there exists a walk on TI'(H) (or T(P))
1js 1L j's
which begins with u.. and finishes with wu.,., ,
ijs i'j's

We call T(H) (or T(P)) strongly transitive if there exists

, € U(P) where

an integer N such that for any N >N and u.. % st
o -0 1js 1°]' s

i>p>j, i' >p > j" there exists a walk with weight, on T(H) (or T'(P))

which begins with EPPR finishes with ui'j's' , with length 2N .

js8
Notation 6 : The degree of a vertex vs in the graph T(H) (or T(P)) is

the number of edges incident with vy (the edges u;, are computed doubly!)
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We use the notation degHv.1 for I'(H) and dengi for 1 (P)

Lemma 7 : 1. If for each vertex \ of T(H) degH(vi) >2 (i.e.. T(H)
has no "ends") and for at least one vertex v. , degH(v. ) >3 (i.e.
i i,7 &=

o
I'(H) 1is not a cycle), them T(H) 1is transitive.

2. If additionally one of the following conditions holds

@) For each 1i , degFﬂvi) >3,

(ii) For each i 1if deg;{vi) =1 , then there exists ug . € UO(H) with

W(uii) # 0 . There exists io such that W(u; ; ) @ {m,m+} for an integer
o o

m >0 .

(Gii) In(ii) replace condition about io by degP(vi ) >2 and W(ui : N Al
o o'o

Then T(H) 1is strongly transitive.

The same is true for T(P) (with H replaced by P , the con-

ditions (ii) and-(iii) omitted). @

Proof 1. Transitivity : Since T(H) 1s connected there exists a walk from

u.. or u. (Le.thenondirected edges)to u.,., , Or u.,., , . So we need to
ijs Jis i'i's jfi's
find a walk from wu.. to u.. (and from u.,,., , to u.,., ,). We
ijs jis i'j's j'i's
i .. = Uu. . i . - (v.) > 2
start walking at ule ulollso Since for every v. o, degﬂ(vl) & | we
canalways continue a walk from us to ug ; ) , k =0,1,.
k' k+15%k k+1 k+2%k+1
Let n be the first integer n >0 such that there exists m , 0<m<n ,
for which Ve =V If m> 0 , then from wv. we can continue walking
n m 'a
to V. V. ... back to wu. . .
14 ¥ Tipen’ iji,s, (see Figure 3.1).
-
. V. . v v =vj v k\

Vs i ’
B 3 ‘f 1o P ke— o D y
101180, vy. or o—>-,

. = / g
S AR N
% 2 %-5 .

.\.-‘)\‘/

Figure 3.1 Figure 3.2
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If m =0 then we have a cycle C (Figure 3.2), but there
exists k : 0 < k< n such that ] is incident with a third edge u .
k

We walk along this u . Next, we always manage to continue a walk so that

after some time we are back at C . Then we walk along C backward to

Strong transitivity : To prove this, it is enough to find a finite family

of cycles, i.e. periodic walks with weights,with lengths 2N1, 2N2,..,2Nr 5
where the highest common factor of Nl""’Nr (Nl""’Nr) = 1. Consider

the three cases (1)-(iii) :

(i) Let for each i =1,...,p*q , degp(v.) > 3 . Choose any u. . €eu(pP).
i’ = iigs,
At v_ at least two different directed edges u. . 3] [l 2 st
o 1 .1 8 b (R (Y-
-1707-1 =170 -1
different from us o finish. At vy at least two different directed
17070

v , different from wu. . , start. Extend the walks
. e 1 1 S i

il 17070

i is YiisYiis g Yiv i s Y518 Y54t

-1%0%-1 *o*1% M1%2%1 -170°-1 'o'1% M1'2°®

C, by walks vy and w, respectively (see Figure 3.

Sl e,
172°1 i
to cycles C1 and

1
3.)

Figure 3.3

Denote 2N, = length(Cl) s 2N

1 = length(CZ) . Either (NI’NZ) = 1 which

2

proves the Lemma, or we consider the cycle

C, = u. . w.ou., . Ws sy v = Wa Weps gy with the length
3 111231 1 1,18 4 101_1s~1 2 121151
2N3 = 2(N1+N2w1) . Then (Nl,NZ,N3) =1 s

(11) Assume degp(vi Yy =1, {mm+l} c W(ui 1 ) - Then u. . (m) can be
[o) [e o] oo .
extended to a periodic walk with weight, with some length 2N . If we
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replace, in this walk with weight, uii(m) by Uii(m+1) , then we obtain

length 2(N+1) . But (N,N+1) =1 .

1ii) Assume deg,(v. ) >2 , 1 € W(u, . ). Then there exists a periodic
P17~ i1

oo
i ) . . G e 3 oL
walk with weight going through vio- ...ujios 5 uioj's"" (j# 1 #3').
But we can enlarge its length by 2 taking ... ujis s uii(l) s uij's"" [u]

Proposition 8 : If the l.t.m. H satisfies all the assumptions of Theorem

B except the assumption [kil’ |Ej| 3_2 and if Tr(H) and T(H*l) are
transitive, then H 1is ergodic. If additionally H is strongly transitive,

then all powers of H are ergodic, so H 1is a Bernoulli system.

Proof : Take any z € C for which there exists a local unstable manifold
yu(z) . By the proof of Theorem B there exists an h-curve, (or v-curve)

~ 0 n
y. < C. . such that y < FH o(y (z)) (or Yy cH 0(yu(z))) for an
o) 1308, o o

integer n_ o> 0 . For every uijs € U(P) there exists a walk

W= (u (or )s.+.5u.. ) on the graph T(H) .

R u, ;
153 *pss, i +p,Jss, ijs

Assume i is an h-curve, for example. Denote by L T
the consecutive edges of this walk with omitted elements of UO(H) . We

say that r has property (y) 1if there exists an h-curve

- (k-2/2 =

Y, € C. . nFr Oh. °G (Y ) ’

k i(r),i(r),s(r) C ‘o
I e (CR I TE S R B A S TCR I TER WC L

(k-—l)/Za( ) h B Bv the definiti £

h c(y,) » when r = uj(rk)+p,i(rk),5(rk) . By the definition o
walk if I has property (y) then L has property (y) . So, by
transitivity, in every C.ljs there exists a v-curve vy clﬁkyu(z)) for
some m = m(ijs) . By Theorem B for H“1 and transitivity of P(H_l) s
if for z' € C a local stable manifold ys(z') exists, then there exists

i i g » an integer m > 0 and a curve y C h*m(ys(z')) joining left and
19151 m(i;j;s))
right sides of C. . . This implies that h

(yu(z)) intersects
13151
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h_m(ys(z')) . So h and H are ergodic.

Assume now that W/ is a walk with weight, y < C, . is a
o 1,9, 8
0“0 0
v-curve and ro=oug. satisfies : i > p > j . Then there exists a v-curve

ijs
Hgfznength(W)(Yo)

n (this key fact follows imme-

y. < C. :
n i(r ),5(r ),s(r)
diately from the definitions of a walk with weight and its length, these

definitions were adjusted especially to this aim).

Concluding, by strong transitivity of T(H) , for any Cijc and
N - an integer sufficiently large, there exists a v-curve

ycl n HN(YO) . This yiedd ergodicity of the mappings Hk for every

ijs
integer k . o

[Instead of graph T(P) one can consider its derived directed
graph rd(P) defined as follows : the vertices of rd(P) are directed
edges uijs of T(P) . There exists a directed edge in Fd(P) which

starts at uijS and ends at u, if j=1i'" and (i,s) # (3',s').

e -
The graph Fd(H) is defined by adding new edges to Fd(P) as follows :
We add a directed edge which starts at uijS and ends at ujis if for

Pj and (i-p,s) E‘Jj when i > p>j or Qj—p and (i,s)E;]j-'p when

j >p >1i, the property described in Definition 3 is satisfied. For

Fd(P) and Fd(H) a walk is defined in a standard way .]

Lemma 7 and Proposition 8 give the topological condition about P (i.e.
degp(vi) >3 for i=1,...,ptq) which implies that every l.t.m. on P
satisfying the assumptions of Theorem B , even except [ki| s |£j| > 2
is Bernoulli. If P does not satisfy this condition, then the question of
whether H 1is Bernoulli reduces to studying the existence of u.s s and

studying the set w(uii) . Proposition 9 will be devoted to this question.

But first, we introduce more notation.

www.rcin.org.pl



=1 42l I=
Number the q(i) components of ezl(C) in Pi and denote them
o gq{i)-1 . : ]
Qj,...,Q , starting from any component and going to the right. Denote

the left and right sides of Qj by LSj 5 RSj respectively. Denote by
S(yo) the horizontal circle S(yo) = {(x%y)€ Pi ty = yo} . Since for

any two points 21525 € S(y) there exist two arcs in S(y) joining them,
we fix that (21’22) denotes the arc oriented to the right, with the begin

at zy the end at z, - 2(z1,22) denotes its length.

Denote

j*+1(mod ¢())

D(P,)=  max inf  2(rRsINS(y),LS 0 s(y))

3=0,...,q(1)~1 -y€(yi,y’i')

Proposition 9 : For H a l.t.m. satisfying assumptions of Theorem B

except |k.|,|2.] > 2, for 1 <i <p the existence of u. . follows

from each one of the following conditions

1. |ke] > 2
L e " '
N XX,
2. q() =1 and Ei > X(i)- ;%:;% , where P. N Qj 0
i |

1
35 D(Pl) -?-7 ai .

- : ———n
In the case 1, W(uii) 30 . In the case 3., if D(Pi) Eagrears, gk

for n > 1, then W(uii) 3 n . (We leave writing the analogous conditions

for p < i < ptq to the reader).

Proof : The case 1. is explained on Figure 1.2. In the case 2. we need the
x-x:
inequality (4) in § 2 for ei = max(ei, —%:—%) instead of € - This
1 Vil
follows from the inequality (19. §2) with Ei instead of €;

Consider the case 3. Assume for example ki > 0 (the case ki <0 1is

n
a. for n > 1.
n+l 1 —

analogous). Assume D(Pi) >
S . = 1 11} e
Lift F, : P, ]Rx(y.l,yi> /aiax {0} —— P, to

ﬁ':fRX<y{,y;>'€) so that = identity.

Tl
Flice,y ry=yi |

www.rcin.org.pl



- 43 -

Take any v-curve vy C QJ s 0< j < q(i) , and choose a covering curve
Y in a component Q° of the set covering Q° . Denote the consecutive

j#l (mod q(i)) jSZ (mod q(i))

components covering Q see. DY

3t | 892 | .., the left and right sides of @ by 189 , R&Y and
the lines IR x {y} by S§(y) . For any two points lying on the same line
we use the standard relations < and < .. Denote by j0 such j at
which the maximum in the definition of D(Pi) is .
attained. There exists (x1,y,) € Y such that kal,yl) € ﬁ?lo (pro-

vided j < jo , otherwise we replace j0 by jo+q(i))

Since li*:m(x]_’yl)-?m_l(xlsyl)l = I?(Xl.yl)‘(x]_ ’YI)| for

any integer m , we have

j *1-q(i)
+1 . ~
do o s LC0
< (n+1)-|R§ % n S(y)-18"° NSl < &
. ) . it
hence §n+1(xl,yl) < LS ° S(yl) and fn(xl,yl) < 18° n S(yl)

C 41
So there exists (xz,yz) € ? such that Y, > ¥y and fn(xz,yz) eEmE ™

~nt+1 ﬁjo o
|F (xz,yz) RS n S(y2)| > a,

~J _*q(i)

~n+1 o s
hence F (xz,yz) > RS n S(yl)

We conclude that the curve Y; €y with the ends at (xl,yl)
and (xz,yz) has the property that Fm(yl) n QJ =@ for every m =l,..,n
. - +1 . 3 ]
and j =0,...,q(i)-1 and e (Yl) contains an h-curve in each QJ

But this means that n € W(uii). a]

Theorem C follows immediately from Theorem B, the case 3 of

Proposition 9. (if degp(vi) = 1 we need D(Pi) > %ai for i <p and

I

D, _) >

i=p - b. for 1 >p , if degp(vi) = 2 it is enough to replace

1=p

(V%)
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2

3 by %), Lemma 8. and Proposition 9.

Remark : It is also true under the assumptions of Theorem C (but with the

q
property "if A, intersects U Bj in exactly two points then these two

3=1
points are not antipodal in Ai" assumed for every A, and respective
property for every Bj) that h = HC , the induced mapping is Bernoulli.
To prove it, one needs consider walks without weight, i.e. not consider
weight in the definition of length. This gives information about the
n, u ] n, u 2 oy 3 i
curves h (y (z)) 1instead of H (y (z)) . Strong transitivity of I'(H)

follows in this case from the fact : degH(vi) > 3 for each Ve (we leave

a proof to the reader). o

To show how to apply the above results we shall study the exam-

ples from the Introduction.

Example 1 : Consider H , a toral linked twist mapping, with twists as
strong as in Theorem A but not necessarily satisfying |k| ,|2| > 2 .

We shall discuss the following properties which H may additionally satisfy:

3 ¥i7Y
= 1 7o 170
(a;) |a] > V€ - 5 (b)) 8] > VC - -
1 °  ¥y7Y, 1 o X "X
(a,) x,-x_ <=+ (b,) <y
B0 ] %6 27 2 Y1027
(a,) x,-x o (b.) - <l
3. ¥17% =3 33 N1V 23
(a,)) [k| > 2 (b)) 2] >2 :
The graph T(P) 1looks as in Figure 3.4.
r(pP) ; I'(H) —
;e Cr=—0
Figure 3.4 . TFigure 3.5

www.rcin.org.pl



- 45 ~

If one of the conditions (ai) s 1 =1,...,4 and one of the
conditions (bi) , 1 =1,...,4 1is satisfied, then T(H) and F(HTI)
are transitive so H 1is ergodic (the induced map h = HPnQ is even

Bernoulli). See Figure 3.5.

If the conditions of one of the following sets of conditions are

satisfied :

(i) {(a,), (b)) , G (@3, (b)), ()},
(i11) {(ay), (b)), (b)) V) {(a), (b)) ;
¥) {(ay), (b))} . wi) {(by), (a)) ,
(vii) {(by),(a,)) :

then T(H) 1is strongly transitive, so all powers of H are
ergodic, hence H 1is Bernoulli. The graphs T(H) in some of the above
cases are presented in Figure 3.6. (numbers on the edges joining P

(respect. Q) with itself denote admissible weights)

0 0 0,1 1 1,2 1 1,2 0
' 7N

C—D C—DH CG—0 C—O
case (i) case (1i1) case (iv) case (v)

Figure 3.6.

Example 2 : Consider H , the Bowen example (see Introduction) with twists
as strong as in Theorem B, but not necessarily satisfying |k| , |%| B2 o

Discuss the following properties :

(a) D(P) Z%a () D(Q _>_—;-b

) [k| 3 2 @ 2] > 2
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(We recall that (a) (analogously (b)) means that no circle {y = const.} <P
contains a pair of antipodal points contained in e-loE(Q).)
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