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PREFACE.

The present work is an endeavour to exhibit a comprehensive 
view of the Theory and Solution of Algebraical Equations ; espe
cially in reference to that more important department of the 
subject, which relates to the practical analysis and computation 
of the roots when the coefficients of the equation are given 
numbers.

I am not aware of the existence of any work in which so 
ample a discussion of the general problem of the solution of 
numerical equations is furnished as that which is attempted, 
however imperfectly, in the following pages.

The main topics of this discussion are indeed but very recent 
contributions to science, made by different persons, at compa
ratively short intervals, within the last twenty or thirty years; 
and are as yet too imperfectly known and estimated to have 
become generally incorporated into our systems of analysis.

But the importance of these recent additions to our knowledge, 
in a branch of inquiry of so much practical consequence as the 
solution of numerical equations, in which all existing methods 
were felt to be so limited and imperfect, seemed sufficient to 
justify even reiterated endeavours to introduce them into general 
notice, and to urge their claims to general adoption.
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iv PREFACE.

Under this conviction, the first edition of the present work, 
and the subsequent introductory volume on the Analysis and 
Solution of Cubic and Biquadratic Equations, were prepared :— 
I believe they have both been as instrumental as I had any right 
to expect, in accomplishing the objects of their publication.

In the introductory work just alluded to, it was my more 
immediate aim to invite the attention of the young analyst to 
Sturm’s infallible method of analysing numerical equations ; 
and to show the efficiency and general practicability of that 
method, in conjunction with the subsequent development of 
Horner, to accomplish, with more ease and certainty than had 
hitherto been done, the solution of equations of the third and 
fourth degrees.

It is a remarkable circumstance connected with the recent 
improvements adverted to above, that they have presented, in 
rapid succession, three independent methods for analysing a 
numerical equation; thus affording a choice of means by which 
the most formidable obstacle that had hitherto stood in the way 
of a complete solution of the problem might be overcome. 
These methods are respectively due to Budan, Fourier, and 
Sturm : each is characterized by distinctive peculiarities, and 
each has its own advocates, who have perhaps sometimes allowed 
their partialities, in favour of one method, to influence their 
judgment in estimating the merits of the others.

What more especially distinguishes the method of Sturm 
from each of the other methods is its unfailing certainty, and 
its entire freedom from tentative operations :—two qualifications 
of the first importance in practical science. It was on these 
grounds chiefly that I had always regarded Sturm’s method as 
the best; and that I had ventured, more than once, to affirm its 
superiority even as regards equations of a higher degree than the 
fourth. Up to this point my conviction of the superior eligibility
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PREFACE. V

of this method, when conducted conformably to the plan which 
I have recommended, remains unchanged. Nor should I now 
see any reason to modify my former views, as to the more ex
tended application of Sturm’s theorem, but for the improve
ments which I think I have in this volume effected in other 
methods of analysis; more especially in that proposed by 
Fourier, which, however easy and concise in certain particular 
applications of it, had but very slender claims, in the state in 
which it was left by its distinguished author, to rank with the 
theorem of Sturm, whether we regard the certainty of its con
clusions, or the general practicability of reaching them.

It is probable that the modifications here adverted to may 
contribute to bring the method of Fourier into more general 
use in the analysis of the higher equations, whenever, from the 
magnitude of the coefficients, Sturm’s process might be ex
pected to involve numbers inconveniently large. It is not likely 
however that any future discovery will ever lead to the entire 
abandonment of Sturm’s method. Within the limits above 
stated, it is still upon the whole the best that can be given. 
And the simple character of its operations, and the undeviating 
certainty of its results, will always command for it a promi
nent position in every exposition of the doctrine of numerical 
equations.

By far the greater part of the following work is devoted to the 
analysis and development of these theories. I have endeavoured 
to place each of the new methods before the reader in the best 
form I could; and, by copiously illustrating them all, have 
afforded him the means of forming a correct estimate of their 
comparative merits, and of drawing his own conclusions, as to 
the preference to be given to any one in particular, in cases of 
more than ordinary difficulty.

The critical examinations and discussions in which 1 have in-
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dulged will, I trust, be found to have been conducted with 
impartiality. In matters of science and demonstration it is ab
surd to entertain preferences and predilections. By unduly 
extolling a favorite author or a favorite method, a writer may, for 
a time, easily supplant the just claims of others; and, as far as 
his influence extends, may actually impede the science he would 
wish to advance.

In expounding the recent improvements in the doctrine of 
equations, I have attributed the first step in those improvements 
to Bud an. This step consists in an extension of the theorem of 
Descartes ; an extension which, although very obvious, and 
easily made, was nevertheless first publicly announced in the 
Nouvelle Methode, &c. of Budan in 1807.

The same theorem was afterwards given by Fourier, in his 
Analyse des Equations Determinees; and published, after the 
death of the author, in 1831 ; since which time it has been com
mon, with English writers, to call the extension in question the 
“ Theorem of Fourier,” without any regard to the prior claim 
of Budan. It would be difficult to discover upon what grounds 
this misappropriation is persisted in. It is certain that the leading 
men in France—Lagrange and Legendre, the colleagues and 
associates of Fourier—regarded the theorem as due to Budan ;*  
and there is no evidence to show that Fourier himself ever 
disputed the claim, although there are strong reasons for con
cluding that Fourier was led to the same thing by his own

• The academicians appointed to examine the Memoire of Budan were Lagrange and Legendre, who make no mention in their report of any similar theorem by Fourier. The report of the commissioners on Budan’s paper closes as follows “ Nous croyons que le theoreme trouve par M. Budan merite 1’attention de la classe, conιme etant une extension de la regie de Descartes, et que son Memoire peut etre imprime dans le Recueil des Memoires presentes, accompagne du present rapport. Signe—Lagrange ; Legendre, rapporteur." See the Nouvelle Mtthode of Budan, 2d edit. 1822.

www.rcin.org.pl



PREFACE. vii

independent investigations into the theory of equations. There 
is a passage in the Histoire de Math6matiques of Montucla 
which justifies this conclusion. I have extracted it at page 151. 
It is very remarkable that Navier, the editor of Fourier’s 
posthumous wrork, and all the other advocates of Fourier’s 
priority, should have overlooked testimony so strongly confirma
tory of the position they have taken such pains to establish. 
Perhaps the fairest way would be to consider the theorem in 
question as the common property of Fourier and Budan.

But this theorem only partially accomplishes the object to 
which it is applied—the analysis of a numerical equation. Addi
tional principles were required to complete the decomposition 
thus partially effected. These were accordingly supplied both by 
Budan and Fourier : and at this point of the process the two 
methods become perfectly distinct and independent.

This more advanced theorem of Fourier has, however, met 
with comparatively but little notice in this country. By the 
“Theorem of Fourier” is generally meant merely the pre
liminary theorem, noticed above, as common to Budan and 
Fourier; the additional principle, by which this theorem is 
perfected, and which in a peculiar manner displays the genius 
and resources of the author, being altogether overlooked.

I have thought it necessary therefore to give a very full expo
sition of this second theorem of Fourier, which I have endea
voured to free from the principal imperfections which precluded 
its successful application beyond very narrow limits. These 
modifications are proposed and explained in the Ninth Chapter, 
and the importance of them practically illustrated in Chapters 
Eleven and Twelve.

I have also consigned to this twτelfth chapter some new views 
and developments, which, as far as they extend, I believe to be

www.rcin.org.pl



viii PREFACE.

accessions to our knowledge; and to increase our practical facili
ties in a difficult and delicate department of the subject.

The methods proposed in this chapter for distinguishing real 
from imaginary roots, in cases of doubt, will be found to be 
simple in their theory and easy in their practical application. It 
is desirable that the doctrine of algebraical equations should be 
rendered independent of the more advanced principles of analysis. 
To establish Fourier’s criterion for the testing of these doubtful 
cases, we must borrow assistance from the analytical theory of 
curves, or from the theorem of Lagrange on the limits of 
Taylor’s series : both of which subjects involve the principles 
of the differential calculus. The methods here proposed effect 
the objects of Fourier’s criterion by aid of only the common 
algebraic theories.

Some apology may be necessary for a new term which I have 
ventured to introduce into these discussions :—the term im
perfect roots; a name by which I have designated certain real 
values, by which a particular class of imaginary roots may be 
replaced, and which are shown to furnish real approximate solu
tions to the equation. Fourier had noticed the fact that 
imaginary roots divide themselves into two classes, distinguished 
by very marked peculiarities; but I think he did not develop the 
theory of this interesting principle with sufficient fulness. 1 
have considered it with more detail in the eighth chapter One of 
these two classes of imaginary roots suggests real values actually 
available in calculation, and having full claim to the character of 
approximate numerical solutions: these are the values that I 
have called imperfect roots, to mark their defect from that strict 
accuracy which belongs to the other real roots of the equation.

The formulas given in this twelfth chapter for determining two 
roots of a numerical equation, after the others have been com-
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pitted, will be found useful on many occasions. One of these 
formulas lias suggested a very simple investigation of a general 
expression for the solution of equations of the fourth degree : it 
will be found in the Eighteenth Chapter. This investigation 
might no doubt be derived from the general theory of symme
trical functions ; but the steps supplied by that theory would 
be much more complicated and difficult.

In several other portions of the book I have also introduced 
particulars which appear to me to have claim to originality. 
But I am anxious to express myself with all becoming caution 
and reserve in reference to these matters; more especially as 1 
have found, since the completion of the work, an anticipation 
of a principle which I had thought had hitherto escaped notice : 
I have made the proper acknowledgment in a note at the end.

A cursory glance at the more advanced sheets of the present 
volume will show t)ιat the work abounds in calculations, several 
of which involve a good deal of numerical labour. It was neces
sary to enter upon these, in order to furnish a satisfactory view 
of the actual capabilities of the new methods. In these practical 
illustrations, as well as in the theoretical developments on which 
they are founded, I have tried to secure rigid accuracy: and 
although it is likely, that in such a large amount of calculation, 
one or two numerical errors may have escaped detection, I am 
persuaded that these, if any occur, are very few in number.

It may be mentioned in conclusion, that in animadverting 
upon the methods proposed by Fourier and Budan, I have 
sought to establish the validity of my objections by practical 
illustrations, taken, for the most part, from the favourers of the 
methods themselves. These, however, I have considered it neces
sary carefully to recompute ; for 1 have found, from experience, 
that such calculations are not to be taken upon trust. Examples, 
incorrectly worked by the original proposers, or erroneously 

b
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copied by their immediate successors, are often transmitted from 
book to book, without any correction. The well known cubic 
equation, by which Newton illustrated his method of approxi
mation, is in this latter predicament: it is, in general, inaccu
rately calculated. I have given the correct figures at page 333.

With this brief account of its general scope and intention, I 
submit the work to the impartial examination of those interested 
in the progress of the important department of analysis on which 
it treats ; I ought perhaps to say, to their indulgent examination; 
since from the extent of ground gone over, much of which has 
been as yet but little trodden, and the innovations I have ven
tured to introduce into various parts of the subject, imperfections 
may have escaped me, which may render such indulgence neces
sary to secure to the book the favorable reception that was so 
largely given to the former edition.

J. R. YOUNG.
Belfast College;Oct. 1, 1842.
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THEORY AND SOLUTION

OF

ALGEBRAICAL EQUATIONS.

INTRODUCTION.

(Art. 1.) The great object of all computation is the determi
nation of numerical values for unknown quantities by help of the 
given relations which they bear to other quantities already known; 
and it is the office of algebra to express these relations in a sym
bolical form, by means of the marks and signs which constitute 
the notation of that science.

Every such algebraical expression of the conditions which con
nect the known and unknown quantities together, in any mathe
matical enquiry, when reduced to its most convenient form, 
furnishes us with an equation; and it is thus that the solution 
of equations, as the evolution of the unknown quantities involved 
in them is called, becomes the chief business of algebra, and the 
grand problem to the full discussion of which all its rules and 
processes are merely subsidiary.

But such is the difficulty of the subject that all the resources 
of algebra have been hitherto found inadequate to effect the 
solution of it in general and finite terms—that is, without the aid 
of infinite series—except in the simple cases where the unknown 
quantity rises to no higher a degree than the second. The 
rigorous solution of an equation of the second degree, by means
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2 INTRODUCTION.

of a general formula for the values of the unknown quantity, is 
readily accomplished by common algebra. But the discovery of 
a like formula for equations of the third degree has hitherto 
resisted every effort. The same may be said with respect to 
equations of the fourth degree, while for those of the fifth and 
more advanced orders it has been demonstrated that the existence 
of any such general formula is impossible.

(2.) It is true that the early Italian algebraists, Ferrari, 
Tartaglia, and Cardan, investigated general methods for 
equations of the third and fourth degrees, and that these methods, 
expressed in the notation of modern algebra, furnish formulas 
which do really represent the sought values in terms of the 
coefficients of the equation and under a finite form. But, for 
certain relations among the coefficients, these formulas, and all 
others that have since been proposed for a like purpose, involve 
imaginary expressions, which, except in certain particular cases, 
render the actual computations impracticable till the formulas 
are developed in an infinite series; and the imaginary terms, by 
mutually opposing one another, become exterminated.

(3.) It is observable that the well-known formula for equa
tions of the third degree—usually called the formula of Cardan, 
and to which every other known method is reducible—is gene
rally in the predicament here described whenever the values of 
the unknown quantity are all real. The formula which represents 
these values, and from which they are to be evolved, turns out 
in nearly every such case to be merely a compact symbolical 
expression for an infinite series; and it is only from this series, 
and not immediately from the undeveloped formula itself, that 
the real values concealed under the imaginary expressions which 
enter the formula can be computed or approximated to.

(4.) This failure of Cardan’s formula to solve the cubic in a 
general form, when the values of the unknown quantity are all 
real, has always been regarded as a very remarkable and often 
indeed as an anomalous circumstance in the doctrine of equa
tions. But it will be shown hereafter, when we come to that
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INTRODUCTION. 3

department of our subject to which the discussion of the general 
formulas proposed for the solution of equations belongs, that this 
circumstance might have been anticipated, as a necessary conse
quence of the laws of algebra; and that the actual exhibition of 
the real values, in a finite computable form, by Cardan’s method, 
would be a contravention of those laws, and therefore a really 
anomalous occurrence. Thus the method becomes essentially 
inapplicable as a general method whenever the values of the un
known quantity are all real.

(5.) Every general form for equations of the fourth degree, 
involves in it the above-mentioned subsidiary expression for equa
tions of the third; and thus, without extending our enquiries to 
equations of the higher orders, we are compelled to acknowledge 
that algebra has not as yett rewarded the labours of analysts with 
effective formulas for the solution of equations of the third and 
fourth degrees, by means of which the real values may always be 
computed without the aid of infinite series. As far as the dis
covery of such formulas is concerned, no advance of consequence 
has been made beyond the point reached by Cardan and 
Descartes ; and the search after general symbolical forms for 
the solution of the higher equations, as also the attempt to im
prove and rationalize those already alluded to, are occupations 
which have always proved so barren of success that analysts 
have at length ceased to prosecute their enquiries in reference 
to these objects.

(6.) But although the solution of equations above the second 
degree by general algebraical formulas competent to supply the 
unknown values under all relations of the coefficients has thus 
been found to be impracticable, yet the actual evolution of these 
values by common arithmetical processes may always be effected 
whenever such values really exist; so that, however the powrers of 
algebra may in general transcend those of arithmetic, wτe have 
here, in the problem of the general solution of equations, a very 
remarkable example of the fact that vre may arrive at numerical 
results by certain general and uniform arithmetical operations 
which, although very simple in their character, it is not within
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4 INTRODUCTION.

the power of algebra, with its present symbols of operation, to 
represent in any finite formula. In fact the operation by which 
the numerical solution of equations of all orders is now effected, 
is an inverse operation of so fundamental and purely elementary 
a character that it does not seem to admit of analysis into any 
simpler and subordinate processes, except in the single case of 
the quadratic; so that to represent the general operation symboli
cally it would seem that we must devise a new notation for that 
purpose, and not attempt the representation by combining to
gether other supposed component forms.

(7.) The numerical evolution of the values of the unknown 
quantity in a quadratic equation is an operation of which the 
arithmetical extraction of the square root is but a particular 
case; so that this latter process may be regarded, theoretically, as 
one of a simpler and more elementary character; and to such a 
process we really can reduce the operation for solving a quadratic 
equation, as the common algebraical formula for quadratics shows. 
Our success in this particular class of equations is owing entirely 
to the power we possess of making the unknown member of every 
such equation a complete square, by the introduction of a certain 
known quantity. The case is very different with equations of 
the next higher and still more advanced degrees: Cardan’s for
mula for cubics—admitting its general irreducibility when the 
values sought are real—so far from furnishing a finite algebraic 
expression for those values in terms of the coefficients, actually 
proclaims that the existence of such an expression is an impos
sibility.

(8.) Cardan’s formula, if we except a few particular cases, 
effects no more for cubics whose roots are all real, than a cer
tain well-known imaginary expression for a circular arc effects for 
the rectification of the circle.*  Each formula is but a compact 
symbolical expression for certain infinite series.

• The expression here alluded to is the following, due to John Bernoulli, viz.
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INTRODUCTION. 5

(9.) Such forms, however, although utterly useless for the 
purpose of actual computation, are nevertheless valuable on other 
grounds; and although formulas, like the irreducible case of 
Cardan’s, if they could be discovered for the higher equations, 
would be of no value in the numerical solution of such equations, 
yet they would be received as important acquisitions into other 
departments of analytical enquiry; since they wrould enable us to 
exhibit, at least symbolically, the elements of which every ra
tional and integral algebraic polynomial is composed, however 
difficult it might be to determine when these symbolical forms 
stand for real quantities, and when they are purely imaginary.

(10.) The great labour which analysts have from time to time 
bestowed upon this research after general algebraic forms for the 
solution of the higher equations, although wholly unsuccessful, 
or very nearly so, as respects the ostensible object of enquiry, 
has been rewarded by the discovery of most of those interesting 
and important truths which constitute the general theory of 
equations, many of which have directly contributed to advance 
towards its present perfection the method of numerical solution, 
which the recent efforts of Budan, Fourier, Horner, and 
Sturm, have rendered entirely effective and general.

(11.) This method, as already noticed, is a purely arithmetical 
process, performed upon the numerical coefficients of the pro
posed equation, universally applicable without regard to the 
degree of the equation, and altogether independent of any such 
general algebraic model, or formula, as that which analysts have 
so long sought in vain to discover.

(12.) It is our intention in the following pages to present a 
connected, and, as far as we are able, a perspicuous view of the 
researches just adverted to, with such modifications and additions 
as appear to us to be real improvements, calculated to increase 
our facilities in the analysis and solution of the higher equations. 
The more elementary details, as far as equations of the first four 
degrees are concerned, have already been discussed with sufficient
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6 INTRODUCTION.

copiousness in an introductory volume.*  But in order to render 
the present work complete, as a comprehensive exposition of the 
modern theory and solution of algebraical equations, it will be ne
cessary to resume and generalize some of the theoretical investi
gations given in that Introduction; the previous study of which, 
however, as an epitome of the leading topics in the present 
volume, is earnestly recommended to the student, j~

(13.) Before terminating these preliminary remarks, it will be 
necessary to say a word or two as to the notation to be generally 
employed in this treatise; and to explain the sense in which cer
tain terms of frequent occurrence in the higher departments of 
analysis will be used in the following pages.

The notation for the different classes of equations involving 
one unknown quantity will usιually be as follows, although 
we shall occasionally depart from it in the advanced parts of the 
work.

A simple equation will in genercal be expressed thus:
Ax + N = 0.

A quadratic equation,
A2 x2 + Ax ∙+ N = 0.

A cubic equation,
A3 xi + A2 x2 + Ax + N = 0.

A biquadratic equation,
A4 xλ + A3 x3 + A2 x2 + Ax + N = 0.

And, in general, an equation of the z*th  degree will be written,

An xn . . . . + A3 xi + A2 x2 ÷ Ax + N = 0;

in which the absolute term N, and the coefficients A, A.,, A3, &c.

* The Analysis and Solution of Cubic and Biquadratic Equations, 1842.+ In the course of the following work we shall presume the reader to be in some degree acquainted with the introductory treatise alluded to, and shall occasionally refer to it for some practical details respecting equations of the third and fourth degrees, which need not be repeated here.
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INTRODUCTION. 7

usually represent real numbers, either positive or negative, in
tegral or fractional. The polynomial on the left of the sign of 
equality we shall frequently call the first side or the first member 
of the equation.

(14.) It is common in algebraical enquiries, involving frequent 
reference to complicated expressions, to designate those ex
pressions by some more brief and commodious form; and to faci
litate this abridgment, a new word, the word function, has been 
introduced into algebra, and represented symbolically by the 
initial letter f or F or ¢, or f, or fx, &c.

Thus any expression involving x, as, for instance, the left-hand 
member of either of the foregoing equations, is called, in brief, a 
function of x, and represented by one or other of the forms

/(a?), F(ar), 0(a?), Ψ(√), f∖x), F'(ar), ∕1(aj), &c.

when, however, one of these forms is fixed upon to represent any 
algebraical expression, it is plain that, in order to avoid con
fusion, we must adhere to that form of representation throughout 
the enquiry; and must not employ the same form to characterize 
other expressions, or other functions.

If, for example, we agree to represent the foregoing general 
equation of the nth degree by f(x) = 0, we are not afterwards at 
liberty to represent any other different function, occurring in the 
same enquiry, by the characteristic f, any more than we are at 
liberty to denote two different magnitudes by one and the same 
algebraical character. We see, therefore, that while the term 
function has the most extended signification, comprehending all 
algebraical combinations possible, yet, by varying the form of the 
initial letter, or characteristic, which stands for the word, the 
various forms of functions may all be representedin the proposed 
notation by distinctive symbols.

(15.) The expression f(x) =0, which we have just employed 
to denote, in short, the general equation of the nth degree, in
cludes in it, of course, all the particular equations written above, 
as n may be any positive and integral exponent whatever. The 
symbol f(x) or ffx), &c. denotes, as already remarked, a func-
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8 INTRODUCTION.

tion of the same quantity, x, although different from the function 
f(x); yet, as the preceding forms are derived from this last, by 
simply supplying an accent, or subscribed numeral, they are the 
forms usually employed to express functions derived from, or de
pendent on, a primitive function /(a?). For example, if the func
tion ax6 + bx^, be represented by f(x), and we have occasion to 
exhibit the successive quotients which arise from dividing this 
primitive function by x repeatedly, it would be convenient to use 
the following notation:

f (a?) = axr' q- 6a?

,/j (∙r) = ÷ bx^

f2(F) = aχ4 ÷
∕λ{x) = axi + bx2

&c. &c.

where f(x) is the primitive, and the others the derived functions, 
each being derived from the preceding, by a repetition of a know n 
process, viz. the process of division by a?. Again, suppose wre had 
to deduce from the function, 3a?4 + 5a?3 — 2x2 -f- 7a? — 12, a series 
of others in succession, by the following uniform process, viz. 
each term in the derived function is to be deduced from the cor
responding term in the preceding function by multiplying that 
term by the exponent of x in it, and then diminishing the ex
ponent by unity ; the several functions would be as follows :

primitive function, f (x) = 3a?4 + 5a?3 — 2a?2 + 7x — 12

1 st derived function, ∕1 (a?) = 12x3 + 15a?2 — 4x +7

2d derived function, f>(F) = 36a?2 -⅛- 30a? — 4

3d derived function, fi(x) = 72x + 30
4th derived function, /4(a?) = 72

This last expression, 72, not containing a?, cannot in strictness 
be regarded as a function of that quantity; its symbolical repre
sentation, however, f4(x), carrying the subscribed numeral 4, 
informs us that it has arisen from four repetitions of some uni
form process to a primitive function,/(.a?).
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INTRODUCTION. 9

If in any function we change the quantity of which it is a 
function for any other, preserving however the form of the func
tion unaltered, then we must introduce a like change in the 
abridged representation, merely altering the letter inclosed in the 
parenthesis, without changing the characteristic outside : thus, 
if j∖x) denote as in the last example, theιii∕(y),∕(α), &c. will be 
the respective representatives of

3y4 + 5y3 — 2y2 + 7y— 12, 3α4 + 5α3 — 2α2 + 7 a— 12, &c.

(16.) By a rational function of any quantity is to be under
stood an algebraical expression into which that quantity enters 
only in a rational form, that is, without the encumbrance of 
fractional exponents or radical signs. If the quantity enter the 
expression with any such appendage, that expression is an 
irrational function of the quantity.

And by an integral function of a quantity, is meant an ex
pression into which the quantity enters only in an integral form; 
that is, it never occurs in the denominator of a fraction: wherever 
it does so occur, the expression involving it is a fractional function 
of that quantity.

(17.) In thus classifying algebraical functions it is plain that 
we have regard only to the quantity, or quantities, in reference 
to which the function is considered; no attention being paid 
to the forms under which other quantities may enter the ex
pression. The left-hand member of the foregoing equation of 
the fttlι degree is a rational and integral function of x, whatever 
be the constitution of the coefficients with which x is connected.

(18.) The expression root of an equation is applied to every 
quantity, whether real or imaginary, which, when substituted for 
the unknown, actually reduces the first member of the equation 
to zero, thus satisfying the condition implied in the equation : so 
that if there exist p quantities, which when substituted for x in 
the polynomial j∖x), reduce that polynomial to zero, then the 
equation f(f) = 0 has those p quantities for its roots.
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10 INTRODUCTION.

(19.) The determination of all the roots is called the solution 
of the equation : and the problem which has for its object the 
determination of all the roots of an equation by a general for
mula, applicable to all particular values of the coefficients without 
-restriction, aims at the discovery of such a function of those 
coefficients as will in itself embody all the values of x, both real 
and imaginary. This is called the problem of the general solution 
of algebraical equations.

We have already observed that the search after such a function 
has been attended with complete success only as respects equa
tions of the first and second degrees.

(20.) The problem which furnishes directions for evolving all 
the real roots, one after another, in numbers, by aid of the given 
numerical coefficients which any particular equation may offer, is 
called the problem of the general solution of numerical equations. 
It is a problem which, like the former, has exercised the talents 
of the ablest analysts of all countries for the last two hundred 
years : but the satisfactory completion of it is an achievement of 
very recent date.

(21.) In the present treatise we propose to ourselves the ac
complishment, in moderate space, of the four following primary 
objects : We shall endeavour first to develop the theory upon 
which both the general problems just noticed equally depend : 
secondly, to explain the principles of the numerical solution, in 
connexion with the recent researches and improvements by 
which that solution has been perfected; showing the practical 
efficiency of these principles by their successful application to 
advanced equations of very considerable difficulty: thirdly, to 
discuss, with sufficient detail, the other and more general pro
blem, in so far at least as any real approach has been made 
towards a successfid solution of it: and lastly, to blend with 
these leading and paramount topics, certain collateral and sub
sidiary enquiries usually expected to have a place in every treatise 
on the theory of equations.

www.rcin.org.pl



CHAPTER 1.

FUNDAMENTAL PROPERTIES, PREPARATORY TO THE 

GENERAL THEORY OF EQUATIONS.

(22.) The simple expedient, first adopted by Harriot, of 
arranging all the significant terms of an equation upon one side 
of the sign of equality, and leaving merely zero on the other side, 
has proved a preparatory step of considerable importance in the 
theory and analysis of equations. In the actual determination of 
the roots of an equation such a preliminary arrangement of its 
terms is not always necessary : but in the antecedent examination 
as to whether the things called roots necessarily exist for every 
equation; in the search after the number and nature of these roots; 
their connexion with the coefficients; and, in short, in all en
quiries into the structure of equations, the preparation of 
Harriot must always form the initial step in the investigation.

That every equation has a root, either real or imaginary, is a prin
ciple which Harriot and succeeding algebraists have, till lately, 
assumed. But, as this is the fundamental principle upon which 
nearly the whole theory of equations is based, it is of importance 
that it should be firmly established by a rigorous demonstration. 
Several attempts have accordingly been made, of late, to supply 
such a demonstration. Of these the most recent, probably the 
most satisfactory, and unquestionably the most simple and ele
mentary, is by Cauchy ; it is that which we shall adopt, in sub
stance, in the present exposition.

We have observed that this principle is the foundation of nearly 
the whole of the present theory of equations. It is proper to 
make this slight qualification, because two or three interesting
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12 GENERAL THEORY OF EQUATIONS:

propositions belonging to this theory may be readily established 
without its aid. These it will be convenient to dispose of before 
entering upon a demonstration of the principle referred to: and 
it will be farther necessary to establish some preliminary theorems 
respecting polynomials in general, which theorems are in frequent 
request in analysis, and are indispensable here as lemmas to the 
principal proposition.

They are as follow :

PROPOSITION I.

(23.) In any polynomial

f(x) = A1<r + A2λ'2 + A3zr3 +...........Anarn

in which all the coefficients are real and finite quantities, and 
which does not contain any term independent of x, it will always 
be possible to assign a value to x, such as to render the entire 
expression less in value than any proposed quantity L.

Let Ak be the greatest coefficient without regard to sign; then 
for every positive value of x, the proposed polynomial will neces
sarily be less than

Ak (x + x2 + xs + . . . . a?n)

But if x be less than unity, the series within the parenthesis will 
X

only be equal to ------ , even should it go on to infinity {Algebra,

art. /6). Hence, when x is less than unity, we must have

Consequently, the proposed condition ∕(.τ) < L will be fulfilled, 
provided either

From the first of these conditions we have
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FUNDAMENTAL PROPERTIES. 13

from the second

Hence the condition f(x) < L may always be satisfied.

The student must he careful not to infer from this proposition 
more than the reasoning warrants. The only object has been to 
show that a value of x [1] exists, for which, and for every smaller 
value, [2], the condition f(x) < L is necessarily satisfied. But 
whether or not other values exist, too large to come within the 
conditions [1], [2], which nevertheless satisfy the inequality 
fix) < L, we are not authorized to say from anything that is 
proved above. Generally speaking such other values do exist; 
but at present we are only interested in the fact that a value for 
x sufficiently small may be assigned such that it and all values 
below it, dowrn to zero itself, when severally substituted for x, 
cause f(x) to become smaller than any proposed quantity.

(24.) It is obvious that the preceding demonstration applies 
to the case in which f(x) is an infinite series of the proposed 
form, n being indefinitely great; provided, as above, that the 
coefficients are all finite.

Consequently, whether the series be finite or infinite, we may 
always give to a? a value sufficiently small to render any proposed 
term in it numerically greater than the sum of all the terms 
which follow : that is, Ap x? being any proposed term, we may 
always satisfy the condition

For the series within the parenthesis, which may be written 

may be rendered less than ^pL, L being any finite quantity.
Let L be equal to Ap; then we can fulfil the condition

which is the condition proposed.
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14 GENERAL THEORY OF EQUATIONS:

PROPOSITION II.

(25.) In any polynomial

f(x) = Anτtl....................... A3zr3 + A2zr2 ⅛ Aτ ⅛ N

in which the coefficients are all real and finite, it will always be 
possible to assign to x a value that will render the first term 
numerically greater than the sum of all the terms which follow.

Let Ak be the greatest coefficient without regard to sign, then 
for every positive value of x we shall have

f(x) — Ana∙n < Ak (a,n~1...........a?3 + x2 ÷ x 4- 1)

The first member of this inequality expresses the sum of all 
the terms after the first: so that in order that the first may 
exceed this sum, it will be fully sufficient that it exceed the 
second member : that is, that we have the condition

Ana?n > Ak (®n_1 . . . . ar3 + x2 +λ, + 1)

or, summing the geometric series, 

or,

And this is evidently satisfied provided that x be such as to 

render x— 1 either equal to, or greater than, —⅛∙ Hence to
An

fulfil the proposed condition we have only to assume x so that 

which we may of course always do.
It thus appears that, the leading term of the polynomial f(x) 

being positive, we can always give to a? a positive value a such 
that /(«) shall necessarily be positive, whatever be the values or 
signs of the subsequent coefficients; or however we alter the 
signs in any proposed case.
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FUNDAMENTAL, PROPERTIES. 15

Hence if the same value a be taken negatively instead of posi
tively, /( — c) will still be positive, provided n be even; because 
/(— a) will differ from ∕(α) only as respects the signs of the 
terms after the first. But if n be odd, then when — a is put for 
x the leading term will be negative : and since, as just shown, 
this leading term will be numerically greater than the sum of all 
that follow, we infer that in this case /(— d) must be negative.

(26.) If the polynomial considered in the present proposition 
were the first member of an equation, that is, if we had f{x) — 0, 
we might remove the coefficient An by division, without disturb
ing the condition implied in the equation : this is usually done in 
discussing the properties of equations, for the purpose of avoiding 
all unnecessary complication in expressing their general forms. 
Considering An to be unity, conformably to this practice, Ak 
representing that coefficient which is numerically the greatest, as 
before, we may conclude, from what is shown above—

1. That the first member of the equation f{x) — 0 will always 
be positive if for x w e put the positive quantity Ak -f- 1 or any 
greater value.

2. That the first member will in like manner always be posi
tive if for x we put the negative value — (Ak + 1), or any nega
tive value still greater, provided the equation be of an even degree.

3. And that the first member will be negative for the sub
stitutions in last case provided the equation be of an odd degree.

These conclusions lead to important truths. They show that 
in every equation of an odd degree twτo values can always be 
found, which, when separately substituted for the unknown 
quantity, will furnish tw o results with opposite signs; and that 
in every equation of an even degree, two such values can also 
be assigned whenever the final term, or absolute number, is 
negative. For in this case the substitution of zero for x will 
give a negative result, viz., the absolute number itself, and the 
substitution of either + (Ak ÷ 1) or — (Ak + 1) will give a 
positive result.

From these inferences it may be proved without difficulty that 
every equation of an odd degree without exception, and every 
equation of an even degree, provided its final term be negative, 
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16 GENERAL THEORY OF EQUATIONS :

must necessarily have a root. This conclusion we might indeed 
deduce immediately from what has just been established, provided 
it be conceded that every polynomial f(x), which gives results of 
opposite signs when two values a, b, are successively given to x, 
passes from /(a) to ∕(δ) continuously, through all intermediate 
values, as x passes continuously from a to b : since, if this be 
admitted, f(x) cannot pass from plus to minus, or from minus to 
phis, w ithout first becoming zero for one or more of the values of 
x intermediate betwreen a and b. But this is a principle that 
requires demonstration. It is the object of the next proposition 
to establish it with the necessary rigour.

PROPOSITION III.

(27.) If, in the polynomial

x be supposed to vary continuously from x = a, to x = b, then 
the function f(x) will vary continuously from /(«) to j∖b}.

Let a' be any value intermediate between a and b. Substitute 
a' + h for x in the polynomial, and it will become

f(p! + Λ) = (a! + Λ)n 4^ An-1 (a' 4- A)n~1 .... 4^ A2 (αz 4- A)2
4- A (α' + Λ) 4- N

that is, actually developing by the binomial theorem, and arrang
ing the results according to the powers of h,
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FUNDAMENTAL PROPERTIES. 17

Whence it appears that the development of j∖a' + Λ) will be a 
series of the formp + q⅛ + r∣+s2L + t^+. . . .Λ",

where P, Q, R, &c. stand for the compound coefficients above.
These coefficients, it will be observed, are all finite quantities, 

because the coefficients of the original polynomial, as well as the 
quantities a and w, are finite. Moreover, the first, P, is evidently 
no other than the function /(+), the second, Q, is derived from P 
by multiplying each term of P by the exponent of a! in that 
term, and then diminishing the exponent by unity; R is derived 
from Q in a similar manner, and so on in succession, the law of 
derivation being that already adverted to and illustrated at 
article 15. Employing then the notation recommended in that 
article, replacing P by f(a!), Q by ∕1(+), R by f2(a'}, &c. we 
shall have

Λ2 Λ3 A4
Λa'+λ) =/(«') +∕ι(β')^ +f2(a')—+/3(+)^+/4(^)^-  ̂+∙ ∙ λ"

the functions of a' which form the coefficients being all finite.
Now by (23) a value so small may be given to h that the sum 

of the terms after f(a'} shall be less than any assignable quantity, 
however small. Hence, whatever intermediate value a! between 
a and b be fixed upon for x in f(xy), in proceeding to a neigh
bouring value, by the addition to a' of a quantity h ever so minute, 
we obtain for f(a' + Λ) a like minute increase of the preceding 
value j∖a'). In other words, in proceeding continuously from 
a to δ, in our substitutions for x, the results of those substitu
tions must be in like manner continuous, or all connected to
gether without any unoccupied interval; for we have just seen 
that no such unoccupied interval adjacent to any result/(+) can 
possibly exist, however small the interval is supposed to be.

2
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18 GENERAL THEORY OF EQUATIONS:

PROPOSITION IV.

(28.) If two real quantities be separately substituted for the 
unknown quantity in any arranged equation, and furnish results 
having different signs, that is, one plus and the other minus, 
then that equation must have at least one root of a value in
termediate between the values substituted.

What this proposition affirms is this, viz., that if a quantity a 
be found which, when substituted for x in any rational and inte
gral polynomial fix), gives a positive result; and another b be 
found which, when substituted, gives a negative result, then of 
necessity there exists some one value, at least, between the values 
a and b which, if substituted for x, will render f{x) zero, and 
thus be a root of the equation f(x) = 0.

The truth of this immediately follows from the last proposition; 
since it is there shown that in proceeding continuously from a to 
b in our substitutions for x, the results—which never become in
finite—proceed continuously from /(«) to ∕(δ), leaving no un
occupied interval, but passing through every value between f(a) 
and fib). But zero is one of these intermediate values, inasmuch 
as the results change sign somewhere in the interval, passing 
from positive to negative, or from negative to positive, wrhich it 
is obvious a continuous series of finite quantities can never do 
without first becoming zero. Hence, there necessarily exists 
some value between a and b for which j∖x) becomes zero; that 
is, the equation fix) = 0 has a root between a and b.

PROPOSITION V.

(29.) 1. Every equation of an odd degree has at least one
real root of a contrary sign to that of its last term.

2. Every equation of an even degree, whose last term is nega
tive, has at least two real roots, one positive and the other ne
gative.

Let the equation be
fix) = a?" + .... A3zr3 + A,zr2 + A<r + N = 0;
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FUNDAMENTAL PROPERTIES. 19

and let Ak be the coefficient which has the greatest numerical 
value, disregarding signs.

Suppose first that n is odd, and that N is negative. Then 
for x = 0, fix') is reduced to the last term, and is therefore nega
tive. But for x = Ak + 1, f(x) is positive (26). Consequently 
(28) the equation f(x) = 0 has at least one real positive root 
between 0 and Ak + 1.

Suppose now, n being still odd, that N is positive. Then /(0), 
being as before reduced to the last term, is positive. But (26) 
/( — Ak — 1) is negative; hence, in this case also, the equation 
has a root (28) comprised between 0 and — (Ak + 1), and there
fore negative.

Again, let n be even, and N negative. Then, as in the first 
case,/(0) is negative, while both ∕(Ak + 1) and /( — Ak - 1) are 
positive (26). Consequently the equation f(x) — 0 has at least 
twro real roots (28): one a positive root between 0 and Ak 4- 1, 
and the other a negative root between 0 and — (Ak + 1).

(30.) If this second part of the proposition could be readily 
generalized like the first part, that is, if we could now prove that 
an equation of an even degree must have a root, though the final 
term be positive, we might here complete the basis upon which 
the whole of the subsequent theory of equations is constructed.

But to establish rigorously this particular case of the general 
proposition is by no means an easy task, although one which 
must necessarily be accomplished, unless we exclude from the 
general theory every equation of an even degree whose final term 
is positive.

If by means o>f any algebraic transformation, or of any arith
metical operations performed upon the first member of an equa
tion, we could always convert it into another whose final term 
should be negative, the difficulty would be removed; but although 
a great variety of changes may in this way be effected upon an 
equation, yet no transformation can generally convert an equation 
of an even degree, whose last term is positive, into another whose 
final term shall have a contrary sign. It will be hereafter shown 
that such a change is impossible. And as the principles hitherto 
established are inadequate to meet the exigencies of this particular 
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20 GENERAL THEORY OF EQUATIONS.

case of the problem, we must have recourse to other considera
tions and other arguments. These, as remarked at the outset 
(22), have been supplied by several modern analysts; and among 
others by Cauchy,* whose investigation, a little improved by 
Sturm, f we propose to give in the third chapter. This investiga
tion accomplishes somewhat more than the case actually demands; 
but it is well for the student to notice the exact amount of diffi
culty which stands in the way of a complete solution to the fun
damental problem by aid of only the ordinary elementary prin
ciples.

But, before entering upon the proposed enquiry, we shall offer 
a few remarks upon the nature and signification of certain ima
ginary forms which the roots of equations sometimes assume. 
This seems to be the more necessary, since the answer usually 
made to the objections brought against expressions of this kind, 
viz., that the results reached through their aid have alwτays proved 
valid when submitted to other tests, is far from satisfactory, as it 
can apply, at farthest, only within the limits of actual experience, 
and can afford no ground of confidence in any future extension of 
science which the employment of these expressions may effect. 
Among the earlier algebraists it was common to reject all but the 
positive roots of an equation; those affected with the negative 
sign being called false roots, and those involving the symbol ∖∕ — 1, 
imaginary. The scruples about negative roots have long been 
removed ;| and the few observations which follow, on the other 
class of expressions, may tend to confirm their claim also to a 
place among the legitimate instruments of analysis.

* Cours d’Analyse. f Traite d’Algebre par Mayer et Choquet.↑ Maseres and Frend were the last writers who stood out against the admission of negative roots. The objections of the former are of frequent recurrence throughout his voluminous productions : those of the latter will be found in his ably written work on The Principles of Algebra, 1796, and in his True Theory of Equations, 1799.
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CHAPTER II.

ON CERTAIN IMAGINARY EXPRESSIONS.

(31.) It lias been proved in the preceding chapter, that every 
rational equation has at least one real root, provided the equation 
be not of an even degree with its last term positive. This is, in 
effect, the same as proving that the first member of every equa
tion, with the exception just mentioned, has at least one real 
binomial factor of the form x— a. We have already adverted to 
the fruitlessness of every attempt that might be made to bring 
this case of exception under the same general conclusion by 
resorting to algebraical artifice for the purpose of changing the 
sign of the final term. No such artifice could succeed except in 
particular cases, since it is not generally true that an equation of 
an even degree with the final term positive has a real root, or is 
capable of division by a real binomial factor, without leaving a 
remainder. Our knowledge of the constitution of equations of 
the second degree—common quadratics—the theory of which is 
fully established by elementary algebra, is sufficient to authorize 
this assertion, since equations of this kind, when the final term 
is positive, often have only imaginary roots. Instead therefore of 
searching after real binomial factors in equations of an even de
gree with the last term positive, analysts have addressed them
selves to the enquiry whether or not every such equation admits 
of a real trinomial divisor of the form x2 + ρx ÷ q, and thence 
of at least tιvo roots either real or imaginary.

Demonstrations of the necessary existence of such a divisor
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22 CERTAIN IMAGINARY EXPRESSIONS.

under all circumstances, have been given by several algebraists. 
The most satisfactory and conclusive of these are by Gauss, 
Lagrange, Legendre, and Ivory. But none of them have a 
character sufficiently elementary to answer the purpose of in
struction, as they presuppose a command over the artifices and 
refinements of analysis but seldom acquired by the student till 
he has arrived at a stage of his progress far in advance of that at 
which a proof of the present proposition becomes necessary. 
The demonstration by Cauchy, that every equation must have a 
root of the form a + b ∖∕ —1, where a and b are real, or one of 
them zero, and from which the necessary existence of a real 
trinomial factor in every equation belonging to the class referred 
to easily follows, is much more nearly commensurate with a stu
dent’s capabilities and previous attainments, and therefore better 
entitled to a place in any elementary exposition of the theory of 
which it forms so important a part. It is this which we shall 
introduce, with some modifications, in the next chapter.

(32.) It will be observed, that the proposition which thus 
affirms that every equation without exception has a root, of which 
« + b ∖∕ — 1 is the general type, not only announces that every 
equation has a root either real or imaginary, but expressly de
clares the unvarying form of the latter. If b be zero, the symbol 
of impossibility will vanish, and the form will then express a real 
root, in all other cases the expression continues imaginary and 
unchanged in form. Such imaginary expressions, however, have 
often led to controversy, and have by some been altogether re
jected from the subject we are now discussing, as involving im
possibilities and contradictions irreconcilable with every rational 
system of algebra. But it should be remembered that these ex
pressions are not the invention of the analyst, arbitrarily and arti
ficially contrived to effect a purpose : he is involuntarily, and 
unavoidably led to them, by the recognized operations of the 
science, performed upon, or at least applied to, real quantities; 
they naturally and necessarily arise out of these operations; and 
therefore cannot be otherwise than consistent with them, however 
inexplicable they may seem to be. For example, the operations 
requisite for the solution of a quadratic equation ax2 — bx -∣- c = 0 
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CERTAIN IMAGINARY EXPRESSIONS. 23

are all applied to the real coefficients a, b, c, and are all indi
cated symbolically by the general expression

which spontaneously assumes the reprobated form whenever the 
relations among the real quantities entering it are such that 
δ2 < 4αe, where a and c are both of the same sign. Under these 
circumstances the operation implied in the symbol >∕ cannot be 
performed, and to affirm the possibility of its performance would 
be to contradict established principles. But such an affirmation 
is never made. Whatever may have been the preparatory process 
whence the foregoing expression has issued, in proceeding with 
that expression through the reverse process, we shall undoubtedly 
arrive at the original equation; in other words, this expression, 
when substituted for x, renders the first member zero, and is thus 
entitled to be called a root, or rather the roots, of that equation. 
The expression in question, under the circumstances supposed, is 
never regarded as referring to a final and complete result, in winch 
all the operations implied in it terminate, but as necessarily 
coming short of such a result by the interposition of an insu
perable barrier—the demand of an impracticable process; and 
this demand, be it remembered, must remain in full force, what
ever new operations the expression be submitted to, till it 
becomes counteracted and neutralized by another of directly op
posite import. And it is only thus that imaginary quantities 
can be rendered available as instruments of investigation in the 
doctrine of algebraic magnitude in general. Operations which 
it is not possible to execute are indicated: these must be ac
counted for ; and, whenever they disappear in the result of any 
investigation into which they have once entered, they do so 
solely by the similar entrance of counteracting operations directly 
the reverse of the former.

(33.) It is by the repeated application of this same principle 
of reverse operations that we clear our way, step by step, to the 
solution of a simple equation, and to many other algebraic results.
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24 CERTAIN IMAGINARY EXPRESSIONS.

Transposition, removing fractions—radical signs—coefficients,&c., 
are only so many reverse operations suggested at once by the step 
in which the direct operations occur. The operation of squaring 
necessarily removes √ from \Ja; or, without actually attempting 
to perform either process, we safely write down a, as the neces
sary result of both, and that whether a be positive or negative. 
And it is in this way that imaginaries become converted into real 
effective quantities.

(34.) In the higher analysis, imaginary quantities are fre
quently introduced into exponential, logarithmic, and other 
transcendental expressions, for the purpose of denoting, in a 
finite form, certain analytical developments. This employment 
of them is in some degree conventional, and requires our assent 
to certain extensions of notation naturally enough suggested by 
the individual cases before us. These extensions and general
izations of the ordinary notation do not come under consi
deration here; our present remarks having reference only to the 
common imaginary form «4- 6 n∕ — 1, and to its competency, when 
other operations are combined with the impracticable one implied 
in it, to yield real results.

There can be no more objection to the employment of the 
terms addition, subtraction, multiplication, &c., in reference to 
these expressions, than there is to the use of the same terms in 
reference to algebraical forms in general. In neither case is the 
actual execution of the operations necessarily implied, nor mere 
arithmetical results intended. Nothing more need be meant by 
these terms, than the simply linking together, by the signs 
+ , —, ×, &c., the expressions to be combined; remembering, 
however, the offices they are competent to perform when called 
into activity, but especially observing their neutralizing in
fluences upon one another, with a view to the reduction of the 
combination to its utmost simplicity of form. The redundancies 
being thus removed, the simplified result may then be turned 
over to the processes of common arithmetic, as actually pointed 
out by the signs of operation. Should any of these imply an 
impossibility, we then infer at once the impossibility of the 
arithmetical result sought ; a conclusion, however, which must 
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not be come to, till we are sure that account has been taken of 
all the neutralizing operations.

This is, in fact, as observed above, all that is really done in the 
greater part of algebraical investigations. Signs of operation are 
abundantly employed throughout such investigations, which 
operations are thus implied, not performed. The final result 
embodies, and is accountable for, the aggregate of all these. 
Those that may have neutralized one another on the way leave no 
trace of their existence; and whether, if separately called into 
activity, they could have performed their offices or not, is matter 
of no moment; we are not interested in the enquiry whether an 
obstacle could have been overcome, which extraneous assistance 
has removed out of the way.

(35.) The vague denominations imaginary and impossible, as 
applied to the peculiar expressions here considered, and which 
convey no idea of their proper character, nor of their connexion 
with real quantity, have, no doubt, operated upon some minds in 
excluding them, as mere creatures of the imagination, from 
among the instruments of analysis. Yet these expressions are 
connected with each other, and with the real values furnished 
by any general result, by the same universally recognized prin
ciple that unites all the other particular cases of that result—the 
principle of continuity. The continuous series of real values— 
values arising from the actual performance of all the operations— 
may terminate, and be succeeded by a continuous series of ex
pressions still involving an unsatisfied stipulation; these again 
may arrive at an extreme limit, and there originate another 
continuous series of real values; but throughout all these 
changes the law, impressed upon the general formula by the 
signs of operation which enter it, is uninterruptedly preserved ; 
and is impressed with equal distinctness upon each individual 
case.

The law is continuous throughout, the effects of it are pre
sented to us in different continuous forms claiming a distinct 
classification, though having, in virtue of the common law, a 
common bond of connexion.

These circumstances arc well exemplified by the application of 

www.rcin.org.pl
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analysis to curves : at present it will be sufficient to refer for 
such illustration to the hyperbola.

The specific form which every imaginary result thus takes— 
every symbol in it, whether of operation or of quantity, being 
controlled by the same specific conditions as those that govern 
the real values, gives a character and definiteness to it, of which 
not the slightest notion is conveyed by the terms imaginary 
quantity and impossible quantity. We might in many ways 
alter the imaginary roots of a quadratic equation without making 
them in any respect more or less imaginary or impossible; yet 
any such alteration, however minute, would violate specific con
ditions, and introduce error. The name imaginary or impossible 
is adequate to characterize fully only such objects of analytical 
research as cannot admit of expression, or algebraic representation, 
by any combination whatever of the symbols of algebra.

For example, the problem which requires the determination 
of a value or algebraical expression for x that shall fulfil the 
condition

(2x -5) + √r,-7 ≡ 0

where the plus before the radical sign implies the positive root of 
χ∕ a?2 — 7, is strictly impossible. No expression, either real 
or imaginary, can satisfy the condition, or represent a root of the 
proposed irrational equation. We shall have occasion to advert 
again to impossible relations of this kind in the next chapter; 
but for a full explanation of the circumstances to which such 
impossibilities are traceable, the student is referred to the treatise 
on Algebra, page 128.

(36.) Our object in this digression has been to convey definite 
notions respecting a class of analytical expressions of frequent 
and unavoidable occurrence in the theory of equations. The 
preceding observations upon the meaning of the imaginary form— 
its claim to the character of a root, and the wide difference 
between every imaginary expression and such an algebraic im
possibility as that adduced above, may help to place these ex
pressions in a clearer light before the mind of the student; and
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to give him the same confidence in the real results derived from 
them that is so readily yiellded to all the other deductions of 
analysis.

(37.) It is a remarkable fact that, however we combine ex
pressions of this kind together, by the operations of addition, 
subtraction, multiplication, and division, the results are always 
of the same form as the original expressions.

1. Thus by addition and subtraction,

which is of the form

like the original expressions : and the same form would of course 
be preserved if more terms were added or subtracted.

2. By multiplication,

a result, as before, of the form

3. By division, or rationalizing the denominator,

which is still of the same form.
From the second of these conclusions we infer that any integral 

positive power of n + b ∖∕— 1 is of the same form; so that, 
taking account of the first conclusion also, it follows that if
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a + b ∖Λ-1 be substituted for x in any rational and integral 
function of x, as for instance in the first member of an algebraic 
equation, the result will always be of the form P ⅛ Q 1, 
whether the coefficients of x in the proposed polynomial be real, 
or imaginary quantities of the form A + B χ∕-1.

This is a conclusion of importance. It might, if necessary, be 
rendered more comprehensive. In fact the third inference above 
justifies our affirming that the form would remain the same 
though negative integral powers entered the function; since 
these negative powers might each be replaced by unity divided 
by positive powers. And it will be an easy inference from the 
chief proposition in next chapter, that the same form is repro
duced when the power is fractional;* so that whatever ordinary 
algebraic operations be performed upon the quantity a + b V — 1 
we are invariably conducted to the same form. The conclusion 
has indeed been extended even further than this, and operations 
not within the limits of ordinary algebra have been shown still 
to terminate in the same form. These general views were first 
propounded by D’Alembert : a brief account of them will be 
found in the Traite de la liesolution, &c. of Lagrange, Note ix.

(38.) We know from the theory of quadratic equations that if 
one root of such an equation be of the form a -∖- b ∖∕ — 1, there 
must necessarily be another, differing from it only in the sign 
which connects the imaginary part with the real, that is, there 
must be another root of the form a — b ∖∕ — 1. We shall here
after find that this peculiarity has place in all equations. Such 
roots or expressions are called conjugate roots, or conjugate ex
pressions : and we thus say that the roots of a quadratic equation, 
when imaginary, are conjugate.

Another term has been introduced by Cauchy into the arith
metic of imaginary quantities, the term modulus which it will be 
convenient to define here.

* I bis inference also follows from the application of the binomial theorem to the proposed expression; but the form thence deduced is not finite. (Algebra, page 197.)
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The modulus of an imaginary quantity, a + b V— 1, is the 
expression, χ∕α2 + δ2, formed by taking the square root of the 
sum of the squares of the real quantities which enter it. For 
example ∖∕ 9 + 16 or 5 is the modulus of 3 — 4 χ∕ — 1 ; the 
same is also the modulus of 3 + 4 χ∕ — 1. Thus two conjugate 
expressions have the same modulus.

(39.) The following properties respecting these moduli will be 
found useful in next chapter.

1. The sum of two quantities has a modulus comprised be
tween the sum and difference of the moduli of the quantities 
themselves.

Let the two quantities be

and let r, r' represent their moduli; that is, let

Let also R be the modulus of the sum of the proposed quan
tities ; then we shall evidently have

Now multiplying r2, √2 together, we have

Hence the numerical value of aa! + bb' must be less than, or 
at most equal to rr'; and consequently R2 must be comprised 
between
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or, which is the same thing, between

(r + rl)'2 and (z∙ — r,)2

Therefore the modulus R is comprised between the sum and 
difference of the moduli r, r'; and can never be less than the 
difference.

2. The product of two quantities has for modulus the product 
of their moduli.

For by multiplication 

and taking the modulus of this result, we have 

and the moduli of the original expressions are

Hence the product of any number of factors must have for 
modulus the product of all the moduli of those factors; so that 
when the factors are all equal, and in number n, we may express 
this conclusion by saying that the nth power of an imaginary 
quantity has for modulus the nth power of the modulus of that 
quantity itself.

3. The quotient of two quantities has for modulus the quotient 
of the modulus of the dividend by the modulus of the divisor.

For by division,
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The square of the modulus of this last expression is 

which is the square of the modulus of the dividend divided by 
the square of the modulus of the divisor.

It may be proper to add to what is here said respecting 
moduli, that the absolute values only of the expressions so called 
are recognized, signs being disregarded : that the modulus of a 
real quantity is the absolute value of that quantity itself; and 
that, in order for an imaginary expression to become zero, it 
is necessary and sufficient that its modulus be zero. For 
a + b vz—1 cannot be zero unless both a = 0 and 6=0; and in 
these circumstances, and in these only, can V d2 + b2 or a2 + b2 
be zero.

It is interesting further to notice, that the modulus of 
a + b √ — 1 is no other than the expression for the radius of 
the circle, in reference to which h and 0t≈ιre the respective sine 
and cosine of the same arc θ. For putting a = R cos θ, and 
Λ = R sin 0. we have

(40.) We shall conclude these remarks with the following 
theorem, also from Cauchy, which shows, in a remarkable man
ner, the efficiency of imaginary expressions as instruments in the 
investigation of the properties of real quantities.

If twro numbers, of which each is the sum of two squares, be 
rmdtiplied together, the product must be also the sum of two 
squares.

Let the two numbers be

α2 + b2 and a'2 + b'2.

The first of these may be considered as the product of the 
factors
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32 CERTAIN IMAGINARY EXPRESSIONS.

and the second as the product of the factors 

so that the product of the proposed numbers will be the pro
duct of the four factors

Actually multiplying the first and third, and then the second and 
fourth, we have the following pair of conjugate expressions, viz.

of which the product is

(σff' - δδ')2 + (ab, + δβ')2,

which is therefore equal to the product of the original numbers; 
and proves that that product must, like each of the proposed fac
tors, be the sum of two squares.

If we interchange the numbers a and b, or the numbers a', b', 
the terms of the product just deduced will be different: thus 
putting a' for b', and b' for a', which produces no essential change 
in the proposed numbers, we have

(α2+δ2)(√2+δ'2)=(αα,-δδ')2+(βδ'+δα')2=(Ω6'-δα')2+(βα'+0δz)2

Consequently there are two ways of expressing, by the sum of 
two squares, the product of two numbers, each of which is itself 
the sum of two squares, thus:

(52 + 22) (32 + 22) = 112 + 162 = 42 + 192

(22 + 12) (32 + 22) = 42 ⅛ ∕2 = 12 + 82

&c. &c.
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CHAPTER III.

ON THE PROPERTY THAT EVERY EQUATION HAS A

ROOT.

(41.) In order to demonstrate the principal proposition of the 
present chapter in the most general manner, it will be convenient 
first to consider a particular and very simple case of it; the case 
namely in w hich the equation is of the form ÷ N = 0, where 
N may be limited to the values 1 and ∖∕^-l.* We shall give to 
this preparatory step the form of a lemma.

PROPOSITION I. LEMMA.

Each of the equations 

has a root comprehended in the general form a + b ∖∕ — 1.
This is evidently the case with respect to the equation xm = + 1, 

whether the number m be even or odd; since x = 1 alwτays satis
fies it. It is also as plainly true of the equation a?m = — 1 when 
m, is odd, because then a? = — 1 satisfies it.

When m is even, it must either be some power of 2, or else 
some power of 2 multiplied by an odd number; if it be a power 
of 2, then the value of x will be obtained after the extraction of 
the square root repeated as many times in succession as there 
are units in the said power. Now the square root of the form

* The previous consideration of this latter value is not absolutely necessary, but it may be included without adding much to the length or difficulty of the argument.
3
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is always of the same form.* Hence when m is a 
power of 2, each of the equations a?m = — 1, ajm = ÷χ∕ — 1 has a 
root of the form announced. When m is a powrer of 2 multiplied 
by an odd number, then, if we extract the root of this odd de
gree first, there will remain to be extracted only a succession of 
square roots.

We have therefore merely to show, that when m is odd, a root 
of ÷ χ∕ — 1 is of the predicted form.

Now the odd powers, 1, 3, 5, &c. of ⅛ χ∕ — 1, are

and the same powers of — V— 1 are

Consequently, when m is odd, a root of ÷ χ∕-1 is either 
Hence the predicted form occurs whether 

m be odd or even.

It follow,s from this proposition that whatever positive whole 
2 2

number m may be, (—l)m and (V — l)m will always be of the 
n n

form a + b χ∕ —1; or more generally (— 1)'" and (V —1 )m will 
always be of this form, n and m being any integers positive or 
negative (37).

PROPOSITION II.

(42.) Every algebraical equation, of whatever degree, has a root of 
the form a + b χ∕-1, whether the coefficients of the equation 
be all real, or any of them imaginary and of the same form.

Let

represent any equation the coefficients of which are either real or 
imaginary. • Algebra, p. 113.
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EVERY EQUATION HAS A ROOT. 35

If in this equation wc substitute ρ + q V —1 for x, p and q 
being real, the first member will furnish a result of the form 
P ÷ Q∖A-1, P and Q, being real (37). Should p + q∖∕—1 be 
a root of the equation, this result must be zero; or, which is the 
same thing, the modulus of P + Q V—1, viz. VP2 ÷ Q2, must 
be zero (39). And we have now to prove that values of p and q 
always exist that will fulfil this latter condition.

In order to this it will be sufficient to show that whatever value 
of √P2 + Q2, greater than zero, arises from any proposed values 
of p and q, other values of p and q necessarily exist, for which 
√P 2 + Q2 becomes still smaller; so that the smallest value of 
which ∖∕P2 + Q2 is capable must be zero; and the particular ex
pression p + q∖∕ — 1, whence this value has arisen, must be a 
root of the equation.

For the purpose of examining the effect upon any function f(x) 
of changes introduced into the value of x, the development 
exhibited at (27) is very convenient. By changing x into x + h 
the altered value of the function is thus expressed by 

where f(x) is the original polynomial, and ∕1(a,), f2(x) &c. contain 
none but integral and positive powers of x (27).

The first of these functions /(a?) becomes P + Q χ∕ — 1 when 
p + q V— 1 is substituted for x; the other functions may some 
of them vanish for the same substitution, for aught we know to 
the contrary; but all the terms after f(x) cannot vanish; the 
last Λn, which does not contain x, must necessarily remain.

Without assuming any hypothesis as to what terms of f(x-∖-K) 
vanish for the value x = p + q x∕ — 1 which causes the first of 
those terms, f(x), to become P÷Q∖∕ — 1, let us represent by hm 
the least power of h for which the coefficient does not vanish 
when p 4- q V — 1 is put for x. This coefficient will be of the 
form R + S vz — 1, in which R and S cannot both be zero.

When p + q ∖∕—1 is put for x, we have represented f(x) by
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P + Q V— 1. In like manner, when p + q∖∕ — 1 + ħ is put for 
x we may represent the function by Pz⅛Q χ∕ — 1. The develop
ment [2] will then be

Now A is quite arbitrary:—we may give to it any sign and any 
value we please, provided only it come under the general form 
a + b ∖∕ —1. Leaving the absolute value still arbitrary, we may 

1 
therefore replace it by either + A or — k, or ÷ (— 1 )mA; and thus 
render Λm either positive or negative, "whichever we please, what- 

1 
ever be the value of m∙, and we have seen that (—l)m comes 
within the stipulated form (41). Hence we may write the fore
going development thus, the sign of km being under our own 
control:

But in any equation of this kind the real terms in one member 
are together equal to those in the other; and the imaginary terms 
in one to the imaginary terms in the other. Consequently,

Pz = P + RAm + the real terms in Am+1, km+2, . . . . kn

Qz= Q + SAm + real terms involving powers above km.

Hence the square of the modulus of 1

real terms in

Now7 k may be taken so small that the sum of all the terms 
after P2 + Q2 may take the same sign as 2(PR + QS)Am by (25), 
w7hich sign we can alw7ays render negative whatever PR + QS 
may be, because, as observed above, Am may be made either posi
tive or negative, as we please.
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Hence we can always render

In other words, whatever values of p and q, in the expression 
p + j√-I, cause the modulus χ∕P2 + Q2 to exceed zero, other 
values exist for which the modulus will become smaller; and 
consequently one case at least must exist, for which the modulus, 
and consequently the expression P + Q χ∕ — 1, must become zero.

This conclusion presumes however that PR + QS is not zero. 
If such should be the case, then our having chosen the form of h 
as to secure a command over the sign of 2(PR + QS) will have 
been unnecessary. The form must then be so chosen that a 
command may be secured over the sign of the first term after 
2(PR + QS)Λm, in the above series for P'2 + Q'2, which does not 
vanish ; when the preceding conclusion will follow.

PROPOSITION III.

(43.) The values of a and b in the expression 
which when put for x in f(x) cause that polynomial to vanish, 
can never be infinite.

We may write f(x) as follows, viz.,

or putting P +Q∖∕ — 1 for what f(x) becomes, when 
is substituted for x, we have

Now the modulus of a quotient is the quotient of the modulus 
of the dividend by the modulus of the divisor (39). In each of 
the dividends An-1, An_2, &c. above, the modulus is finite by 
hypothesis. Hence if either p or q be infinite, and consequently
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38 ON THE PROPERTY THAT

the modulus of every denominator or divisor, also infinite, the 
modulus of each quotient must be zero. Hence in this case each 
of the above fractions must itself be zero (39), and therefore the 
modulus of the entire quantity within the parenthesis simply 1; 
and the modulus of a product is the product of the moduli of the 
factors, so that the modulus of the preceding product, viz., 
χ∕P2 + Q2, is the modulus of (p + q V— l)n. But the nth 
power of p + q ∖∕—1 has for modulus the nth power of the mo
dulus of p + q ∖∕ — I, that is, the nth power of √p2 + q2 (39) 
which is infinite : consequently √P2 + Q,2 must be infinite. But 
when p + q V— 1 is a root of the equation fi(x) = 0, χ∕P2 ⅛ Q2 
is zero. Hence in this case neither p nor q can be infinite.

(44.) An objection may be brought against the preceding 
reasoning that ought not to be concealed. It may be denied 
that the modulus of the product above referred to is simply the 
modulus of (p ÷ q χ∕ —l)n in the case of ρ or q infinite; for it 
may be maintained, that although in this case all the quantities 
within the parenthesis after the 1 become zero, yet the combina
tion of these with (ρ + q∖∕ — l)n, which involves infinite quantities, 
may produce quantities also infinite ; and thus the modulus of the 
product may differ from the modulus of (p + q ∖∕— l)n by a 
quantity infinitely great. It is not to be denied that there is 
weight in this objection. But it is not difficult to see that al
though the true modulus may thus differ from the modulus of 

by an infinite quantity, yet the modulus of 
involving higher powers than enter into the 

part neglected, is infinitely greater than that part. This part 
therefore is justly regarded as nothing in comparison to the part 
preserved, the former standing in relation to the latter as a 
finite quantity to infinity.

But the proposition may be established somewhat differently, as 
follows:

Substituting (p ⅛∙ q χ∕^-l) for x in f(x), we have
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Call the agregate of all these terms after the first, P' + Q'χ∕-1; 
then it is plain that the modulus of the first term, that is, 
(Vρ2 + ⅛2)n, must infinitely exceed the modulus √P'2 + Q/2, of 
the remaining terms whenever p or q is infinite ; because in this 
latter modulus so high a power of the infinite quantity p or q 
cannot enter as enters into the former. Now the modulus of the 
whole expression, that is, of the sum of (p + — l)n and
P' + Q'√Σ∑T, is not less than the difference of the moduli of 
these quantities themselves (39), which difference is infinite. 
Hence, as before, ∖∕P2 ÷ Q2 must be infinite when p or q is 
infinite.

(45.) Several different versions are given by the continental 
algebraists of Cauchy’s argument to prove the existence of a 
root for every equation. Cauchy himself has given two distinct 
forms to his demonstration: one in the 18th number of the Journal 
de ΓEcole Poly technique, and the other in the 10th chapter of his 
Cours d, Analyse. Of the other modifications that have been pro
posed, that contained in the Alyebre of Lefebure de Fourcy, 
and the one in the treatise of Mayer et Choquet, for which 
the authors state themselves to be indebted to Sturm, are to be 
preferred on the ground of involving fewer perplexities than the 
other demonstrations.*

• The student may also consult with advantage, Peacock’s View of the Present State of Analysis, in the “Report of the Third Meeting of the British Association.” pp. 297-305.

The method of investigation here employed has been mainly 
modelled upon this last form of proof; but it differs from it in 
many respects; and from the departure thus made we think that 
the reasoning has not only been comprised in a smaller compass, 
but that it lias also received additional simplicity.

(46). It will have been noticed that this reasoning proceeds 
entirely upon the hypothesis that the equation is rational as 
respects the unknown quantity x; the coefficients may be rational 
or not; the only condition with respect to them being that they 
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must come under the form a + b ∖∕-1, where a and b are real 
and finite, but either rational or irrational.

We have already adduced an example of an irrational equation 
which has no root (35) ; and it would be very easy to multiply 
such examples. Mr. Horner, in a paper in the Philosophical 
Magazine,*  has commented at some length on equations of this 
kind. But the peculiarities there dwelt upon have been often 
remarked by preceding writers ; though very erroneous doctrines 
have sometimes been held respecting them. Garnier^ has in
stanced several examples of this kind, and has properly ac
counted for the foreign roots which are found to be involved 
in the equation when rendered rational. Thus the equation 

* Phil. Mag., 1836.+ Analyse Algebrique, 1814, p. 335.∣ See Montucla, Histoire des Mathematiques, tom. iii, p. 111.

when rendered rational, gives x = 5. But this value, when put 
for x, fails to satisfy the equation; the equation really satisfied by 
it is 

and no value or expression whatever can possibly satisfy the pro
posed equation: in other words it has no root.

The mistake, however, of confounding the rational equation 
with the irrational from which it has been deduced, is often 
committed; and the roots of the former erroneously attributed to 
the latter equation. Rolle, in his attacks upon the Differential 
Calculus, fell into this error more than once, from disregarding 
the restrictions which he himself had imposed upon the signs of 
his irrational terms.£

When the signs thus prefixed to the radicals which enter an 
equation are regarded merely as links to connect the several 
terms together, and as exercising no control over the symbol of 
irrationality, then it will involve no more restrictions than the ra
tional equation deduced from it; and the roots of the one will be 
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also the roots of the other. Some writers have contended for this 
view of the office of the signs in all such circumstances. But it 
is at variance with the general principle, conformably to which, 
analytical conditions are expressed; and when adopted, should be 
done so by special agreement in reference to the enquiry in hand. 
Montucla, in animadverting upon the errors of Rolle, fully 
recognizes the propriety of his original restrictions as to the signs 
of the irrational terms; and in accordance with the common 
practice of analysts always considers the symbol of irrationality, 
when forming part of the data of a problem, as controlled by the 
plus or minus sign prefixed to it. Yet when this symbol is in
troduced in the course of an algebraic investigation, and is thus 
unrestricted by the original conditions of the problem, the am
biguous sign is always to be regarded as involved in it.

We must direct the student for a more complete discussion 
of the present topic to the source already pointed out.*  It was 
proper thus briefly to invite his attention to it here, in order 
that he might clearly see the restrictions under which the general 
principle established in the present chapter is to be received; and 
be furnished with the reasons which render it necessary, in dis
cussing the theory of equations—of which theory the principle 
adverted to is the foundation—that irrational equations be ex
cluded, or at least that they be rendered rational by a preparatory 
process.

Algebra, Third Edition, p. 128.
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CHAPTER IV.

ON THE GENERAL PROPERTIES OF EQUATIONS.

(47.) The properties to be developed in the present chapter 
are those which belong to all rational eqnations containing but 
one unknown quantity, without regard to the degree of the equa
tion, and generally without any stipulation as to whether the 
coefficients be real or imaginary. Whenever the property an
nounced requires that the coefficients be real, we shall introduce 
the necessary restriction into the enunciation of it; otherwise we 
shall consider them to be indifferently either real or imaginary. 
In our occasional numerical illustration of particular truths we 
shall however always choose examples with real coefficients; be
cause in actual practice they generally present themselves in a 
real form. Moreover, we shall, for simplicity sake, usually sup
press the coefficient of the highest power of the unknown quan
tity, or rather shall regard this coefficient as unity, retaining it in 
a general form only when any practical operation to be deduced 
from the investigation would seem to be limited in generality 
by suppressing it. It is plain that the coefficient of the highest 
power may in all cases be reduced to unity by division; and that 
the new coefficients, thence resulting, will still preserve the pre
scribed form (39).

PROPOSITION I.

(48.) If a be a root of any equation

f(x) — Anτn + . . . . + A3∙r3 q- A2∙r2 + Aλ, + N = 0, 

then the first member of it, ∕(.τ), will necessarily be divisible 
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by x — a. And conversely, if the polynomial f(x) be divisible 
by the binomial x — a, then a will be a root of the equation 
∕(*)  = o.

1. Let the division of f(x) by x — a be performed. Then, as 
the divisor contains only the first power of x, the operation will 
evidently proceed till we arrive at a remainder independent of x∙, 
and the quotient, like the dividend, can contain only integral and 
positive powers of x. Call this quotient Q and the remainder R; 
then we have

f(x) = (x — a) Q + R.

Now if a be a root of the equation, the first member of this 
identity must become zero when a is put for x∙, and consequently 
the second member also. But when a is put for x, the second 
member is reduced to R; therefore R must be zero; that is, if 
a be a root, x — a will divide the polynomial without leaving a 
remainder.

2. Again, let x —a divide f(x) without leaving a remainder; 
then will « be a root of the equation f(x) = 0.

For, calling the quotient Q, which can contain none but posi
tive integral powers of x, we have the identity

f{x) = (a? — α) Q.

Put a for x in the second member, and it becomes reduced to 
zero; consequently the same substitution for x reduces the first 
member to zero ; that is, a is a root of the equation f(x) = 0.

(49.) The actual operation of dividing the first member of an 
equation by a binomial of the form x — a, whether a be a root 
of that equation or not, is one of very considerable importance in 
the process of numerical solution. It is plainly an operation of 
the simplest character, belonging to the first rudiments of algebra, 
and requiring little or no ingenuity or address in the performance 
of it. Nevertheless, it is to an improved and more compact form 
of arranging the elements of this simple operation that the per
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fection at present attained in the solution of numerical equations 
of the higher degrees, is in a great measure attributable.

Many of the accessions which, from time to time, abstract 
science has received, are clearly traceable to previous changes and 
improvements in the mere symbols of operation. A compact 
and significant notation has been a fertile source of modern ana
lytical discovery; and the recent advances in the solution of nu
merical equations show, in a striking manner, how much mere 
arithmetical arrangement may effect in facilitating the practical 
development of a complicated theory. But for a few innovations 
upon the common methods of performing certain simple numeri
cal operations; it is probable that the solution of equations—as 
far as practicability is concerned—would be now in the very state 
in which Newton and his immediate disciples left the problem.

(50.) In the process for dividing /(a?) by x — a, viewed in 
reference to its connexion with this important problem of the 
general solution of equations, it is the remainder that is more the 
object of search than the quotient; the determination of the quo
tient, however, always forms part of the operation for finding the 
remainder in the arrangement here to be recommended, although 
the remainder may be formed very readily without reference to 
this quotient. Thus calling the quotient Q, and the remainder II, 
as before, we have

Anα,n ÷....-∣- A3λ3 + A2λ'2 + Ax + N = (a? — «) Q + R, 

and if in this identity we put a for x, we get the remainder at 
once, viz.

Anffn +....+ A3a3 + A2α2 + Aa + N = R . . . . [1], 

showing, what is wrorthy of observation, that the remainder 
arising from dividing the polynomial by x — a will always be 
exhibited by simply changing, in that polynomial, x for a. As to 
the quotient Q, it will, as remarked above, contain only positive 
integral powers of a?; and it will moreover be in degree a unit 
lower than the proposed polynomial. In other w ords, if f(x~) be 
of the fifth degree, Q will be of the fourth; and if /(a?) be of the
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fourth, Q will be of the third ; and so on. For simplicity we 
shall assume the polynomial to be of the fifth degree. It will be 
readily seen that the generality of the reasoning is not in the least 
impaired by this assumption. Putting then 

the quotient Q will be a polynomial of the form 

from which we may return to the dividend, or original function 
t∕,(⅛), by multiplying it by a? — a, and then adding R to the pro
duct; that is to say, upon actually executing this multiplication, 
we shall have the identity 

so that by equating the coefficients of the like powers of x, we 
shall have the relations which connect together the coefficients of 
the dividend and those of the quotient; and from which the latter 
may all be determined from the former without going through the 
usual process of actual division. The relations are as follow:

From the equations on the right, it appears that the first 
coefficient Az4, in Q, will be the same as the first in f(x); that the 
second will be found by multiplying Az4 by a, and adding the 
second in f(x) ; and that, generally, every coefficient in Q will be 
derived by the same uniform process of multiplying the pre
ceding coefficient of Q by a, and adding to the product the cor-
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responding coefficient in /(a?); which process, extended up to N', 
the coefficient of a?0 in Q, furnishes also the remainder R.

(51.) Thus is the operation of division, which sometimes by 
the common method extends itself to a tedious length, reduced 
to a form of remarkable compactness and simplicity. We shall 
have merely to arrange the coefficients of the dividend in a hori
zontal row, to multiply the first by a, and add in the second; 
then to multiply this result by a, adding in the third; then again 
this new result by a, adding in the fourth; and so on to the end. 
The last result will be the remainder; the preceding results will 
be the several coefficients of the quotient in order, with their 
proper signs, commencing with the second coefficient; the first 
being the same as the first number in the horizontal row with 
which we commence. We shall give an example or two for 
illustration ; premising that when terms are absent from the pro
posed polynomial, that is, when the expression is incomplete, the 
absent terms must be supplied by zeros, and must occupy their 
proper places in the row of coefficients.

1. Required the quotient and remainder arising from the divi
sion of the polynomial, 

by the binomial x — 4.

Hence the quotient is 

and the remainder + 3306.

2. Required the quotient and remainder arising from the divi
sion of 

by the binomial x + 5.
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Supplying the vacant terms in this incomplete expression, 
we have

3 + 0 — 6 ⅛4 +0 -1 -45624
- 15 + 75 — 345 + 1705 — 8525 + 42630

_ 15 + 69 — 341 + 1705 — 8526 — 2994

Hence the quotient is

3x5 — 15a?4 + 69^3 — 341.r2 + 1705a? — 8526,

and the remainder — 2994.

(52.) It is this simple process for obtaining the coefficients of 
the quotient, and thence the remainder, due to the division of a 
polynomial /(a?) by a binomial a?—a, that gives to Horner’s 
method of approximating to the roots of numerical equations 
much of that practical facility which distinguishes it from all 
other operations for the same purpose. The theoretical prin
ciple upon which it depends is too obvious not to have been long 
known before the discovery of the method referred to, and it is 
accordingly adverted to by several preceding writers. It is dis
tinctly enough stated by Garnier, in his Elemens Algebre, 1811, 
p. 399, and still more so by Francceur, in his Mathematiques, 
1819, tom. ιι. p. 37; but its practical bearing upon the solution 
of equations was not observed till the publication of Horner’s 
researches.* Had Newton adopted, in his own method of 
approximation, the numerical arrangement suggested by the fore
going proposition, Horner’s more perfect mode of proceeding 
would have been obviously so small an advance upon it, that it 
could scarcely have escaped being suggested to the minds of some

• Mr. Horner’s original investigation was published in the Philosophical 
Transactions for 1819. But it involved reasonings so intricate, and made so large a demand upon the more recondite departments of analysis, that, notwithstanding the subsequent modification of certain parts of it in Leybourn,s Repo
sitory, it attracted but little notice from mathematicians, and seemed likely to fall into unmerited neglect. We believe that the investigation owes the simple and elementary form in which it now appears, principally to the author of the present Treatise.
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of the many persons who aimed at improving the Newtonian 
operation. This will be seen when we come to compare the two 
methods.

(53.) The expression [1], deduced at (50) for the remainder 
arising from the division of a rational and integral polynomial f(x) 
by x — a, shows that the computation of this remainder is the 
same thing as the computation of the value of the polynomial 
itself for the particular value a of x : so that the operation de
scribed above, for finding the remainder, is that which furnishes 
the value of the polynomial for a given value of x.

Thus, in the first of the preceding examples, 3306 is the 
numerical value of the polynomial when 4 is put for x. In 
the second example the value of the polynomial for x — — 5 
is —2994.

It may be remarked, finally, that the remainder resulting from 
the division of any function of x by x — a, and the value of that 
function for x = a, will always be identical, provided only that 
the quotient, furnished by the division, do not become infinite for 
the proposed value of x. This is evidently the only condition 
necessary in order that the product of quotient and divisor may 
become zero when the divisor does, that is, when x = a; the 
corresponding value of the dividend being then expressed by the 
remainder.

PROPOSITION II.

(54.) Every equation has exactly as many roots as there are 
units in the exponent of the highest power of the unknown quan
tity in it; that is, an equation of the nth degree, has n roots and 
no more.

Let
f(x) = χa -∣- . . . . A3<r3 + A2∕r2 -}- A,x -∣- N = 0

be any algebraical equation whatever. It necessarily admits of 
one root o1, either real or imaginary (42) ; and therefore (48), the 
first member, j∖x), is divisible by at least one binomial divisor 
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x — av Hence, calling the quotient arising from this division, 
f(x), we have

where f'(x) is a rational and integral polynomial of a degree in
ferior to y(a?) by unity.

If we equate this latter polynomial to zero, or assume the 
equation f(x) = 0, a value for x will exist that will satisfy that 
equation (42) ; so that calling this value α2, it follows that there 
is at least one binomial divisor, x — a2, of f(x) ; that is, putting 
f'(x) for the quotient of the division, we shall have

where f"(x) is a polynomial of a degree two units below the 
original one.

In like manner the equation f"(x) = 0 has also a root α3, by 
the same general principle (42); so that f"{x) has also a binomial 
divisor, x — a3; and the corresponding quotient will be in de
gree three units below the original polynomial. The continuation 
of this process would thus furnish a series of polynomials f'(x), 

&c., descending continually in degree by unity, and thus 
at length reaching a simple binomial x — an, there being of 
course as many such results as there have been divisions. Con
sequently

And thus the polynomial of the nth degree ∕(x) is decomposable 
into n binomial factors of the first degree.

4
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In order that /(#) may become zero, it is sufficient therefore 
that any one of these simple factors become zero; that is to say, 
it is sufficient that x take any one of the n values,

al, a2, α3...........an.

Consequently, every equation of the nth degree must have 
n roots.

It is plain that a polynomial of the nth degree cannot have 
more than n factors of the form x — a; because if more than n 
factors be multiplied together, the product will be a polynomial 
of a higher degree than the nth.

It does not follow from the foregoing reasoning that the 
factors, and consequently the roots, are all necessarily unequal: 
any two or more may be equal to one another. All that the rea
soning shows is, that the number of simple factors in the first 
member of an equation in x, of the nth degree, is n, and that the 
number of roots is therefore n. There is no restriction as to the 
relative magnitudes either of the factors or of the roots.

(55.) From this important proposition it follows, that we may 
always represent the first member of an equation of the nth de
gree under the form

(x — α1) (x — α2) (a? — <z3) . . . . (x - αn)

or may consider such an equation as compounded (by multipli
cation) of as many simple equations,

x — tzj=O, x — α2 = 0, x — «3 = θ> &c.

as there are units in the number denoting its degree, and of 
no more.

We may infer also, when one of the roots (β1) of an equation 
has been discovered, that we shall arrive at an equation containing 
all the remaining roots by dividing the first member of the pro
posed equation by a? — α1, and then equating the quotient to zero. 
The new equation, thus derived from the proposed, is called the
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depressed equation. It is very easily obtained by employing the 
process at (51) instead of the common operation for division. 
In like manner if two roots, α1, α2, be known, we may deduce 
the depressed equation containing the remaining roots by 
dividing the first member of it by the simple factors (a? — α1), 
(x — a2), in succession, or by the quadratic factor (a? — α1) × 
(x—α2) =x2 — (α1 ÷α2) x + a1 a2 at once, and then equating the 
quotient to zero. Hence, if we were in possession of a general 
method for determining a single root of every equation, we should 
have means sufficient for the discovery of all the roots of every 
equation; and should thus be enabled to decompose every ra
tional and integral polynomial, with a single unknown quantity, 
into its constituent simple factprs. Thus the component factors 
of the polynomial f(x) would be obtained by equating f(x) to 
zero; then determining one after another, as above described, all 
the roots of f(x) = 0 ; and finally writing down the binomials 
furnished by connecting each of these roots in succession, by a 
changed sign, with x. The actual determination of the roots of 
an equation constitutes the problem of the general solution of 
equations; and it is one, as already remarked in the Intro
duction, for which algebra has effected comparatively but httle, 
except in the case of numerical equations; that is, equations whose 
coefficients are known numbers, and not general symbolical ex
pressions or letters. In this latter case little or no advance has 
been made beyond equations of the fourth degree.*  When the 
equation is numerical all the real roots may be obtained by the 
combined methods of Sturm and Horner, as will be hereafter 
explained, so that the roots which these methods leave undeter
mined will all be imaginary. Lagrange has explained a 
method by help of which even these may be actually exhibited 
but the calculation of the real roots, and the discovery of the 

• And as observed in the Introduction, the symbolical expressions for the roots of equations of the third and fourth degrees are useless for the purposes of actual numerical computation except in particular cases.t Trait6 de la Resolution des Equations Numeriques, 182β, p. 19 and p. 177. The principles of this method will be explained hereafter.
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number merely of those that are imaginary, comprise all that is 
usually sought to be accomplished in the numerical solution of 
equations.*

• Still the determination of the imaginary roots of numerical equations is not without its use in certain practical enquiries, more especially in the Integral Calculus. But it is a branch of the general doctrine of numerical equations which has not been cultivated with the success that has attended the researches of algebraists in reference to the real roots. The method of Lagrange, adverted to in the preceding note, is too laborious to be of much practical value. The same may be said of the method of Bernoulli, by 
recurring series; so that a practicable process for calculating the imaginary roots is still a desideratum in the doctrine of numerical equations.

But whatever difficulties may attend the decomposition of a 
given polynomial into its simple factors, the reverse operation, 
that of compounding the expression from given simple elements, 
or of constructing an equation that shall have given roots, is very 
easily accomplished. The roots being given, the simple factors, 
formed by connecting each, by a changed sign, with x, are all 
given; and the product of these is the first member of the re
quired equation, the other member being zero.

(56.) It has already been proved (42) that every equation 
∕(τ) = 0 has a root of the form a + b ∖∕ — 1; therefore the de
pressed equation ff(x) = 0 has also a root of the same form; in 
like manner the next depressed equation f'(x) = 0 has a root of 
this form, and so on, through the entire series. Hence all the n 
roots of an equation of the nth degree are of the same form, 
a -f- b x∕ — 1. It will be further shown in next proposition, 
that when the coefficients of the equation are all real, and any of 
the roots are actually imaginary, b being different from zero, 
they must occur in conjugate pairs (38) ; that is, every ima
ginary root a + b ∖∕ — 1, must be accompanied by another, 
a — b∖∕ — 1.

The conclusion just obtained, respecting the general form of 
all the roots of an equation, enables us to affirm with confidence 
that every fractional power of a ÷ b χ∕—1 must be of the same 
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form. For, representing this power by x, we have

The integral power m has already been shown to be of the 
form P + Q. V—1, whether m be positive or negative (37) ; so 
that the last equation may be written thus,

And it has been shown above that the values of x, in this 
equation, are all of the form a + β Vz-1. Hence the principle 
announced is fully established.

PROPOSITION III.

(57.) Every equation whose coefficients are real, and which 
has one imaginary root, has necessarily another, conjugate to it: 
that is, imaginary roots enter into equations in conjugate pairs.

Let the equation contain the imaginary root a + b ∖∕ — 1 ; 
then if this root be substituted for x in f(x), that is in 

we shall have

Now it is obvious that if the several terms in the first member 
of this equation be developed by the binomial theorem, or by 
actual multiplication, we shall have a series of monomials, of 
w hich all those that involve odd powers of b ∖Λ-1 will be ima
ginary ; and all the others real: that is, calling the sum of the 
real terms P, and the sum of the imaginary terms Q √-1, the 
equation may be written
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which equation can be satisfied only by the conditions
p = θ, Q = 0 ;

for if these have not place an imaginary quantity would be equal 
to a real quantity.

Now we know from the binomial theorem that the develop
ments of (p + q)m and of {ρ — ⅛)m differ only in the signs of the 
terms involving the odd powers of q. Hence if a — b V— 1 had 
been substituted for x in∕(x), instead of a + b ∖∕ — 1, we should 
have been led to a result

differing from the former [1] only in the sign of Q. And since 
P = 0 and Q = 0, this result must like the former be zero; that is

P — Q √≡T = 0 . . . . [2]

so that both a + b V — 1 and a — b ∖∕ — 1 are equally roots of 
the proposed equation.

The first member of that equation is therefore divisible by 
both of the simple divisors

and consequently by their product, the real quadratic divisor

x2 — 2ax + a2 + b2, or (a? — α)2 ⅛ b2 . . . . [3]

If the depressed equation which results from this division 
have an imaginary root, then from what has just been shown, 
there must exist another real quadratic divisor, composed of 
another pair of conjugate roots. And in general there must 
exist as many real quadratic factors in f(x) as there are pairs of 
imaginary roots in the equation f(x) = 0, besides those formed 
from pairs of real roots.

(58.) It follows therefore that every equation of an even 
degree, 2n, with real coefficients, may be decomposed into n real 
quadratic factors; whatever be the character of the roots en
tering it.
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And further, in conjunction with what is proved at (29), 
every equation of an odd degree, 2n + 1, with real coefficients, 
may be decomposed into n + 1 real factors ; n of these being of 
the second degree and one of the first.

It is scarcely necessary to remark that, in both these cases, if 
more real roots than two enter the equation, they may be com
bined in pairs in different ways; so that there may be different 
sets of n quadratic factors, all equally composing the original 
polynomial. And when we say that an equation may be decom
posed into its n quadratic factors, we merely imply the existence 
of these factors, in its first member. As remarked at (55) the 
actual determination of them requires the accomplishment of the 
general solution of equations.

(59.) When the roots of an equation with real coefficients are 
all imaginary, then each of the real quadratic factors [3], into 
which it is decomposable being the sum of two squares, it 
follows that whatever number be substituted in the equation for 
zr, the result of that substitution must always ∖>e positive ; so that 
if a negative result arise from any substitution for x, all the roots 
of the equation cannot be imaginary. That the final term of the 
equation, or that independent of x, must be positive is an 
inference from (29) as well as from what is here established.

By reasoning exactly similar to that employed above, may it be 
proved that if an equation with rational coefficients have a root 
of the form a + ∖∕b, it must have another of the form a — √ b ; 
so that quadratic surd roots, whether real or imaginary, always 
enter into equations in pairs.

PROPOSITION IV.

(60.) To determine the forms of the functions which the coeffi
cients in the general equation f(x) = 0 are of the roots.

It has already been shown (55) that the first member of the 
general equation
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is no other than the product of the n binomial factors

x — αp x — a2, x — a.i,................ x — αn

in which cp a2, a3, . . . . an, are the n roots of the equation. 
By the actual multiplication of these we shall arrive therefore at 
the polynomial f(x), and thus discover the manner in which the 
n roots enter into the formation of the coefficients. Two or 
three steps of this multiplication will be sufficient to make 
known the general law which connects the coefficients and roots 
together.

www.rcin.org.pl



GENERAL PROPERTIES OF EQUATIONS. 57

Hence by continuing this process, we have, for the coefficients of 
the proposed equation, the values

An-1 = -α1-¾-α3-
An-2 = α1 α2 + α1 «3 + α2 ⅞ + . . . . + an-1 an
An-3= -a1a2a3- axa2a4- . . . . -αn-2αn-1αn

N =■ ala2a3a4 . . . . an(-l)n.

We infer, therefore, that in any equation in which the first term, 
or highest power of x, has the coefficient unity, the coefficient of 
the second term is equal to the sum of the roots with their signs 
changed; the coefficient of the third term is equal to the sum of 
the products of every two roots with their signs changed; the 
coefficient of the fourth term is equal to the sum of the products 
of every three roots with their signs changed; and so on : and 
the last term is equal to the product of all the roots with their 
signs changed. It is proper to observe however, that in the 
composition of the third, fifth, seventh, &c. coefficients, it is 
indifferent whether the signs of the roots be changed or not; 
since the products that form these consist each of an even 
number of factors. It follows from this :

1. That if the coefficient of the second term in any equation 
be 0, that is, if the term be absent, the sum of the positive roots 
must be equal to the sum of the negative roots.

2. When the coefficients are all whole numbers, and the first 
unity, every integral root of the equation will be found among 
the integral factors of the last term; for this last term, divided 
by a root, will express the product of the remaining roots. This 
product will therefore be the last term of the depressed equation 
involving those remaining roots; and it is plain, from the process 
for deducing this equation, adverted to at p. 51, that all the 
resulting coefficients will be integral if the original coefficients, 
and the root by which they have been depressed, be all integral. 
This last consideration indeed justifies the more general inference 
that, whether the leading coefficient be unity or any other integer, 
still every integral root will accurately divide the last term.
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3. If the roots of an equation be all positive, the terms will be 
alternately positive and negative; and if the roots be all negative, 
the terms will be all positive.

It appears, moreover, that if one root only of an equation be 
changed, every one of the coefficients will be changed.

For a different and very simple method of deriving the law of 
the coefficients, the student is referred to the Analysis and Solu
tion of Cubic and Biquadratic Equations, page 25.

PROPOSITION V.

(61.) If the signs of the alternate terms in an equation be 
changed, the signs of all the roots will be changed.*

• The equation is understood to be complete. If any term be absent it must be replaced by a cipher.

Let 

be any equation, and a a root; then, if a be substituted for x in 
the first member, the result will be zero; and if we change the 
alternate signs, writing the equation thus, 

and instead of a substitute — a for x, the result, should n be 
even, will be the very same as before, and consequently zero; but 
if n be odd, then the result will differ from what it wras before 
only in this, viz. that all the signs merely of the polynomial will 
be changed, so that as it was zero before, it must be zero still. 
Hence, for every root a in [1], there is an equal root, with 
contrary sign, — a, in [2].

Thus the positive roots of any equation may be converted into 
negative, and the negative into positive, by simply changing the 
alternate signs of the equation, commencing at the second, and 
taking care to allow for the absent terms in incomplete equations.

It is obvious that if the signs of all the terms are changed, 
the roots remain unaltered; because wτhatever values of x cause 
the polynomial to become zero in one case, make it zero in the 
other also.
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PROPOSITION VI.

(62.) If all the coefficients of an equation be whole numbers, 
and that of the leading term unity, the equation cannot have a 
fractional root.

If possible, let the equation 

whose coefficients are all integral, have a fractional root; and let 

the fraction in its lowest terms be y. Then, putting this for x, 

we have

Or, multiplying by

Now in this polynomial every term after the first is integral. 
Hence, transposing these to the other side, the first member, 

which will then be —, must also be integral. But y being in its 

lowest terms, a and b have no factor in common; and it is obvious 
that there can be no simple factors in an that are not also in a 
itself: consequently αn and b have no factor in common; that is 

. βn . . .the fraction — is in its lowest terms : and yet it is equal to an 

integer: which is absurd. Therefore the proposed equation can
not have a fractional root.

Hence when the coefficients of an equation are whole numbers, 
the first being unity, every real root of the equation must either 
be a whole number or an interminable decimal. The latter are 
called incommensurable roots. It follows from (60) that if there be
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ιJ ∙lf\& ττ>tr∕J λz* zr// 
one of these in the equation, there must be one more at least; 
whether the coefficients be integral or not, provided only that 
they be all rational; or that the second merely be rational.

Moreover if, under the former hypothesis as to the coefficients, 
none of the divisors of the last term, whether taken positively or 
negatively, can satisfy the conditions of the equation, when they 
are severally substituted for x, we may conclude that the equation 
has neither an integral nor yet a fractional root: so that those 
roots which are not imaginary must be incommensurable.

In next chapter this conclusion will be generalized; for it will 
be proved that, whatever integer the leading coefficient An may 
be, every fractional root must have for its numerator a divisor of 
N, and for its denominator a divisor of An.

(63.) It is an important step towards the solution of a nume
rical equation to discover by a previous examination how many of 
its roots are real, and thence how many are imaginary. A more 
minute analysis indeed than this must be effected before the 
numerical value of the real roots can be actually developed :—we 
must know how many of these are positive, and how many are 
negative ; and lastly, if they be not whole numbers themselves, 
between what pair of whole numbers each is situated. Now if 
we happen to know that the roots of any proposed equation are all 
real, there is a rule—called the rule of Descartes—which will 
enable us to infer, from the mere inspection of the signs of the 
coefficients, how many of these roots are positive, and how many 
negative. The rule will do more; it will show us, without any 
stipulation as to the character of the roots, the greatest number 
of each kind of real roots the equation can possibly have, consis
tently with the signs which connect its terms together; and the 
knowledge of these limits, in certain cases to be hereafter noticed, 
will lead at once to the discovery of the number of imaginary 
roots entering the equation. The rule therefore is of considerable 
importance in the analysis of equations; and that importance 
has been increased of late by the extension and greater efficiency 
which have been given to it by Budan and Fourier ; an account 
of whose researches will be found in a subsequent chapter. The 
rule is enunciated as follows :
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PROPOSITION VII.

(64.) A complete equation cannot have a greater number of 
positive roots than there are changes of sign from + to —, and 
from — to +, in the series of terms forming its first member. 
Nor can it have a greater number of negative roots than there 
are permanencies, or repetitions of the same sign in proceeding 
from term to term.

To demonstrate this remarkable proposition, it will be necessary 
merely to show that, if any polynomial, whatever be the signs of 
its terms, be multiplied by a factor x — a, corresponding to a 
positive root, the resulting polynomial wrill present at least one 
more change of sign than the original; and that if it be multiplied 
by x + a, corresponding to a negative root, the result will exhibit 
at least one more permanence of sign than the original. This is 
the form to which the proposition was first reduced by Segner,*  
whose demonstration is distinguished from all others by its sim
plicity. It is in substance as follows :

Suppose the signs of the proposed polynomial to succeed each 
other in any order, as

+---- + - + + +----- +,
then the multiplication of the polynomial, by x — a, will give 
rise to two rowrs of terms, which, added vertically, furnish the 
product. The first row wrill, obviously, present the very same 
series of signs as the original; and the second, arising from the 
multiplication by the negative term — a, will present the same 
series of signs as we should get by changing every one of the
signs of the first row. In fact, the twro rows of signs would be

+---- + -+ + +----- +
- + +- +------- + + -

and signs of prod. -∣- ÷ 4-----+ ÷÷ — ÷ + —.

• ΛIeιnoires de Berlin, 1756. Lagrange, Traitć, <fcc. p. 156.
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We have written the ambiguous sign ÷ in the product when 
the addition of unlike signs in the partial products occurs ; and it 
is very plain that these ambiguities will, in this and in every 
other arrangement, be just as numerous as the permanencies in 
the proposed: thus, in the present arrangement, the proposed 
furnishes four permanencies, viz.— —, + + , + -∣-,------ ; and
there are, accordingly, in the product four ambiguities, the 
other signs remaining the same as in the proposed, with the ex
ception of the final sign, which is superadded, and which is always 
contrary to the final sign in the proposed.

It is an easy matter, therefore, when the signs of the terms of 
any polynomial are given, to write down immediately the signs in 
the product of that polynomial, by a? — a, as far, at least, as these 
signs are determinable without knowing the values of the quanti
ties employed ; for we shall merely have to change every perma
nency in the proposed into a sign of ambiguity, and to superadd 
a final sign, unlike that with which the proposed row termi
nates. For instance, if the proposed arrangement were

+ - + +---------- + - + + +,

the signs of the product would be

4------- F ÷ — ± ÷ 4------- 1-÷±-∙

Again, if the signs in the proposed were in the order

+ + + — + - +----------

the signs in the product would be in the order

+ ÷ ÷----- 1-----4------ ÷± +

As therefore in passing from the multiplicand to the product, 
it is the permanencies only of the former that can suffer any 
change, it is impossible that the variations can ever be diminished 
however they may be increased. Consequently the most un
favorable supposition for our purpose is, that the permanencies 
(omitting the superadded sign,) remain the same in number; and 
in this case, if the proposed terminate with a variation, the super-
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added sign in the product, being unlike the sign that immedi
ately precedes it, will introduce another variation; but if it ter
minate with a permanency, then the corresponding ambiguity in 
the result will obviously, substitute for it what sign we will, form 
a variation, either with the preceding or with the superadded sign. 
It follows, therefore, that no equation can have a greater number 
of positive roots than variations of sign.

To prove the second part of the proposition it will suffice to 
remark that, if we change the alternate signs in an equation, 
we change the roots from positive to negative, and vice versa. 
The equation thus changed would have its permanencies replaced 
by variations, and its variations by permanencies; and, since by 
the foregoing, the changed equation cannot have a greater num
ber of positive roots than variations, the proposed cannot have a 
greater number of negative roots than permanencies.

(65.) This proposition constitutes the celebrated rule of signs; 
and serves to point out limits which the number of the positive 
and negative roots of an equation can never exceed. It does not, 
however, furnish us -with the means of ascertaining how many 
real roots, of either kind, any proposed equation may involve; 
nor indeed does it enable us to affirm that even one positive or 
negative root actually exists in any equation; it merely shows 
that if real roots exist, those which are positive, or those which 
are negative, cannot exceed a certain number; they may, however, 
fall greatly short of this number, and, indeed, be all imaginary. 
But, as remarked at (63), the rule is not without its use, even in 
detecting imaginary roots; as it sometimes discovers discrepancies 
incompatible with the existence of real roots, in those equations 
which are incomplete, or have terms wanting. For example, sup
pose we wished to ascertain the nature of the roots of the cubic 
equation

.r1 + Ax + N = 0,

in which A and N are positive. Putting the equation in a com
plete form, it is

.<-3 ÷ 0a?2 + Aa? + N — 0.
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Now, -when we take the second term, +, there are no varia
tions, so there can be no positive root; but when we take the 
same term, —, there is only one permanence, so that there can
not be more than one negative root; these conclusions would be 
contradictory if the roots were real; we therefore infer that the 
proposed has a pair of imaginary roots.

If the equation had been

ar3 — A.X + N = 0,

we could not have pronounced anything respecting the nature of 
the roots from the application of the rule of signs; for, supplying 
the absent term, we have

ar3 ± 0λ,2 — A.x + N = 0;

which presents one permanence and two variations, whichever 
sign we give to the second term; so that all we can affirm is, that 
if the roots are real, two must be positive and one negative. 
Two roots, however, mag be imaginary, in which case the third 
will be negative, because the sign of N is positive (29).

(66.) Unfailing criteria for the detection of imaginary roots 
will be given in a subsequent chapter; it only remains for us to 
deduce here one or two obvious particulars, the most important 
of which is, that when we know beforehand that an equation 
contains none but real roots, then the rule of Descartes will 
enable us to ascertain exactly the number of each kind, as may 
be readily proved as follows:

Let n be the degree of the equation, p the number of perma
nencies, and v the number of variations ; then n = p + v. Let 
also p' be the number of negative roots, and υ' the number of 
positive roots ; then n = p' + v': whence

2? + v = j>' + v'.

Now it is proved above that p' cannot be greater than p, nor 
can v, be greater than v; hence, necessarily,

p — p', and r =
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consequently, when the roots are all real, the number of positive 
roots will be equal to the number of variations, and the number 
of negative roots equal to the number of permanencies.

A second inference is, that when the signs of a complete 
equation are alternately positive and negative the equation cannot 
have a negative root; and when the signs are all alike it cannot 
have a positive root.

(67.) In the preceding investigation the equation is supposed 
to be rendered complete, when any terms are wanting, by the 
insertion of those terms with zero-coefficients. But, as these zeros 
must be accompanied by the double sign ÷, their intervention 
merely adds to the number of ambiguities ; so that if a variation 
exist between two consecutive signs in the incomplete equation 
the ambiguities which intervene, however they be interpreted, 
cannot possibly destroy this variation, or convert it into a perma
nency. Hence no variations can be lost by these insertions; nor, 
if we give to all the intervening zeros the same sign, can any 
be gained. We may therefore suppress the condition as to the 
equation being complete, as far as the first part of the proposition 
is concerned, and conclude that, whether the equation be complete 
or not, the number of positive roots can never exceed the number 
of changes of sign. And as the negative roots of an equation are 
always convertible into positive by simply substituting — x for x, 
(61,) we may conclude farther, that the number of negative roots 
can never exceed the number of changes that would take place, if 
x were turned into — x. Thus the rule of signs may be freed 
from all restriction as to the complete form of the equation : and 
notice need be taken of the absent terms only with a view to 
detect the existence of imaginary roots.

(68.) This method of searching after indications of imaginary 
roots is of considerable importance in the analysis of equations; 
it is involved in the following general principles :

1. The absence of an even number of consecutive terms from 
an equation is an indication that there are at least that number of 
imaginary roots in the equation.

5
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Let the 2m absent terms in the equation of the ??th degree be 
replaced by 2m zeros; and suppose, first, that the two terms 
between which they occur have like signs. Give to the 2m zeros 
these same signs. Then, considering only the two terms and the 
intervening zeros, we shall evidently have 2m + 1 permanencies ; 
so that if the terms omitted furnish k permanencies more, it will 
follow that the number of positive roots cannot exceed n — k — 
2m — 1.

Change now the sign of the first, and that of every alternate, 
zero ; then, their number being even, the first and last must 
evidently have unlike signs. Hence the last zero and the term 
following it have a permanence ; and this is the only permanence 
within the proposed limits : hence the number of negative roots 
cannot exceed k + 1. Consequently the entire number of real 
roots cannot exceed (n — k — 2m — 1) + (λ÷l)=n - 2m. 
But there are n roots altogether; therefore there must be 2m 
imaginary roots at least.

If the vacancies occur between unlike signs, then, when the 
zeros are all plus, there will be only 2m permanencies; and when 
they are alternately plus and minus, no permanencies, in the 
interval. Hence, supposing, as before, that the terms not taken 
into account furnish k permanencies, it will follow from the first 
arrangement that the number of positive roots cannot exceed 
n — k — 2m, nor the number of negative roots, k; so that 
the entire number cannot exceed n — k — 2m + k = n — 2m: 
therefore in this case also there must be 2m imaginary roots at 
least.

2. The absence of an odd number of consecutive terms from an 
equation is an indication that the equation has that number of 
imaginary roots, plus or minus one; according as the vacancies 
occur between like or between unlike signs.

When the extreme signs are like and the intervening 2m + 1 
zeros are written with the same signs, we shall have 2m + 2 per
manencies. And when the signs of the zeros are made alternately 
positive and negative we shall have no permanencies.

From the first arrangement it follows, if k be the permanencies
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furnished by the omitted terms, that the number of positive roots 
cannot exceed n — 2m — 2 — k∙, and from the second arrange
ment that the number of negative roots cannot exceed k; so that 
the entire number of real roots cannot exceed n — 2m — 2. 
Hence 2m + 2 of the roots at least must be imaginary.

When the extreme signs are unlike there will be but 2m -∣- 1 
permanencies under the first arrangement, and one under the 
second; so that in this case the number of positive roots cannot 
exceed n — 2m — 1 — k, nor the number of negative roots k + 1. 
Hence, the number of real roots cannot exceed (n — 2m — 1 — k) 
+ (k + 1) = n — 2m; so that 2m of the roots, at least, must be 
imaginary.

(69.) By the aid of these principles we may examine the 
several intervals that occur in an incomplete equation, and thus 
determine a limit to the total number of its imaginary roots. 
And in order to this it will be unnecessary to keep in remem
brance the formal enunciations we have given to those principles 
above : for, from the character of the preceding investigation, and 
the conclusions deduced from it, it is plain that, when absent 
terms occur in an equation, we have nothing to do but to fill up 
each chasm by the requisite group of zeros, giving to the indivi
dual zeros of each group the sign of the immediately preceding 
term, so that the greatest number of permanencies may be 
secured. We have then to write the several signs of the entire 
series of terms anew, giving however a changed sign to every 
alternate zero in each group, so that the least number of perma
nencies may be obtained. The number of permanencies thus 
lost in proceeding from the first row of signs to the second, or, 
which amounts to the same thing, the number of variations lost in 
proceeding from the second to the first, will be equal to the 
number of imaginary roots which the equation must have, at 
least.

This gives the necessary completion to the rule of Descartes, 
and is included in the general theorem of Fourier and Budan, 
which will be discussed hereafter. It is usually ascribed to 
De Gua, who was the first to give a general demonstration of the 
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rule of Descartes,* and who deduced several interesting conse
quences from it as respects the connexion between zero-coeffi
cients and imaginary roots. The leading principle, however, 
established by De Gua, in the paper referred to, is the important 
one that an equation can never have all its roots real unless the 
equations of inferior degree derived from it, as at p. 17, have all 
their roots real also ; from which he inferred that if for any value 
of x one of these derived polynomials vanished, and at the same 
time caused the immediately preceding and succeeding polyno
mials to furnish results with like signs, imaginary roots neces
sarily existed in the proposed equation.f From the same gene
ral principle he further deduced an expression for the number of 
conditions necessary to be fulfilled in order that all the roots of 
an equation may be real. Lagrange has given a condensed and 
able view of these researches of De Gua, in a note appended to 
his work on Equations, and has noticed the remarkable circum
stance, that the conditions of reality to which De Gua was led 
are the very same in number as those to which he himself was 
conducted by a very different route; although these conditions 
were found to be unnecessarily numerous in equations of the third 
and fourth degree, and were suspected by Lagrange to be capa
ble of reduction in those of the higher orders, a suspicion which 
the discovery of Sturm has fully confirmed.

To these observations we shall merely add, that the rule of 
Descartes was first published in his Geometry in 163/, but 
without demonstration. And as the work of Harriot, published 
in 1631—ten years after the author’s death,X had already exhi
bited the mode of effecting the composition of the first member 
of an equation from the simple factors involving the several roots— 
illustrating and confirming the method by numerical examples, it 
has been generally maintained by English algebraists that the rule

• MAmoires de ΓAcadćmie des Sciences, 1741. The general theorem of Fourier includes that of Descartes, as well as the deductions of De Gua noticed in the text.+ These propositions will be proved in the chapter on the limits to the real roots of equations.
t Artis Analytic<ε Praxis.
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of Descartes was plainly set forth in Harriot’s researches, and 
that it should bear Harriot’s name. The learned Dr. Wallis 
strenuously supports Harriot’s claim : but the precision with 
which the principle is announced by Descartes, although very 
probably but a mere conjectural inference from Harriot’s 
composition of equations, will no doubt justify the common 
practice of giving his name to the rule.*

• For further particulars respecting this subject reference may be made to Wallis’s Algebra, to the before-mentioned paper of De Gua, to Hutton’s 
History of Algebra, and to a note atp∙ 220 of vol. ι. of Hutton’s (⅛urse, by Davies, 1841. It may be proper to add that De Gua, though maintaining the claims of Descartes to the discovery of the theorem, very naturally concludes, in the absence of all demonstration, that Descartes arrived at it only by induction : and we may here add, that for such an induction Harriot’s examples were fully sufficient. Fourier, however, combats this opinion of De Gua, on the ground that a demonstration of the theorem was possible from the composition of equations, which composition however Harriot was the first to make known. See Fourier, Analyse des Equations, p. v.
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CHAPTER V.

ON THE TRANSFORMATION OF EQUATIONS.

(70.) Algebraical Equations do not always present them
selves in the most convenient forms for solution, and hence the 
expediency of being provided with the means of changing them 
from one form to another. Depriving the leading term of its 
coefficient, by division or otherwise, is the most simple change of 
this kind, and is a desirable preparative to the usual methods of 
solution, as it simplifies the form without affecting the roots of the 
equation. In most transformations, however, the roots them
selves become also changed, but still bear such known and simple 
relations to those of the original equation, as to render the deter
mination of these latter from them an easy operation. Generally 
indeed, to change the roots into others bearing given relations to 
them, is the direct object of the transformation; so that this part 
of the subject, in its full extent, involves the solution of the 
following comprehensive problem, viz. To transform an equation 
into another such that the roots of the latter shall be any given 
functions of those of the former. Under this form the subject 
will offer itself for discussion in a subsequent chapter; but we 
have no occasion to enter upon the investigation of so general a 
problem here, our attention at present being confined to those 
transformations w hich are useful or necessary in the actual so
lution of numerical equations, and which may be comprised in 
the four propositions following:

PROPOSITION I.

(71.) To transform an equation into another wrhose roots shall 
differ, either in excess or defect, from the roots of the original by 
any given quantity.
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Let us suppose that the original equation is

A4r4 + A3λ,3 + A2λj2 + Ax + N = 0 . . . . [1],

and that we wish to transform it into another whose roots shall 
be the same in number, but shall differ from them in magnitude 
each by the quantity r; then the relation between the x in the 
original equation and the x' in the transformed, will be

x = x' + r, or x' = x — r

in which r will be plus or minus, according as the new roots, 
or values of x', are to differ from the original roots, or values of x, 
in defect or excess. If we actually substitute this value of x in 
the original, we shall obviously have the transformed equation, 
which will be of the form

A4χ'4 + A'3√3 + Az2√2 + Az√ + N' = 0 . . . . [2];

and it is in this way that the result is generally obtained. But 
the method of actual substitution is unnecessarily laborious; and 
may be entirely superseded by a very simple process, which we 
shall now explain.

Instead of x' put its value x — r in the equation [2]; we shall 
then have

A4(λ,—r)44-Az3(zr— r)3 + A,2(x — r)2+Az(a,— r)-∣-N' = 0 . . [3];

an equation which, when reduced to a series of monomials by 
actually developing the terms, must be identical with the original; 
for, in fact, we have now returned from [2] to [1], by restoring 
to x, its value x — r. Hence we have the identity

A4 {x — r)4 + A'3 (x —r)3 + A'2 (x — r}2 + Az (x — r) + Nz =

A4τ4 + A3∙r3 + A2λj2 + Ax 4- N.

It is plain that if we divide the first member of this by x — r, 
the remainder must be Nz; but, the two members being identical, 
the division of either by x — r must give the same remainder, 
and the same quotient. The division, therefore, of the second
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member, that is of the original polynomial, by x — r, gives, for 
remainder Nz, and for quotient,

A4 (x — r)3 + A'3 (x — r)2 + A'2 (x — r) + Az.

Also, dividing this by x — r, we have for remainder Az, and 
for quotient,

A4 (x — r)2 + Az3 (x — r) + Az2.
Again, dividing this by a? — r, the remainder becomes Az2, and 

the quotient,
AJ*  - r) + a3∙

And lastly, dividing this by a? — r, we have, for the final re
mainder, Az3 ; and, for the final quotient, A4; and in this manner 
may the coefficients in the transformed equation [2] be severally 
determined.

Although, to avoid unnecessary complication, we have assumed 
the equation [1] to be of only the fourth degree, yet it is plain 
that the process by which the unknown coefficients in [2] have 
been derived one after another, in reverse order, is perfectly 
general. The division of the original polynomial by x — τ fur
nishes for remainder Nz; the division of the quotient by a? — r 
furnishes for remainder Az; the division of the second quotient 
gives for remainder A2z; and thus, by noting the remainders sup
plied by these successive divisions, we discover the several coeffi
cients of the transformed equation one after another, till we finally 
arrive at the coefficient Azn-1; the one preceding this, that is the 
leading coefficient, being the same as that in the original equation.

Now we have exhibited at (51) a very easy way of performing 
the division of a polynomial, f{x), by such a divisor as x—r∙, 
and, by employing that method in the present problem, the re
quired transformation may alw ays be rapidly effected, as the fol
lowing examples will readily show.

1. Transform the equation

xi + 5λ^3 + 4x2 + 3x — 105 = 0,
*

into another, whose roots shall be less than those of the proposed, 
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by 2. Here the constant divisor is a? — 2, and the process 
directed by the above investigation, and conducted according to 
the plan at (51), will be as follows:

A4 A3 A2 a n

1 + 5 + 4 + 3 - 105 (2 = r

2 +14 + 36 + 78

1 + 7 +18 + 39 — 27 Λ Nz = — 27

2 +18 + 72

1 + 9 +36 +111 Λ A' = 111

2 +22

1+11 +58 .∙. A,2 = 58

2

1 +13 .∙. Az3 = 13.

Hence the transformed equation is

√4 + 13a∕3 + 58√2 + 111√ — 27 = 0.

(72.) After what has been done in Proposition ι. p. 42, it is 
presumed that the student will require no verbal explanation of the 
foregoing process. It will no doubt be sufficient to remark that, 
calling the numbers below the black lines results, each result is 
formed by adding r times the result immediately before it to the 
result immediately above it. We may observe, however, that the 
operation would be somewhat abbreviated by omitting the repe
tition of the first coefficient in the commencement of each row of 
results, by suppressing the plus signs, and by reserving the de
terminations of Az3, Az2, Az, and Nz, till we come to the last result, 
thus :
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By suppressing also the several addends, and performing the 
addition operations mentally, we should, of course, abridge the 
space occupied by the process, very considerably. The whole 
would then, in fact, be reduced to this, viz.

1 5 4 3 — 105 (2
7 18 39 - 27

9 36 111
11 58
13

Other means might be easily contrived for shortening the 
apparent work; but we would recommend to the student the 
exhibition of the entire process rather than incur the risk of 
error by suppressing any of the steps. When r is 1, then 
indeed, as there is no effective multiplication, the process na
turally takes the form here given, as in the following example.

2. It is required to transform the equation
2∙zr4 — 13a?2 + 10a? — 19 = 0

into another, whose roots shall be less than the roots of this 
equation by 1.

2 0—13 10 — 19 (1
2-11- 1-20 Λ N' = - 20 
4-7-8 .∙. A' = - 8
6-1 .∙. A,2= - 1
8 .∙. A'.∕ = 8.
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Hence, the transformed equation is

2√4 + 8√3 - √2 — 8√ — 20 = 0.

4. It is required to transform the equation

6λj3 — 3x2 + 4x — 1=0,

3. It is required to transform the preceding equation into 
another, whose roots are less by 3.

trans, equa.

into another, whose roots shall exceed the roots of this by 3. 
Here the multiplier will be — 3.

trans, equation
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The foregoing operation for diminishing or increasing the 
roots of an equation by any proposed number, deserves the 
student’s special attention. The process is purely numerical; 
and arranges itself in a form that renders it of great value in the 
numerical solution of equations, which is conducted, step by step, 
by a series of operations of this kind.

5. Transform the equation

.τ3 — 7® ÷ 7 = 0

into one whose roots shall be less than the roots of this by 2. 
The transformed equation is a?3 + 6x2 + 5x + 1 = 0.

6. Transform the equation

19.r4 — 22x3 — 35x2 — 16x — 2 = 0

into another, in which the roots shall be diminished by 3.
The transformed equation is

19a?4 + 206.1-3 + 793x2 + 1232« + 580 =0.

7. Transform the equation

3«4 — 13a?3 + 7«2 — 8« — 9=0

into another, whose roots shall each be smaller than those of the 
proposed by ⅜.

The transformed equation is 3«4—9a?3—4«2— ⅞5 x — ⅛4=0.

PROPOSITION II.

(73.) To transform an equation into another whose roots shall 
be the reciprocals of those of the former.

In the proposed equation

N + A« + A2x2 + A3λ∙3 +..., Anxn = 0,
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substitute - for x, then the values of - will be the same as those 
y y . .of x, and, consequently, the values of y will be the reciprocals 

of those of x; that is, the roots of the equation

_T A Ao A, An
N∏------- 1—≈ 4—÷ + . . . - — 0,

y y y y

or, rather of

Nyn + Ayn~1 + A2yn^2 + A3yn^3 ÷ . . . . An = 0,

will be the reciprocals of the roots of the proposed equation. 
Hence the transformed equation is deduced from the original, 
simply by reversing the order of the coefficients; as many terms, 
therefore, as are absent in the original equation, so many and no 
more will be absent in the transformed.

Hence we may transform an equation into another, whose 
roots shall be less or greater than the reciprocals of those of the 
proposed, by applying the process employed in last proposition 
to the coefficients of the given equation, written in reverse order. 
For example, let it be required to transform the equation

xi — ∖2x2 + 12a? —3 = 0,

into another, whose roots shall be equal to the reciprocals of 
those of the given equation, diminished by 1.

— 3 12—12 0 1 (1
9 _3 _3 — 2
6—3 0
3 6
0

Hence, the transformed equation is

— 3y4 + 0y3 + 6y2 ÷ 0 y — 2 = 0 ;

or rather
3y4 _ 6y2 -∣-2 = 0.
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(74.) If the coefficients of the proposed equation be the same 
when taken in reverse order, as when taken in direct order, both 
in signs and numerical values, it is obvious that the reciprocals of 
the roots will furnish the same series of quantities as the roots 
themselves, seeing that the equation which involves the reciprocal 
roots will be the same as the original equation; the roots of 
the original equation must, therefore, under such circumstances, 
be of the form

of which the reciprocals produce the same series of quantities.
The first row of roots, where each is accompanied by its reci

procal, will belong to equations of an even degree : the second to 
those of an odd degree, the signs of the coefficients observing the 
law just stated. It will appear presently that the single isolated 
root, in an equation of an odd degree, must be, as written above, 
— 1, the first term of the equation being, as usual, positive.

If the equation be of an odd degree, and the coefficients, taken 
in reverse order, be in magnitude the same as when taken in 
direct order, but in signs all different, then also will the roots of 
the transformed equation be identical with those of the original 
equation; for, by changing all the signs of the transformed 
equation, which of course produces no change in the roots, the 
equation will become the same as the original, and must, there
fore, have the same roots. The same thing evidently has place 
in equations of an even degree, under like circumstances, pro
vided only the middle term be absent. If the middle term be 
present, then the signs taken in reverse order cannot all be 
contrary to those taken in direct order : the middle term will 
interfere with this arrangement of the signs.

Equations whose coefficients exhibit either of these laws, and 
whose roots are, in consequence, of the above form, are called 
recurring equations, or reciprocal equations. They will be more 
fully treated of hereafter.
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In a recurring equation of an odd degree, one root will always 
be + 1 or — 1, according as the sign of the last term is — or + ; 
for, as the roots of the transformed are always the same as those 
of the original in recurring equations, and yet at the same time 
the roots of the transformed are the reciprocals of those of the 
original, one of the odd number of roots must be + 1, or — 1 ; 
moreover, as the remaining roots consist of pairs, having the 
same sign, the last term of the equation, which is the product of 
all the roots with their signs changed, must take the opposite 
sign to the root unity, being — when that root is -¼, and + when 
the root is —.

PROPOSITION III.

(75.) To transform an equation into another, whose roots 
shall be given multiples or submultiples of those of the proposed 
equation.

Let the given equation be freed by division from the coefficient 
of the first term;*  then, in the resulting equation, the coefficient 
of the second term will be the sum of the roots with contrary 
signs; the next coefficient, the sum of the products, two and 
two ; the next, the sum of the products, three and three, signs 
being changed, and so on (prop. iv. p. 55) : hence, for the roots 
to be m times as great, we must multiply the second term by m, 
the third by m2, the fourth by m3, and so on. These multiplica
tions being effected we may introduce any additional factor into 
all the transformed coefficients without disturbing the roots : and 
thus the coefficient of the leading term of the equation, tempo
rarily removed by division, may now be restored by multiplication. 
In practice however we may evidently leave the original coeffi
cient undisturbed, and proceed at once with the multiplications 
here directed.

• It is necessary to say freed by division, in order that the roots may be preserved unaltered. The present proposition furnishes other means of removing the first coefficient, but not without changing the roots.
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If, for example, it be required to transform the equation

2a3 — 5z2 + 7*  — 12 = 0,

into another, whose roots are three times as great, we shall 
merely have to multiply the second term by 3, the third by 9, 
and the fourth by 27; the transformed will therefore be

2«3 — 15a?2 + 63« — 324 = 0.

It is an obvious inference from the preceding rule, that if in an 
equation the coefficients of the second, third, fourth, &c. terms 
be divisible by m, m2, m3, &c., respectively, the roots will have 
the common measure m.

(76.) We may now easily prove the property mentioned at p. 60, 
viz., that when an equation, with integral coefficients, has a frac
tional root, the final coefficient, N, is divisible by the numerator 
of the fraction, and the leading coefficient, An, by the denomi

nator. For let be the fractional root, a and b having no com

mon factor : then if the equation be transformed into another 
whose roots are b times as great, the final term of the transformed 
will be δnN. One root of this transformed equation will be the 
integer a, therefore (p. 57) a is a factor of δnN. But as a has no 
factor in common with b, by hypothesis, a cannot be a factor of bn: 
hence a must be a factor of N.

Again, let the proposed equation be converted into another 
whose roots are the reciprocals of the original roots (73). The 
leading coefficient of the transformed equation will be N, and the 

absolute term An: also - will be a root of this equation. As 

before, let the last equation be transformed into another whose 
roots are a times as great: the absolute term will then be αnAn, 
which (p. 57) is divisible by b. But, as before, b cannot be a 
factor of «n: hence it must be a factor of An.

It thus appears that when the first member of an equation 
whose coefficients are all integral, is divided by the first member 
of the simple equation involving one of the roots,—numerical fac
tors common to both terms of the divisor being expunged,—the 
extreme terms of the quotient must be free from fractions. But 
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this is only a particular case of a much more general property, 
viz., that if the first member of an equation be divided by the 
first member of any other equation whose roots all belong to the 
former—the coefficients of both dividend and divisor being free 
from fractions, and those of the latter free from common factors 
—then all the terms of the quotient will be free from fractions. 
This general proposition will be found of considerable use in the 
analysis of equations : it may be established as follows :

Let the first member of the proposed equation, when the co
efficients are freed from common factors, be

axn 4^ δtfn~1 4- ca?n-2 4- . . . . k . . . . [1],

and the first member of the equation involving m of its roots

a' xm 4- b' xm~λ + . . . . k' . . . . [2],

common factors being expunged.
All the simple factors of [2] occur among those of [1], so that

[1] is divisible by [2] without remainder. Suppose that, in 
order to preclude the entrance of fractions into the quotient 
arising from this division, it be necessary to multiply [1] by some 
factor P, and let the quotient whose coefficients are thus all ren
dered integral be

a" xv 4- δ"atf,~1 -∣- . . . . k!' . . . . [3].

This quotient has no factor common to all its terms, otherwise P 
would involve this factor unnecessarily, and would therefore be 
needlessly large.

Now since the operation terminates without a remainder, we 
must have

[2] × [3] = P × [1].

The second member of this equation is divisible by the number 
P : hence the first member must be divisible by P. But neither
[2] nor [3] is divisible by any number except unity. Conse
quently P = 1,*  so that the division of [1] by [2] furnishes 

• We may prove that the first member of the above equation can have no numerical factor, as follows :—Suppose q to be any prime number, and let R represent the aggregate of those terms in [2], whose coefficients contain the 6
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a quotient free from fractions, without any previous pre
paration.

It follows from this that, when the proposed equation is free 
from fractions, every depressed equation, arising from the elimi
nation of any number of its roots—by dividing by the integral 
polynomial involving those roots—must also be free from fractions. 
Hence, when it is suspected that a polynomial, free from fractions 
and common factors, involves roots all of which belong to a pro
posed equation, we may proceed to divide the latter polynomial 
by the former; and, if a fractional coefficient occur in the quo
tient, may discontinue the operation, and conclude that the sup
posed connexion between the polynomials has not place ; but if 
no fraction occur, and the operation terminate without remainder, 
then of course the suspicion is verified. The same conclusions 
follow although the suspected divisor be divided by any integer— 
as for instance by the leading coefficient in it—notwithstanding 
the fractional coefficients thence introduced; since the only effect 
upon the quotient will be to introduce this integer, as a factor, 
into all its terms.

(77.) By help of the transformation in (75), the coefficient 
of the first term of an equation may be removed without intro- 

factor q, R' representing the remaining terms, In like manner let S be the sum of the terms in [3], whose coefficients all involve y, S' being the sum of the remaining terms ; then R-f-R'=[2]S 4- S, = [3]Hence, multiplying these together,RS + R'S -∣- RS' + R'S' = [2] × [3].And since by hypothesis q divides R and S, it divides the first three terms of this equation: hence, that it may divide the product of [2] and [3], it must divide the fourth term R'S': but this is impossible; for let hxτ, h'xγ' be the two terms in R,' and S' respectively, affected with the highest power of x; then since their product, hh' x, +1', must form a distinct term of the product R'S', because all the other component parts of it involve inferior powers of x, it follows that hh' must be divisible by q; which is absurd, because there is no factor either in h or h' equal to q, seeing that all terms containing this factor have been excluded from R' and S'.
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ducing fractions; for, if m be the coefficient of the first term, and 
we transform the equation into another, whose roots are m times 
those of the former, the factor m will then enter into all the other 
terms; dividing by it will therefore free the first term, and 
introduce no fractions. The transformed equation will therefore 
be obtained by expunging the coefficient of the first term, pre
serving the second term, multiplying the third by m, the fourth 
by nt2, &c. and the roots of the transformed will be m times those 
of the original. Thus, taking the equation

3aτ3 — 5x + 2 = 0,

which, completed, is

3a?3 -⅛- Oa?2 — 5x + 2 = 0;

we have for the transformed, whose roots are three times as 
great, the equation

a? + Oa?2 — 15a? + 18 = 0,

or, rather

xs — 15a? + 18 = 0.

Fractions may be removed from an equation by transforming 
the equation into another, whose roots are those of the former, 
multiplied by the product of the denominators of the fractions, 
or by a common multiple of the denominators. For example, 
the equation x3 + ±x2 — x + 2 = 0, will be transformed into 
a?3 + 3a?2 — 12a? + 432 = 0, by multiplying the terms, com
mencing at the second, by the successive powers of 6; and, if the 
roots of the former equation be al, a2, u.λ, those of the latter will 
be 6β1, 6β2, 6«3.

This method will always effect the removal of the fractions, 
although not always without introducing a new inconvenience; 
namely, very large coefficients. If the attainment of simplicity 
therefore be the ultimate object, we shall often find it better to 
clear the fractions in the ordinary way; that is, by multiplying 
all the terms by the least common multiple of the coefficients, 
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although we thus introduce a coefficient into the leading term. 
But which of these two methods is to be preferred in any parti
cular case, must be determined from the character of the deno
minators themselves, which may happen to be so related to one 
another that they may all be removed according to the first 
method by employing only a small submultiple of their common 
multiple. For instance, the equation 

will, agreeably to the first method, be converted into

λ,4 + 3a?3 — 12x2 — dx -⅛- 10 = 0,

an equation whose roots are six times those of the former, by 
employing the multipliers 6, 62, 63, 64, instead of the correspond
ing powers of the common multiple 648; 6 being a small sub
multiple of this.

(78.) In what has preceded, the roots of the proposed 
equation are considered to be multiplied by m in the trans
formed : but if they be regarded as divided by m, then the terms 
of the equation, commencing with the second, will have to be 
divided by m, m2, nv∖ &c. respectively; and as these divisors may 
all be removed by multiplying each of the terms by the highest 
power of m, it follows that the general equation of the nth 
degree

An xn + An-1 Λ,n~1 + . . . A3λtj + A2λj2 4- A.x -f- N = 0

will become

Anmnajn + An-1znn~1 <rn-1+ .. . A3m3 ar3 + A2>n2^2-∏ A7n.z, +N=0

when its roots are all divided by m. And it may be further 
remarked, that whatever powers of x be absent in the original 
equation, the same powers will be absent in the transformed, 
whether the roots be multiplied or divided.
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PROPOSITION IV.

(79.) To transform an equation into another, in which any 
proposed term shall be absent.

If the transformed equation is to be deprived of its second 
term, which is the term generally required to be removed, the 
transformation may be effected by the process in Problem I. 
p. 70, as it will be merely required to diminish the roots by such 
a quantity, r, as will cause the second coefficient in the resulting 
equation to vanish. Now, in the process of diminishing the 
roots, it is seen, that when the leading coefficient is unity, r 
is added to the second term n times; so that for the result of 
these additions to be zero, r must be minus the wth part of the 
second coefficient in the proposed equation. To illustrate 
this, let it be required to remove the second term from the 
equation

ar4 — 12a?3 + 17x2 — 9® -⅜- 7 = 0.

Here r = y = 3, and the operation is as follows:

1 —12 17—9 7 (3

3 — 27 — 30 — 117

— 9 — 10 — 39

3 - 18 — 84

— 6 — 28

3-9

— 3
3

.r4 + Oa?3 — 37a?2 — 123a? — 110 =0.
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hence the transformed equation is

x* _ 37,c2 _ 123λ, _ no =0,

the roots of which are those of the proposed diminished by 3.

(80.) But in order to determine the value of r, necessary to 
cause any other coefficient to vanish, let us actually substitute 
x' 4- r for x, in the general equation

xa + An-1 a>n-1 4- . . . . Ax 4- N = 0,

and then develop the several powers by the binomial theorem, 
arranging the result according to the decreasing powers of x'; we 
shall thus have

In order that the second term of this transformed equation may 
vanish, we must have the condition

nr 4- A 1 = 0 .∙. r = — ,
n

as before determined.
That the third term may vanish, we must have the condition

n(n — 1) „
---- - ---- r2 4- (n - 1) An.1 r ÷ An~2 = 0;

www.rcin.org.pl



TRANSFORMATION OF EQUATIONS. 8/

which, being a quadratic equation, will furnish two values for r, 
each of which will cause the third term in the transformed 
equation to vanish.

The determination of values for r, that will cause the fourth 
term to vanish, will require the solution of an equation of the 
third degree; and, to remove the last term N, would require the 
solution of the following equation of the rcth degree in τ, viz. the 
equation

r*, + An~1 rn~1 + . . . . Ar + N = 0;

which is no other than the proposed, x being replaced by r; so 
that the removal of the last term requires a preparatory process, 
equivalent to solving the original equation.

(81.) It may be remarked here, that methods have been in
vestigated for removing from an equation as many intermediate 
terms as we please, with the view of reducing equations of the 
advanced degrees into soluble forms. This method was first pro
posed by Tschirnhausen in 1683 ; and it has been recently re
vived and treated with much analytical skill and address by 
Mr. Jerrard, in his Mathematical Researches. But like all 
other attempts to extend the limits of the general problem of the 
solution of algebraical equations by finite formulae, beyond 
equations of the fourth degree, these methods have proved un
successful : the imperfection common to all of them being that, 
when applied beyond these bounds, their application requires the 
solution of equations higher in degree than that which is pro
posed to be solved.

The only term which in the present state of algebra it is of any 
consequence to remove from an equation is the second; in most 
of the methods proposed for solving equations the absence of this 
term conduces to the simplicity of the operation, whether the 
solution be by an algebraical formula or by a process purely nu
merical. In the latter mode of treating the problem, however, the 
advantage of this absence is felt but in a trifling degree, and that 
chiefly in the preparatory analysis of the equation for the purpose 
of discovering the nature of the roots.

We may further observe with respect to the transformed
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equation to which the removal of this term leads, that although 
the roots of this equation will differ from those of the original, 
yet the differences of the roots of the original will be the same as 
the differences of the roots of the transformed ; so that when these 
differences are to be determined, with a view to the discovery of 
the roots themselves—as in the method of Lagrange, to be 
hereafter explained—we may substitute the transformed equation 
for the original, and this effects considerable saving in the labour 
attendant upon the method adverted to.

By removing the second term from a quadratic equation, we 
shall be immediately conducted to the well-known formula for its 
solution. Thus, the equation being

a?2 + A« + N = 0,

the transformed in √ + r, will be

and, that its second term may vanish, we must have 

which condition reduces the transformed to

which is the common formula for the solution of a quadratic 
equation.

(82.) All the problems discussed in the present chapter, as 
well as that just commented upon, equally deserve notice, as 
furnishing the necessary operations preparatory to the actual 
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solution of an equation. To facilitate the process of solution, or 
to convert the equation from an inconvenient form into another 
better adapted to certain rules and formulae for evolving the 
roots, is the only object proposed to be accomplished by the 
transformation of equations. The property inferred at (61), and 
which suggests the solution of the problem—to transform an 
equation into another whose roots shall be the same in value but 
opposite in sign—does in strictness belong to this department of 
our subject. It is indeed included in Proposition in, as the roots 
of the transformed equation are no other than those of the 
original multiplied by — 1. This transformation is usefid in the 
analysis of equations ; as the examination need be applied only to 
the detection of positive roots, into which the negative are con
verted by simply changing the alternate signs.

The more general transformation, of which this is a particular 
case, finds its application as a preparatory step in the search after 
commensurable roots. We have already seen that if the leading 
coefficient be unity and the others integral, the commensurable 
roots must be integral also. But if the leading coefficient be 
other than unity, the commensurable roots may be fractional; 
and cannot therefore, like the former, be found among the 
integral divisors of the absolute term. The transformation 
referred to, by changing these fractional roots into integral, 
will sometimes be found to facilitate the search after the com
mensurable roots.

The same transformation may also be usefully applied even in 
connexion with the very effective mode of solution that will be 
more especially dwelt upon in the practical part of this work— 
Horner’s method : and which is independent of the preparatory 
operations that most other methods require. By means of this 
transformation however, each of the commensurable roots will 
always be presented by Horner’s process in a finite form; 
whether they be integral or fractional, instead of appearing, in 
the latter case, in the form of an incomplete or approximative 
decimal. An objection that has been hastily made against the 
method in question—viz. that approximate values only are fur
nished by it when the roots are fractional—is thus completely 
removed.
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The transformation at (73), by which roots are converted into 
their reciprocals, is another preparation essential to the success of 
certain methods of solution. More especially is this the case as 
respects the method of Budan, to be discussed hereafter; and 
advantage may be occasionally derived from it even in the more 
perfect process of Horner, as will be sufficiently seen when we 
come to examine into the capabilities of that method.

It is further worthy of notice that, by aid of this transfor
mation, the general proposition in (79) may be considerably 
simplified. In examining the different cases of that proposition, 
it was seen that the difficulty of applying it increased as the term 
to be removed approached nearer to the final term of the polyno
mial. But if instead of removing a term near the end, we were 
to remove the term as near to the beginning, and then transform 
the resulting equation into another whose roots are the reciprocals 
of it, an equation would be obtained in which the term at the 
proposed distance from the final term would be zero ; since the 
coefficients in the direct equation, reckoning from the first to the 
last, are the same as those in the reciprocal equation, reckoning 
from the last to the first. Hence, if any method of solution were 
proposed that would be facilitated by the removal of the last term 
but one, as certain existing methods are facilitated by the removal 
of the second term, the requisite preparation would be easily made 
by removing the second term, and then reversing the order of 
the coefficients; observing that the roots of the equation thus 
deduced are the reciprocals of those of the original equation, after 
the removal of its second term.

The importance of the transformation proposed in Proposition ι 
will be distinctly seen in connexion with Newton’s rule for 
finding a superior limit to the roots of an equation; and, as 
before observed, in connexion with the numerical operation for 
obtaining the roots themselves.
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CHAPTER VI.

ON DETERMINING THE LIMITS TO THE REAL ROOTS 

OF EQUATIONS.

(83.) In the concluding observations in last chapter we have 
briefly explained the objects which analysts have in view in 
attempting certain changes in the form merely of algebraical 
equations, preparatory to the application of methods of solution. 
When these transformations are effected, wherever they are found 
necessary, the first step in the actual solution may be commenced; 
and this, as far at least as numerical equations are concerned, 
consists in the determination of the places in the numerical scale 
which the several real roots occupy. The satisfactory settlement 
of this important point constitutes what is called the analysis of 
the equation. And we are fortunately at length in possession of 
methods—the methods of Sturm and Fourier—by which this 
analysis may always be completed ; that is to say, when any two 
numbers are proposed, we can always discover whether or not 
roots lie between them, and how many roots are so situated; and 
then, by narrowing the limits between which they are thus found 
to lie, we can find exactly between what two consecutive numbers 
each root, or each group of nearly equal roots, must be posited. 
In other words, we can completely analyse the equation.

In commencing this analysis it would clearly be unwise to fix 
upon two numbers at random; for these might be very remote
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from the extreme limits of the entire series of roots ; and it is for 
the purpose of guiding us to a judicious selection of superior and 
inferior limits to the roots—that is, numbers above the greatest 
root and below the least—that the propositions in the present 
chapter are of any value. It is scarcely necessary to remark upon 
the advantage of such hmits, in diminishing the range of divisors 
of the last term, in seeking for the commensurable roots.

The remotest limits to every set of positive roots are obviously 
the extreme values 0 and ⅜. The corresponding limits to the 
negative roots are 0 and — ⅜. But the imaginary roots of an 
equation cannot be regarded with propriety as being comprehended 
within these ; because, in passing continuously from zero to infi
nity, that is from x = 0 to x = ± ⅜, we should never pass an 
imaginary value of x ; so that imaginary roots have no real limits: 
and therefore, in the subsequent propositions respecting limits, it 
must be borne in mind that these limits are always spoken of in 
reference to the real roots only.

(84.) We may define a superior limit to the positive roots of 
an equation, f (x) = 0, as any positive number which is greater 
than the greatest root of the equation. Its distinguishing cha
racter is therefore such, that when it, or any number greater than 
it, is substituted for x in the polynomial /(a?), the result will 
always be too great; that is, always positive.

An inferior limit to the negative roots is a number nearer 
to — ⅜ than the numerically greatest of these. Its character is 
such that, whatever number still nearer to —⅜, be substituted for 
x in the polynomial f(x), the sign of the result shall invariably be 
the same as the sign furnished by it itself. This sign may be 
either positive or negative ; it will be positive if the degree of the 
equation be even, and negative if the degree be odd; since an 
even power of — ⅛ is plus, and an odd power minus.

Hence, in searching for close superior and inferior limits, our ob
ject will be to find the pair of smallest numbers, positive and nega
tive such that, commencing with the positive, and proceeding con
tinuously onwards towards + ⅜, the results of the substitutions 
can never either change sign or become zero ; and commencing 
with the negative limit, and proceeding in like manner towards 
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— ⅜, the results can neither change sign nor become zero. But 
as remarked at (82) it will in all cases be sufficient that we know 
how to find close limits to positive roots; since the negative 
roots become positive by taking the alternate terms of the equa
tion with contrary signs.

It may be proper to add further, that in the following proposi
tions we shall consider the coefficient of the leading term of the 
equation to be unity. This condition is essential in the first 
three propositions: those that succeed these however apply in
dependently of any such restriction.

PROPOSITION I.

(85.) In any equation whose second term is negative and all 
the other terms positive, the coefficient of the second term, taken 
positively, is a superior limit to the positive roots.

Let the equation be

xn — An-1aτn-1 + An-2ajn-2 + . . . + Ax + N = 0

Then, since

x" — An_ja?n_1 = (a? — An~1) a?n_1

the equation may be written thus, viz.

(x — An-1>n~l + An.2^n~2 + . . . . + Ax + N = 0

If An-1 be substituted for x in the left-hand member, the first 
term will vanish: and as the other terms are all positive, the entire 
result of this substitution must be positive. If a quantity greater 
than An~1 be substituted, the terms after the first must still con
tinue positive, while the first itself, instead of becoming zero, will 
be also positive. Hence the result is always positive for values 
of a? not less than Λn-,1. This quantity, therefore, is a superior 
limit to the positive roots.
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PROPOSITION II.

(86.) In any equation the greatest negative coefficient taken 
positively and increased by unity is a superior limit to the positive 
roots.

This proposition has been demonstrated, virtually, at (26), 
where it is shown that if the greatest negative coefficient be in
creased by unity, then it, and every quantity greater than it, w hen 
substituted for x in the equation, will render the first member of 
it always positive. Hence the greatest negative coefficient so in
creased must be a superior limit to the positive roots.

This proposition is an obvious inference from the method pro
posed by Newton for finding a superior limit, and which will be 
given hereafter. It was thus inferred by Maclaurin ;* and is 
hence often called Maclaurin,s limit.

PROPOSITION III.

(87.) In any equation of the nth degree, if #n-k be the power 
involved in the first negative term, and — P be the greatest1
negative coefficient, then will Pk + 1 be a superior limit to the 
positive roots.

Let us take the most unfavorable case, viz. that in which all 
the terms, from the term involving azn-k inclusive, are negative, 
and affected with the coefficient P. Then it is plain that the 
proposed polynomial will necessarily be positive for every value 
of x which renders the first term greater than the sum of all 
these : that is, the polynomial will be positive provided we satisfy 
the condition

xn > P (αn~k + + . . . + x + 1)

or, which is the same thing, the condition
χn-k+l _ ] 

xn > P----------------
x — 1

• Maclaurin’s Algebra, page 174.
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Now, assuming x greater than unity, this latter condition is 
always satisfied when

~1n-k+1

*n>P------- -x — 1

since the right-hand member of this inequality is greater than 
the right-hand member of the former.

Multiplying each member by a? — 1, and then dividing each 
by a?n_k+1, we have

(x — 1) ark~1 > P

which condition is satisfied whenever either of the following is, 
viz.

(x — l)k = P, or (x — l)k > P,

because the first member of either of these is less than the first 
member of the former. We have then to determine x so that

1 1

x = Pk +1, or x > Pk + 1
1

Hence Pk + 1 exceeds the greatest root of the equation.
The following examples will serve to show the application of 

this proposition.

1. a?4 — 5 a?3 q- 37a?2 — 3a? — 4 = 0
1

.∙. P = 5, k = 1 .,. Pk + 1=6 = superior limit.

2. a?5 + 7a?4 — 12x3 — 49a?2 + 52a? — 13 = 0
1

.∙. P = 49, k = 2 .∖ Pk + 1 = 8 = sup. limit.

3. a?4 + 11a?2— 25a? - 67 = 0
1

,∙. P = 67, k = 3 .'. Pk + 1 = 5 q- ... .∙. 6 = sup. limit.

4. 3a?3 — 2a?2 — 1 la? + 4 = 0
11 - 2.∙. P = —, k = 1 .∙. Pk -J- 1 = 4 - 5 = sup. limit.
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PROPOSITION IV.

(88.) If, in an equation, — P be the greatest negative coeffi
cient, and if, among those positive terms which precede the first 

. P
negative term, the greatest coefficient S be taken, then will —- + 1

8
be a superior limit to the positive roots of the equation.

The most unfavorable case will be that in which all the terms 
that follow the first negative term are also negative, and their 
coefficients equal to P. Under these circumstances, the equation 
may be written

Now the negative portion of this polynomial will be

pwhich, by substituting — + 1 for x, becomes

Also the positive portion, by a like substitution, becomes

of which the first term alone exceeds the former portion; there
fore the aggregate of both portions must be positive. If the 
coefficient S belonged to a term more advanced, it is obvious that 
the excess of the positive portion above the negative would be 
increased. It is easy to see that, when any value of x is found 
that will cause the positive part of [1] to exceed the negative, 
every higher value of x will have a similar effect; for, if we divide 
both portions by «m+1, the first will consist of a series of fractions
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in x, and will consequently diminish as x increases; while the
Psecond part will continually increase with x. Hence — + 1 is a 

superior limit to the positive roots of the equation.
Applying this method of finding a limit to the examples in the 

preceding proposition, we have, for the limit in the first example,

superior limit 

superior limit 

superior limit 

superior limit.

The limits given by this method are, in these examples, the 
same as those before determined, with the exception of that in 
the 3d example, to which the former method is applied with more 
success. In the following example, however, this latter method 
of finding a near superior limit has greatly the advantage :

By the former method the limit would be

The limit established in this proposition was first given by 
M. V⅛ne in the Memoires de Γ Academie de Bruxelles, 1822.

PROPOSITION V.

(89.) If each negative coefficient be taken positively, and divided 
by the sum of all the positive coefficients which precede it, the 

7 
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greatest quotient thus obtained, when increased by unity, will be 
a superior limit to the positive roots.

The demonstration of this proposition depends upon the 
known expression for the sum of a geometrical series, from 
which we infer that

χm __ ∣
------------- = tf∏>-l + a7∏>-2 4- <rm-3 + . . . . + χ + 1
x — 1

and consequently that every power xm, of x, may itself be repre
sented by a polynomial of the form

xm =. (x — 1) { a?m_1 + zrtn~2 + a?m-3 + . . . . + a? ⅛ 1 } + 1

where the series within the braces involves all the powers of x 
inferior to the power represented.

Let the positive terms of the equation

Anτn + . ∙ . . A.zr2 + Ax + N = 0 . . . . [1]

be each replaced by its equivalent polynomial: we shall have for 
the first of these

Anarn=An(ar-l)a:n-1 + An(a?—l)a!n-2+An(α-l)α>n-3 + ..An(ar- 1) -f-An

and if the other polynomials be written under this, so that like 
powers of x may range vertically, we shall have for the sum of 
all these positive terms a polynomial of the form

An(a?—l)afn-1+A'n-1(Λ-l)ajn-2-pA'n-2(α!-l)ajn-3+.. A,(ar-1)+N'..[2]

in which all the powers of x, inferior to the leading power a.41, 
necessarily occur.

Let the different negative terms of [1], that have been omitted, 
be now introduced in their proper places under the like terms of 
[2]. It is plain that more than one negative term cannot occur 
under any positive term of [2], since in different negative terms 
the powers of x are different.

The negative terms of [1] being thus introduced into the sum of 
the positive terms of [1] as represented by [2], we shall of course 
obtain the original polynomial [1] under a new form; and it is from
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contemplating it under this change of form that the proposition 
announced discovers itself. For it is plain that the polynomial 
in question will always be positive provided that x be greater 
than 1, and that moreover no negative term exceeds the positive 
term in [2] under which it is placed; since by the first condition 
all the terms of [2] are positive, and by the second, however 
many of these may be balanced by the negative terms written 
under them, none can be overbalanced; so that the aggregate must 
continue positive. These then are the only conditions we have 
to fulfil.

Suppose the first negative term that occurs in [1] to be—Apa?P; 
the proper place for this under [2] will be below the term 
Azp+1(^— l)a?P; so that, with respect to these, the second condi
tion will be fulfilled, that is, the sum of these two terms will 
be positive, provided

and the same sum will be zero if these two expressions be equal.
In like manner, if the next negative term that occurs in [1] be 

— Aqzq, the sum of it and the like term above it in [2], will be 
positive, provided

and it will be zero if a? be equal to, instead of greater than, this 
expression. And by thus taking every negative term of [1], and 
comparing it with the like term of [2], we shall obtain the several 
partial conditions which, if simultaneously satisfied for any value 
of x, will render that value a superior Emit to the roots of [1]: 
for the other condition, x > 1, is, we see, necessarily comprehended 
in each of the foregoing.

Now it is obvious that each of the partial conditions referred 
to will be fulfilled if from among the fractions which enter them, 
viz.,

we select the greatest, and cause x to fulfil the condition involving 
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it alone. But the coefficient, A'q+1, of any term Azq+1 (x—l)αq, 
in the development [2], is no other than the sum of all the posi
tive coefficients in [1] which precede the term Aqzrq. Hence, if 
fractions be formed by taking each negative coefficient positively, 
and dividing it by the sum of all the positive coefficients that 
precede it, the greatest of these fractions, increased by unity, will 
be a superior limit to the positive roots of the equation.

(90.) The preceding proposition was first given by M. JBιjjzL 
in the sixth volume of the Annates des Mathematiques, and as a 
general principle, may be regarded as the most effective that has 
yet been proposed for finding a close superior limit to the positive 
roots of an equation. The limit of Maclaurin, given in Propo
sition ιι, and which, from the readiness of its application, is that 
which is most frequently employed, is evidently included in the 
limit of Bret as a particular case.

The most unfavorable case for the application of the present 
proposition will be that in which the greatest negative coefficient 
is preceded by positive coefficients whose sum is comparatively 
small; when the method of V⅛ne may give a limit equally close, 
and that in Proposition ιι, one still closer. It is plain that the 
limit determined by the former of these methods can never be 
closer than that found by the present proposition; and hence we 
may infer that when our object is to obtain the closest limit in 
any case, we need apply only the two propositions (87) and (89).

If we take the examples already given (87), the limits deter
mined by the present proposition are as follow:

In the third of these examples the method of (87) gives a closer 
limit.

Suppose the following examples were proposed, viz.
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θ
then it is plain that the greatest fraction is - = 2; therefore 3 is 

a superior limit to the positive roots.

The fractions are

the last of which, equal to 3, is the greatest; therefore 4 is a 
superior limit.

These propositions on limits refer exclusively to the positive roots 
of the equation; the only class of roots which, as remarked at 
(82), need be attended to in the enquiry, on account of the facility 
with which the negative roots may be converted into positive 
roots. When this conversion has been effected, and the superior 
limit determined by any of the preceding propositions, this limit 
taken negatively, will be numerically greater than the greatest 
negative root of the proposed equation. If the coefficients of the 
proposed be all positive, then it can have no real roots but nega
tive roots; so that the foregoing propositions can apply only after 
the change adverted to, of the negative roots into positive, has 
been made.

With respect to the determination of inferior limits to the 
roots, it will be sufficient to remark that the propositions already 
established are applicable to the discovery of these after the equa
tion has, by (73), been converted into another whose roots are the 
reciprocals of those of the proposed. For the greatest root in the 
transformed equation will be the reciprocal of the least in the 
original equation, and vice versa; so that if a superior limit be 
found from the transformed equation, the reciprocal of this will 
be an inferior limit in reference to the original equation; and this 
whether we regard the positive roots or the negative roots.

It is sufficient therefore that the propositions for the determi
nation of limits to the roots of an equation, comprehend all that 
concerns the superior limits to the positive roots; since everything 
else respecting the limits may be brought within the scope of 
these propositions by easy preparatory transformations. It
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should be observed, however, that in many cases these propo
sitions may be altogether dispensed with, and a superior limit, 
closer even than they would give, inferred from roughly estimating 
the comparative importance of the positive and negative terms ; in 
which estimate we shall generally be assisted by bringing all the 
positive terms to the left of the sign of inequality >, and the 
negative terms to the right, and then seeking for the smallest 
value of x, for which, and for all higher values, the assumed 
inequality may be satisfied. The number sought will be most 
readily suggested if both members of the inequality be first 
divided by the highest power of x.

Let example 4 at (87) be taken, viz.

3aτ3 — 2a?2 — 1 la? + 4 = 0 ;

then we have to satisfy the condition

3a?3 + 4 ≥∙ 2a?2 + 1 la?
or

4 2 11
+ >>zr

For a? = 2, the second member a little exceeds the first; but for 
a? = 3, the inequality is fulfilled, and obviously for every higher 
number, as the first member can never decrease below 3. Hence 
the limit is 3.

Again, let the equation be

a?4 + x3 — ∖5x2 — 19a? — 3 = 0.

Then we must have

a?4 + xs > 15a?2 + 19a? 4- 3

or

1112 12 1L

which is readily seen to be satisfied for a? = 5, and for every 
higher number. Hence 5 is a superior limit. By (89) the limit 
would be 11 ; and by (87) it would be 6.
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Besides the methods here explained there is another, that of 
Newton, by means of which a close limit to the positive roots 
may be obtained. It is however but seldom applied to this pur
pose, as it does not offer the facilities of the other methods. We 
shall postpone the consideration of it to next chapter; because 
it is intimately connected with the inquiries there to be discussed, 
and forms a suitable introduction to the methods of Budan and 
Fourier for separating the roots of equations.

PROPOSITION VI.

(91.) If the real roots of an equation, ranged in the order of 
their magnitudes, be

ftp ft2, β3, O4, ....

ft1 being the greatest, or that nearest to + <x, a2 the next in 
magnitude, and so on to the least, or that nearest to — oo; and 
if a number δp greater than aχ, be substituted for x, the result 
will be positive; if a number δ9, in magnitude between aχ and «2, 
be substituted for x, the result will be negative; if a number δ3, 
between a2 and a.i, be substituted, the result will be positive, and 
so on.

The first member of the proposed equation, after removing the 
leading coefficient, is the product of the simple factors

(x — a1) (x — a2) (x — 03) (x — ft4) . . . . 

multiplied by the quadratic factors involving the imaginary roots. 
Omitting these latter for the present, let us examine the effect of 
our proposed substitutions upon the product of the real factors. 
Putting then bx for x in these factors, we have

(δ1 — c1) (δ1 — o2) (δ1 — β3) (δ1 — β4) = a. positive number, 

because all the factors are positive.
Putting b2 for x, we have

(b2 — a1) (b2 — ft2) (b2 — ft3) (b2 — <z4) = a negative number, 

because the first factor is negative, and all the others positive.
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Putting b,i for x, we have
(δ3 — <z1) (6.j — α2) (δ3 — α3) (⅛3 — «4) = a positive number, 

because the first two factors are positive, and the others negative. 
And by continuing these substitutions we should obviously thus 
obtain as many changes of sign in the results as there are real 
and unequal roots, and no more. Now the quadratic factors 
which we have omitted always give a positive result for every 
real value of x (59); consequently the introduction of these factors 
would cause no change in the foregoing results.

Hence, we may deduce the following inferences, viz.
1 :—If two numbers be successively substituted for x in any 

equation, and give results affected with different signs, then there 
lie between those numbers, one, three, five, or some odd number 
of roots :

And 2 :—If two numbers, when substituted successively for x, 
give results affected with the same sign, then there lie between 
those numbers, two, four, six, or some even number of roots, or 
else none at all.

(92.) From the preceding proposition it is plain that the places 
which the real positive unequal roots of an equation occupy would 
all be detected provided we knew a number either equal to, or less 
than, the smallest of the differences of every pair of these roots. 
For if ∆be such a number, we could never pass over more than a 
single root at a time by employing for our successive substitutions 
the arithmetical progression

0, ∆, 2∆, 3∆, 4∆, &c.
and thus the place for every positive and unequal root would be 
made known by a change of sign being furnished by the con
secutive substitutions between which it lies. It is obvious too 
that instead of commencing our series of substitutions with 0, we 
may begin with the inferior limit to the positive roots; never ex
tending them beyond the superior limit.

These considerations led Waring, and afterwards Lagrange, 
to seek for general methods of determining in all cases a suitable 
value of ∆; these were readily seen to be dependent upon a trans
formed equation of which the roots should be the differences of 
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the roots of the proposed equation: and hence the celebrity of the 
equation of the differences of the roots, upon which the method 
proposed by Lagrange for the analysis of numerical equations 
is founded; and of which an account will be given hereafter. It 
is plain that the actual solution of the equation of the differences 
is not necessary in order to furnish a proper value of ∆, since it 
will be sufficient that we know an inferior limit merely to the 
positive roots of the transformed equation, and that we put this 
limit for ∆. Theoretically, this method of separating the real 
unequal roots of an equation is perfect; but the practical difficul
ties attendant upon the calculation of the coefficients of the trans
formed equation are insuperable in equations of a high degree.

The method has however altogether yielded to those of Sturm, 
Fourier, and Budan, which when modified and improved, as 
hereafter proposed, will be found to leave but little to be desired 
in the practical solution of this important problem.

(93.) The proposition next following is one of considerable im
portance in the analysis of equations. Its object is to discover 
an equation of a lower degree than the equation proposed, whose 
real roots shall have the remarkable property of lying either 
singly, or in groups, between every two real roots of the original 
equation, thus effectively separating all the latter by interposing 
themselves.

Every equation whose roots thus separate those of another, by 
lying in the several intervals between them, is called a limiting 
equation to that other. If the roots of the original equation 
were known, limiting equations to it might be constructed in 
endless variety, for we should only have to assume values lying 
in the intervals which separate the given roots, and to construct 
an equation having these values for roots. But the roots of the 
original equation are supposed to be unknown; and our present 
object is to deduce at once a limiting equation whose roots, when 
determined, shall make known the situations of those of the pri
mitive equation. Such an equation may be derived with great 
ease from the coefficients merely of the equation proposed, by a 
uniform operation applicable to all cases. The derived equation 
being thus always connected with the primitive by a constant 
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law, is called the limiting equation, in order to distinguish it from 
all other equations whose roots may also separate those of the 
original. We shall now show how the limiting equation is to be 
deduced.

PROPOSITION VII.

(94.) An equation being given to determine another, a unit 
lower in degree, such that the real roots of the latter may sepa
rate all the real roots of the former.

Let the proposed equation, deprived of its leading coeffi
cient, be

∕(^)=^n + An.1 arn^1+ .... +A3aj3 + A2a72 + Atf-∣-N=0 .... [1],

and let its real roots, taken in the order of their magnitude, com
mencing with the greatest and descending to the least, be

¾, ^4,...........

Let also the imaginary roots, if any, be represented by

Λ1, Λ2, A3, ki, . . .

then it is required to determine an equation of the n — ∖th de
gree, whose real roots shall arrange themselves in the several inter
vals between the real roots of the series above.

It is evident that if the roots of the given equation be all dimi
nished by r ; that is, if x' + r be put for x, the roots of the trans
formed will be

β∣ — Z, ∏2 1*> ¾ ““ Γ, . . ∙ . ♦ J k^ ~~ J*f tι>2 “ ?*,•••••

the equation itself being of the same degree as that proposed; 
that is, of the form

∕<√ + r)=√π + A'n.1√n-1 + . . . . Az3√3 + Az2√2 + Az√ + N'=0.

Now it is only the last term but one in this equation, as we shall 
presently see, that need occupy our attention; and we know from 
(60), that the coefficient Az, of this term, is found from the roots
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exhibited in [2] by multiplying every n — 1 of them together with 
changed signs, and adding the several results; that is, by taking 
the sum of all the partial products which the above factors, with 
changed signs, furnish, omitting each factor in succession.

As only one factor is thus omitted in each partial product, and 
as every one is omitted in its turn, it follows that wherever a sin
gle imaginary factor enters without its conjugate, there must all 
the real factors occur; for the omission of this conjugate necessi
tates the entrance into the product of all the other factors. It is 
of importance to observe this, because it authorizes us in con
cluding that, whenever we suppose any one of the real factors to 
become zero, thus causing all the partial products to vanish, ex
cept that from which this real factor has been omitted, the pro
duct preserved can contain only real simple factors, and the real 
quadratic factors formed from the different pairs of imaginary 
roots, the latter factors being always positive for every value 
of r (59.)

The last term but one in the above transformed equation being 
Az x', the composition of Az will be as follows:

Now this same coefficient is easily obtained from the coefficients 
of the original equation by the process described at (50) ; and the 
result so obtained will be an arranged polynomial descending ac
cording to the powers of r.*  The same polynomial may how
ever be obtained still more easily by a process which will be 
explained presently. But without seeking the arranged polyno
mial in r, to which the above expression for Az is equivalent, we 
may at once prove that the real roots of that polynomial equated * This method of obtaining Λ' is exhibited in full in the Analysis and Solu
tion of Cubic and Biquadratic Equations, p. 63.
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to zero, that, is to say, the real values of r in the equation Az = 0, 
will separate all the real roots of the proposed equation ∕(.τ) = 0; 
in other words, the equation Az = 0 will be the limiting equation 
to the equation f(x) = 0.

For if in Az we put α1 for r, each partial product must vanish, 
except one, since there is only one partial product from which 
(r — α1) is absent, and this will become

(β1 — <z2) (α1 — c3) (α1 — α4) . . . ., positive ;

because, as oq is the greatest root, all the real simple factors will 
be positive : and the real quadratic factors, as observed above, 
will be positive also.

If we put «2 for r, all will vanish except the product from 
which (r — «2) is absent, so that this will become

(a2 — ff1) (α2 — β3) («2 — α4) . . . ., negative,

because «2 is the greatest root that enters, except al, and the 
quadratic factors are positive.

In like manner, putting a3 for r, we shall have

(«3 — α1) (a3 — α2) (α3 — «4) . . . ., positive,

and so on. But when a series of quantities c1, α2, a3, &c., sub
stituted for the unknown in any equation, give results alternately 
positive and negative, every pair of these quantities must com
prehend an odd number of the real roots of that equation. Con
sequently the real roots of f(x) = 0 are necessarily separated, the 
interval between every pair being occupied by some odd number, 
at least one, of the real roots of A' = 0. Hence Az = 0 is the 
limiting equation to f(x) = 0.

We have now to show how Az may be deduced from f(x) in an 
arranged form. In order to this we remark, that the trans
formed equation, whose roots are [2], will be obtained by substi
tuting √ + r for a? in [1], and developing the several terms by 
the binomial theorem. The coefficient Az in this transformation 
will be that which multiplies the simple powers'; and instead of 
being the last coefficient but one, it will become the second coeffi
cient, provided we develop f(r -(- x') instead off(x' + r), because 
we shall thus reverse the order of the terms.
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that is, adding up the coefficients in these vertical columns,

Nz + A'a?1 + A'2a∕2 + A,3a∕3...........+ x'n = 0,

so that

A'=wrn-1 + (n-l)An.1rn-2 + (n-2)An_2rn-3+ . . . 3A3r2 + 2A2r 
+ A=0 .. . [3]

is the limiting equation required ; and thus the polynomial A' will 
be no other than the first derived function of ∕(r), deduced as 
already explained at (15), and there represented by ι∕j(r). In 
like manner the other coefficients A'2, A3, &c., are the second, 
third, &c., functions derived according to the same law, and 
divided respectively by 2, by 2,3, &c. ; that is, as before 
shown (27),

As it matters not by what letter we represent the unknown in any 
equation, we may change r in [3] into x, and write the limiting 
equation thus :

warn-1 + (n-l)An-1a^l-2 + (n-2) An-2ajn-34- . . . 3 A3a?2-f-2A^ 
+A = 0 . .. [5],

the first member being the first derived function fx(f) of f(f)i so 
that the limiting equation may be written down at once from in
specting the original; for any term in the limiting equation is 
obtained from the corresponding term in the proposed by multi
plying this latter by the exponent of x in that term, and dimi
nishing the exponent by unity.

For example, if the original equation be

f(x) = 2a?4 - 1xi + 4a?2 + 2a? - 12 = 0,

the limiting equation will be

ffx) = 8a?3 — 21a?2 + 8a? -f- 2=0.

In like manner the limiting equation to this is

/2(a?) = 24a?2 - 42a? + 8 = 0.

www.rcin.org.pl



LIMITS TO REAL ROOTS. Ill

And, finally, the limiting equation to this last is the simple 
equation

fi(x) = 48x — 42 = 0.

so that the descending series of limiting equations, or the suc
cessive derived functions fl(x), f2(x), &c., may severally de
duced from an original polynomial with great ease.

(95.) When the roots of the primitive equation are all real, 
the roots of the limiting equation must all be real too ; otherwise 
the real roots of the latter would be too few to allow of one occu
pying an interval between every two of the former. In this case, 
therefore, the roots of the limiting equation must be situated 
relatively to those of the proposed equation as follows :

<z1 a2 a3 a4 . . . .
rl r2 r3 ∙ ∙ ∙ ∙

But when imaginary roots enter the original, then, as the limiting 
equation may have more real roots than the former by one, or 
three, or five, &c. we cannot pronounce with certainty upon the 
exact distribution of the roots of the limiting equation among 
those of the original, as in the case above : all that we can affirm 
is that every interval between the latter roots will be occupied by 
an odd number of the former roots (91). There must, there
fore, be at least m real roots in the limiting equation if there are 
m + 1 in the original; so that the entrance of imaginary roots 
into the limiting equation will be a sure indication that as many 
imaginary roots, at least, must enter the primitive equation.

The same conclusion may be extended to the subsequent derived 
or limiting equations ; for imaginary roots cannot enter into any 
one of these without the same number, at least, entering the pre
ceding ; and so on up to the original equation.

(96.) It is, likewise, an inference from the form [4] above, 
that if any of the functions derived from the first member of an 
equation, f(x) =0, vanish for a real value of r, such that the same 
value, when substituted in the function immediately preceding, 
and also in that immediately succeeding, furnishes results with 
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like signs, the equation ∕(a,) = 0 must have imaginary roots. 
For the equation f(r + x) = 0, where r is real, cannot of course 
have more or fewer imaginary roots than the equation/(a?) = 0. 
But, in the case supposed, the value of r is such that the polyno
mial f(r + x), as exhibited in the second member of [4], in 
its properly arranged form, has zero-coefficients between terms 
with like signs. Hence, (68) f(r ⅛ x) = 0, and consequently 
f(x) = 0 must have imaginary roots.

It is scarcely necessary to remark that the values of f (r), ∕1(r), 
∕,(r), &c. for any values of r, are the same as those of f(x), 
∕1(a7),∕2(^), f°r eΦιal values of x.

It follows from the preceding conclusion, that when all the roots 
of f (x) =0 are real, then every value of x which causes either of 
the derived functions to vanish, must cause the immediately adja
cent functions on each side to take opposite signs : the contrary 
taking place in any instance will be a sure indication of the 
existence of imaginary roots in the proposed equation.

These consequences were first deduced by De Gua, in his paper 
before referred to;* and they are included in the general theorem 
of Fourier to be discussed in next chapter. But the connexion 
between the roots of an equation and those of the several equa
tions of inferior degrees derived from it as above, was, it seems, 
first noticed by Rolle,f who, by the help of the derived equa
tions of the second degree, proposed to find limits to the roots of 
the preceding equation of the third degree ; thence limits to those 
of the antecedent equation of the fourth degree ; and so on till 
we should finally arrive at the limits of the real roots of the pro
posed equation. This was called the method of Cascades ; but 
independently of the uncertainty as to the number of imaginary 
roots entering the proposed equation, of the existence of which, 
even when they are actually present, the several dependent equa
tions may preserve no trace, the length of the calculations has 
caused this method of searching for the situations of the real 
roots of an equation to be entirely abandoned.

It is easy to see, however, when the real roots of the limiting 
equation are actually determined, how the number and places of

• See Lagrange, Note vnι. f Algebre, 16ff0.
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the roots of the equation whence it has been derived may be 
accurately found. For as every interval between the roots of the 
proposed is occupied by one root, or some odd number of roots, of 
the limiting equation, it is plain that if we call these latter roots, 
arranged in descending order of magnitude, r1, r2, r3,.... rk, the 
several terms of the series 

when substituted for x in succession in the proposed equation, 
will furnish exactly as many changes of sign as there are real 
roots in the latter ; because never more than one of these roots 
can be passed over at a time, and all lie within the extreme limits 
+ oo, — oo. In those cases, therefore, where the real roots of 
the limiting equation can be found, the number and situations of 
the real roots of the primitive equation can always be determined. 
Thus a cubic equation can always be analysed by this method, 
since the derived quadratic can always be solved : but for farther 
details on this subject we must refer the student to the introduc
tory volume on the Analysis, of Cubic and Biquadratic 
Equations, pp. G7-7O.

Theory of Vanishing Fractions.

(97.) From the principles established in the foregoing propo
sition, we readily derive the following consequences, viz.:

Since 

and 

it follows that

In like manner, for any other equation F(x) = 0, we have

8
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Suppose the two equations

∕(α>)=0, F(√)=0,

have a root in common, viz. α1 = δ1, then, dividing [1] by [2], 
we have

Hence, multiplying numerator and denominator of the second 
member by x — al, and then substituting for x, its value x = al, 
we have

from which we learn, that if any two equations have a common 
root a, and their limiting equations be taken, the ratio of the 
original polynomials, when a is put for x, will be equal to the 
ratio of the limiting polynomials when a is put for x.

This property furnishes us with a ready method of determining 
"f(χ∖

the value of a fraction, such as 4—-, when both numerator and 
1W

denominator vanish for a particular value of x, as, for instance, 
for x = a. For we shall merely have to replace the polynomials 
in numerator and denominator by their limiting polynomials, and 
then make the substitution of a for x. If, however, the terms of 
the new fraction should also vanish for this value of x, we must 
treat it as we did the original, and so on, till we arrive at a frac
tion of which the terms do not vanish for the proposed value of x. 
The following examples will sufficiently illustrate this method:

1. Required the value of , when x — a.
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Here the required value.

2. Required the value of

when x = 1.

This still becomes for x = 1,

the value sought.

3. Required the value of

when x = 1.

4. Required the value of

tor x = a.

* This is the expression for the sum of n terms of the series1 _|_ 2® 4- 3τ2 4- 4r3 4- *c.
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We may here put x =y, and thus change the fraction into

the value required.

5. Required the value of

when x = y. (See Alyel>ra, third edition, page 200.) 
Put « + y = cn, then the fraction is changed into

and therefore the value, when x = y, is

Theory of E(pint lloots.

(98.) The foregoing proposition also readily leads to a method 
of freeing an equation from all repetitions of the same root, 
whenever such occur; as also of ascertaining whether an equation 
has equal roots or not. For, as in the limiting equation fx(x) =0, 
the polynomial ffx) consists of the sum of the products arising 
from multiplying together every n — 1 of the factors of f(x), 
each group of factors in ffx) will differ from/(«) only by the
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absence of a single factor. Hence, if there be two equal factors 
in f(x), that is, if f(x) — 0 have two equal roots, one of these 
factors must occur in each of the groups which compose fλ(x), so 
that/"(a?) andfλ(ff) have this factor for a common measure. If there 
be three equal roots in f(x) = 0, then will f(x) and ∕1 (a?) have for 
a common measure the quadratic factor involving two of them, 
because more than one of the equal factors cannot be absent 
from any of the terms of fl(x). And generally if f(x) = 0 have 
p roots equal to a, then will (x — α)P-1 be a common measure of 
f(x) and fλ(x) ; since in none of the component parts of j∖(x) can 
more than one of the p equal factors be absent.

Again, if besides the p factors equal to (x — a), there also 
enter q factors equal to (x — δ) in the composition of f(x), then, 
besides the former common measure, the polynomials f(x), ffx), 
will also have the common measure (x — δ)q^^1, for reasons 
similar to those which have already been assigned. And gene
rally, if the equation f(x) = 0 have p roots equal to a, q roots 
equal to b, r roots equal to c, &c. then the greatest common 
measure of the polynomials f(x), ffac), will be

{x — ω)p~1 (x — δ)q^1 (x — c)r"1 ....

In order, therefore, to discover whether or not an equation 
f(x) = 0 has equal roots, we have only to ascertain whether or 
not f(x) and f} (x) have a common measure φ (x); if they have, 
the division of f(x) by ψ (x) will give a polynomial involving the 
roots of the proposed equation without any repetition. It is in
deed practicable to deduce a polynomial which shall involve only 
those roots which enter singly into the proposed, as we shall 
shortly show in general terms; at present, we shall apply the 
method to one or two particular examples.

1. It is required to determine wrhether the equation

f(x) = 2x4 — 1 2aτ3 + 19a?2 — 6x + 9 = 0,

has equal roots.

f(x) = 8a?3 — 36x2 4- 38a? — 6,

the greatest common measure φ(x) of the polynomials /(a?), ι∕j(a,), 
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is x— 3; hence the equation has two roots each equal to 3. 
Dividing, therefore, fix) by (a? — 3)2, we have 2a?2 + 1; hence the 
other roots are involved in the equation 

that is, the four roots of the proposed equation are

If we had divided fix), simply by the common measure x — 3, 
the quotient would have been a polynomial of the third degree; 
involving, besides the two unequal roots just determined, one of 
the equal roots, as already explained. But by always increasing 
the exponent of every distinct binomial composing the common 
measure by unity, and then, performing the division, we obtain, 
as in this example, a quotient involving only those roots which 
occur without repetition.

2. It is required to determine whether the equation

fix) =. χl -∖- 5x6 + 6a?3 — 6x4 — 15a?3 — 3x2 ⅛ 8a? + 4 = 0, 

has equal roots.

fix) = 7a?6 + 30a?ft + 30a?4 — 24a?3 — 45a?2 — 6a? + 8,

≠(λ,) = x4 -f- 3a?3 + a?2 — 3a? — 2.

The equation has therefore equal roots involved in the equation 
φlx)=0. As in this last equation the roots all occur once less 
often than in the original, they would be all different if those of 
the original could enter only in pairs; but, as that equation cannot 
have eight roots, the roots of ≠ (a?) = 0 cannot be all different: 
hence φ (a?) = 0 will also contain equal roots. Let us therefore 
ascertain these.

The limiting polynomial derived from <ρ (x) is 

the common measure of ψ (x), φfx), is a? + 1; hence the equation 
0(a?)=() has two roots equal to — 1; and, consequently, the equa
tion fix) = 0 must have three roots equal to — 1.
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By division,
φ M -——— = a÷ + a? — 2, 

0 + 1)2
and from

xi 4- x — 2 = 0 
we get

x = 1, x = — 2;
hence

0<X) = (a? + 1)2 (a? —1)0 + 2),
and consequently,

j∖x) = (a? + 1)3 0 — 1)2 (a? + 2)2,

that is, the roots of the proposed are

-1,-1, -1, 1, 1, -2,-2.

If the equal roots in the proposed had all entered in pairs, 
Φ (ar), <ρl(x') would have had no common measure; and the determi
nation of the equal roots would have required the solution of the 
equation ≠ (a?) = 0, which would have contained each of those 
roots once; and the remaining roots—those that enter the original 
equation without repetition—would have been found by dividing 
f(x) by the square of <ρ(x), and equating the quotient to zero. 
And in general the solution of the proposed equation, when equal 
roots enter, may always be reduced to the solution of a series of 
others of inferior degrees, of which the first contains only the 
unequal roots of the proposed, the second each one of the double 
roots, the third each of the triple roots, &c. This may be proved 
as follows :

Let X represent the product of the factors which enter singly.

X22 . . the product of all the pairs.

X33 . . the product of all the threes.

X44 . . the product of all the fours.
&c.

so that
∕(χ) = X X22 X33 X44 . . . .

then the greatest common divisor, <j>(x), of f(x) andt∕,1(ar), will be

√ar)=X2 X23 X34 X46 ....
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Again, calling the greatest common measure of <ρ(x), and its 
derived function ψx(x), Φ,(x), we have

In like manner, calling the greatest common measure of φ'(x), 
and its derived function ≠z1(^), Φlf(x), and continuing the opera
tion, we have

Hence, by division,

and, consequently, the determination of the roots of the proposed 
equation is reduced to the solution of the following series of 
equations, viz.

The first of these equations involves the single roots only, the 
second each one of the double roots, the third each one of the 
triple roots, &c.
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(99.) Since each multiple root in f(x) =0 enters once less often in 
the first derived equationy^1(^) = 0, it follows that, if we continue 
the derivation, it will enter twice less often in the second derived 
equation √2(^) = θ 5 three times less often in the third derived 
equation ffx) = 0; and so on till it disappears altogether. Thus 
the degree of multiplicity of every root will be equal to the num
ber of derivations which are necessary in order to cause that root 
to disappear. If one of the equal roots be known, this method 
might therefore be adopted to discover its degree of multiplicity. 
For instance, if it be known that one root of the equation in 
example 2 be — 1, we should find how often this root enters by 
substituting — 1 in the successive derived functions, till we 
arrived at one which did not become zero for this substitution; 
the number of derivations thus employed would express the num
ber of times the root — 1 entered the equation: thus,

f {x)- x1 + 5a?6 + 6a?5— 6a?4—15a?—3a?2+8a? + 4

∕1(ar)= 7^6 + 30a? + 30a?— 24a?-45a?-6a; +8

∕2(a>) = 42a? + 150a? + 120a?— 72a?-90a? -6

. y3(a?) =210aτ4+600a? + 360a?—144a? -90

The function ffx) is the first that does not vanish for a∙ = — 1: 
hence the root — 1 enters the equation three times.

This method of detecting the existence of equal roots, and of 
determining their degree of multiplicity, was first noticed by 
Hu DDE, and published, together with some other researches of 
the same able algebraist, in 1659, by Schooten, in his Commen
tary on the Geometry of Descartes.

(100.) What has now been delivered contains the complete 
theory of equal roots; and furnishes all necessary directions for 
the elimination of these from any proposed equation, or for re
ducing such an equation to others, of inferior degree, which shall 
involve among them all the roots of it without any repetitions. 
It is obvious, therefore, that the general problem which has for 
its object the actual solution of numerical equations, that is, the
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calculations of all the real roots, may be regarded as completely 
solved when the difficulties connected with the solution of equa
tions whose roots are all unequal are overcome. And accord
ingly, in the different methods of treating the general problem 
that have hitherto been proposed, the elimination of the equal 
roots has always been considered as a preliminary, essential to the 
successful application of the method proposed, or at least essen
tial to the prosecution of every such method to its ultimate con
clusion.

The practical difficulties however of this preparatory process 
in the analysis of an equation have been altogether overlooked; 
and thus very erroneously estimated by theoretical writers on this 
subject. It is common, even in the most recent publications on 
the theory of equations, to see the operation characterized as one 
of very easy performance; as if to clear an equation of equal roots, 
and to clear it of fractions, were preliminaries that might be dis
posed of with equal expedition. The truth is, however, that even 
in equations of but a moderately high degree—those for instance 
containing the fifth or sixth power of the unknown quantity—the 
operation for finding the common measure of the proposed poly
nomial and its first derived function, involves in it a considerable 
amount of numerical labour; so considerable indeed that any 
method of analysing an equation, which should imply as much 
calculation as is thus expended upon the preliminary preparation, 
would be practicable only within very narrow limits.

On these grounds we do not place much practical importance 
upon the theory just expounded, nor upon any method of ana
lysing equations into which these operations for the common 
measure enter,—not as constituting the substance of the method 
itself, but as a mere preparative for its application. It is singular 
that Lagrange, who was so fully alive to, and conversant with, 
the practical difficulties connected with the analysis of numerical 
equations:—it is singular that he should have so overlooked this 
objection to his own and all existing methods, as he evidently did 
from his uniformly regarding the test of equal roots as one of 
very ready application. Poinsot, too, in the analysis he has 
given of the Equations Numeriques, as prefixed to the last edition 
of that work (1826), considers the preparation for equal roots as
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of no moment in an estimate of the practical difficulties implied 
in the analysis and solution of a numerical equation.*  And such 
indeed, as before remarked, has been the general doctrine hitherto 
held upon this subject.

• “ S’il y a des racines egales, il sera facile de les reconnaitre, et de les degager de l’equation.”—Poinsot Analyse du Traite, <fec. p. viii.

The real amount of numerical work actually entering into the 
operation for finding the common measure of a polynomial and its 
derived function -when, by an improved mode of arrangement the 
labour is economised to the utmost, will be exhibited when we come 
to discuss Sturm’s method of analysing an equation : a method 
which, unlike all that has preceded it, is wholly comprised in the 
operation adverted to ; and which therefore attains the object in 
view with only the same labour that has usually been expended 
in order to prepare the equation for the efficient application of 
other modes of analysis ; so that in fact Sturm’s method may 
be said to discover to us the desired results as soon as we reach 
the point from which other methods set out in search of them.

But these other methods have been hitherto unnecessarily en
cumbered with operations of this kind ; since, as will be hereafter 
shown, the information which they supply may in general be 
obtained from far simpler considerations. It would be impossible 
to dispense with the process for the common measure in the 
theorem of Sturm, as that process does itself constitute the 
method. But in the methods of Fourier and Budan the com
mon measure enters as a mere auxiliary, for the removal of the 
doubt as to whether or not equal roots exist within proposed 
limits ; for any other purpose the operation for the common mea
sure is useless, and may, therefore, be dispensed with whenever 
the doubt in question can be resolved by simpler means.

(101.) We have been led, by these considerations, to seek for 
a more readily applicable criterion of equal roots than that which 
the common measure supplies; and have in some degree suc
ceeded in the search, by aid of the general principle established 
at (76), in conjunction with the following inferences from the 
preceding theory :—
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1. If an equation whose coefficients are commensurable have a 
pair of equal roots and no greater number, these roots must be 
commensurable : for the common measure of the first member of 
this equation, and the function derived from it, will be a binomial 
expression of the first degree with finite coefficients, and which 
when equated to zero will furnish one of the equal roots; these 
roots, therefore, must be commensurable ; that is, either integers 
or fractions.

2. If the leading coefficient in the supposed equation be unity, 
and the others integral, the equal roots must be integral, because 
no fractional root can exist under these conditions (62).

3. If an equation with commensurable coefficients, have three 
equal roots, and no more, these also must be commensurable : for 
in this case the common measure will be of the second degree, 
and when equated to zero will give two of the equal roots : these 
roots, as just remarked, must be commensurable, hence all the 
three roots must be commensurable. And, as before, if the lead
ing coefficient be unity, and the others integral, the equal roots 
will be integral.

4. By the same reasoning, if an equation with commensurable 
coefficients have m equal roots, and no other groups of equal roots, 
these m roots must be commensurable; and they will be integral 
if the leading coefficient be unity and the other coefficients 
integers.

5. When the leading coefficient is unity, and the other coeffi
cients whole numbers, and m equal integral roots enter, we may 
infer, from the formation of the coefficients (60), that the abso
lute number, and the coefficient of the immediately preceding 
term, that is, the coefficient of x, will admit of a common measure 
involving m — 1 of these roots ; that the coefficients of x and x2 
will have a common measure involving m — 2 of them ; and so 
on till we come to the coefficients of a?m_2 and azm-1, which will 
have a common measure involving the multiple root once. For if 
the depressed equation containing only the unequal roots be con
sidered, it will involve none but integral coefficients (76); so 
that if the equal roots be now introduced, as at (60), they 
can combine with none but integral factors. Hence, if the 
root occur twice, it will be found among the integral factors
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of the common measure of the coefficients N and A ; if it occur 
three times, it will be found among the factors of the common 
measure of N, A, and A2 : and so on. And, therefore, by trying 
several factors of the common measure in question, by actually 
substituting them for x in the proposed equation, when from any 
circumstance multiple roots are suspected to exist, we may re
move all doubt on the subject. In analysing an equation the 
doubts that may arise as to the entrance of equal roots are con
fined to certain definite intervals, or within determinate numerical 
limits ; so that of the factors adverted to above only those falling 
within these limits need be regarded.

And further, if the repeated root occur but twice, the square of 
it must be a factor of x0 or N; if it occur three times, the cube of 
it must be a factor of N, and the square of it a factor of A; if it 
occur four times, the fourth power of it must be a factor of N, 
the cube of it a factor of A, and the square of it a factor of A2, 
and so on. And thus, of the factors of N to be tested, those 
only need be used whose powers also are factors, entering, as here 
described, according to the multiplicity of the roots.

6. These inferences may be easily generalized: they apply, 
whatever be the integral value of the leading coefficient, and whe
ther the repeated root be integral or fractional. Thus let the re

peated root be x = ~, a and b having no common factor; then if 

the root enter m times, the original polynomial will be divisible 
by (bx — α)m, giving a quotient involving the remaining roots, 
and into which none but integral coefficients enter (76). Let us 
now return to the original polynomial by multiplying this quotient 
by bx — a, m times: the first multiplication by bx — a will evi
dently give a product, into the first term of which b must enter 
as a factor, and into the last of which a must enter: the next 
multiplication must therefore give a product into the first term 
of which b2 must enter, into the second b, into the last «2, and 
into the last but one a : the third multiplication therefore must 
give a product whose first three terms involve b3, b2, b re
spectively ; and last three, a3, a2, a, reckoning these last in 
reverse order, and so on. Hence the coefficients An, An_p An_2, &c. 
will be divisible by bm, bm~i, bm~2, &c. respectively, down to b; 
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and the coefficients N, A, A2, &c., by «m, αm-1, αm-2, &c., down 
to a. In other words the coefficients taken in order, reckoning 
from the beginning, will be divisible by the corresponding de
creasing powers of the denominator of the repeated root; and the 
coefficients, reckoning from the end, will be divisible by the like 
powers of the numerator.

7. The inferences still have place, whatever be the degree of the 
multiple factor entering the proposed polynomial; so long as this 
factor, as well as the original polynomial, have none but integral 
coefficients. This is plain from the reasoning in the preceding 
case, which remains the same, as respects the entrance of the 
factors b, a, whether the repeated multiplier be bx — a, or 
bxm + . . . . + a.

These conclusions will greatly simplify the research after equal 
roots ; and will either enable us wholly to dispense with the 
laborious process for the common measure, or will, at least, render 
the more tedious steps of it unnecessary. We shall more fully 
show this to be the case when we come to examine Fourier’s 
method for analysing an equation, into which method the opera
tion for the common measure has been supposed necessarily to 
enter. At present we shall merely refer to the two examples 
already considered.

The first of these, at page 117, can have no fractional multiple 
roots, because the leading coefficient 2, has no factor a perfect 
power : the equal roots, if any, must therefore be integral. Unity, 
which always has claim to be tried, does not succeed; and from 
the factors of 9 and 6, it is plain that + 3 and — 3 are the only 
other numbers to be tested; and, as no higher power of 3 than 
the square enters 9, we infer that more than two equal roots can
not have place in the equation. By testing 3 we find this to be 
one of a pair of equal roots. Equal quadratic factors could not 
possibly enter the equation; since, as the first coefficient shows, 
the polynomial is not a complete square.

In the example at page 118 no fractional equal roots can enter. 
Applying, therefore, + 1 and — 1 we discover the unit roots, as 
at page 119; and hence the remaining equal roots from the 
resulting quadratic.

www.rcin.org.pl



CHAPTER VII.

ON THE METHOD OF NEWTON FOR FINDING A SUPERIOR 

limit; and on the separation of the roots by 
THE METHODS OF BUDAN AND FOURIER.

(102.) To find a number greater than the greatest root of an 
equation, Newton proposed to transform the equation into an
other whose roots should be less than those of the former by an 
undetermined quantity r, and then to determine r by trial, so as 
to cause all the coefficients in the transformed equation to become 
positive. Such a value of r would obviously exceed the greatest 
positive root of the proposed equation; for the real roots of the 
transformed, which are those of the original diminished by r, 
would all be negative (64), so that the greatest positive root of 
the original equation must have been diminished by a number 
greater than itself. As an example of Newton’s method, let us 
take the equation

a? — 5a?2 + 7a? — 1 = 0 ;

then, substituting a∕ + r for a?, the transformed is
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Now, after a few trials, we find that 3 is the smallest value 
for r, which causes the several compound coefficients to become 
positive; therefore 3 exceeds the greatest positive root of the 
equation.

(103.) We should arrive at the same result, by diminishing 
the roots of the proposed successively by unity, according to the 
process in (71), and stopping as soon as the transformed coeffi
cients become all positive; thus :

It may be observed of this method, that it not only furnishes 
a superior limit to the greatest positive root in every case, but 
when the roots are all real the limit thus determined is imme
diately above the true value of the greatest root; that is, the 
preceding number in the arithmetical scale is the first figure of 
that root. This is obvious, for the coefficients of the transformed 
become all positive as soon as all the roots become negative, and 
not before (6G).

Even without knowing whether the roots are all real, we can 
pronounce the limit thus found to be the immediately superior 
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limit, if the last coefficient in the immediately preceding set be 
negative ; so that, in this case, we shall also know the first figure 
of the greatest root. This will appear plain, from considering 
that the last coefficient in any set (wτhich is in fact the absolute 
number) is the result of the corresponding polynomial for x = 0 ; 
and that the last coefficient in the succeeding set is the result 
of the same polynomial for x = 1 : and since these results, in 
the case supposed, have opposite signs, one root at least must 
have been passed over, and that the greatest, as the final coeffi
cients are all positive.

The same process, as we go on, supplies a like indication of 
every passage we make over a single real root, or over any odd 
number of roots ; every such indication being a change of sign in 
the last terms of two consecutive transformations. In the exam
ple above, the very first transformation presents a change of sign 
in the last term ; we infer, therefore, that a root of the equation 
lies between 0 and 1.

If, however, the last term vanish in any transformed, the cir
cumstance will prove that our last diminution has exhausted one 
of the roots; for one root of the transformed will then be zero, 
this being the value which it is obvious will always satisfy every 
equation whose final or absolute term is zero. Should not only 
the last, but also the last but one, vanish, we may, in like man
ner, conclude that two roots have been exhausted ; and, if p last 
terms vanish, p roots will have been exhausted; so that the equa
tion proposed will have p roots, each equal to the integer which 
expresses the number of transformations. In seeking, therefore, 
the superior limit by the foregoing process, we shall always detect 
in our progress every positive integral root of the equation.

Again, if any intermediate term vanish from one of the trans
formed equations, the circumstance may lead to the detection of 
imaginary roots of the equation ; for, if on each side of the 
vanishing term the contiguous terms have like signs, the rule of 
Descartes will show that the roots cannot be all real; such an 
occurrence will, therefore, be a sure indication of the existence of 
at least one pair of imaginary roots in the transformed equation, 
and, consequently the same number in the original; because the 
increasing or diminishing the roots of an equation by any real 

9 
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number, can never either increase or diminish the number of 
imaginary roots. The following example will illustrate these 
remarks.

2. Let the equation be

.τ3 — 3<r2 + 4x — 2 = 0,

and diminish the roots by unity :

At the close of the first step, we immediately infer that x = 1 
is a root of the equation. The other two roots are involved in 
the equation

x2 ÷ Ox + 1 = 0 ;

and, as 0 occurs between the two like signs +, we infer that 
both roots are imaginary.

In seeking the superior limit, therefore, by the process recom
mended, we may sometimes detect the existence of imaginary 
roots, although they do not always furnish the above indication 
of their presence.*

• Unequivocal tests for detecting 1he existence of imaginary roots will be furnished hereafter.

3. Again, let us take the example

.τ4 — 4a?3 + 1 Oa?2 — 12x + 9 = 0,

which, as it has no permanencies, cannot have any negative roots. 
Diminishing the roots by 1, we get the transformed coefficients

1 0 4 0 4.

This transformation detects the existence of two pair of imagi
nary roots; we need not, therefore, proceed to another transfor
mation, but conclude immediately that all the roots of the pro
posed are imaginary.
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The foregoing advantages, with some others which might be 
mentioned, are considerable ; and are peculiar to this method of 
applying Newton’s rule to the discovery of limits.

It may be enquired, however, here—Is it under all circum
stances, possible to obtain, by successive diminutions of the roots, 
a transformed equation involving only positive coefficients ? To 
this it may be replied, that, whenever we diminish the roots by a 
number exceeding the greatest positive root, the result of the real 
simple factors in the polynomial is necessarily positive in every 
term ; and it continues so for every further diminution. Now, 
if there be any imaginary factors, the continual diminutions of 
which we speak must at length annihilate the real parts of these 
imaginaries, or render them positive, in which case every quadratic 
factor into which the several pairs of imaginaries enter, will have 
all its coefficients essentially positive, and therefore those of the 
transformed polynomial will be all positive.

(104.) But the same, conclusion may be otherwise established 
as follows : It is evident, in diminishing the roots of an equation 
by 1, 2, 3, &c., that the second coefficient in any transformed is 
always equal to the second coefficient in the preceding equation, 
plus a certain number of times the first; so that, should there be 
a variation of sign between the first two terms of the proposed, we 
may, by continuing the transformations, change this variation into 
a permanency ; whilst, on the contrary, if there be a permanency 
between the first two terms of the original, no transformation of 
the kind spoken of can change it into a variation. A perma
nency of sign may, therefore, in all cases be established between 
the first two terms of a transformed equation.

Again, since the third coefficient in any transformed is always 
equal to the third in the preceding transformation, plus a certain 
number of times the second, plus a certain number of times the 
first, it is plain that a variation between the second and third 
terms of a transformed, whose first and second terms have like 
signs, must be eventually converted into a permanency; whilst, 
on the contrary, if the first three terms had originally a perma
nency of sign, no subsequent transformation, arising from dimi
nishing the roots, could introduce among them a variation.
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By similar reasoning, we prove that, having obtained a perma
nency for the first three terms, we shall arrive, by continuing the 
transformations, at a permanency between the third and fourth, 
and so on, till we shall necessarily be led at length to a trans
formed equation exhibiting only permanencies of sign. Of course 
this necessary increase of permanencies in the leading terms of 
the successive transformed polynomials, will not prevent an acci
dental increase of them among other terms to the right, and these 
will facilitate the close of the process.

Let us take for a fourth example the equation given at p. 45 :

.τ4 + 3^3 + 2zr2 + 6x — 148 = 0

1 3 2 6 — 148 (1

4 6 12 — 136

The — 136 in this step is indication sufficient that 1 is not the 
limit. Diminishing then by 2, wτe find, for the final term, — 88 ; 
hence 2 is not the limit: but, by diminishing by 3, the numbers 
in the first step are

6 20 66 50,

which being all positive, the succeeding numbers must be posi
tive ; so that, without continuing the process, we infer that 2 is 
the first figure of the greatest positive root of the equation. We 
might, in like manner, have stopped the work at the second step 
of the third transformation, in the example at page 128, and have 
inferred the value of the limit.

(105.) Hitherto we have considered only the positive roots of 
the equation; but this might seem sufficient for our purpose, 
because, by changing the signs of the alternate terms of an equa
tion, the negative roots become changed into positive, and, after 
this change, the superior limit to the positive roots would, when 
taken with the negative sign, be the inferior limit to the negative 
roots.

There is, however, no absolute necessity to effect this change 
in the signs of the terms of an equation. For it is plain, after 
the foregoing reasoning, that, if instead of diminishing we increase 
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the roots of the proposed by 1, 2, 3, &c., we shall ultimately 
obtain a variation between the first and second term, then a 
variation between the second and third, then between the third 
and fourth, and so on ; so that we shall finally arrive at a set of 
transformed coefficients, presenting only variations of sign, and 
the number of transformations required to lead to this will express 
the number, which, taken negatively, is the inferior limit of the 
negative roots; that is, a larger negative number than any of 
them. Whenever, in the progress of these transformations, we 
pass over a single, or indeed over any odd number of negative 
roots, a change of sign in the last coefficient will always give no
tice of the circumstance ; and, if we should entirely exhaust 
a negative root by these continual additions of unity, the reduc
tion to zero of the same coefficient will apprize us of the fact.

(106.) From what has now been said of the progressive ten
dency of the successive transformations to terminate, when the 
roots are diminished, in a series of permanencies, and when they 
are increased, in a series of variations, we may conclude that,

1. If p, q, be any positive numbers, of which p is less than q, 
and if the roots of an equation be diminished first by p and then 
by q, the coefficients of the first transformed equation, that is, of 
the equation in (a? — p), cannot have fewer variations than the 
coefficients of the second transformed, that is, of the equation in 
O — q).

2. If the roots be increased first by p, and then by q, the co
efficients of the second transformed equation, or that in (x + ?)> 
cannot have fewer variations than the coefficients of the trans
formed in {x + p}.

Hence, under no circumstances can the number of variations, 
furnished by any transformed equation in (x ± r), be increased 
by further diminishing the roots, or diminished by further in
creasing the roots.

(107.) We are now prepared to demonstrate the following 
theorem, which may be regarded as an extension of the rule of 
Descartes :
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Theorem of Budan.

Let p and q be any two numbers, with signs like or unlike, but 
such that q is nearer to + ∞ than p; then, if an equation in x 
has m real roots comprised between p and q, the transformed 
equation in (x — p) has at least m variations more than the 
transformed in (x — q).

Suppose first, that but one real root lies between p and q ; 
then (91) the last terms of the transformations in (x —p) and 
(x — q) must have contrary signs, which requires that these 
transformations have not the same number of variations; for 
when the signs of the first and last terms of any equation are 
like, the number of variations must evidently be even, whatever 
be the number of intermediate terms; and when the extreme 
signs are unlike, the number of variations must be odd. But, 
by what is shown above, the first cannot have fewer variations 
than the second : it must necessarily, therefore, have at least one 
variation more.

Again : let there be m real roots comprised between p and q, 
and let us suppose them to be all unequal, and represented in 
the order of their increasing magnitude by

α1, α2, α3, α4, . . . . αm.

Let, moreover, the numbers

⅛P ^2’ ⅞> ⅛4> ∙ ∙ ∙ ∙ ^m-]

be respectively comprised between aχ and «2 ; between a2 and a3 ; 
between o3 and a4, &c.; so that we may have the continued 
inequality

^<Λj<δ1<a2<δ2<α3 .... <αm-1<δm-1<αm<gj

it will then follow, that if we form successively the equations in 
(x —p), in (<r — 01), in (x — δ2), in (x — b3), . . . (x — δm~1), 
up to that in (x — q), each of these equations will have at least 
one variation more than the following one. Hence the equation 
in (x — p) must have at least m variations more than the equa
tion in (x — ę) : which was to be proved. When the roots are 
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all real, it is obvious that the number of variations which dis
appears in the successive transformations is precisely equal to 
the number of roots comprised between p and q.

It will have been remarked, that in the foregoing examination 
we have supposed that the real roots between p and q are unequal. 
We know, however, that previously to seeking the nature and 
situation of the roots, the first member of an equation may always 
be disencumbered of its multiple factors; though, as remarked 
at (100), the ordinary process by which this is effected is labo
rious. We shall show, however, presently that the theorem 
announced above equally holds, whether equal roots enter the 
equation or not.

(108.) The substance of what has now been proved amounts 
to this, viz.

1. If two transformed equations, the one in (a? — p), and the 
other in (x — q), both exhibit the same number of variations, 
there is no root comprised between p and q.

2. If there be a variation between the last term in one, and 
the last term in the other, an odd number of roots must be com
prehended between p and q, and there cannot be an odd number 
without this variation.

3. It is very obvious, that the loss of a single variation, in 
passing from one transformed to another, can never take place, 
except a change occur in the sign of the final term. Hence, 
when but a single variation is lost in passing from the transfor
mation in (x — p) to that in {x — q), then one root, and only 
one, lies between p and q: for that one root, at least, is so 
situated follows from the preceding inference ; and more than 
one there cannot be, otherwise there would be more roots than 
variations lost between the two transformations.

It further appears that when the sign of the final term remains 
the same, if any changes are lost, two, or some even number, 
must be lost.

4. If the number of variations lost be two, the equation may 
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have two real roots between p and q ; but it may happen also that 
there are none in this interval. It is certain that the equation 
cannot have more than two roots in the interval p, q, otherwise 
the series would have lost more than two variations.

5. It is easy to see how the rule of Descartes follows from 
the theorem at (107). For if the equation have m positive roots 
between 0 and any number q, then by the theorem, in proceeding 
from the equation in x to that in x — q, m variations at least 
must be lost; and therefore the equation in x must have at least 
that number of variations to lose; so that there cannot be a 
greater number of positive roots than there are variations of sign 
in the proposed equation. If we change all the signs, com
mencing with the second, the negative roots will be converted 
into positive, and the permanencies into variations. Hence the 
equation cannot have a greater number of negative roots than 
there are permanencies of sign in the proposed equation.

6. The theorem at (107) may be expressed in a form somewhat 
different; and may be further amplified as follows. It is given 
in this form both by Budan and Fourier* :—

If m variations be lost in passing from the transformed equa
tion in (x — p) to that in (x — q), the equation in x may have m 
real roots between the limits p, q; but it cannot have a greater 
number.

If the number of real roots be not m, then the true number can 
differ from m only by an even number k; and the additional loss 
of variations will be attributable to k imaginary roots in the 
proposed equation. This may be proved as follows :—

(109.) If, between the two transformed equations which we are 
considering, we could interpose all the intermediate transforma
tions which would arise from passing continuously from p to q, 
we should readily detect the cause of this additional loss of an 
even number of variations between the extreme transformations ; 
for, as no quantity, whose range is confined within finite limits,• Budan, Nouvelle Methode pour la Resolution des Equations Nume- 
riques, 1807. Fourier, Analyse des Equations Deter minces, 18.31. 
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can proceed continuously from + to —, or from — to +, without 
first passing through zero (28), we should necessarily arrive, 
in the course of our intermediate transformations, at one or 
more containing vanishing terms. The corresponding terms, in 
the immediately preceding transformation, would make known 
the signs with which the consecutive ones vanished; and the 
corresponding terms, in the immediately subsequent transforma
tion, would also make known the proper signs in which the same 
terms would vanish, in returning from the latter transformation 
to the former. Now should it happen that when the signs of the 
zeros, determined in the former way, or by means of the antece
dent transformation, cause the terms among which these zeros 
occur to have more variations than when the signs are determined 
by the subsequent transformation, it is plain that this loss of 
variations will never be replaced in the following transformations, 
but will go to augment the loss arising from passing over roots 
between p and q. But a loss of variations, anywhere within the 
extreme terms of any transformed equation, implies the change 
of two variations into two permanencies (page 135) ; hence an 
even number of variations is thus lost, and yet the real roots of 
the transformed, involving the zeros, remain the same. It 
follows, therefore, by the rule of Descartes, which we may 
now assume from the inference 5, above, that this equation (and 
consequently the proposed,) has that even number of imaginary 
roots.

If the signs of the zeros in the transformation in question 
present no ambiguity, whether determined from the antecedent 
or from the subsequent equation, then the several transformed 
equations must all exhibit the same number of variations, till we 
arrive at a root, when the last term will vanish, and in the next 
transformed reappear with a changed sign. This will continue 
till all the real roots between the proposed limits are passed over, 
when there will have disappeared as many variations as roots 
between p and q. Hence the additional variations, which may 
have disappeared, can have done so from no other cause than 
that above stated; and these additional disappearances therefore 
mark the number of imaginary roots.

We have noticed before (page 130) the importance of attending 
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to the signs of the terms contiguous to any simple vanishing 
term in a transformed equation ; and have shown that when the 
contiguous terms have like signs we may infer the existence of a 
pair of imaginary roots; a conclusion which harmonizes with 
that just deduced, and which is, in fact, included in it, as the 
case referred to is contained in the more general one here con
sidered. When, however, but one term vanishes, the signs are 
very readily supplied, the zero being always of one sign, +, or —, 
when the term is deduced from the antecedent contiguous equa
tion, and of the opposite sign, —, or +, when it is deduced 
from the subsequent contiguous equation. But when several 
terms vanish, we must actually write down the two series of 
signs which the contiguous equations referred to exhibit, and 
which, as before remarked, may equally replace the intermediate 
series, in order to discover the indications of imaginary roots. 
This supposes, of course, that we know what the contiguous 
series of signs are; and that we may in all cases find them with 
great ease, will be seen from the following considerations.

(110.) Let us suppose that in the course of any transforma
tions we have arrived at an equation or at a series of coeffi
cients containing zeros, and that we want to determine the 
series of signs due to the immediately succeeding transformation. 
Represent the indefinitely small quantity by which the roots of 
the transformed at which we have arrived must be diminished, in 
order to furnish the next transformation, by then, from what 
has been said about the influence of the signs in one transforma
tion upon those of the next (104), it will be seen that, on account 
of the minuteness of S, the sign of any term to be deduced must 
always be the same as that of the corresponding term above it; 
for, by making the multiplier J smaller and smaller, we may 
render every product by it as small as we please; so that the final 
addend, which, added to any term in the proposed series, is to 
produce the desired term in the new one, may always be made 
smaller than the term to which it is added, when that term is of 
any magnitude at all, and therefore the new term will have the 
same sign as the corresponding term preceding; when, however, 
this corresponding term is zero, then the sign of the result will 
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obviously be the same as that immediately before this zero. For 
example, if the series in which the zeros occur be

+ 0 0 0 0 — 0 0 0 — + 0÷0 0 0 0 0 — 

the immediately subsequent series must be

+ + + + + — — — — — + + + + + + + + —

To form the immediately preceding series from the proposed, 
and thus to go back a step, requires that we regard our minute 
factor δ as negative; and as multiplying by — δ has the effect of 
changing the sign of every addend, which we must always re
member is numerically less than the term to which it is to be 
added, on account of the minuteness of the multiplier which 
forms it, the antecedent series will be

+ _ + - + - + - + - + - + - + -+------

The order, therefore, and the signs, of the three consecutive 
transformations are as follow:

+ - + - + - + — + - + - + - + - +------
+ 0000- 000— +0 + Q0000-

+ + + + + — — — — — + + ++ + ++ + —

in which the lower series has fourteen changes of sign fewer than 
the upper series, showing that, in the insensibly minute transit 
from the first to the third, fourteen variations have been lost, and 
yet no real root passed over: hence the equation from which such 
results have been deduced contains fourteen imaginary roots, 
besides whatever others may manifest themselves in transforming 
between other intervals;' and it is obvious that every zero gives 
rise to a variation in the antecedent series, and to a permanence 
in the subsequent one; so that every passage through zero con
verts a variation, on the left, into a permanency.

(111.) The foregoing considerations lead to this rule of the 
double sign, viz.

To obtain the upper series, repeat the signs in the middle 
series, commencing at the left hand, till we come to zero, over 
which write the contrary sign to that last inserted, so that every
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sign exhibited, in the middle series is to have the same sign above 
it in the upper series ; and every zero is to have above it a sign 
contrary to that previously written in the upper series.

To obtain the lower series, put under every zero the same sign 
as that last inserted instead of the contrary sign; in other respects 
proceed as in the former precept.

It is plain that, although when but one zero occurs, the upper 
and lower series may preserve the same variations, yet, "when two 
or more consecutive zeros occur, this will be impossible; so that 
when any transformation has two or more consecutive vanishing 
terms we may be sure of the existence of imaginary roots. The 
rule will make known how many are indicated.

In examining these cases of consecutive zero coefficients, we 
have all along supposed that the vanishing terms do not extend 
up to the last in the series, thus causing the series to terminate 
with consecutive zeros. Should however such be the case, it is 
plain that the proposed equation will thus be depressed as many 
units in degree as there are consecutive zeros at the extremity of 
the series; and will consequently have just so many roots all 
equal to the number from which the transformation in question 
has arisen.

The converse of this is equally plain, viz. that when equal roots 
exist in the proposed equation, the transformation which results 
from diminishing all the roots by one of these—thus reducing each 
of the latter to zero—will terminate with as many consecutive 
zeros as there are roots equal to the number employed in the 
transformation; because the evanescence of so many of the final 
terms is necessary in order that the equation may be divisible by 
x as often as there are zero roots.

From what is proved above it appears that the passage through 
these zeros is attended with the loss of just so many variations. 
Hence when equal roots are passed over, their number is exactly 
equal to the number of variations lost in the passage: and conse
quently the theorem at (107), as well as all the deductions from it, 
remains unaffected by the entrance of equal roots into the equation. 
It follows too that when a single root is passed over, causing a 
change in the final sign, the immediately preceding sign remains 
undisturbed by the passage.
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(112.) From what has now been said we gather the following 
directions for determining the nature and situation of the roots 
of an equation.

1. From the given equation deduce a series of transformed 
equations, by means of the multipliers

....- 1000, - 100, - 10, - 1, 0

1, 10, 100, 1000 ....

taken in order, commencing sufficiently near to the limit — ∞ to 
cause the terms in the first transformed equation to have varia
tions only. If our first transformed exhibit any permanencies 
we are not to reject the step, but to ascend from it, through the 
preceding transformations, till we arrive at a series of variations. 
This is to be regarded as the first series. The last series, or that 
which terminates the process in the other direction, is to present 
only permanencies. The interval between the first transforming 
multiplier and the last, will comprise all the real roots of the 
equation, and will also conceal the indications of the imaginary 
roots.*

2. When zeros occur in any of the transformations, the signs 
of the terms are to be ascertained by the rule of the double sign.

3. Those partial intervals, from step to step, during which no 
loss of variation occurs, are to be rejected, as no roots can lie in 
this region of the entire interval.

4. Those partial intervals, wherein but one variation is lost, 
embrace one real root of the equation, and only one.

5. Those partial intervals, in which any odd number of varia-

• In practice it will be usually found more convenient to effect the transformations due to — 1, — 10, — 100, <fec. by changing these from negative to positive, and using the original coefficients with their alternate signs changed. The results arising out of these modifications will be those sought when alternate signs are again changed, as in the first example following.
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tions is lost, comprehend at least one real root; and may inclose 
as many real roots as there are variations lost. When the num
ber of variations lost exceeds the number of real roots, this excess 
will mark the number of imaginary roots, indications of which 
occur in the interval.

6. Those partial intervals, in which any even number of 
variations disappear, may comprehend as many real roots. They 
either actually do this, or else they comprehend indications of as 
many imaginary roots as will make up that number.

(113.) The last two of these statements point to certain regions 
of doubt, occurring within the entire interval which limits the 
range of the system of roots. To remove this doubt, and to 
evolve the information respecting the roots, which really lies 
concealed in these regions, would agreeably to the foregoing 
theory, require us to pass continuously over the space, without 
allowing the minutest interval to escape examination. This 
tedious scrutiny may, however, be dispensed with in practice, 
and the desired information obtained by the application to the 
doubtful intervals of certain criteria, by means of which, the in
dications of the real and of the imaginary roots are much more 
readily detected. The investigation of these criteria will be given 
in the next chapter.

We shall now show the application of the foregoing principles 
to one or two examples.

1. Let there be proposed the equation

a?5 — 3a?4 — 24a?3 + 95a?2 — 46a? — 101 = 0.

To determine the intervals, between which the roots are to be 
found.

In order to this we must deduce a series of transformed equa
tions, or rather a series of transformed coefficients, by means of 
the multipliers . . . . — 10,— 1, 0, 1, 10, . . . ., which we 
shall call factors of transformation, or transforming factors.

www.rcin.org.pl



THE SEPARATION OF ROOTS. 143

These coefficients are obtained as follows :

This operation need not be 
continued, as we see that the 
resulting transformed coefficients 
must necessarily be all plus.

Changing now the alternate signs of the proposed equation, 
commencing with the second term, and proceeding as above, we 
have

Consequently by returning to the proper signs, we have the 
following series, viz.
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As the first factor of transformation gives only variations, — 10 
is the inferior Emit to all the negative roots ; and as the factor of 
transformation 10 gives only permanencies, 10 is the superior 
limit to the positive roots. Hence the roots all lie between — 10 
and 10, and within these limits lie concealed the indications of 
the imaginary roots.

By comparing the two series given by the factors — 10 and 
— 1, we conclude, from the change of sign in the final term of 
the latter, and from the circumstance that only one variation is 
lost, that one root exists between — 10 and — 1 ; and only 
one.

The series given by the factors — 1 and 0, intimate the 
existence of one root between these limits, for the final signs arc 
contrary, and only one variation is lost.

The series given by the factors 0 and 1, show that no root exists 
between these Emits, nor yet any indications of imaginary roots, 
for no variations are lost.

The series given by the factors 1 and 10 show, by the change 
in the final sign, that one root at least exists between these limits ; 
there may be three, because three variations are lost; at all events, 
the interval [1, 10], is the only interval in which indications of 
imaginary roots can occur : it would, however, be tedious to seek 
for these indications by trying intermediate factors of transforma
tion, and we have already promised a more convenient method of 
proceeding, to be given hereafter.

2. Let the equation

.r4 — 4x3 — 3a? + 23 = 0,
be proposed.

The transforming factors 0, 1, 10, give
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Hence, applying the rule of the double sign, we have

The first of these series gives four variations, and the second 
two, this loss of two variations indicates the existence of one pair 
of imaginary roots.

The third and fourth series exhibit the same number of varia
tions ; hence the zero, produced by the transforming factor (1), 
does not arise from imaginary roots.

Let us now. examine the series (0) and (1), for which purpose 
we must compare the signs of (> 0) and (< 1), and we thus find 
that no root is comprised in the interval [0, 1], because there is 
no loss of variation.

For the interval [1, 10], we must examine the series (> 1) and 
(10), which we find to indicate the existence of two roots, 
because two variations are lost, but whether they are real or not 
cannot as yet be ascertained ; this, however, is the only doubtful 
interval.

3. Let the proposed equation be

.r5 + x4 + x2 — 25a? — 36 = 0.

The transforming factors

— 10, —1, 0, 1, 10,

give the following series of results :

10
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Applying the rule of the double sign, we have

(-1) .... +- +----------
r(<0).... ++-+-- 
l(>o)....+ + + + --

(i) . . . . + + + + - -

Comparing now these results, we find :—
That all the real roots exist in the interval between — 10 and 

+ 10.
That two of these roots may lie between — 10, and — 1, 

because, in passing over this interval, two variations have dis
appeared ; the interval may, however, contain indications of two 
imaginary roots.

That a pair of imaginary roots are indicated by (0), because the 
signs of (< 0) and (> 0) differ by two variations.

That no root exists between — 1 and 0, because the series 
(— 1) and « 0) have the same number of variations.

That no root exists between 0 and 1, because the series (> 0) 
and (1) have the same number of variations.

That one real root exists between 1 and 10, because one varia
tion has disappeared.

The only doubtful interval here is that between — 10 and — 1.
We shall give but one more example of the determination of 

the intervals of the roots.

4. Let the proposed equation be

x1 — 2a? — 3a? + 4a? — 5a? + 6=0.
The transforming factors

— 10, — 1, 0, 1, 10,
give the following results:

(_ 10) . . . . + _ + _ + _ + _

(-1) .... + - + ~+ + - +
(0).... + 0- 0- + - +
(1) .... + + + + + — — +

(io) . . . . + + + + + + + +
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And, applying the rule of the double sign, we have

We deduce, therefore, the following particulars :
There is one root between the limits — 10 and — 1, and 

only one.
The series (0) shows the existence of two imaginary roots in 

the equation, because the series (< 0) and (> 0) differ by two 
variations.

There is no real root between — 1 and 0.
There may be two real roots between 0 and 1, as two variations 

disappear between (> 0) and (1); but if there are not two real 
roots in this doubtful interval, there exists within it an indication 
of two imaginary roots.

There may also be two more real roots between 1 and 10.
The only intervals, therefore, in which we ought to seek for 

roots are those between — 10 and — 1, between 0 and 1, and 
between 1 and 10 ; and we know also that the equation has two 
imaginary roots at least.

(114.) It may not be improper to remark here, that when the 
equation proposed for examination has any of its terms wanting, 
as in the last three examples, we may always, by applying to it 
the rule of the double sign at once, determine the least number 
of imaginary roots that the equation can possibly have. Thus, 
in the last example, the signs of the proposed are

instead of which, the rule of the double sign gives the two series,
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which, because they differ by two variations, establish the ex
istence of at least two imaginary roots in the equation.

(115.) In equations of the form

Xn -f- N = 0

this method makes known the exact number of imaginary roots. 
For example, suppose the equation is

x6 — 1 = 0
which gives the series

+00000-

and, by the rule of the double sign,

+ -+-+------

++++++-

in which the upper series has five variations, and the lower but 
one. Hence, there are four imaginary roots in the equation, 
which is obviously the entire number; the two real roots being 
+ 1, — 1.

From a mere inspection of this upper and lower series, it is 
obvious that, in all cases, when m + 1 zeros intervene in an 
equation between unlike signs, there must exist at least m ima
ginary roots; and when m + 1 zeros intervene between like 
signs, there must exist at least m + 1 imaginary roots. These 
are the conclusions that have been otherwise deduced at (68).

(116.) From what has already been shown at p. 110, it is evi
dent that the coefficients of the transformed equation fix + r) = 0, 
to which we are conducted by diminishing the roots of a given 
equation j∖x) = 0, as in the preceding examples, by any number 
r, are no other than the successive functions

when written in reverse order and r substituted for x. For the 
proposed equation being
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we have for the transformed function j∖x + r), when the terms 
of the development are written in reverse order, the expression

of which the coefficients are what those in [1] become when r, 
the factor of transformation, is substituted for x. For example, 
taking the first member of the equation proposed at page 142, 
and the several functions derived from it, we have

Putting now 1 for x and writing the results in reverse order, 
we have

1 + 2 — 26 + 15 + 65 — 78

and putting 10 for a? we have all the results positive.
Also putting 0 for x we have

1 — 3 — 24 + 95 — 46 — 101

the coefficients of the proposed polynomial. And thus, whatever 
general relations are shown to exist among the derived functions 
[1], x being any value whatever, the same must exist among the 
coefficients of the original equation: for the functions [1] return 
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to these coefficients when x = 0 : in other words the original 
equation is

(117.) The examples by which we have illustrated the theorem 
at (107), or rather that at page 136, are from the Analyse des 
Equations of Fourier; but the processes by which the several 
transformations involved in these examples are here effected are 
very different from those employed in that work. Fourier 
actually exhibits the several derived functions in every case, as 
above; and as the signs of these only, for particular values of x, 
are required, he disregards the numerical divisors 2; 2,3 ; 2,3-4 ; 
&c. and thus encumbers the several expressions from which the 
series of signs are to be deduced, with coefficients unnecessarily 
large. The method of transformation uniformly employed in the 
present work is that exhibited at length in the analysis of the 
first example at page 143: it reduces the operation to the utmost 
simplicity.

In the preceding exposition of this method of partially ana
lysing a numerical equation we have united the names of Budan 
and Fourier, each of whom announced, independently it 
would seem of each other, the theorem at page 136, on which the 
method is founded. It is common with English writers to 
ascribe this theorem exclusively to Fourier—a singular pre
ference ; since the publication of it by Budan preceded the work 
of Fourier by nearly a quarter of a century. In the advertise
ment prefixed to this work, the editor, Navier, adduces evidence 
in favour of Fourier’s prior claim to the theorem. This 
evidence however consists of individual attestations to the fact 
that Fourier had developed his theory in manuscript so early 
as 1797—ten years before the publication of Budan ; and that he 
had publicly expounded it in his lectures at the Polytechnic 
School in 1803. But testimony of this kind must always be 
deficient in that distinctness; as to the precise character and 
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extent of the communications made, which so eminently belongs 
to the printed publication of them. There is however no room 
to doubt that Fourier was really engaged in researches upon 
numerical equations long before the appearance of Budan’s 
work; and that he had advanced in the enquiry beyond his pre
decessors. There is very conclusive evidence of this in a printed 
statement which seems to have escaped the notice of Na vie r, 
and the other advocates of Fourier’s claims. We allude to a 
passage in Montucla’s History of Mathematics, which we 
quote below.*

It is probable that Fourier was withheld so long from the 
publication of his researches—which after all were not printed till 
after his death—on account of the inefficiency of his theorem to 
make known the exact character of those doubtful intervals 
which, as we have already seen, frequently occur within the 
extreme limits of the real roots of an equation. Attempts were 
made both by Fourier and Budan to remove this defect, by 
help of certain supplementary operations applied expressly to the 
intervals in question. In this further analysis of the equation 
the two methods are perfectly distinct. We shall discuss them 
separately in the next chapter.

• In the passage referred to, Montucla, or rather Lalande, adverting to the previous inquiries of De Gua, and the general demonstration given by him of the rule of Descartes, proceeds as follows: “ Je ne puis passer sous silence un memoire sur la resolution des equations par le cit. Fourier, ancien pro- fesseur de mathematiques au College de Tonnerre,qui s’est aussi specialement occupe de cette demonstration; il en donne deux, l’une geometrique et fondle sur la consideration des courbes ci-dessus, l’autre purement analytique, et fondee sur des principes differens de ceux de 1’ abbe De Gua. Ses recherches le conduisent a beaucoup d’autres verit⅛ utiles, qu’il est juste qu’il publie lui-meme le premier.’’—(Montucla : Hist, des Mathematiques, tom. iii. p. 39, 1802.)Fourier died just as his work on Equations was put to press : his mss. were consigned to the care of Nλvier, who published the first part in 1831. But the death of Navier himself, shortly afterwards, put a stop to the progress of the publication.
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CHAPTER VIII.

ON THE ANALYSIS OF EQUATIONS FROM GEOMETRICAL 

CONSIDERATIONS : METHOD OF FOURIER.

(118.) From the investigations in the preceding chapter, it ap
pears that it is no difficult matter, when any numerical equation 
is proposed, to determine close inferior and superior limits, 
within the interval of which shall lie concealed not only all the 
real roots, but likewise all the indications of imaginary roots. 
In fact, we can never be sure that all the real roots are actually 
comprehended within any proposed boundaries, till we have 
ascertained that the indications of the imaginary roots all lie be
tween the same limits; so that when the extreme limits of the 
real roots are clearly determined, the complete analysis of the 
equation consists merely in a sufficiently minute subdivision of 
the interval between them.

In the foregoing chapter such a searching scrutiny has not 
been attempted; and accordingly the character of some of the 
component intervals, which our partial analysis has furnished, 
often remained doubtful. In some cases it would be impossible 
to completely remove this doubt by simply narrowing the com
ponent intervals, or increasing the number of subdivisions; that 
is, by making our factors of transformation less and less. Ex
traneous information would still be requisite before wτe could 
pronounce with confidence upon the character of an interval, 
however minute, in passing over which two changes of signs were 
lost: we should experience the same uncertainty as before, as to
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whether these two changes indicated a pair of imaginary roots, or 
a pair of real roots differing from each other so minutely as to 
lie both within the small interval referred to. And we could 
resolve the doubt only by knowing, from some independent 
source, either the least of the differences furnished by every pair 
of real roots, or else a number less than the least difference, as 
already explained at (92). The determination of such a number, 
though theoretically possible, is an operation so laborious, in 
equations beyond the fourth degree, as to be practically useless 
in the analysis of equations. Indeed, roots sometimes differ by 
numbers so exceedingly small, that, even supposing a limit below 
this difference to be found, yet the labour of passing over an in
terval by such minute advances would be a very long and tedious 
process. It would be well if we could exhibit to the eye the 
continuous series of results which the first member of any equa
tion would furnish by substituting continuous values for x from 
the inferior up to the superior limit of the roots: we should then 
perceive at a glance all the passages of the polynomial through 
zero, and thus become acquainted with the exact number of the 
real roots. Of course the practical difficulties in the way of this 
are insuperable; yet the idea obviously suggests the geometrical 
representation of an algebraic polynomial by means of a con- 
tinous curve line, which shall unite all the isolated values of that 
polynomial resulting from individual substitutions.

A contemplation of this curve would not only verify all the 
analytical results known to be implied in the equation, but, from 
purely geometrical considerations, new truths might discover 
themselves which had escaped observation in the abstract alge
braical form. It was from examining in this manner the geome
trical representation of an algebraic polynomial, that Fourier 
was led to the method about to be explained for determining the 
character of the doubtful intervals occurring between the ex
treme limits of the roots of an equation, without having recourse 
to the problem for finding a number less than the least of the 
differences of the roots.

The idea of converting an algebraic polynomial into a conti
nuous curve, embodying all the peculiarities of the symbolical ex
pression in a geometrical form, first suggested itself to Descartes, 
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and is a contrivance which has often been resorted to for clear 
illustration of certain particulars in the general theory of equa
tions, for which illustration we shall shortly see it to be well 
adapted: but the geometrical property noticed by Fourier 
enabled him to advance a step nearer than his predecessors 
towards the complete analysis of a numerical equation.

(119.) If the student be already familiar with the principles of 
analytical geometry, he will readily perceive how this connexion 
between an algebraical equation and a geometrical curve subsists; 
and how the properties of the one become convertible into those 
of the other : but for those who may be unacquainted with this 
important branch of analysis, it will be necessary to offer a few 
preliminary explanations.

As usual let f(x) = 0 represent any algebraical equation in x: 
this is a determinate equation, because the unknown quantity x 
admits only of a determinate number of values to the exclusion 
of all other values. But if we remove the restriction which con
fines the first member to the single value zero, and imply that 
this value is arbitrary, by writing the equation in the more gene
ral form f(x) = y, we then render the equation indeterminate, 
since x admits of any value whatever; to each of which, how
ever, there corresponds a certain determinate value of y, as im
plied in the sign of equality. We have then to exhibit the gene
ral law, which thus connects every value of x with the correspond
ing value of y, by means of a geometrical figure.

From any assumed point A draw an indefinite straight line AX 
towards the right, and extend it indefinitely in the opposite 
direction AX'. In like manner draw from A a perpendicular to 
X'X of indefinite length, AY, and prolong it indefinitely in the 
opposite direction AY'. These two lines are called the axes, and 
the point A, where they intersect, is called the origin of the axes. 
Now if we assume any series of positive numerical values for x, 
and measure each of these values from A towards X, according to 
any unit of length chosen at pleasure, we must measure a like 
series of negative values of x in the opposite direction from A, 
that is from A towards X'; for then the lengths, thus set off in 
each direction, will not only be correct representations of the ab
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solute numerical values for which they stand, in reference to the 
linear unit previously agreed upon, but they will also imply, in 
the directions in which they are measured, the algebraic signs 
which those values take. In like manner, if positive numerical 
values of y are measured along the other axis, from A in the 
direction AY, then negative values must be measured in the oppo
site direction AY'.

This being premised, let AB represent any value of x ; then 
the corresponding value of y will also have some linear repre
sentation, which may be set off upon the other axis, above X'X if 
y be positive, and below X'X if negative; or, which is better, upon 
a parallel to this axis drawn through B, the termination of the 
linear value of x∙. let BP be this length. Of the point P, thus 
determined, AB is called the abscissa, and BP the ordinate: 
together they are called the coordinates of the point P. Another 
assumed value of x will furnish another abscissa AC, and for the 
corresponding y another ordinate CQ, represented in the diagram 
as negative, being drawn below the axis X'X. These new coor
dinates introduce a second point Q. And thus if it were possible 
to construct the continuous series of values for x and y, setting 
out with x = 0, and proceeding towards x = + ∞ on the right, 
and towards x = — ∞ on the left, we should be furnished with 
a continuous series of points; that is, with an uninterrupted 
curve line. We may therefore consider this curve as traced out 
by the extremity P, of an ordinate BP = y, moving parallel to 
itself, along the axis X'X, and varying in length as its distance x 
from A varies, the law of variation being expressed by the re
lation y =j∖x). Conceiving the curve to be actually generated 
in this way, it is easy to see how, from any value of x being 
given, the corresponding value of y may be found, and vice versa.
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Thus, if AC represent the given value of x, then the perpen
dicular CQ, extended till it meets the curve, will represent the 
corresponding value of y, which wre shall know to be positive or 
negative according as Q is above or below XX';—in the above 
diagram it is negative. In like manner, if the value of y be 
given, then setting off that value upon the axis YYz, attending to 
the algebraic sign of it, in order to ascertain in which direction 
from A it is to be measured, and drawing from the extremity of 
this ordinate a parallel to X'X, the intercepted portions of this 
parallel, between YY' and the curve, w ill be so many abscissas, or 
values of x, corresponding to the single ordinate, or value of y, 
proposed. If, for instance, the given ordinate be AK, then TKW 
being parallel to X'X, the corresponding abscissas, or values 
of x, will be KL, KM, KR, KV, KW, positive, and KS, KT, 
negative: this is plain, because the points L, M, R, V, W, S, T, 
have these several abscissas, and one uniform length of ordinate, 
viz. the length AK.

(120.) As observed above, it is not possible actually to con
struct this curve; the utmost we could do would be to approxi
mate to its form by means of a series of isolated points determined 
from a series of successive values of x; but, by making the inter
vals between these values very small, we could evidently form a 
tolerably accurate notion of the general character of the curve 
within any proposed limits taken for the values of x. Indeed, 
without any approximate construction at all, such a general no
tion may be formed from the nature of the polynomial wrhence it 
has been derived. Thus wre may be quite sure that the undulat
ing curve above exhibits the general character of such a polyno
mial ; for the composition of the polynomial is such that to any 
value of x there corresponds but one value of y, as in the figure ; 
while for particular values of y there may exist several values of 
x, as many indeed as there are units in the highest exponent of x. 
The curve, therefore, should be such that as many values as there 
are for x, corresponding to a given value AK for y, so many inter
sections must there be of the curve with the parallel to X'X 
through K. If y be zero, then the corresponding values of x 
must represent the real roots of the equation fix') — 0 : they will, 
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therefore, be equal in number to the intersections of the undulat
ing line with the axis XzX : those intersections to the right of A 
will indicate the number of positive roots; and those to the left 
the number of negative roots. In the diagram above three posi
tive roots are indicated, and two negative roots. As, in order to 
produce an intersection with the axis of abscissas, the curve must 
pass from one side of that axis to the other, it follows that the 
ordinates, immediately before and immediately after the intersec
tion, must have opposite signs ; that is, the polynomial f(x) 
changes sign while x passes through a single real root.

Following the progress of the curve, after this intersection, 
it is plain that no second change can take place in the sign 
of the ordinate till the curve again crosses the axis ; that is, 
till another root is passed, when the ordinate emerges on the 
other side of the axis with a changed sign. Its length thence 
increases up to a certain limit, at which the curve again bends 
towards the axis, crosses it a third time, and gives rise to a new 
series of ordinates with signs opposite to those which vanished at 
the former point of intersection.

Thus we see that two values of x, which give for f(x) or y 
results with opposite signs, must intercept either 1, or 3, or 5, &c. 
real roots; and two values which give results with like signs must 
intercept either 0, or 2, or 4, &c. real roots. When, in the 
polynomial /(«), a number so great is substituted for x that the 
transformed equation, arising from diminishing the roots of the 
equation f(x) = 0 by this number, has all its terms positive, 
then we know (102) that the number in question exceeds the 
greatest positive root of the equation ; and, moreover, that if a 
series of numbers, continually increasing beyond this, be succes
sively substituted, that the results f(x) or y, will also continually 
increase (103). In a similar manner will the results continually 
increase for substitutions for x continually tending towards — α>, 
after a certain limit is reached, viz., that which furnishes a trans
formed equation with its terms alternately positive and negative. 
Hence, the curve, after having furnished as many intersections 
with the axis of abscissas as there are real roots, continues its 
course interminably on each side of the axis of ordinates; and, 

www.rcin.org.pl



158 ANALYSIS OF EQUATIONS

after a certain limit, all undulations must cease, and the ordinates 
become continually longer and longer without termination.

Whether the degree of the equation be odd or even, that part 
of the curve which is to the right of A will proceed on its un
limited course above the axis of abscissas ; since the ordinates, 
after the Emit referred to, must always be positive. But to the 
left of A the curve will extend above or below the axis of abscissas 
according as the degree of the equation is even or odd : this will 
appear from considering that when the terms are alternately 
positive and negative in an equation of an even degree, the final 
term,—which is that furnished by the polynomial f(x) when the 
number by which the roots are diminished is substituted for x,— 
will be positive; and in an equation of an odd degree the same 
term will be negative. This shows that for an equation of an odd 
degree there must be at least one intersection of the curve with 
the axis of abscissas : as the curve proceeds without limit on both 
sides of that axis, which it cannot do without crossing the axis, 
should it cross a second time, it must cross a third, otherwise it 
could not proceed on opposite sides of XzX : for a like reason if it 
cross a fourth time, it must also cross a fifth time, and so on : 
the number of intersections being necessarily odd; that is, an 
equation of an odd degree must have an odd number of real roots. 
An equation of an even degree has not necessarily any real roots ; 
as the curve need not of necessity cross the axis, because it pro
ceeds without limit on one and the same side: but if there be one 
intersection, there must on this account necessarily be another ; 
and if a third, then a fourth, and so on ; so that when the degree 
is even the equation must have an even number of real roots, or 
else none at all.

(121.) If in the equation f(x) =y a succession of values be 
given to y, from y = 0 to y = ai we shall have a succession of 
equations from f (x) = 0 to f(x) = a, or f(x) — a = 0, differing 
from one another only in the final or absolute term, If AK repre
sent one of these values of y, the intersections L, M, R, V, W, S, T, 
will show the number of real roots in the corresponding equation ; 
and by conceiving XzX to move parallel to itself, till it reach the 
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distance a from its original position, the successive series of in
tersections will exhibit the number and character of the real roots 
of the several successive equations. It is easy to see that, by 
means of these changes, certain pairs of unequal roots will be 
separated more widely, while others will be brought nearer to 
equality : for instance, the two roots indicated originally by the 
intersections G, H, and which are separated by the interval GH, 
are changed into the roots indicated by the intersections S, L, 
which are wider apart, when the axis arrives at TW; whilst the 
two roots, differing originally by HI, now differ only by LM ; 
and these are actually brought together, and rendered equal, when 
the axis has advanced so far as to touch at P,, rendering the 
separating interval LM zero. This then is the geometrical pecu
liarity of a pair of equal roots:—instead of intersection, as in the 
case of a single root, there is contact with the axis.

When the axis, by moving parallel to itself, advances still 
farther, the two roots that have been rendered equal no longer 
exist: as soon as the axis ceases to touch, a pair of intersections 
is lost; and thus a pair of roots becomes unaccounted for by the 
intersections that remain. This, therefore, is the geometrical 
peculiarity of a pair of imaginary roots :—the curve approaches 
towards the axis, bends before arriving at it, and completes an 
undulation without meeting it. There is such a peculiarity at p∙, 
XzX being the position of the axis.

It is worthy of notice that, by changing the value of the abso
lute term of an equation, without disturbing the other coefficients, 
we may always convert, as above, a pair of consecutive unequal 
roots into a pair of equal roots : but that that change will not 
generally suffice to render three unequal roots equal. In the curve 
above, no three intersections can be made to coalesce, and merge 
into a single point, by any change in the distance merely of the 
parallel TW from its original position.

In order that three points of intersection may merge into one 
there must be a change in the coefficients of f(x), such that the 
geometrical equivalent is not a mere transference of the axis 
parallel to itself, but a change of direction in that axis. Thus 
the three points Pz, P, Pzz merge into the single point P when 
XzX, by turning round P, takes the position of a tangent to
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each of the portions PmP', PnP", of the curve, at the point of 
inflexion P.

(122.) By thus giving a geometrical interpretation to the 
expressions of analysis, much clearness and distinctness may often 
be added to the ideas conveyed by our symbolical forms, and 
many interesting analytical truths at the same time suggested. 
One great advantage of presenting algebraical expressions under 
this form is, that instead of our attention being confined to iso
lated individual values merely, we are enabled to contemplate the 
law of continuity that unites them all. It is, indeed, solely from 
this law being presented to our view, in the continuous curve 
which replaces the analytical formula, that the geometrical repre
sentation can supply anything in addition to our analytical de
ductions. Of course the algebraical form is competent to furnish 
all the inferences deduced from the curve which represents it; 
but it often happens that what is so entirely concealed among the 
algebraic symbols, as to be evolved only by analytical artifice, 
may spontaneously offer itself to notice in the geometrical repre
sentation.

From what is shown above, much light is thrown upon the 
connexion between real and imaginary roots ; and upon the fact 
of the necessary occurrence of the latter when the principle of 
continuity is carried fully out (35). The connexion here spoken 
of is not that between the roots of an individual equation ; but 
that between the successive series of roots of a continuous series 
of equations. Instead of considering an isolated equation, the 
geometrical form enables us to trace the connecting circum
stances of the entire series to which that one belongs; and thus 
to ascertain how its imaginary roots arise, and what real values 
have given place to them, or have merged into them. Considering 
in this way any proposed equation as one of a series of others, 
in which the right-hand members pass continuously over a series 
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of values from — a to + δ, and, therefore, through zero, we 
clearly see how, by the operation of a uniform law, two unequal 
roots pass into equal ones, and thence into an imaginary pair; 
and also how a minute change in the absolute term of an equation 
having a pair of equal roots, will convert those roots either into 
two unequal roots, lying very closely to one another, or into a 
pair of imaginary conjugates. For such a change corresponds to 
a slight movement of the axis parallel to itself. If contiguous 
ordinates, or values of f(x), one on each side of the ordinate 0 
corresponding to the equal roots, be found to have increased by 
this displacement of the axis, it will show that the axis must have 
receded from the curve : the two roots will then have become 
imaginary. But if the same ordinates have diminished, we may 
then infer that the roots have continued real, and have become 
unequal. We shall find these circumstances of consequence in 
the analysis of equations.

It is of importance to observe, in reference to what has just 
been said respecting the geometrical indications of imaginary 
roots, that all the imaginary roots of any equation f(x) = 0 are 
not necessarily thus indicated in the curve line which completely 
represents the general equation f(x) = y. Only those are so dis
tinguished of which each pair unites continuously, as above de
scribed, with a pair of real values of the equation f(x) = a, which 
real values approach towards equality as a approaches towards 
zero ; or, referring to the geometrical representation, as TW ap
proaches towards X'X. After this equality is reached the values 
pass from a real into an imaginary form, which passage is indi
cated in the diagram by the undulation—which first gave a pair 
of intersections, and then by the union of these a point of contact 
p—becoming altogether detached from the axis.

It is essential therefore to the existence of this undulation, 
that the imaginary roots indicated by it be those into which two 
equal roots of f(x) — a = 0 have merged by an alteration in the 
value of a. These equal roots are represented in the diagram by 
the line A⅛, or rather by a line equal and parallel to A,q, touching 
at p. We know, from the theory of equal roots, that the re
peated root enters also once into the derived equation fx(x) = 0, 
which is the derived equation equally of f(x) — a = 0, and of

11
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fx) = 0, since a change in the absolute number of the primitive, 
causes no change in the derived equation. Aq therefore repre
sents a root of fix) = 0.

It thus appears that in passing over the interval nr, compre
hending the indication of a pair of imaginary roots, that is, in 
substituting continuous values for x, from x = An, to x = Ar, in 
fix), we necessarily pass over a root of fix) = 0 ; and the value 
of this (Ag) is such, as to render fix), or pq, a minimum ; that is, 
less than the immediately preceding and succeeding values of fix)- 
The two changes of sign, lost in the interval nr, thus arise from 
the passage of f{x) through zero. In the signs of the derived 
functions, from the last up to fix) inclusive, only one change 
can be lost by this passage ; and as two are lost when the next 
following function fix) is included, it follows that the value which 
makes fix) zero, causes fix) and f2lχ) to take like signs.

Now not only has the equation fx) = 0 a pair of imaginary 
roots when these circumstances have place in the last three func
tions fix), flχ)i f>lx)> but also when similar circumstances have 
place in any three consecutive functions ; for wherever an inter
mediate function vanishes for a value which renders the signs of 
the functions contiguous to it, on each side, like, a pair of imagi
nary roots in the primitive equation will be implied (page 129). 
These latter imaginary roots are not indicated then in the curve 
referred to : they have their indications in other curves, those 
which arise from constructing every equation ffx) = y, of which 
the first member ffx) takes the same sign as fm+2lx) for a value 
which causes the intermediate function∕m+1(^) to vanish.*  This 

• These latter indications directly refer only to the imaginary roots of that derived function which immediately precedes the one that vanishes in the order of derivation, and the existence of imaginary roots also in the primitive equation is but an inference from this. These latter roots are thus merely indicated, and nothing respecting them beyond the simple indication of their existence is furnished to us. It is not so with respect to the other class of imaginary roots, whose presence is immediately made known, as above explained, by the first and second derived functions. Each pair of such roots is not only indicated, but to a certain extent the real parts are actually represented or expressed. In the diagram at page 155. Aq actually represents a portion of the root indicated, which portion becomes more and more important as pq diminishes. The numerical value of Aq is that which, when put for x in ∕(<r),
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distinction of the imaginary roots into classes, suggested by the 
different curves in which their indications occur, is of consi
derable importance in reference to the researches of Fourier; 
who, as we shall now see, is careful to observe the principles im
plied in it in his analysis of those doubtful intervals which some
times occur within the limits of the real roots of an equation.

(123.) An interval, anywhere within the extreme limits of the 
roots of an equation f(x) = 0, is doubtful, when the values of x 
which comprehend it produce no change of sign in f{x), although 
an even number of changes are lost in the entire series of derived 
functions, in the passage of x from the smaller of those values to 
the greater. The indications lying in such an interval may imply 
real roots, either equal or unequal; or they may belong only to 
imaginary pairs : our object at present is to discover criteria by 
which the true character of the interval may be ascertained.

Suppose first that two roots only are indicated in the interval 
in question—the interval [σ, δ]; and let the geometrical represen
tation of that interval be either that in figure 1 below, or that in more nearly satisfies the condition f (x) = 0 than any neighbouring value : the defect of the result from zero is represented by pq: it can therefore be diminished, and finally annihilated, only by the preceding value taking an 
imaginary increment, or one of the form a + β f— 1, which, however, will become the more unimportant as the defect itself to be removed becomes smaller. Thus Ag, or the root of∕,(x) = 0, will be an approximation to the real part of the imaginary pair. When actually put for x in f (x), the result will be nearer to zero than that given by any adjacent value : and if the defect from zero be so small as to warrant its disregard, in the inquiry in hand, the complementary imaginary part may unquestionably be rejected, and the real value taken for the root, or rather for one of two equal roots.It is easy to see how all trace of the existence of the other class of imaginary roots becomes lost in the curve. We have considered our proposed equation as one of a continuous series of equations differing from one another only in the final term ; and have taken note only of the intersections lost in passing over this series. But our equation may unite with an endless variety of varying equations, changing according to different laws. The curve at page 155 may have passed into that form through various preceding forms— forms which presented intersections that have gradually coalesced, and then disappeared. The manner of this disappearance, and of the passage from real values to imaginary, cannot of course be exhibited to the eye, although readily conceivable. 
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figure 2. The former, from what is shown above, will indicate a 
pair of real roots, because the curve cuts the axis; the latter, 
where no intersection takes place, will correspond to a pair of 
imaginary roots. And, from knowing the interval ab, and the 
ordinates am, bn, at its extremities, we have to determine which 
of these two representations belongs to the case under examina
tion.

The following considerations suggested themselves to Fourier 
for this purpose: If the second figure represent the true construc
tion of the equation f(x)=y in the doubtful interval, the follow
ing circumstances must have place, viz., if tangents be drawn 
from m and n, meeting the axis in a' and b', and then again tan
gents from m' and n', where the ordinates a'm' and b'n', meet the 
curve, or where ordinates still closer together would meet it; and 
so on; it is plain that we shall at length arrive at a pair of tan
gents that must cross one another before they reach the axis. Let 
these be the tangents from m!, and n!, which, after crossing, meet 
the axis in v, w; then the sum of the two portions a'v, b'w, must 
necessarily exceed the interval a'b'. Each of these portions is, in 
geometrical language, called a subtangent, and is defined as the 
part of the axis between the ordinate and tangent; so that when 
the curve is that of figure 2, it is always possible, by bringing the 
ordinates am, bn, which bound the doubtful interval, closer to
gether, that is, by narrowing the interval [a, δ], to arrive at a pair 
of subtangents whose sum shall exceed the interval thus contracted.

Now this can never be brought about in the first figure : nor 
can even the sum of the subtangents be rendered equal to the 
interval, as is evident; and in attempting to effect it by narrowing 
the interval [a, δ], we should be led within the limits of the real 
roots, and thιi3 to a value of y or f(x) opposite in sign to the 
values f(a) and f(b); so that the separation of the roots would 
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be accomplished.*  We are thus informed of the desired criterion 
for testing the character of the proposed interval; and it only 
remains to convert the geometrical operations, involved in its 
application, into the processes of analysis. The well-known 
theory of curves at once suggests these.

• It should be observed in this latter case, that if the new ordinates, from whose extremities the new pair of tangents is drawn, always spring from the extremities of the last pair of tangents, the limits will contract at a continually diminishing rate; and we shall never be able to bring them within the points of intersection, and thus separate the roots: every new ordinate, therefore, should be distinct from that last taken by an interval which exceeds the length of the last subtangent; that is to say, in contracting the interval by assuming an intermediate value of x, this new value of x should differ from each of the former values by a quantity greater than either of the subtangents which those former values furnish. It is of importance to remember this.+ The proof of this, as well as of one or two other particulars in the next article, involves the elementary principles of the general theory of curve lines; for which the student may consult the second section of the author’s Differen~ 
tial Calculus, chapters ι and ιι.

The subtangent corresponding to any abscissa a, is analytically 
/» ( (l∖

expressed by ∙ ;f so that, disregarding the algebraic signs, 
fι∖a)

and actually adding the subtangents at the limits α, b, the cri
terion of a pair of imaginary roots is

f /(«) 
t∕ι(β) = or > (b — a) . . . . [a]

And in seeking to fulfil this condition, by making the interval 
[a, 6] narrower and narrower, we shall either actually succeed 
in doing so, or be led to a value of y-f(a'), or y∙=f(b'}, of 
opposite sign to that of f(a) and ∕(δ) ; and thus to a separation 
of the roots.

(124.) It must be observed, however, that it is all along pre
sumed in the foregoing reasoning, that the curve has no sinuo
sities or points of inflexion, as in the figure at page 155, through
out the interval between m and n ⅛—the existence of such a point 
would be fatal to the preceding conclusions.

This restriction requires that f2(fi) preserves its sign unchanged 
throughout the interval [a, 6]; for the analytical indication of
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a point of inflexion is ∕2(aj) = O. Moreover, the form assumed 
for the geometrical representation of the equation j∖χ)=yi within 
the limits x = a, x = b, is such as to imply the existence of a 
point P, at which the tangent is parallel to the axis : this implies 
the existence of a single value a' for x, between a and b, that 
will satisfy the analytical condition ∕1 (α') = 0; so that while x 
passes over the interval ∖a, b^},j∖(x) changes its sign.

The conditions therefore implied in the preceding constructions, 
and in the analytical inferences drawn from them, are that the 
two changes of signs lost in passing over the interval [c, 6], are 
lost entirely in the passage of the last three of the series of func
tions

∕n(a7)> ∕n-l(a7)> ∙ ∙ ∙ ∙ Λ(a0> Λ(a7)> ∕1(*)>  Λa7)>

that is, in the three functions
∕2(a7)> ∕ι(ar)> ∕(*)>

which give either the results
a? = α + — + — + —

or,
a? = δ + + + —

the preceding terms of the series losing no changes within these 
limits. Hence in the application of the criterion [a] we must 
proceed as follows:

(125.) Having substituted the two limits a and b in the series 
of functions above, and having compared the signs of the results, 
if we find that the second series of results has two changes of sign 
fewer than the first; but that omitting the last two signs of each 
series the second has just as many changes of sign as the first; 
then, in order to ascertain whether the two roots indicated are 

real or not, find the values of y and y ; and, disregarding 

their algebraic signs, see whether the sum of these fractions sur
passes, or is at least equal to b — a: if such be the case, we may 
be assured that the two roots indicated are imaginary.

If the preceding condition have not place, the sum of the frac
tions being less that b — a, we must narrow the interval [σ, 6] 
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by taking some intermediate number c; but, to avoid the endless 
subdivisions of the interval which would attend the attempt to 
separate in this way two roots that might eventually prove to be 
equal, we ought to examine whether fx) and ffx) have a com
mon measure <p (x) ; and if so whether the equation <ρ (z) = 0 has 
a real root c comprised between a and b. If it have, the equation 
fix) = 0 has two real roots in the interval, each equal to c; and 
thus the character of the interval becomes determined.

But if the functions fix), t∕* 1(∙r) have no common divisor <p (x), 
or, having one, if the equation =0 have no root between 
a and b, which we may ascertain as above, then we must examine 
whether the two roots of fix) =0, indicated between a and b, can 
be separated by the substitution of a number c intermediate 
between a and b. If upon the substitution of any such number 
the sign of ∕(c) is different from that of fid) and fib}, the two 
roots must be real; one lying between a and c, and the other 
between c and b. But if on the contrary, the sign of∕(c) is the 
same as that of fid) and fib), then we must conclude that the 
limits at first chosen were not sufficiently close to enable us to 
determine the character of the roots at the first operation.

For a second operation let us take for limits c, and that one of 
the former two of wrhich the substitution in fx (a?) gives a result of 
contrary sign to that of ι∕* 1(c) ; and proceed with this interval as 
with that at first chosen; and so on till the condition [a] is ful
filled, or till the roots are separated.

(126.) As a first example, let the proposed equation be

fix) = x3 -j- 2x2 — 3x + 2 = 0.

Then, proceeding as in the last chapter, wre find the follow ing 
results for x — 0, x = 1.

The actual values of fix), fix), for the proposed values of x, 
are written down; because these values are to be employed in the 
analysis of the interval [0, 1].
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This example belongs to the class of equations to which the 
preceding rules apply: two changes of signs are lost in passing 
over the doubtful interval, ∕1 (x) = 0 has a single root in that 
interval, and f2(f) ≡≡ θ has no indications of roots in the same 
interval. And we have now to ascertain whether the two roots 
indicated in f(x) = 0 are real or imaginary.

The limits in the present case are a = 0 and 6 = 1; therefore 
the right-hand member of the criterion [a], neglecting algebraic 
signs, is

<rι'4zhl^

and as this exceeds the left-hand member b — a or 1, we conclude 
at once that the roots indicated are imaginary.

As a second example, let the equation

a? + x4 + x2 — 25a? — 36 = 0

already partially analysed at page 145 be proposed. The analysis 
referred to shows the existence of a doubtful interval between the 
limits — 10 and — 1.

In this case the first member of [a] is

which is evidently less than 9, the difference between the limits; 
so that the character of the interval still remains doubtful. It 
is possible that the roots indicated may be equal; so that before 
attempting to separate them, by subdividing the interval, it will 
be proper to examine whether or not such be the case ; that is, 
whether or not the functions

a? + a?4 + x2 — 25x — 36, and 5x4 + 4.r3 + 2x — 25

have a common measure. Upon trial we find that a common 
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measure does not exist; and we may therefore proceed to narrow 
the interval, with the confident expectation that, sooner or later, 
the criterion [a] will be fulfilled, or else the roots separated.

Employing then an intermediate number, as — 2, we have

And this number separates the roots, as appears from the two 
changes which /(«) presents. Hence one root lies between — 1 
and — 2, and the other between — 2 and — 10.

These two examples will sufficiently illustrate the course to be 
adopted in the analysis of a doubtful interval whenever the series 
of signs, which the derived functions present in the passage of x 
over that interval, lose only two changes, and when, moreover, 
those losses are confined to the last three functions in the series.

It remains now to be shown that when these restrictions are 
removed, and the functions taken unconditionally, the same pro
cess may still be made effective in detecting the character of the 
doubtful interval.

(127.) In order to this, let the signs due to the series of func
tions, for the proposed limits, a, b, be written in two rows as 
before; and let there be inserted between these the numbers 
which express the changes lost in the first two terms, the first 
three, the first four, and so on to the end of the series: the last 
number inserted will of course express the greatest number of 
roots the proposed equation can have within the limits under 
examination. For instance, if the signs in the case of an equation 
of the fifth degree, for given values a, b, of x, be

the numbers expressing the changes lost in proceeding from term 
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to term to the right-hand extremity of the series will be 0, 1, 2, 2, 3. 
These, Fourier calls the indices of the changes:—they show us 
that the equation ∕4(^)has no root between a and 6; that∕3(α!)=() 
has one, but not more; that∕2(⅛) = 0 has indications of two roots, 
that f↑{x)- θ has like indications, and that f(x) = 0 has indi
cations of three roots in the interval.

It is necessary to notice that these indices can never succeed 
one another in an arbitrary manner: if δ represent any one, that 
immediately following must be either δ or δ — 1 or δ + 1. This 
is plain, because in passing on from one term to the next in the 
series, the number of changes is either left undisturbed or else 
increased or diminished by a single change only.

If the last index is 0, we shall infer that no root exists in 
the interval: if it is 1, that a single root exists but no more : the 
interval can be doubtful only when this index is greater than 1. 
Such then being the case, it is plain that one of the preceding 
indices, at least, must be 1: for the first index, if not itself 1, 
must be 0, in which case the second must be either 0 or 1, for no 
index can be negative (106), and as observed above, the difference 
between two consecutive indices can never exceed unity. It fol
lows, therefore, however many zeros may succeed one another, 
the index 1 must at length occur, since by hypothesis the last 
index is 2, at least; so that wherever a zero occurs, a 1 must 
occur beyond it.

Let the index 1, nearest to the right-hand extremity of the 
series be taken, and let the corresponding function be fm(x)∙ We 
may then infer, whatever be the composition of the functions 
beyond this, towards the right, that the equation ∕m(^) = 0 has 
only one root in the proposed interval.

The index next to this, on the right, must necessarily be 2 : 
for it is not 1, by hypothesis; and it cannot be 0, since then a 1 
would occur beyond it, as just remarked, and this also is contrary 
to the hypothesis. The index next to it on the left, however, 
may be either 1 or 0; and if it be 1, it may be made to become 0 
by diminishing the interval [a, 7√], as appears from the following 
considerations.

The equations ∕nι(lr) = 0,∕m + 1 (λ,) = 0 cannot have equal roots 
within the limits a, b, since then two roots of the former would 
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be equal (98), and thus the index corresponding to fm(x) could 
not be 1, implying only a single root. Whatever the actual value 
of tlιis single root may be, we may consider it to be diminished 
down to the limit a', and increased up to the limit b,> so that 
every root of ∕m+1(<r) =0 may be excluded from the interval 
[«z, b'] : hence such an interval exists ; or such values, a,, b', may 
be given to x, that will reduce the index of ∕m+1(^) to zero, and 
the index of ∕* m(^) to 1. By determining these values, the pri
mitive interval [a, 6] becomes subdivided into the three partial 
intervals

[«, azJ; [a!i 5']; [óz, ój.

In the first and third of these, it is plain that the equation 
fm (x) = 0 cannot have any roots, since the only real root lying 
between the extreme limits a, b is comprised within the new limits 
αz, b,. Consequently for each of the extreme intervals [a, a'] 
and [δz, δ] the index corresponding to the function fm(x) will 
be 0 ; and thus, for each of these intervals the index 1, whose pro
gress we are now tracing, is advanced further towards the right
hand extremity of the series ; that is, nearer to f (x), at which 
advanced point we may proceed anew as above.

It is possible, however, that this 1 may be postponed, by the 
occurrence of a succession of zeros, till we reach the last term 
f (x) itself; in which case a single root will thus be detected; or 
the zeros may continue up to the end, in which case we shall 
know that roots are excluded from all but the middle interval 
[a!, δz]. As to this interval, we know that the index 1, corres
ponding to fm(x), is comprised within it; but it may happen 
that, with this contracted interval, fm(ff) is no longer the last 
function to which the index 1 corresponds ; there may, as in the 
extreme intervals, occur a 1 still more in advance ; in which case 
the object we have in view, viz. to carry forward the final 1 either 
till it become the last of the series, or till it cause the last to be 
zero, will be promoted. But if this should not happen, 1∕m(tf) 
being still the last function whose index is 1, then in the partial 
interval [a!, 6z] we shall have for the functions

. . ∕m + l(a7) ZnO) ∕m-l(*)

the indices
0 1 2
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It thus appears that by successive subdivisions of the doubtful 
interval we can always advance the index 1, lying in any partial 
interval, so as to cause the last index to be either 1 or 0 ; or else 
we shall be led to the arrangement just exhibited; where the last 
index equal to 1 is preceded by 0, and followed by 2.

It is obvious that the intervals which lead to this result are the 
only ones involving any doubt; and we may, therefore, now con
fine ourselves to the examination of this single case.

(128.) And first we may remark that the equation∕m+1(^) = 0 
cannot have any root within the limits b', consistently with this 
arrangement; and, secondly, that the equation fm(x) — θ has a 
single root between these limits, and no more. As to the equa
tion ∕m-ι(^) = 0, two roots are indicated, but whether they are 
real or imaginary remains to be determined.

Now this determination has already been effected by the rule 
at (125) by which the character of the two roots of ∕m-1(^) = 0 
indicated by the limits α', b' may be ascertained. If they be real 
the criterion [a] will separate them, and the interval [a', b'] 
will be divided into two, for each of which the index correspond
ing to ∕iπ-i(λj) will be 1 ; and thus the index 1, as in the other 
cases, will be advanced nearer to f(x)∙ But if the two roots of 
∕m-ι(a7) = θ prove to be imaginary, then we know (109) that two 
roots will be imaginary in every one of the subsequent equations : 

∕m-2(*)  = 0> ∕m-3(a7) = θ> ∙ ∙ ∙ ΛO) = θ> /10) = 0> /0) = θ

The two changes of sign lost in the series terminating in 
∕m-ιO)> iχι ^ιe Passage °f x from a! to b', in consequence of these 
two imaginary roots in ∕m-1O) = 0, being confined to the three 
terms∕m + 1O), ∕mO), fm-∖(x)> must arise from the first and third 
of these taking the same sign for that value of x which renders 
the middle one zero ; and, therefore (109) this loss is permanent 
throughout the entire series ; that is, two roots of f(x} = 0 are 
wanting in the interval ∖a', δ']. Hence, in each of the indices cor
responding to the functions from fm{x) onwards to the last ∕(λ,) 
the 2, significant of the changes thus lost, necessarily enters. If 
this 2 be suppressed, account will then be taken, by the indices 
thus reduced, only of the roots the character of which still remains
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to be examined; and the index corresponding to ∕m-1(^) will 
become zero. Hence the index 1, which lies nearest to that fur
nished by f(x), will occur in advance of or else zeros
only will make up the remainder of the series.

It follows, therefore, that in all cases, whether the two roots of 
∕m-ιCr) = θ be real or imaginary in the interval [a', δ'], the pre
ceding operations will give rise to new series of indices in which 
the index 1, nearest to the end, is still further advanced; so that 
we must at length obtain series of which the last term in each is 
itself 1, or else zero. The following examples will suffice to 
illustrate the preceding precepts.

(129.) The equation a?5— 3a?4 — 24a?3 + 95a?2 — 46a?—101=0 
partially analysed at (113) has indications between 1 and 10 of 
three roots, one of which is real and the other two doubtful. Let 
it be required to determine the true character of the latter.

In proceeding along the series of indices from right to left we 
find the first 1 to correspond to the function ffx) : this index is 
followed by 2 and preceded by 0 ; and, therefore, the nature of 
the two roots offA(x) = 0, thus indicated, may be ascertained by 
the rule at (123). Applying then the criterion [a] we find for 
the sum of the fractions ⅛05- + ⅛¾⅞0 a value less than the 
difference 9, between the limits ; so that the criterion is not satis
fied : narrower limits, however, must satisfy it, or else separate 
the roots, provided that is, that the roots are not equal, and there
fore inseparable. Agreeably to the rule we are to satisfy ourselves 
on this point first; that is, we are to ascertain whether the func
tions ∕2(a,) an^ Λ(a0> which are

20a?3 — 36a?2 - 144a? + 190, and 60a?2 — 72a? - 144 

have a common measure. Upon trial, we find that no common 
measure exists ; so that we may proceed to narrow the interval 
[1, 10] with the certainty of eventually detecting the character of 
the roots. The intervals [1, 2], [2, 3] give the following results :
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As in the first of these intervals [1,2] the final index is 0, we 
infer that no real root exists in that interval.

As in the second interval [2, 3] the index 1, nearest to the ter
mination of the series, is followed by 2, and preceded by 0, we 
have to apply to this interval the criterion [a], at page 165. The 
fractions ∣ι, -3⅜ give a sum greater than the difference 1 between 
the limits; so that the criterion is satisfied : and hence the roots 
indicated in the interval [2, 3] are imaginary. The third root, 
which is of course real, must therefore lie between 3 and 10.

2. As a second example let us take the equation

which has been partially analysed at page 144.
The only doubtful interval here is the interval [1, 10], for 

which we have found the series

The index 1 nearest to the termination of the series of indices 
is followed by 2, but not preceded by 0. Hence the interval 
[1, 10] must be subdivided. Interposing the number 2 we have

In passing over the interval [1,2] no changes are lost, so that
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no root exists in this interval, but two roots are indicated in the 
interval [2, 10]. And as the index 1, within a place of the end, 
is followed by 2 and preceded by 0, the character of these roots 
is to be tested by the criterion [a]. Writing the fractions -5⅛, 
⅜4⅞4> we see that their sum is less than 8, the distance between 
the limits 2 and 10; hence a number must be employed interme
diate to these limits, unless the roots under examination prove to 
be equal; that is, unless the functions flχ),f∖(χ) which are

a?4 — 4x3 — 3a? + 23, and 4a?3 — 12a?2 — 3

have a common measure. Upon trial we find that no common 
measure exists. Substituting then the intermediate number 3, 
we have the series of signs

(3) . . . + + + - -

and comparing this with the series (2) and (10) above, we find 
that the roots are real, one lying between 2 and 3, and the other 
between 3 and 10.

We shall propose but one more example, of which we shall 
give the complete analysis; and, after the manner of Fourier, 
shall actually exhibit the several derived functions.

3. Let the equation be
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Comparing these results we find,
1 : That all the real roots are comprised within the limits — 1, 

+ 1, as also the indications of imaginary roots:
2 : That indications of twro roots occur between — 1 and 0, and 

of three between 0 and 1.
In the interval [—1, 0] there is only one index equal to 1; 

this is followed by 2, and preceded by 0: applying therefore the 
criterion [a], we find the sum of the fractions ∙∣∣, -∕τ to be less 
than 1, the difference between the limits; so that the criterion is 
not satisfied, the limits not being sufficiently close to enable us to 
determine, by a single operation, whether the roots are real or 
imaginary. Before narrowing the interval we ought to ascertain 
whether the roots indicated are equal; that is, wτhether∕3(λ,) and 
∕4(aj), which are

60a?2 + 24a? + 6, and 120a? + 24

have a common measure. Upon trial we find that they have not. 
We must therefore contract the interval by interposing a 
number between — 1 and 0. If we employ — ∣ we have the 
following results :

The first partial interval, that betwreen — 1 and —∣, cannot 
comprise any root, since no changes are lost in passing over it. 
Two roots are indicated in the second interval; and as the only 
index equal to 1 is followed by 2, and preceded by 0, we have to 
examine the fractions 795∙ and -∕i, in order to ascertain whether or 
not their sum surpasses, or is at least equal to 1, the difference 
between the limits. We at once see that the sum is equal to ⅜, 
and consequently that the roots indicated are imaginary.

The interval [0, 1] still remains to be examined. In this in
terval the series of indices are 000123: hence, applying the 
criterion [a] to the functions to which the indices 1, 2 belong, 
we find that f ÷ 4$ does n°t satisfy the condition [a] : the
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interval must therefore be contracted, unless the functions fλ{x) 
and f2(x)i which are

5z4 + 4a?3 + 3a?2 — 4a? + 2, and 20a?3 + 12a?2 + 6a? —4

have a common measure. Upon trial we find that no common 
measure exists. Hence employing the intermediate number 
and thus subdividing the interval [0, 1] into the two [0, -1] and 
[-∣∙, 1], we have the following results:

(0) . . . + + 24 + 6-4 + 2 - 1
O O O 12 2

1 9 25 9(-)...+ + 84 + 33 + - + - --

(i)... + + + + + +

The interval [∣, 1] evidently comprehends a real root. The in
terval [0, ∙i] indicates two roots: the indices require the appli
cation of the criterion [a] to the fractions £ and £ ÷ -f, the sum 
of which surpasses ∙1 : therefore the criterion is satisfied, and the 
two roots of ∕i(+) = 0 are imaginary. Subtracting then the 
index 2, due to these imaginary roots, from the indices of fλ(x) 
and f(x), the last index becomes 0, so that no real root exists in 
the proposed interval. Hence the proposed equation has but one 
real root: this lies between ,5 and 1: the four remaining roots are 
imaginary.

(130.) Such is the method which Fourier has proposed for 
discovering the character of the roots of which indications exist 
between given limits; and which, when taken in combination with 
the theorem at (107), completes the analysis of the equation.

The theorem referred to shows that by substituting in/(a?), and 
in the several functions derived from it (112), a number increasing 
by insensible degrees from — ⅞ to + ⅛, the series of signs fur
nished by these substitutions will continue to present variations 
only, till the number substituted arrives at a certain limit a∙. 
after this the variations will gradually disappear, till we reach a 
second limit b, when they will become replaced by permanencies. 
We are thus made acquainted with the limits a, b, between 

12
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which all the real roots, and the indications of the imaginary 
roots, must be sought.

It is evident that this loss of variations at any stage, can arise 
only from the number substituted causing one or more of the 
functions to become zero : and the evanescence of any one of the 
functions, not the last, f(f), must be attended with one or other 
of these circumstances, viz., the immediately preceding function 
will have either the same sign as that immediately succeeding, or 
a contrary sign. In the latter case it is plain that no variation 
can be lost in the passage of the intermediate function through 
zero. In the former case two variations must be lost; and as, by 
hypothesis, the number substituted does not render f(x) zero, 
this number is not a root of the primitive equation, but an indi
cator of two imaginary roots; a fact which, as before remarked 
(69), had been previously taken notice of by De Gua.

If a single real root exist in any of the partial intervals [a', δ'], 
into which the whole interval [o, 6] is divided, as in the exam
ple at p. 128, the theorem (107) will enable us to detect it. If 
more than one may exist, the same theorem will indicate the 
possibility. To remove the doubt, the second theorem at (125) 
is to be resorted to; by aid of which, subdividing the interval as 
there directed, we shall arrive either at numbers which interpose 
themselves between the roots, and thus actually separate them, 
furnishing limits between which they severally lie, or else at 
numbers which are limits, not to real roots, but to indicators of 
conjugate imaginary roots.* And thus the character of any par
tial interval [α', b'] may be discovered, and the analysis of the 
equation completed. We shall offer some remarks upon this 
method of completing the analysis of an equation in the next 
chapter, and shall suggest means for reducing much of the 
labour attending its application.

• The numbers thus called indicators are, as we have seen above, real roots of certain of the derived equations, each root being such that its substitution in the function immediately preceding, and in that immediately succeeding the vanishing function, gives like signs. Hence in narrowing an interval in which only indications of imaginary roots exist, we approximate to a root, not of the primitive, but of one of the derived equations, the passage over which root is attended with the loss of two variations. (See page 163.)
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CHAPTER IX.

REMARKS ON THE PRECEDING METHOD, WITH 

SUGGESTIONS FOR ITS IMPROVEMENT.

(131.) The method which has just been explained is a very 
ingenious application of a simple property in the theory of curves 
to an important analytical purpose—the complete analysis of a 
numerical equation.

The examples which have been given to illustrate it, and which 
are all taken from the work of Fourier, show that the method 
may frequently be employed with success, and with the expendi
ture of but little trouble. But from these instances of its appli
cability it would be wrong to infer anything as to its merits as a 
general rule for the analysis of equations. The peculiar difficul
ties that have always opposed themselves to the success of every 
such general rule do not occur in the examples of Fourier, 
which have been so framed as not to involve the difficulties 
alluded to; and by a similar adaptation of the end to the means, 
the most limited and imperfect of methods might be exhibited to 
advantage. Theoretically, the process of Fourier is perfect; 
and is characterized by great ingenuity and analytical address : 
but it is proper to speak undisguisedly of its practical defects, 
beyond certain limits, and a certain kind of equations; because 
some recent writers, in dwelling upon its merits, have altogether 
overlooked the imperfections which render it, in its present form, 
altogether impracticable even in equations of so low a degree as 
the fourth, except certain conditions, beyond our control, happen 
to have place.
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If, by a preliminary examination, we could always ascertain 
whether an equation proposed for analysis involved these favor
able conditions or not, the value of Fourier’s method would be 
greatly increased; for then we should never, as at present, be ex
posed to the risk of entering upon a series of calculations which 
terminate too remotely for ordinary patience and perseverance to 
carry us through them.

The great blemish in the preceding method is, that it leaves us 
in doubt as to the character of contiguous roots, till by successive 
trials it either actually separates them, or else shows them to be 
imaginary. When they are real, and lie so closely together as to 
have four or five leading figures in common—a circumstance 
which at the outset we cannot foresee—it is plain, from the spe
cimens already given, that the indications which determine their 
character would be delayed to so remote a step, that our patience 
would become exhausted long before reaching it; and the nature 
of the roots would still be left in doubt. The example at p. 221 
of the introductory volume on the Analysis and Solution of Cubic 
and Biquadratic Equations offers an instance of this kind. By 
the method proposed by Fourier, all the work of that example, 
as exhibited at pages 243, 244, 245, as well as the preliminary step 
at page 221, must be performed, in addition to the very tedious 
labour of narrowing the limits, by the successive steps above 
adverted to, till the roots, proceeding together to the extent of 
five places of decimals, are actually separated. It will be noticed 
that in pronouncing upon the impracticability of Fourier’s 
method, in cases such as this, we have altogether left the labour 
implied in the process for the common measure out of consi
deration ; because we regard the necessity of carrying on the 
analysis by the tentative operations in last chapter, till the roots 
are actually separated, or till they are show n to be inseparable by 
being imaginary, as constituting the capital defect of Fourier’s 
method.

(132.) Every method which requires this separation to be 
accomplished is indeed essentially defective unless it also supply 
means by which the separation may be expeditiously effected. 
And it is solely because of this defect that all preceding rules
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for analysing an equation have been abandoned one after another. 
Whatever other imperfections may attach to any proposed plan 
for detecting the character of the roots of an equation this, at 
all events, must be removed, before such plan can be generally 
applicable. The presence of the defect here adverted to is the 
great drawback to the success of Lagrange’s mode of analysis; 
for it will be found upon examination that the impracticability of 
this mode is traceable solely to the circumstance that the separa
tion of the real roots, or which is the same thing, the finding of 
a number less than the least of the differences of the roots, is 
indispensable to the discovery of the character of those roots by 
his method.

The method of Lagrange, however, is far less practicable 
than that of Fourier; and it ought to be distinctly noticed, to 
the advantage of the latter method, that the labour of the separa
tion is only in proportion to the proximity of the roots, whether 
real or imaginary; whilst the principal step in the method of 
Lagrange involves pretty nearly the same amount of difficulty 
whether the roots are nearly equal or not. On account of this 
peculiarity in the method of Fourier, we should be encouraged 
to apply it, even in its present form, in cases where the method 
of Lagrange would appal us, from the known difficulties with 
which we should certainly have to contend.

When the roots of the original equation, as well as those of the 
derived equations, within the limits under examination, do not 
approach nearer to equality than by a coincidence in the leading 
figure of each, or at most in the first two figures, the analysis of 
it by the preceding method may perhaps be accomplishable even 
in an equation of the sixth or seventh degree, whilst no one would 
think of applying to any such equation the process of Lagrange. 
If roots do not approximate so closely even as here supposed, 
then Fourier’s method will be comparatively easy; but when 
the labour of the several operations for the common measure is 
viewed in connexion with that due to the successive subdivisions 
of the interval—even for the amount of proximity above sup
posed—we feel justified in speaking of the eligibility of the method 
with some hesitation. We shall shortly see, however, that this 
labour may be altogether dispensed with, or greatly reduced.
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(133.) Besides the advantage of Fourier’s method over others, 
when the real roots are moderately wide apart—that is, have no 
leading figures in common—there is another marked peculiarity 
in favour of it: it is, that it considerably reduces the embarrass
ment and uncertainty which the entrance of imaginary roots often 
occasion.*  The considerations arising out of the ingenious con
trivance of the subtangents lead to a rapid detection of the 
existence of such roots whenever they are not in the peculiar 
predicament of being rendered real by a very minute change in 
the absolute term of the equation involving them. In this latter 
case the imperfection before adverted to again discovers itself: 
for this case, and the case of nearly equal real roots, both involve 
the same peculiarities:—a minute change in the constitution of 
the equation being sufficient in either case to cause the doubtful 
roots to become equal.

* We regard this peculiarity as a most important feature of Fourier’s method; and we shall show hereafter how it may be rendered available, in combination with the methods of Sturm and Horner, in completing the analysis of equations of more than ordinary difficulty. The assistance which the method of Fourier is thus capable of affording to that of Sturm will be seen to effect a great saving of numerical labour. The two methods have hitherto been regarded as distinct and independent:—we shall endeavour to show that considerable advantage may result from uniting them together, after the defects, which have hitherto attached to Fourier’s method—and which, as remarked in the text, preclude its application in extreme cases— are removed by means of the improvements suggested in the present chapter; these improvements will be brought into operation when we come to treat of the general solution of numerical equations.

These then are the kinds of equations that are excluded from 
the rule of Fourier as it at present stands; namely, those whose 
roots are such that a very minute change in the final term, 
whether of the original or of any derived equation, suffices to ren
der a pair of imaginary roots real or a pair of unequal roots 
equal. This exclusion, however, does not arise from any theo
retical imperfection, but from the impracticability of performing 
the necessary calculations, without extraneous aid.

(134.) Any method that should with equal facility apply to all 
cases, the amount of labour being independent of the peculiar 
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relation of the roots just adverted to, must be expected, from this 
very comprehensiveness of character, to bring into operation, in 
the simpler examples to which more limited methods may be 
peculiarly adapted, a larger array of figures than those methods 
themselves; for it is essential to the perfection of so general a pro
cess that, whatever be the example to which it is applied, provision 
be always made by it for the demands of such critical and extreme 
cases as those we have been considering, whether the example in 
question present one of these or not; seeing that it is this which 
it devolves upon the method itself to make known: for we cannot 
determine, from the mere aspect of an equation, whether peculiar 
relations exist among its roots or not; nor, consequently, whether 
methods, which become inadequate under such relations, are 
applicable or not.

It would be very unfair therefore, for the purpose of instituting 
a comparison between a method but partially applicable and 
another of unfailing generality, to select an example within the 
powers of the former, place in juxta-position the processes of each, 
and thence draw our conclusions as to their relative merits: and 
the student requires to be cautioned against being misled, in this 
manner, when judging of the comparative claims of the theorems 
of Fourier and Sturm.

(135.) We are of course, throughout these remarks, speaking 
of the method of Fourier as delivered by its author, and as ex
pounded in the preceding chapter; and are not here considering 
whether, by blending other principles with its own peculiar pro
cess, the aid adverted to above, for rendering the separation of 
the roots always practicable, can be readily commanded or not. 
In seeking to separate the roots occupying a doubtful interval 
by continually contracting that interval, according to the method 
of last chapter, we are left too much to mere conjecture as to 
the situation in this interval which the real roots, or the indicators 
of imaginary roots, occupy; and hence, in subdividing an interval, 
for the purpose of inclosing the roots within narrower limits, 
several trial operations, fruitless in their results, must always be 
calculated upon. It is to reduce this useless labour—a labour 
which needlessly multiplies the work several fold—that extra 
assistance is so much required.
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The method of Horner, modified by a certain improvement 
to be hereafter explained, will be seen to furnish such assistance; 
so that by introducing this method in combination with that of 
Fourier, in those cases where the character of the roots under 
examination unfolds itself only at a remote step of the analysis, 
the labour at present involved in Fourier’s process may be very 
considerably diminished. The advantage of this combination 
will be seen when we come to treat of the calculation of the 
roots.*  It may be observed, however, that the analysis of an 
equation is thus made to depend upon its partial solution, instead 
of being entirely preparatory to that solution. This remark 
equally applies to the methods of Lagrange, Fourier, and 
Budan; and must necessarily apply to every method that leaves 
the character of the roots undecided till those that are real are 
actually separated. The method of Sturm is the only one 
which treats the analysis of an equation as a perfectly independent 
problem; always making known the exact number of real roots 
in any proposed interval without trenching upon the subsequent 
problem of seeking the actual development of those roots.

(136.) In the preceding observations upon the mode of ana
lysis expounded in last chapter, and upon the inadequacy of it in 
its present form as a general method, we have, as before remarked, 
disregarded that part of the operation which involves the finding 
of common measures. Fourier, and all who advocate this 
method, seem to entirely overlook the labour involved in these 
processes—two or three of which are sometimes required in the 
analysis of a single interval, (see example 3, page 1/5).

No attempt we believe has hitherto been made to remove this 
serious drawback to the application of the method, even in those 
cases where no remarkable proximity of roots occurs to preclude 
the hope of its success. We propose to show, however, that 
considerable improvement and reduction of labour may be intro
duced into this part of the operation, and that thus the applica
tion of Fourier’s method may in all cases of difficulty be greatly 
facilitated.

The operations for the common measure so frequently occur
ring in Fourier’s method of analysis, are always introduced for* See also the foot-note at page 162. 
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the purpose of ascertaining whether or not a proposed equation 
has a single pair of equal roots in a given interval. It has been 
already proved that when an equation has a pair of equal roots, 
and only a pair, that these roots must be commensurable (101) ; 
and, moreover, that the repeated root must be such that the square 
of its numerator must be a divisor of the final term N, the square 
of its denominator a divisor of the leading coefficient An, the nume
rator itself a divisor of A, and the denominator a divisor of An-1.

(a.) Hence, in order that the suspected pair of equal roots may 
exist, A and N must have a common factor (the numerator of the 
repeated root) ; and N must be divisible by the square of this 
factor. Also An and An~1 must have a common factor (the de
nominator of the repeated root), and An must be divisible by the 
square of this factor.

(b.) These tests will generally be found more than sufficient to 
determine the point in question. But if in any case they are all 

fulfilled by any fraction —, then we must proceed to divide the<Z
proposed polynomial by a? — -, according to the rapid process at 

(51). When δ is unity the operation must be continued up to 
N, as at the article referred to ; and the number under trial will 
be a root, or not, according as the final result is zero or not.*• In the former case, a root will Lave been determined, and the coeffi- 

bcients belonging to tbe depressed equation obtained ; if the operation, repeated αwith these depressed coefficients, terminate in zero, the root - will enter the oequation twice: if not, one root only will be ; and thus the separation of othe two will have been effected. It is worthy of observation that, in testing a suspected root in this manuer, the doubt will often be more speedily removed when the number under trial is a fraction than when it is an integer; because in the latter case the operation must always be carried on up to tbe final result, or remainder; whereas, in the former case, the occurrence of a fraction, which may take place anywhere between the first and last result, at once puts a stop to the work. However, in the case of a suspected integral root we may proceed somewhat differently: we may reverse the order of the operations by dividing the last coefficient by the supposed root, adding the quotient to the preceding coefficient; dividing the result by the same number and adding the quotient to the next coefficient, and so on : a fractional quotient will, of course, stop the operation.
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When b is not unity the same course must be adopted, and a 
corresponding conclusion drawn, unless we arrive at a fractional 
result; in which case the process need not be continued ; for 
under these circumstances the number under trial cannot be a 
root(76).

(137.) We shall now apply these precepts to Fourier’s ex
amples, given in last chapter.

In example 2 at page 168, it is required to determine whether 
the equation

has a single pair of equal roots.
Applying the foregoing tests, we have first to see whether any 

integral factor of 25, except 1, has its square for a factor of 36. 
A glance is sufficient to show that it has not : hence equal roots 
do not enter the equation.

Again in example 1, page 173, we have to determine w hether a 
pair of equal roots enters the equation

Here neither of the numbers 95, 10 has a square factor except 
1, so that equal roots cannot exist.

In like manner the example at page 174 requires it to be ascer
tained whether the equation

has a pair of equal roots, which it evidently has not since 23 has 
no factor but unity; which is not a root.

Lastly, the example at page 175, requires it to be determined 
whether either of the equations

have a pair of equal roots; and a simple inspection shows that 
they have not, since neither of the numbers 10, 1, 5, 2 has a 
square factor different from 1 ; which is not a root.

Tn another of Fourier’s examples, which we have not tran- 
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scribed, the analysis of a doubtful interval requires it to be ascer
tained whether the equation

has equal roots; which we at once see to be the case, each root 
being 2.

(138.) The analysis of the equation

would be interrupted by a doubtful interval between 0 and 1 ; 
but we need not follow Fourier’s directions, and seek the com
mon measure of the first member of this and the first derived 
function—w hich is a work of very considerable labour— in order 
to ascertain whether the roots in this interval are equal or not; 
since we can confidently affirm at once that the roots cannot be 
equal; because the equation, having its first coefficient unity, 
cannot have a pair of equal roots which are not integral.

When, as in this last example, and in example 2, page 174, 
a common measure is to be sought, according to the directions 
of Fourier, between f(x) and ∕1(^), no other information is 
deduced from the process than is sufficient to remove all doubt 
as to the equality of the roots in the interval under examination.

Fourier, indeed, was not aware that anything wrorth notice 
beyond this could be yielded by that process ; and, consequently, 
as soon as the non-existence of equal roots was ascertained, he 
applied himself to the discovery of the real character of the roots 
by the method of successive subdivisions already explained.

But the more recent theorem of Sturm, to be given in Chap, xι, 
shows that all this additional labour is superfluous; and that 
the process for the common measure does itself supply informa
tion, not only as to whether the roots in the proposed interval are 
equal or not, but also as to whether they are real or not. It is 
not remarkable that Fourier should not have recognized this, 
as the theorem of Sturm was a subsequent discovery: but it is 
singular that those who have since commented upon Fourier’s 
method should not have adverted to the circumstance. It is cer
tainly worthy of being adverted to, since it not only shows the 
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superiority of Sturm’s method over that proposed by Fourier, 
but discovers also the essential imperfection of the latter, in in
volving, as a mere auxiliary, an operation which is found to con
tain within itself the whole of the desired information. This 
operation, therefore, supplies much more than Fourier’s method 
needs ; which is simply the resolution of the doubt as to whether 
or not equal roots exist in a given interval: and it would evi
dently be an improvement to exchange that operation for another 
of a less comprehensive, and therefore of a less laborious, cha
racter ; and adequate to meet no more than the demands of 
the case.

(139.) The precepts (a) and (b), p. 185, by which this im
provement is to some extent effected, suppose that the doubtful 
interval to be examined is the only one, for the same function, 
between the extreme limits of the roots. If another doubtful 
interval occur for the same functions two pairs of equal roots may 
exist between the extreme limits ; and these need not necessarily 
be commensurable; because they may arise from the repetition 
of a quadratic factor which, when equated to zero, gives incom
mensurable roots. Still the conditions (a), omitting the paren
thesis, must be fulfilled, even in this case (101) ; so that in all 
the examples hitherto discussed it is matter of indifference 
whether the function furnishes other doubtful intervals or not.

But when the conditions (a) are fulfilled, and yet from (b) we 
find that no equal commensurable roots exist, then if other doubt
ful intervals occur, for the same function, it is possible that there 
may be pairs of equal incommensurable roots entering as above 
stated. Generally speaking it will be best to put this to the 
actual test, by seeking the common measure between the function 
in question and the next derived function ; carrying on the ope
ration till a quadratic remainder is obtained. If the supposed 
equal roots exist, this quadratic, factors common to all its coeffi
cients being suppressed, will accurately divide the original func
tion ; and fractions will be excluded from the quotient (76). 
We may either try if this be the case, or if the preceding cubic 
remainder be divisible by it without fractions : in either case the 
operation will be easy, because the squares of the extreme coeffi
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cients of the divisor must be smaller than, or at most equal to, 
the extreme coefficients of the original function, being factors of 
them (76). Thus the actual operation for the common measure 
need be entered upon only in those cases where the latter, and 
consequently the more laborious, steps of it become superfluous. 
It is scarcely necessary to remark that, when more than two equal 
quadratic factors enter into the composition of the proposed 
function, the operation for the common measure betw een it and 
its derived function w ill terminate at a still earlier stage.

(140.) It thus appears that even in those rare instances, in 
which the process for the common measure must be actually 
entered upon, the work terminates before that part of the opera
tion is reached where by far the greater portion of the labour is 
accumulated.*  But the calculation of even the earlier steps of 
the operation, by the common method of proceeding, is encum
bered with much unnecessary work ; and is apt to spread over an 
inconvenient extent of space. It would seem, therefore, in order 
to give to the method of Fourier all the practical facility which 
can render it available as a general rule of analysis, applicable to 
all cases, that, in addition to a more perfect method of narrowing 
the doubtful intervals, an easier and more compact form must be 
given to the numerical operation for the common measure. Such 
an improved form we have already proposed elsewhere, f and shall 
have occasion to recur to in the Chapter on Sturm’s theorem.

* For an example of the great increase of labour involved in the computation of the last two steps of the common measure, when large coefficients enter, see the Analysis of Cubic and Biquadratic Equations, page 243.t Mathematical Dissertations, pages 145 and 209.

To these remarks we may add that if an equation of the fifth 
degree have two pairs of equal roots the remaining root must be 
commensurable; and, generally, if an equation of the 2m + 1 
degree have m pairs of equal roots, the remaining root must be 
commensurable. This may be useful in ascertaining wdιether so 
many pairs of equal roots are possible in any proposed case : 
when they exist, the depressed polynomial, resulting from elimi
nation of the aforesaid commensurable root, must be a complete 
square.

www.rcin.org.pl



190 IMPROVEMENTS IN THE METHOD OF FOURIER.

(141.) It has been already observed (117) that Fourier always 
employs the auxiliary derived functions, which enter into his pro
cess of analysis, encumbered with numerical factors, from which 
they maybe freed. (See page 175.) In the method of transfor
mation employed in the present work, these factors never make 
their appearance; and thus our several results involve smaller 
numbers than the corresponding ones deduced by Fourier. 
In Chapter vιι. the signs only of these results were the objects of 
examination: but in the further analysis of the equation, by the 
method taught in last chapter, the actual results themselves are 
brought into requisition. The criterion [a] at page 165 involves 
numerical values only, signs being disregarded. By continuing, 
therefore, to employ the same mode of derivation as that adopted 
in the first stage of the analysis, additional simplicity will be in
troduced into Fourier’s examination of the doubtful intervals. 
We shall only have to remember that in applying the formula [a] 
to two consecutive results ∕m-ι(r), we must multiply the
denominator ∕m(r) by m, the number marking the place of the 
function in the series of derivations; as is plain from the ex
pressions at (116.) As multiplying the second member of the cri
terion [a] by m is equivalent to suppressing this factor in the 
denominator of each fraction in the first member, we may always 
adopt this latter course, which will in general be the easier, and 
employ the numerical results in the formation of the fractions, 
without any modification. Thus in the example at page 173 the 
series of results deduced as here proposed would have been as 
follow: (see page 143.)

The fractions submitted to the test would consequently have 
been ⅜∣ and ⅞¾5 ; and the number to which their sum is to be 
compared, 27.

(142.) The method of computing the derived functions ex
hibited at page 143 is always the most expeditious, even though 
these functions be written down before us, as at page 175. There 
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are cases, of frequent occurrence, in which we would recommend 
these functions, when freed from superfluous factors, to be thus 
written down ; not for the purpose of computing them, which is 
Fourier’s object, but with a view to extract from them certain 
information which they readily offer, and which will sometimes 
enable us to dispense with a tedious analysis. Thus, whenever, 
as in example 3, at page 175, the index 1, which is followed by 2 
and preceded by 0, falls under the function of the first degree, 
the 2 being under the quadratic function, we w ould alw ays re
commend the derived functions to be actually written, before pro
ceeding to analyse the interval; because the quadratic function 
would, in general, inform us, at a glance, whether the 2 under it 
referred to a pair of real roots, or to a pair of imaginary roots. 
In the example referred to, for instance, the quadratic function 
fi(x) is seen at once to be such as to give imaginary roots when 
equated to zero ; since four times the product of the extreme co
efficients exceeds the square of the middle one. And thus all the 
trouble of examining the interval [0, — 1], at page 176, might 
have been spared. Had this relation among the coefficients of 
fi(x) not subsisted, then we should have inferred that the index 
2 indicated a pair of real roots ; and should have sought, in the 
usual way, to separate them, without taking at each step the un
necessary trouble of applying the criterion. Fourier evidently 
overlooked this means of simplifying his process.*

(143.) In addition to these suggestions for simplifying the 
operations of the preceding chapter, we have only to remark, in 
conclusion, that when, as is usually the case, the analysis of an 
equation is merely preparative to the actual computation of its 
real roots, we may allow a single pair of roots to remain doubt
ful, provided all the others are real, and may proceed at once to 
the calculation of these latter; because, as will be shown hereafter, 
when all the roots but two are determined, these two, whether 
real or imaginary, may be derived from the former with compara-* There are two other examples in Fourier’s work, which we have not transcribed, in which attention to this principle would have saved the trouble of analysing a doubtful interval. See pp. 148, 149, Analyse des Equations 
Determinee.
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tive ease. This is a truth of considerable importance in connexion 
with Fourier’s method of analysis; because it still further adds 
to the facility of its application to a class of equations that w ould 
otherwise be scarcely manageable without aid from Horner’s 
process of approximation to the roots. The equation at page 187 
is one of this class: the analysis of the doubtful interval, agreeably 
to the steps proposed by Fourier, is very tedious, on account 
of the great labour attendant upon the separation of the two roots 
in the interval [0, 1] by the slow and uncertain approach to them 
which those steps make. The remaining roots, how ever, are easily 
separated, and may therefore be expeditiously calculated; and 
thence, by the principle just stated, may the roots in the interval 
[0, 1] be readily and accurately determined without reference to 
any method for their separation. We shall exhibit the entire 
process in a future part of the work, when the value of the prin
ciple referred to will be more clearly seen,*

(144.) It may not be amiss in conclusion to briefly recapitulate 
the more important particulars dwelt upon in the present and two 
preceding chapters. And first we may notice that the method of• In the treatise on the Analysis and Solution of Cubic and Biquadratic 
Equations the two roots of the equation adverted to, which lie in the interval [0,1], are separated, by Horner’s method of approximation, with comparative ease: the process supplying us with a series of transformed equations, such that if each, as it presents itself, be considered in conjunction with that which would arise from increasing the transforming factor (or root figure) by unity, we should have a pair of consecutive series of results at every step, to which Fourier’s tests would be immediately applicable. Hence, every step of the work, in the volume referred to, is to be accompanied by another, considered as a bye-operation, arising from transforming by an additional unit. When we arrive at the sixth step the unit-transformation connected with it will not require completion: the change of sign in the final term will show that the roots separate at this step. In fact this unit-transformation may be dispensed with throughout, provided we test the roots, at each step, by the first fraction only of the criterion [A]. But a still better test will be given in Chapter xπ.By thus blending Horner’s method of narrowing the interval, with these contrivances for testing the character of it, and combining with this two-fold process the facilitating principles delivered in the present chapter, we shall always proceed with the perfect certainty that every step we take is a real advance towards the removal of the doubt; and that no part of our labour will have been needlessly expended.
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Fourier divides itself into two principal parts—the theorem of 
Budan, and the subsequent process of Chapter vm.

The first effects, in general, but a partial analysis of the equa
tion : it makes known the extreme limits within which all the 
the real roots as well as all the indications of imaginary roots 
must be sought; and it actually separates those of the former 
which arc sufficiently wide apart to have no leading figures in 
common. But when either imaginary roots or nearly equal roots 
enter the equation, the indications of their entrance being the 
same in both cases, we have no means of distinguishing the one 
class of roots from the other in any given example; and thus 
their character is left doubtful. Nevertheless, the theorem 
effectively prepares the way for the removal of this doubt by 
supplying the exact interval in which the necessary information 
must be sought.

The second process, which is exclusively due to Fourier, 
addresses itself solely to this latter object; and aims at completing 
the analysis of the equation by extracting the desired information 
from the doubtful intervals. This involves a two-fold operation, 
or course of operations, viz. the continual narrowing of the in
terval, step by step, and the application of a certain test [a] at 
each contraction. If the concealed roots happen to be imaginary 
this test will sooner or later be satisfied; if they happen to be 
real and unequal, the continual diminution of the interval must 
at length separate them.

The application of the test is always easy: the separation 
of the roots often difficult and tedious. For as we are not 
always furnished with adequate means of knowing whereabouts 
in the doubtful interval the nearly equal roots may lie, supposing 
them to exist, or the indicators of the imaginary roots when real 
roots are wanting, we may become involved in tentative opera
tions of a very fatiguing extent and labour. In order to be 
certain that these will ever terminate we must be sure that the 
roots under examination are not equal. It behoves us therefore 
to put this matter beyond doubt by a preliminary investigation ; 
and thus has been combined with the trial-operations, adverted to 
above, the extra labour attendant upon finding common measures.

The method of Sturm is wholly comprised in a single opera- 
13
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tion for the common measure; yet that method has been pro
nounced impracticable beyond very narrow limits. With much 
greater propriety might this be said of Fourier’s process, in
volving sometimes two or three operations of this kind; in 
addition to the great labour of separating the roots by trial-trans
formations.

To render then the method of Fourier generally practicable, 
the following improvements must be effected:

1. λVhen roots are indicated in an interval, means must be 
furnished for guiding us to that particular subdivision of the in
terval which the indicated roots occupy; and we must not be left 
to find our way to this subdivision through trial-operations only. 
This improvement we propose to accomplish by extending 
Horner’s method of approximating to the roots.

2. The necessity for the common measure must either be 
superseded, by some more readily applicable test for equal roots, 
or at least methods must be contrived for materially abridging 
the ordinary labour and extent of the operation. The former 
object is attained, in the generality of cases, by the simple criteria 
marked (a) and (b); and the latter object—the curtailment of 
the process for the common measure, when instances of rare oc
currence render that process necessary—is effected by the consi
derations at page 186, which enable us to dispense with the more 
laborious steps of the work.

3. Lastly: when, as in cases like those just adverted to, the 
leading steps for the common measure must be performed, a 
compact method of working, purely numerical, like all the other 
parts of the process, and free from the needless encumbrances of 
the common method, is required to give additional facilities to 
the analysis in the more difficult cases. Such an improved mode 
of conducting the operation will be found in Chapter xι.

Thus improved, the method of Fourier may with propriety 
be brought into advantageous comparison with that of Sturm ; 
and will probably henceforth take precedence of it in those cases 
where, from the magnitude of the coefficients, or of the leading 
exponent, very large numbers may be expected to enter the ope
ration for the common measure.
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. CHAPTER X.

METHOD OF BUDAN FOR DETERMINING THE CHARACTER 

OF ROOTS IN DOUBTFUL INTERVALS.

(144.) The method proposed by Budan for the analysis of a 
doubtful interval within the limits of the roots is theoretically 
much simpler than that of Fourier. It depends upon the 
obvious principle that, whatever be the number of roots of a pro
posed equation lying between the limits 0, r, the very same num
ber of roots of the equation whose roots are the reciprocals of the 

proposed, must lie between — and -; for it is plain that to 
r 0

whatever roots 0 and r are the limits, in the proposed equation, 

to the reciprocals of those roots—and those only—will - and - 

be limits in the transformed equation.
The inference to be drawn from this is, that as many real roots 

as there are in the proposed equation, lying between 0 and r, so 
many changes of sign, at least, must there be in the reciprocal 
equation, after applying to it the transformation ζ~)t since be

tween this transformation and the final one by (-), this numbeι 

of changes, at least, must be lost, otherwise there could not be so 

many roots of the reciprocal equation, in the interval Q-, —J, as 

in the proposed in the interval [0, r].
Should it happen therefore that, after applying the trans-
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formation — to the reciprocal equation, fewer changes appear 

in the result than have disappeared by the tranformation (r) ap
plied to the direct equation, we may conclude that these losses 
cannot all indicate real roots: as many imaginary roots, at least, 
must be indicated in the interval [0, r] as the changes lost in the 
direct transformation exceed in number the changes left in the 
reciprocal transformation. But so long as the changes left in the 
latter transformation are the same in number as the changes lost 
in the former, or in fact so long as any changes at all are left, 
more than one, the interval [0, r] will remain doubtful.

We may seek to remove this doubt by narrowing the interval 
[0, r] in the direct equation; but the better plan will be to dimi
nish the unlimited interval -^∣in the reciprocal equation, trans

forming successively by — + 1, —f- 2, &c., till all the changes 

are lost. The single roots passed over in the course of these 
transformations will be indicated by so many changes of sign in 
the final term, and that number of real roots will thus be de
tected in the original interval [0, r]. If there are not as many 
single roots passed over as there are changes lost, then there will 
be doubtful intervals. To each of these the same treatment is to 
be applied as was applied to the interval [0, r] ; that is, each of 
the new doubtful intervals is to be considered as belonging to a 
new direct equation, and the interval, as before, exchanged for 
another indefinitely wide belonging to a new reciprocal equation, 
and so on. Whenever, in passing from a direct transformation to 
its collateral reciprocal transformation, more signs are lost by the 
former than are left by the latter, a number of imaginary roots 
equal to the excess will be accounted for; and when, in narrowing 
the indefinite interval in a reciprocal equation, single roots are 
passed over, so many real roots will be accounted for. The ope
rations are to be continued till as many roots are thus detected as 
there are changes lost in the doubtful interval [0, r], when the 
analysis of that interval will be completed. The course of pro
ceeding may therefore be described by the following precepts:

1. Let [βz, ó'] be any doubtful interval occurring in the partial
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analysis of an equation by the method of (108). The equation 
due to the transformation (αz) is the first direct equation; the in
terval between this and the transformation (δ')—which is the 
doubtful interval—is b'—a' =r; that is, for the first direct 
equation, the interval to be examined is [0, r].

2. Take the reciprocal of the equation (α') ; that is, simply 
reverse its coefficients, and transform by (j~ ) ∙ If no changes are 

left after this transformation, all the roots indicated in the doubt
ful interval are imaginary.

3. If as many changes are left as are lost in the direct trans
formation (δ'), the original doubt remains undiminished.

4. If fewer changes are left than are lost in (6'), the difference 
will imply that number of imaginary roots, so that the doubt will 
be partially removed.

5. Whether as many changes are left or fewer, we must cause 
them all to disappear—or at least all but one—by continuing to 

transform onwards towards - : and every time a single sign dis

appears, or an odd number of signs, a single real root will be in
dicated, and thus the doubt will be still further reduced.

6. If the doubt be not entirely removed, on account of the 
signs not all vanishing singly in the preceding series of trans
formations, new intervals of doubt will occur in this series. 
Let ∖a"i ó"] represent any such interval; and consider the 
transformation (α'z) as a new direct equation, and the passage 
from it to the transformation (δv), as the corresponding 
direct transformation, the doubtful interval for (α") being 
b" — a" ∙=rl; that is, [0, √], and proceed as with the former 
direct equation.

And this process is to be continued till there are as many roots 
detected—real and imaginary—as there are changes of signs lost 
in the first direct transformation; that is, in the passage over the 
interval under examination.
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The following examples will sufficiently illustrate these 
precepts.*

1. Let it be required to analyse the equation

.r3 — 1x + 7 = 0,

the ordinary superior limit to whose positive roots is 8.

two variations lost.

Here two variations are lost in the interval [1, 2]; or the trans
formation (1) loses two variations in the interval [0, 1]. This 
therefore is a doubtful interval. Hence taking the reciprocal 
of (1), and observing that 5 is a superior limit to the positive 
roots, we proceed as follows:

two variations left.

The transformation (3) furnishes no variations, so that this step 
is terminated, and the doubtful roots are found to be real, both 
lying in the interval [1, 2]. The third root is found to lie in the 
interval [—3, —4].

2. Let the proposed equation be

Here 13 is the ordinary superior limit to the positive roots: but if 
we diminish the roots by 10, all the resulting coefficients are

• These examples are from a paper by Vincent in the Journal de Mathima- 
liques for October, 1836. But the transformations have been differently, and somewhat more compactly arranged, and some errors corrected. The work of the fourth example, in the paper referred to, is altogether erroneous.
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found to be positive: lienee 10 is a superior limit. Therefore 
subdividing the interval [0, 10] we have the following results:

The interval [2, 3] is doubtful: hence taking the reciprocal of (2), 
and observing that 6 is a superior limit to the roots of the reci
procal equation, by (86), we proceed as follows:

This result is sufficient to show that the two roots in the pro
posed interval are both real; since the variation still left must 
disappear between (2) and ( oc ).

To determine the places of the negative roots, let the alternate 
signs of the proposed equation be changed : then we have

We have, therefore, to discover the character of the interval 
[2, 3]. Taking the reciprocal of (2), and proceeding as before, 
we have
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Hence, as there is only one more variation to lose, the two 
roots in the interval [2, 3] are real; so that the situations of the 
real roots are as follows: one root in each of the intervals 
[0, 1], [0, — 1], and two roots in each of the intervals [2, 3], 
[-2,-3].

3. Let the proposed equation be

a?6 — 6aa5 + 40a?3 + 60a?2 — a? — 1=0

of which all the positive roots are included between 0 and 7∙

(0) . . . 1 - 6 + 0 + 40 + 60 — 1 — 1

(1) . . . 1+0 — 15 + 0 + 135 + 215 + 93 one var. lost

(2) . . . 1÷ 6 + 0 —40 + 60 + 431 + 429

(3) ... 1 + + + + 15 + 467 + 887 twoυar. lost

Recip. of

(2) . . . 429 + 431 + 60 - 40 + 0 + 6 + 1

(1) . . . 429 + + + + + + no υar. left.

Hence the two roots indicated in the interval [2, 3] are 
imaginary.

Changing now the alternate signs of the equation and proceed
ing as before, we have

(0) . . . . 1 + 6 + 0 — 40 + 60 + 1 - 1

(1) . . . . 1 + 12 + 45 + 40 + + + three var. lost

Recip. of

(0) . . . . 1 — 1 - 60 + 40 — 0 - 6 - 1

(1)....1+5 — 50 — 90 — — — one var. left.

Hence, of the three roots indicated in the interval [0, — 1], 
two are imaginary, and one real.
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4. Let the equation proposed for analysis be

Here 3 is a superior limit to the positive roots (89) ; so that 
the highest transforming factor will, at most, be 3.

Hence, in the positive region there is but one real root: it lies 
between 2 and 3.

Changing the alternate signs of the proposed, we have

* This transformation the superior limit. need not be computed, since we already know 3 to be

www.rcin.org.pl



202 BUDAN ON THE CHARACTER OF

Taking now the reciprocal of (6)z, and transforming by .-013- = 20

The results (a), (b) show that two of the four roots indicated 
by the interval [0, 1], are necessarily imaginary. The results 
(az), (bz) leave the remaining two roots still doubtful. The re
sults (a"), (bzz) show that these are also imaginary. Consequently 
the equation has no negative roots.

(145.) These examples are amply sufficient to illustrate the 
method of Budan when exhibited in its most improved and con
venient form. The principle upon which it depends is very 
different from that upon which the operation of Fourier is 
founded ; its characteristic peculiarity being that, instead of pur
suing the doubtful interval through its successive contractions, 
till it can no longer conceal the character of the roots within its 
narrowed limits, the process of narrowing the interval is stopped 
as soon as fractional numbers would become necessary for a fur
ther subdivision of it. The small interval is then exchanged for 
another indefinitely wide, but embracing indications, of precisely 
the same import in reference to the doubtful roots, as those in
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the interval which it has replaced. This wide interval is in like 
manner gradually contracted, till the character of these indica
tions discovers itself; or—if the information sought be delayed— 
till a further contraction would again introduce fractions, when 
the interval is as before replaced by another indefinitely wide; 
and so on, till the indications, thus transmitted through these 
successive intervals, unfold their character, and the operation 
terminates.

The proposition which justifies this transference of our opera
tions, from an interval inconveniently narrow, to another indefi
nitely wide, is simply this : viz., that as many real roots of any 
equation as lie in the interval [0, r], so many, and no more, 
belonging to the reciprocal of that equation, must lie in the 

interval [-, oo] ; that is, if r be taken equal to unity, in the 

interval [1, αo ].
By substituting, therefore, this latter interval for the former, 

fractional transformations are evaded; and the proposed interval 
virtually narrowed without their aid. As in Fourier’s method 
so here, the contraction of the original interval till the roots, if 
real, actually separate, must be accomplished before the character 
of those roots can be decided upon. Fourier effects this con
traction by the direct method of minutely subdividing the interval 
itself. Budan accomplishes the same thing by the indirect 
method above described, thus avoiding Fourier’s minute sub
divisions : but the two methods proceed to their ultimate object 
pari passu ; and the same imperfection is common to both, each 
involving a vast amount of useless trial-operations in all cases 
where roots occur which a slight change in the coefficients of the 
equation would render equal.

With the exception of such cases as these the method, like that 
of Fourier under the same restrictions, and independently of 
other aids, is readily practicable, as the foregoing examples suffi
ciently show ; since the superfluous trial transformations—un
avoidable where in our search after close limits so much is left to 
conjecture—are comparatively few ; because the roots entering 
those examples, having no remarkable proximity to one another, 
disclose their character after a few steps of the work. But if the 
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method of Budan be applied to the example at page 187, we 
shall find, like as in the unmodified process of Fourier, that 
the number and extent of the operations will exceed all reason
able bounds.

Another difficulty attendant upon the method, and the one 
which those who have cultivated it most have regarded as the 
most formidable, is that the case of equal roots is left unprovided 
for: and that, therefore, in order to ensure the success of the 
method it should previously be ascertained whether such roots 
enter the equation or not. This has been hitherto thought to 
involve the necessity of executing the operation for the common 
measure ; by which the numerical labour is often very seriously 
increased : as, for instance, in such an example as that just 
referred to; and certain tests, all of which involve difficult and 
tedious operations, have been proposed, to supersede the necessity 
for the common measure.*  But we have shown in the preceding* One of the most recent of these tests is given by Cauchy. It furnishes a limit to the number of steps towards the separation of the roots—whether those steps consist of successive transformations as above or not—within which, if the separation be not effected, we may infer the equality of the roots under trial. But this limit is in general so remote as to be practically useless. Another limit for the same purpose has been since proposed by Vincent : but this is still more unsuited to any practical purpose. Both these limits may be seen in the Journal de MathAmatiques, (tom. ii. p. 235). Had the simple properties of equal roots, which we have established at (101), been known to these writers, the laborious investigations which conducted them to the useless forms adverted to would undoubtedly have been spared; and a very formidable obstacle to the success of the methods of Budan and Fourier would have been seen to yield to far more simple and practicable means. In reference to these means we may here observe that there is a peculiarity in the tests (a), (b) at page 185, which ought not to be left unnoticed, as it distinguishes them in a remarkable manner from all other tests for discriminating between equal and nearly equal roots. In these others the difficulty of applying the test, and the ambiguity attending it, if not pushed to its extreme limit, always increase with the proximity of the roots : thus the more nearly two roots approach to equality the more nearly will the final remainder, in the process for the common measure, tend to zero ; and the greater will be the risk of confounding it with zero—and thus inferring equality of roots—if any abbreviations have been introduced into the work. And in like manner when other tests are applied any minute departure from strict accuracy in the numerical results would expose them to the same risk. But in applying the tests here 
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chapter that these laborious contrivances may be dispensed with ; 
and that a few simple considerations, suggested by the general 
theorem which we have given at (76), and the inferences at (101) 
will either at once remove the doubt—which is their usual effect 
—or will so reduce the work for the common measure as to ren
der it comparatively trifling. An important objection to Budan’s 
method is thus provided against.

(146.) Considering each of the methods now discussed inde
pendently, and apart from the modifications which we have pro
posed to introduce into that of Fourier, we should, upon the 
whole, be inclined to give the preference to Budan’s mode of 
examining intervals of doubt, on the score of superior convenience 
to that of Fourier ; as it is in general easier to employ integral 
than fractional limits. But advantage will often accrue from 
combining both methods together: or rather the process of 
Budan will often admit of simplification from the introduction of 
Fourier’s criterion immediately before passing from the direct 
to its corresponding reciprocal equation. The necessity for this 
passage will thus sometimes be spared, from a very slight inspec
tion of the coefficients in the last pair of transformations. View
ing, however, the actual determination of the real roots of an 
equation as the ultimate object which the previous analysis of the 
equation is to subserve, we shall find the method of Fourier to 
unite, so much more readily than that of Budan, with Horner’s 
process for developing the roots, as to claim, in general, a decided 
preference over the latter method, in connexion with the rapid 
mode of solution just mentioned. If Lagrange’s method of 
approximating to the roots of equations, by means of continued 

referred to we are free from apprehension of this kind. However closely the roots may lie together, if they are not accurately equal, the tests of equality will in general be just as wide of fulfilment as if no such proximity existed. This is more especially seen to be the case when the leading coefficient of the equation is unity; for then the equal pair of roots, if such exist, must be integral ; and it is plain that, however many decimals in a pair of nearly equal roots may coincide, each of these roots may comparatively be widely different from any whole number. The exampleat page 187, is an instance of this, the nearly equal roots being ∙316β64 .... and ∙31B665 .... 
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fractions, and which Horner’s method has superseded, were 
that which it were still proposed to employ in actual solution, 
then the analysis of Budan, combining more readily with that 
method, would have superior claims to adoption to that of 
Fourier, though, as remarked above, Fourier’s test should be 
kept in view during the operation.* But the student will more 
fully understand the bearing of these remarks, the propriety of 
this distinction, and the grounds of our preference, when we come 
to examine the methods of solution as proposed by Lagrange 
and Horner.

We shall only observe finally that when, as at page 202, it is 
readily seen that the last of a series of direct transformations 
will equally lose all its variations whether the transforming factor 
be unity, as usual, or some convenient decimal, as ,5, ’05, &c., it 
will often, as in the example adverted to, save much subsequent 
calculation to employ the decimal instead of the unit. It is plain, 
without actually effecting the transformation of (6), by ('05)', that 
the results must be all plus : a glance at the last three terms of 
(6)z is sufficient to convince us of this; so that all actual opera
tion by decimals is still avoided.

For the analysis of the preceding equation by the method of 
Sturm reference may be made to the author’s Mathematical 
Dissertations, page 195.

• The remark, made at the close of last chapter, equally applies here, in reference to Budan’s method of analysis : viz., that when the roots are to be computed, and a partial analysis of the equation has left but two roots in doubt —the others being real, the analysis of the doubtful interval need not be pursued : the values of the two roots indicated, whether they be real or imaginary, may be determined from the values of the other roots previously found. The formulas for two roots of an equation, in terms of the remaining roots, will be given in a future chapter.
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CHAPTER XI.

ON THE METHOD OF STURM: WITH A COMPARISON OF

IT WITH THE METHODS OF BUDAN AND FOURIER.

(147.) We now come to the theorem which Sturm has proposed 
for the analysis of an equation. It is distinguished from all other 
methods in three important particulars:—the simple character of 
its processes—the only operation involved in it being that for 
the common measure : the unfailing certainty of its results — it 
being entirely free from all tentative steps: and the basis fur
nished by it for the subsequent development of the roots—it being 
altogether independent of every method for their previous sepa
ration. This last is a striking peculiarity in the method of 
Sturm ; and gives to it a character to which no other method 
can lay the remotest claim, since whatever other mode of pro
ceeding we adopt we shall always be kept in suspense, as to the 
character of the roots indicated in any proposed interval, till those 
roots are actually separated, or till their separation is shown to be 
impossible.

In the introductory volume on the Analysis of Cubic and 
Biquadratic Equations we have given a very simple and elemen
tary demonstration of this interesting theorem: the investigation 
which follows is more closely allied to that furnished by Sturm 
himself in his original memoir.*

* Memoires presents par des Savans Etrangers, <fcc. 1835. This m(moire was rewarded with the prize of the Academie Royale des Sciences, in )834 ; and with a gold medal from the Royal Society of London, in 1840.
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Let X = 0 be any equation whose coefficients are real, and 
whose roots are unequal;*  and let X1 be the polynomial, derived 
from X, agreeably to the process in (15.) Let the operation of 
finding the greatest common measure of X and X1 be performed; 
and, in the several remainders which successively arise in the 
course of the process, change all the signs from -f- to —, and 
from — to +, and call the remainders thus modified, X2, X3, X4 
.... Put also the several quotients equal to Q1, Q2, Q3 . . . ; 
then we shall obviously have these equations, viz.

• The application of the theorem to the case of equal roots will be considered hereafter.

The final remainder, Xm, is necessarily independent of x, and 
different from zero, since, by hypothesis, the equation has no 
equal roots (98). Suppose now, that in the several functions, 

two numbers, p, q, such that p < q be successively substituted 
for x; these substitutions will furnish two series of signs; and it 
is the object of Sturm’s theorem to prove that

The difference between the number of variations of the first 
series, and that of the second, expresses exactly the number of 
real roots of the proposed equation, which are comprised between 
p and q.

Whence results the following rules for determining the entire 
number of real roots of an equation.

1. Apply to the two polynomials, X, X1, the process for finding 
the greatest common measure, modifying every remainder, or new 
divisor, by changing the signs; we shall thus have the series of 
functions,

www.rcin.org.pl



THE METHOD OF STURM. 209

which are of continually decreasing dimensions in x, Xnι being 
independent of x.

2. Substitute in this series, — oo, and + co, successively, for 
x, noting the signs of the results.

3. Count the number of variations in each row of signs; the 
difference of these numbers expresses the total number of real 
roots in the equation.

Having now stated the nature and object of Sturm’s theorem, 
we shall proceed to establish the principles from which it is de
duced. These are three in number, and are as follow:

1. The first principle is that, if r be a root of the equation

x = ∕(*)  = θ

and r + 5 be substituted for a; both in f(x), and in the first derived 
function ∕1(tf), a value so small may be given to £ that ∕,(r + 5) 
andι∕1(r)δ shall have like signs.

For making the proposed substitution we have

in which ι∕j(r), ∕2(r), are derived from f(r) as already ex
plained.

Now since, by hypothesis, r is a root of f(x) = 0, we must 
have ∕(r) — 0; so that the foregoing development is

and it has been shown (25) that a value so small may be given 
to such that for it, and for all smaller values, the sign of the 
aggregate of the entire series on the right of the sign of equality 
will be the same as the sign of the leading term fλ (r) ; w hich 
term is alwrays necessarily different from zero, because, by hypo
thesis, there are no equal roots in the proposed equation (98.) 
Hence a value for 5 exists such that for it, and for all values still 
smaller, ∕(r fl- ^) and ∕1(r)^ have like signs.

14
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2. The next principle to be proved is, that if in the functions

we put any number a for xi it can never happen that two con
secutive functions vanish at once.

Let

be any three consecutive functions; then (p. 208,)

and if it were possible that there could exist together the con
ditions

it would necessarily follow that

and, as moreover

it would further follow that

and so on. We should thus have finally the condition

X,n = θ>
that is to say, the last remainder would be zero; which is impos
sible, because, as there are no equal roots, X and X1 cannot have 
a common measure.

This immediately leads to the third principles, viz.

3. If one of the functions, a3 Xp, become zero for any par
ticular value of x, the two functions Xp-1, Xp+p between which 
it is placed, have necessarily contrary signs for the same value 
of x. This is evident from the relation

(148.) These principles being admitted, let us now represent 
by k any quantity, positive or negative, which may be nearer to 
— ⅜ than any of the real roots of the equations 
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and let k be conceived to increase continuously towards 4- 1, and 
that all the successive values are substituted for x in the functions 

the last of which, Xm, being independent of x, will of course remain 
unaffected by the substitutions; and, with respect to the others, 
we know that the signs of the results which they give will be con
tinually reproduced in the same order, so long as k does not reach 
a value sufficiently great to render one of the functions zero.

Suppose, however, that such a value is attained, and let it be a: 
then the substitution of this value for x will eithei’ cause one or 
more of the functions

to become zero without rendering X zero, or else the substitution 
will render X zero, and may besides cause one or more of the 
other functions to vanish. Here are then tw o cases : and we shall 
now prove that in the first case no variation can be lost in the 
passage of x through the three consecutive states a — S, a, a -j- fl; 
and that in the second case one variation will disappear, and only 
one, in passing from the state x = a — fl through x = a to the 
immediately succeeding state x = a +

Let us examine the first case, viz. that in which one of the 
intermediate functions, as Xp, becomes zero for x = a, for which 
value x does not vanish.

As for the same value x = a, Xp-ι and Xp + 1 give results with 
contrary signs (p. 210), it follows that the consecutive functions 

must furnish one or other of these combinations of signs, viz.

+ 0 -

- 0 +

so that, whether 0 be regarded as + or —, there is always one 
variation and one permanence; but whatever be the signs given 
by Xp-1 and Xp+1, they have been preserved unaltered through 
all the passages of x, from x = k up to x = a, as by hypothesis, 
no root of Xp-1 = 0, or of Xp+1 = 0, has been passed over in 
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this interval; nor will these signs change in passing to the im
mediately succeeding state x = a -∖- δ, because, however near a 
may be to a root of one of these equations, yet c may be made 
so small as to render it impossible that a root can be comprised 
between a and a + δ.

We may, therefore, conclude that the three functions above, 
which for x = a furnish one variation and one permanence, 
give equally a variation and a permanence for all values of x com
prised between x = k and x = a + tλ No variation, therefore, is 
either lost or gained in the series X, X1, X2, . . . . in passing 
through the state x = a, however many of these functions may 
vanish in the passage.

Let us now consider the second case, or that in which X or /(a?) 
becomes zero for a? = α.

Substitute in X and X1, that is, in f(x) and fλ(x), the value 
a + 5 for x, and we shall have (27)

But, by hypothesis,

Hence, taking <5 sufficiently small, f(a + <>) and f} (« -f- ∂) have 
respectively the same signs as ∕1(α) and /j(«); and these have 
like signs when is positive, and unlike signs when 5 is negative. 
Consequently, when is negative, f(a + <5) and ∕j(<z + 5) have 
contrary signs, and when 5 is positive they have the same signs; 
so that in the passage from x = a — to a? = α -∣- fl, a variation 
is changed into a permanence. No other loss of variation is due 
to this passage, because although other functions should vanish in 
the transition, yet, as we have seen above, their vanishing does 
not affect the number of variations.
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It lienee appears, that whatever be the previous state of the 
series

with respect to signs, immediately before the passage of a root, 
one variation, and only one, will be lost in consequence of that 
passage; and that the variation thus lost, is that which always 
exists between X, and X1, immediately before the passage of the 
root.

Now it is plain that this loss cannot be recovered in the interval 
between the passage of one root and of that next following; be
cause, as in this interval X does not vanish, the variations through
out remain in number the same, as we have already proved. Yet, 
from the foregoing deductions, it clearly follows that immediately 
before the passage of the second root there must be a variation 
between the signs of the first two functions; we must conclude, 
therefore, that this change of a permanency into a variation cannot 
add to the total number of changes ; hence the variations immedi
ately before the passage of the second root, are precisely the same 
in number as immediately after the passage of the first. When 
the second root passes, a variation is necessarily lost, but only one; 
so that, immediately after the passage, the variations are in num
ber fewer by two than at first; and thus the passage of every suc
cessive root is attended with the loss of one additional variation, 
and one only.

We may, therefore, now conclude, that the number of variations 
lost during the increase of x from x = p, to x = q, is exactly 
equal to the number of real roots which are comprised between 
p and q ; and thus the theorem at (147) is fully established.

From the foregoing investigation we gather the following use
ful particulars, viz.

(149.) 1. In order to ascertain the total number of real roots 
in any equation, we shall not be required by this theorem first to 
determine close limits, — L and + L': it will obviously be suffi
cient to substitute in the series of functions X, X1, X2, &c., the 
extreme values — ∞ and + ∞ , between which all the real roots 
are necessarily comprehended; and the difference between the 
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variations furnished by these substitutions, will be equal in num
ber to the number of real roots in the equation. Haring thus 
ascertained how many real roots there are in the equation, we 
may determine their nearest extreme limits by substituting the 
successive numbers of the series

till we have as many variations as were given by the substitution 
of —∞ ; after which we may substitute, in like manner, the 
numbers of the series

till we arrive at as many variations as were before given by + oc : 
the numbers at which we stop will be the extreme limits, and, 
moreover, the intermediate numbers will mark out the situations 
of the roots themselves; as the difference between the variations 
given by one number, and those given by any other, will always 
express the number of real roots which lie between the numbers 
substituted. The extreme limits thus obtained will qbviously be 
the nearest integral limits possible.

2. It must here be observed that — ∞ and + ∞ need be sub
stituted only in the terms containing the highest power of x in 
each function; because this term must, for x = ÷ oo, be nu
merically greater than all the other terms in the function to
gether, so that the sign of this first term will determine the sign 
of the whole.

It is, moreover, obvious that when all the roots are real, the 
functions must be n + 1 in number; more numerous than this 
they cannot be, because they are of continually descending 
dimensions, and, from xa to x0 inclusively, comprehends but n -f- 1 
grades at most; nor can the number of functions be fewer than 
n + 1, in the case supposed, for else there would not be n varia
tions to lose, and, therefore, not n real roots. These same func
tions, too, must have the leading terms all of one sign, in order 
that the substitutions in them, of — x and 4- ∞ for x, may in 
the one case give all variations, and, in the other, all perma
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nencies. When, therefore, the functions X, X1, X2, &c. are n + 1 
in number, and have the first term in each, uniformly +, or uni
formly —, we may conclude that the roots are all real; when, 
however, such conditions have not place, then imaginary roots 
exist; of which, the exact number may be determined, as above 
directed.

3. But in all cases where there are so many as n + 1 functions, 
however their leading signs may vary, the determination of the 
number of real and of imaginary roots, may still be effected by a 
rule easily deducible from, but more simple than, the general one 
just established; and it is of consequence to notice this simpli
fication of the general theorem, because the functions of which we 
speak usually amount in number to n + 1, inasmuch as in seek
ing the greatest common measure of X and X1, each divisor is 
usually of a degree immediately below that of the. preceding 
divisor. Now in every such case, the number of imaginary roots 
in the equation X = 0 may be readily discovered, by the simple 
inspection of the signs of the leading terms of the n + 1 func
tions : in fact

The equation X = 0 has as many pairs of imaginary roots as 
there are variations in the series of signs of the leading terms of 
the functions

these being supposed to diminish in degree regularly by unity.
This is proved by Sturm thus :
It follows from the hypothesis which has just been admitted, 

that every two consecutive functions Xp-1, Xp, are the one of an 
even degree, and the other of an odd degree. Hence, if these two 
functions have the same sign for x = + co, they must have con
trary signs for x = — oo; and vice versd, if they have contrary 
signs for x = + co, they must have the same sign for x — — ∞; 
so that if we write one below the other, the two series of signs of 
the functions

for x = — <x, and for x = + oo, each variation in either of these 
two series will correspond to a permanence in the other series; 
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therefore the number of permanencies for x = — oo is equal to 
the number of variations for x = ⅛ ∞.

Let i be the number of variations for x = + ∞, and which 
may be zero. These variations are entirely due to the signs of 
the leading terms in the n functions

because the leading term of X and the leading term of X1 are ne
cessarily positive.

Now we have just seen that the series of signs for x = — ∞ 
must furnish i permanencies; it must contain then n — i varia
tions, since the functions X, X1, .... Xn are n + 1 in number; 
and that in a series of n + 1 signs, the number of variations and 
permanencies combined amount to the sum n.

But, by the general theorem, the number of real roots of the 
equation X = 0, all comprised between — ∞ and + oo, must 
equal the excess of the number, n — i, of variations due to 
x = — oc, above the number, i, of variations due to x = ⅛ <x. 
The equation X = 0 has, therefore, n — 2i real roots, and conse
quently 2i imaginary roots : these we know enter in pairs of the 
form a ÷ b χ∕ — 1 ; hence the number of these pairs is i.

4. To this we may add that, whatever he the number of the 
functions, the substitution of 0 for x will furnish the same series 
of signs as the final terms of those functions; and the substi
tution of ∞ for x will furnish the same series as the row of lead
ing terms : consequently, since all the positive roots are com
prised within the limits 0, oc, it follows that the number of posi
tive roots will always be expressed by the excess of variations 
furnished by the final signs above those furnished by the leading 
signs. And further, since the negative roots all lie within the 
interval [0, — oo], the number of negative roots will always be 
expressed by the excess of variations furnished by the leading signs, 
after those attached to negative powers are changed, above those 
furnished by the final signs: and thus the number of each kind of 
roots, positive, negative, and imaginary, may always be ascertained 
by simply inspecting the leading and final rows of signs presented 
by the series of functions, without any actual substitution whatever.
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5. If, in substituting two numbers, p and ¢, in the functions, in 
order to ascertain how many roots lie between them, we find that 
any intermediate function vanishes, we may pass over the zero in 
estimating the number of variations ; for, as it was shown that in 
such a case the contiguous functions are always of contrary signs, 
the intervening one, whether taken + or — ,will cause the three 
to furnish but one variation, so that the number of variationswill 
not be affected by its omission.

When the first function, X, vanishes, we may also omit the 
zero in estimating the variations : for the vanishing of X shows 
that the number substituted is a root, and that a variation has 
just been lost by the change of sign of X ; the remaining va
riations, therefore, are all that are concerned with the other 
roots.

6. If, after having obtained the series of functions, we find that 
one of them, as Xr, is of such a nature as always to preserve the 
same sign, whatever number between p and q be substituted for x 
in it, then, in order to ascertain the number of roots between p 
and q, we may reject all the functions beyond Xr, and confine our 
substitutions to the series

for, so long as Xr preserves the same sign, and, consequently, 
does not pass through zero, no alteration can take place in the 
number of variations furnished by it, and the following functions ; 
which is proved precisely as for X in (148). Hence, whatever 
changes take place in the interval [p, q], occur in the functions, 
as far as Xr only. From this the following consequences 
result, viz.

7. If in the course of the operations, by which X1, X2, X3, &c. 
are determined, we ascertain that a certain function, Xr, can have 
only imaginary roots, then, as the result of every substitution in 
it must be positive, we need not extend the process to the other 
functions, Xr + p Xr + ∙j> &c.

8. As, therefore, in the case just supposed, the number of real 
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roots in the equation is determinable from an examination of the 
r + 1, first functions only, viz. the functions

we may, obviously, apply to these all the remarks which have 
hitherto been made in reference to the entire series: we may 
affirm, for instance, that when these functions regularly diminish 
in degree, by unity, and have all the same leading sign, that the 
equation has r real roots, and no more ; and further, that when 
the leading signs are not all the same, but present i variations, 
the number of real roots will be only r — 2i. Hence we may 
extend Sturm’s second rule, as follows :

When the series of functions

in which Xr is either the final quotient, or else such that the roots 
ofXτ = () are imaginary, regularly descend in degree, by unity, 
and present i variations in their leading signs, there are exactly 
r — 2i real roots in the equation X = 0. If i = 0, that is, if 
there are no variations, the equation has r real roots, but no 
more.

9. Another useful deduction from the inference 6 above is, 
that let us stop at whatever function we may, we can always 
ascertain w hat roots of the original equation lie without the limits 
which inclose the roots of our final function as soon as these 
limits are determined. Thus, if by any of the rules in Chap. vι. 
we find p, q for the inferior and superior limits of Xr = 0, 
then the substitutions of — ∞ and p for x, in the incomplete 
series of functions above, will make known the number of roots 
of X = 0 lying in the interval [— oo, p^∖. In like manner the 
substitutions of q and α>, in the same series, will make known the 
roots in the interval [q, cc]. Still further information respecting 
the roots of X = 0 may be obtained from the series terminating 
in Xr, provided we determine not merely the extreme limits of the 
real roots of Xr = 0, but the intervals in which they severally lie; 
for we shall then become acquainted with those partial intervals 
within the preceding limits p, q, from which roots of Xr = 0 are 
as much excluded as from the regions without those limits; so 
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that whatever roots of X = 0 may lie in these partial intervals, 
their existence will be detected, as in the former case, without 
any aid from the series of functions beyond Xr.

10. Lastly, from what has now been established, it follows that 
in order that all the roots of an equation of the nth degree may 
be real, it is necessary and sufficient that the series of functions 
be n + 1 in number, and that their leading coefficients present 
no variation of sign. If either of these conditions fail, we may 
conclude with certainty that imaginary roots enter the equation. 
Of these n + 1 coefficients the first two, viz., those which enter 
the leading terms of X and X1, spontaneously fulfil the requisite 
condition. The leading coefficients of the remaining n — 1 func
tions are determined one after another by the successive steps of 
the process for the common measure. Hence, in order that the 
roots may all be real, certain determinate functions of the coeffi
cients, n — 1 in number, must fulfil n — 1 conditions ; the condi
tions being, that they all have the same sign as the leading coeffi
cient in the proposed equation. Fewer conditions than these 
would be insufficient: a greater number would be superfluous. 
And thus does the theorem of Sturm furnish us at the outset 
with a satisfactory solution of a problem to which all other modes 
of investigation have been applied in vain : the problem, namely, 
to determine the exact number of conditions which certain deter
minate functions of the coefficients of an equation must fulfil, 
in order that all the roots of that equation may be real.

We have incidentally noticed, at page 68, the researches of 
De Gua and Lagrange in reference to this subject: both were 
led, though by very different routes, to the same expression for 

t. . . . . n(n— 1)
the number of conditions, viz., to the expression---- -—, which

, , (n—2)(n—1) , 1 1 ....
exceeds n—l by - ------ ; so that these determinations in

volve this latter number of superfluous conditions.*

• It must be observed that in particular examples the necessary conditions may be fewer in number than the above formula indicates, as some may happen to be implied in others. The number can never exceed that expressed by the formula.
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(150). It now merely remains for us to show the application of 
the theorem at (147) to those cases in which equal roots enter the 
equation proposed for analysis.

Let the equation X = 0 have equal roots : then the function X, 
and all the functions that follow, will have the last of them, as 
Xμ for a common measure ; and the equation Xp = 0 will contain 
the repeating roots once less often than the equation X = 0. 

χ
Hence the equation — = 0 will involve all the different roots 

p
of X = 0 without any repetitions, and therefore all the preceding 
deductions will apply to it; and thus the number and situations of 
all the different roots of the proposed equation may be deter- 

χ
mined as before from the function —, and the subordinate func- 

tions deduced from it, as already explained. But the series of 
functions deduced in like manner from X differ from the former 
series only by the common factor Xp entering all of them; and 
whatever sign this factor may take, for any particular value of x 
in it, the entire number of variations, furnished for that value by 
the complete series, will be the very same as would be furnished if 
the common factor were suppressed : for when the sign of this 
factor is plus, it can have no effect on the signs of the quantities 
multiplied by it; and when it is minus, the effect is to change all 
the signs of the quantities multiplied. In both cases the num
ber of variations remains undisturbed. Hence, as it is merely 
the number about which wτe are concerned in Sturm’s theorem, 
it follows that, in applying that theorem to the discovery of the 
character of the roots of X = 0, in any proposed interval, we 
need not first eliminate the equal roots : the theorem equally ap
plies whether the roots are all different or not: the only thing to 
be observed, when equal roots enter, that is, when one of the 
subordinate functions Xp+1 vanishes, is, that the series of func
tions, terminating in Xp, will make known the number and 
situations of all the real roots taken singly. The equation X = 0 
will contain those remaining roots which, combined with the 
former, cause the repetitions, and it may be analysed by applying 
to it the same process. Or if, after the places of the roots of 
X = 0 taken singly are discovered, as above, we actually deter-
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mine the values of those of them which are multiple, hy aid of 
the principles at (101), or the precepts at page 185, and then 
diminish the roots of the equation by each in succession we shall 
ascertain their degree of multiplicity; for as many times as a root 
enters, so many of the latter terms of the transformed equation 
arising from diminishing by that root, must vanish. This method 
of finding how often the same root enters an equation is obviously 
the same, virtually, as the more cumbersome mode of proceeding 
adverted to at (99). If after the equal commensurable roots are 
eliminated in this way, equal incommensurable roots should still 
remain, the polynomial factors, involving the several sets of these, 
may then be determined by the process for the common measure, 
as already described at page 186.

(151.) Thus the complete analysis of a numerical equation ac
cording to the method of Sturm is wholly comprised in the ordi
nary process for seeking a common measure between a given poly
nomial and its first derived function. We cannot dispense with 
this process as in the search after equal roots, because it is not 
merely the final conclusion of the operation that we wish to con
sult: the result of each intermediate step is equally in request; 
since these several results supply the series of functions necessary 
to the determination of the character of the roots.

It is easy to see, therefore, to what end our efforts should be 
principally directed in attempting to facilitate the application of 
Sturm’s rule: our aim should evidently be to reduce as much as 
possible the mere numerical work by which the successive steps 
for the common measure are wrought, and the sought functions 
deduced, as far at least as these are absolutely necessary to make 
known the situations of the roots. But it is not always that the 
entire series is necessary; whenever, for instance, upon arriving 
at the quadratic function, we find that four times the product of 
the extreme coefficients exceed the square of the middle one, we 
may discontinue the work; since the quadratic function, under 
these circumstances, will never undergo any change of sign what
ever number be substituted in it for x (59), so that the two 
functions that follow this, in the order of derivation, viz. the 
function of the first degree, and the final constant, would, if
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introduced, neither increase nor diminish the number of variations 
furnished by the incomplete series of any value of x, p. 217; and 
therefore the computation of these two functions would be super
fluous. It is therefore always worth while to pause at the qua
dratic function, and inquire whether the coefficients it presents 
have the above-mentioned relation or not: as it is an important 
matter to save the last two steps of the calculation. The final 
step—that which determines the constant—need never be fully 
worked out; since it is not the numerical value, but only the sign 
of this constant that we have any occasion for: and this sign we 
may often arrive at, very readily, by aid of the property at p. 210, 
which shows that if a value of <z,, which makes one of the func
tions become zero, be substituted in the immediately preceding 
function, the resulting sign will always be opposite to that fur
nished by the immediately succeeding function, for the same 
substitution. Hence, when we have arrived at the last function 
but one, that is, at the function ax + b, we need merely substi

tute the value of x which renders this zero, viz. =----- , in the
a 

preceding quadratic, and change the sign of the result in order to 
get the proper sign of the final constant. It is seldom necessary 
to make this substitution with any view to strict numerical ac
curacy : a glance will often suffice to inform us whether the result 
would be positive or negative.

In a somewhat similar manner to that by which the actual 
computation of the final function may be thus avoided, may the 
function immediately preceding it be also dispensed with; and 
the information afforded by it obtained in another way. The 
departure thus made from the direct method of Sturm will 
generally be attended with decided advantage on the score of fa
cility. We have very fully dwelt upon this mode of proceeding in 
the introductory volume; and shall again advert to it in the next 
chapter: our chief object at present is to exhibit what appears to 
us to be the shortest and most convenient method of conducting 
the operation for the common measure, that is, of determining, in 
general, the remainder, of degree n — 2, which arises from 
dividing a rational polynomial in xi of degree n, by another of 
degree n — 1, fractions being excluded from the process.
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(152.) Let the dividend and divisor be represented respec
tively by

the remainder sought will present itself after two terms of the 
quotient have been obtained : the first of these, when combined 
with the divisor, will destroy the first term of the dividend, fur
nishing a remainder of degree n— 1, the leading term of which 
is in like manner destroyed by the second term of the quotient: 
the resulting remainder being that sought. It is desirable that 
this, and every succeeding remainder, be free from fractions; and 
to preclude their entrance it is requisite that both terms of the 
quotient be free from fractions. That the first of these two may 
involve no fraction it is obviously sufficient to multiply the divi
dend by a!; but then the first remainder, having for its leading 
term (a!b — ab')xn~λ, would in general necessitate the entrance of 
a fraction into the second term of the quotient; viz. the fraction

; with which fraction, therefore, the next remainder 

would be affected.
In order, therefore, to provide against the entrance of fractions 

in all cases, it is generally necessary to multiply the dividend not 
only by a', but by α'2; after which preparation it is easy to see 
that the quotient will be a!ax + (a!b — ab,). Let us then mul
tiply each of these terms by the divisor, arranging the several 
partial products, under the like terms of the dividend, with 
changed signs, in order to convert the operation of subtracting 
them from the dividend into that of adding. The entire w ork of 
the step, the quotient being suppressed as we have no occasion 
for it, will then take the following arrangement:
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From this mode of arrangement it is easy to discover what 
functions the coefficients a", ∕j", &c. in the sought remainder, are 
of the coefficients in the original polynomials. Butin order that 
these functions may be computed in the most expeditious man
ner the work should be conducted conformably to the follow ing 
type of the operations, where the multipliers inserted in the 
margin are the factors which combine with the given coefficients 
in the operation exhibited above, but written in reverse order.

The complete remainder to which these coefficients belong is

But the signs of all its terms are to be changed, agreeably to 
the theorem of Sturm, before it is employed, as above, in combi
nation with [2], in deducing the next following remainder. 
Hence the dividend and divisor, w ith which the next step of the 
work is performed, are respectively

Conformably to the foregoing general type of the work involved 
in each step, this last polynomial is to have all its signs after the 
first changed; the coefficients only are to be written dow n, those 
of the preceding polynomial, with their proper signs, are to be 
placed under them, and the operations in the model performed. 
The formation of the multipliers which occupy the side column 
of the wrork is sufficiently indicated by the general symbols ; but 
to assist the memory, in particular examples, it is recommended 
always to insert the cross between the first two terms of the divi
dend and divisor at the head of each step, as above : as by this 
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contrivance the mode of forming the first multiplier is very in
telligibly pointed out: the formation of the other multipliers is 
too simple for us to stand in need of any such guidance to it. 
By uniting the several steps of the operation the following will 
be a general type or working model of the entire calculation, 
where it is to be observed that the several remainders are written 
with changed signs.
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The first step of the preceding work may be abridged in con
sequence of the manner in which X and X1 are always connected 
together.

Thus, since
X1 = naxn~i + (n — 1) bxn~2 + (n — 2) cxn^3 + . . .

the first step will be as follows, the factor a common to all the 
multipliers being suppressed :

The coefficients of X.2 may, therefore, be obtained thus : Write 
the coefficients of X1 in a row, with their proper signs. Under
neath these write the coefficients of X, commencing with the 
second, after having multiplied them in order by the numbers 
1, 2, 3, 4, &c. taking care, however, to put down all the results 
of these multiplications except the first, with changed signs. We 
shall thus have two rows of figures of equal extent. Cut off the 
leading term in each row for multipliers; then if the lower of 
these be multiplied by the upper row and the upper by the lower 
row, and the several results added, the step will be completed: thus
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We shall now give a few examples of the application of these 
forms, and for the purpose of comparison shall subjoin to Sturm’s 
analysis, the necessary operations by the methods of Fourier 
and Budan, improved as suggested in Chapter ιx.*

• In the present chapter we do not propose to enter into very minute detail respecting the practical operation of Sturm’s theorem. A great variety of examples, and an exhibition of the best expedients for contracting the work, will be found in the Analysis and Solution of Cubic and Biquadratic Equa
tions, and in the Mathematical Dissertations.

(153.) As a first example let us take the equation
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Having now arrived at the coefficients of the quadratic 
function we apply the test adverted to at page 221, and find 
it to be satisfied; that is, 4(301 × 196) > 942. Consequently 
the operation is terminated ; and the functions as far as neces
sary are

These give, for

Hence there is only one real root, which must be positive, 
since the final sign of X is negative. A superior limit to this 
root (89) is 2; so that no number beyond 2 need be substituted 
in X in order to determine its situation. Putting 0 for x in X 
the result is minus : putting 1 for x the result is still minus .- 
therefore the root must lie between 1 and 2.

(154.) The analysis of the preceding equation is very easily 
accomplished either by the method of Fourier or by that of 
Budan : thus, transforming by (—1), (0), (1), (10), we have

From this partial analysis of the equation, we see that the
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only doubtful interval is [0, — 1]. The transformations cor
responding to the limits of this interval are

There is no necessity to contract the interval in order to deter
mine the character of the two roots indicated : for we may infer 
at once that thev are imaginary, inasmuch as

which, alone, being equal to the entire interval [0, — 1] we 
know from the criterion [a] at page 165, that the roots are ima
ginary. And as two other imaginary roots were indicated by the 
preliminary process above, we conclude that the equation has 
but the one real root lying, as determined by that process, 
between 1 and 10.

By Budan’s method we proceed as follows, for the same doubt
ful interval [0, — 1], or rather, changing alternate signs, for the 
interval [0, 1] :

Hence there are four imaginary roots.
As a second example let us take the equation

and the remainder of Sturm’s functions are found as follows :
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Hence the series of functions is

• The advantage of having zero for the second coefficient is readily seen from the first two steps of this example. This advantage was alluded to at page 87.
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From the signs of the leading terms we infer that all the roots 
are real (149) : and from the signs of the final terms that two 
roots are positive, p. 216, and consequently that the remaining 
three are negative. From Maclaurin’s limit we see that the 
numerical value of each of these must be below 11. To find their 
exact places we proceed as follows :

Whence the places of the five roots are as follow :

(155.) The partial analysis of this equation by the theorem of 
Budan and Fourier (107) leaves the interval [0, — 1] doubt
ful, the corresponding transformations being

As -⅛ + ⅛ is less than the distance 1, between the limits we 
must contract the interval before we can determine the character 
of the roots. Previously to this there will be no occasion to seek 
the common measure of f(x) and J∖(x), which would imply all the 
work in the foregoing process by the method of Sturm, for we 
know that the proposed equation cannot have equal fractional 
roots (101). Nor in narrowing the interval need we proceed en
tirely at random; for we know, that if the roots in this interval
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should happen to be real, they cannot both lie so near to the 
limit 0 as — nor so near to the other limit — 1, as — 1⅛, else 
the criterion [a] would be fulfilled, and the roots would be ima
ginary. Consequently, — ∙2 is a suitable intermediate number, 
being somewhat greater than — ⅜. Transforming therefore by 
this number we have

1 -0 —10 +0 ÷6 +1 (—∙2

— •2 ∙ ∙04 1∙992 —∙3984 —1∙12032

-∙2 — 9∙96 1∙992 5∙6016 —∙12032

We need not complete the transformation : the change of sign in 
the final term shows that —,2 separates the roots. Hence one 
root lies between — ∙2 and — 1, and the other between 0 and 
— ∙2. Let us now apply the method of Budan to the same 
doubtful interval:

(0) . . . . + 1 — 0 - 10 + 0 + 6 ÷ 1

( — 1) ....4-1-5-0 4- 20 — 19 +4

Reciprocal (0)....+1+6+0 — 10 — 0 +1

(-1) . . . . -4

As a change of sign is produced in the final term, we need not 
complete this last transformation, but may conclude at once that 
the roots are real.

(156.) We may remark here, that when Sturm’s method is 
applied to an equation of a high degree, or when very large coeffi
cients enter an equation of even a low degree, the operation for 
the common measure will involve multiplications by large num
bers, which numbers may be expected to increase very rapidly in 
the final steps of the work. But, as in order to discover the cha
racter of the roots, the accurate computation of a large array of 
figures in the several results is not necessary, it will in general be
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sufficient to secure the three or four leading figures merely of the 
final numerical result: those that follow may be rejected as re
dundant. In order to save the labour of computing these re
dundant figures, we recommend their progressive increase to be 
checked, as soon as they threaten to become uselessly large, by an 
easy reduction of the subsequent sets of multipliers. Thus, re
ferring to the general model at p. 225, if the numbers at the close 
of the second step, for example, are so large as to threaten unne
cessarily long multiplications in the computation of the third 
step : then in preparing for that step we should employ the mul
tipliers Aw, Bzz, Czz, instead of A", B", Cz', these being a'" times 
the former.

a"b"'
And in calculating ——, only so many decimals are to be pre

served as will be sufficient to secure accuracy, upon the principle 
of contracted multiplication, in the proposed number of leading 
figures to be retained in the several products which enter the 
step. In the following example the last step of the work is cur
tailed in this way :
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Consequently, the functions are as follow :

From the variations in the leading signs we infer that all the 
roots are imaginary (149).

It may be proper to observe here, in reference to the foregoing 
method of abbreviating the work, that should roots approaching 
very nearly to equality enter the equation — thus causing a ten
dency in the final remainder towards zero—our curtailments, if 
too freely made, may deprive that remainder of all its significant 
figures; and present us only with a row of zeros. The same would 
happen if the roots were imaginary, provided a minute change in 
the final term of the equation would render them real and equal. 
In such a case, the final sign would be doubtful; and could not 
be safely inferred from the preceding function of the first degree. 
We might, under such circumstances, disregard this function of 
the first degree, and ascend to that of the second; consider it the 
last of the series, and proceed with the analysis as explained in 
the introductory treatise, Chapter ιv, and fully illustrated at 
pp. 214-226. But the peculiar case here noticed will come under 
special consideration in next chapter.

(157.) Let us apply the method of Fourier to the pre
ceding example :—
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The index 2 corresponds to /2(a?): wc shall proceed to examine 
whether f2(x) = 0 can have a pair of equal roots in the 
interval [0, 1).

The equation /2(a?) = θ cannot have a pair of equal fractional 
roots, because its leading coefficient has no square factor (101). 
We may therefore proceed to subdivide the interval [0, 1]; and 
as our object is to interpose between the foregoing trans
formations, one that will change the first index 1 into o, we shall 
be guided to a suitable number by inspecting the fourth derived 
function above, viz., 15a?2 + 5x — 1, which we see becomes plus 
for a? = '3 : hence the transformation (,3) must produce the de
sired change in the leading index.

www.rcin.org.pl



WITH THAT OF FOURIER AND BUDAN. 237

Transforming therefore by (,3) we have

Two imaginary roots are indicated in the interval [0, ∙3], 

for^~∙1γ^ = - is greater than ,3. To determine the character of
J 2∖θ) Ł

the remaining two roots, indicated in the interval [-3, 1], we ob
serve, first, that j∖x) = 0 can have no equal roots in that inter
val (101); we shall therefore seek to interpose a transformation 
that will change the second of the indices 1, ι, 1, 2, into o. 
An inspection of the third derived function, viz., 20a?3 + 10x2 
— 4x — 1, suggests "5 as a suitable number; as the function 
changes from — to + in the interval [∙3, ,5]. Transforming 
therefore by (,5) we have
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Since is greater than the distance ,5 between

the limits we infer that these two roots are also imaginary.
It remains for us to examine the negative intervals; for this 

purpose we have, by changing alternate signs, and then changing 
those of the result,
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In order to reduce the first index to o the factor (— ,2) will be 
suitable

The character of the roots is still doubtful: the interval however 
is reduced to [ —,2, — I]. Trying the intermediate number — fi 
we have
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As this result is less than ,4, the distance between the limits, the 
interval [— ∙6, —1] must be rendered still narrower. Trans
forming, therefore, by an additional unit, we have finally

This result being greater than ∙1, the distance between the limits, 
we conclude that the roots indicated are imaginary.
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Let us now apply the method of Budan to the intervals 
[0, 1], [0, —1].

(0) . . . . + -j- — — + — +

(1)....+ + + + + + + four variations lost.

1-1+1-1-1 + 1+1(1 
n ∙ ∕n∖ . . , , o 1 o-i o 1Reap. (0) ....+ — + — — + + 1221 i<fec. <fcc.

(1) . . . . + + + + + + + no var. left.

Hence, the four roots indicated in the interval [0, 1] are all 
imaginary.

Again: changing the alternate signs, we have

(0) . . . . +-------+ + + +

(1) . . . . + + + + + + + two var. lost.

Recip. (0) . . . . + + + +-------+

(1) . . . . + + + + + + + mo fe∕if.
Therefore the two remaining roots are also imaginary.

(158.) In each of the preceding examples the method of Budan 
has appeared very much to advantage. Its superiority in the 
analysis just completed is very conspicuous: the operations of 
Sturm and Fourier both involve a good deal of calculation; 
but we think preference should be given to the former, on account 
of the confidence we can place in every step of the work, as 
directly contributing to the object in view, without the expendi
ture of a single useless or tentative operation. This important 
peculiarity of Sturm’s method should never be overlooked in 
comparing it with other processes, the steps of which, though 
apparently requiring much less work, are seldom to be made 
without cautious deliberation and that sort of tact which expe
rience alone can impart to the analyst. The method of Sturm 
is quite independent of every aid of this kind: it leads us so 
unerringly and so directly to the object sought—although some
times by a lengthy path—that whatever be the inherent difficul
ties of the question, we proceed unapprized of them along the 
same uniform track, with full confidence of arriving at the solu-

16
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tion without any demand being made upon our ingenuity or 
address to provide for particular exigencies. The simple model 
at (152) is an unerring guide in every possible case. But, even 
on the score of mere numerical work, an unfavorable decision 
must not be pronounced against Sturm’s method from the evi
dence of a few particular examples. Without actual trial, it is 
sometimes impossible to select, from the three preceding methods, 
that which shall necessarily effect the required analysis, in any 
proposed case, with the least expenditure of calculation. In 
many instances the processes of Fourier and Budan will ter
minate very speedily, and indeed unexpectedly, in cases, which 
by Sturm’s method, would involve us in long and laborious 
multiplications. But it is some disadvantage to those methods 
that, so far from their enabling us to foresee this, they furnish 
us with no means of even fixing any moderate limit to the 
amount of work that may be required by them. We can always 
form a pretty correct estimate of the extent of calculation by 
Sturm’s method from an inspection of the coefficients, and the 
degree of the equation; since these always regulate the length of 
the operation. And thus we shall in every case be forewarned, 
at the outset, when the method of Sturm should be abandoned 
for that of Fourier or of Budan, or for the methods proposed 
in next chapter: the ease with which a step or two of Budan’s 
method may be executed, renders it especially deserving of notice 
as a preliminary test where imaginary roots are suspected.

(159.) We shall now give an example that will in some measure 
illustrate the preceding observations.

Let the equation proposed for analysis be

12aτ3 — 120a?2 ÷ 326λ- — 127 = 0.

From the low degree of the equation, we may be quite sure of 
accomplishing the analysis, by the method of Sturm, with but 
a very trifling amount of numerical labour. In order to exhibit 
the whole of it, we shall actually compute the final function X3; 
although, as in the last example, the sign of this, which is all we 
want, may be more easily deduced from the principle in (151).
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In applying the rule at p. 226 to the original functions

X = 12a?3 — 120a?2 + 326a? — 127
X1= 18a?2 - 120a? + 163

we shall suppress the common factor 6, which enters the multi
pliers, and shall employ the reduced numbers 3 and —20 instead.

As the final result is minus we infer at once that the equation 
ιas a pair of imaginary roots; and consequently but a single real 
∙oot, which from the final sign of X, must be positive. By 
substituting 0, 1, &c. in this polynomial we find the root to lie 
)etween 0 and 1.

(160.) Let us now apply Fourier’s method to this example:
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Now before proceeding to subdivide the interval [4, 5] it is 
necessary to ascertain whether equal roots can lie in this interval. 
Referring, therefore, to the proposed equation, we find that the 
absolute number 127 contains no square factor. Hence the roots 
indicated are not equal (101).

In order to avoid useless transformations, let us observe, like 
as in the example at page 231, that as = ∙4..., and ^ff=∙l... 
the interval to be examined is contracted to [4,4, 4,9]. Inter
posing, therefore, the number 4’5 we have

12 + 24 —58 +25 (∙5
6 15 —21∙5

30 —43 3∙5
6 18

36 -25
6

42
(4∙5) .... + 12 + 42 — 25 + 3 5.

The interval between this and the preceding limit (5) is '5; 
and as -∕5 + ⅜⅛, is not so great as this, the interval is not yet 
sufficiently narrow: it is contracted, however, to [4,5 ¾f, 4,9] 
the number to be interposed is therefore 4’7; so that we have to 
transform the last result by (∙2)

12 +42 —25 +3∙5 (∙2
2∙4 8∙88 —3∙224

44∙4 —16-12 -276
2∙4 9-36

46,8 -6,76
2∙4

49∙2
(4∙7) .... + 12 + 49∙2 - 6-76 + -276.

. *276The interval between 4,7 and 5 is -3; and, as the fraction ------
6,76
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when increased by -j,6- is less than ,3, we infer that the interval 
is still too wide. Advancing therefore by another unit, we find

(4∙8) . . . 12 + 52∙8 + 3∙44 + 404 ;
so that 4-8 oversteps the roots, supposing them to be real. We 
have then to contract the interval (4,7, 4,8) ; and we shall find 
that either (4,75) or (4,76) will terminate the process: thus, 
employing (4‘75), we have

(475) . . . 12 + 51 — 1∙75 + ∙0625.

The interval between this and the preceding transformation is *05; 
and since

•0625 '104
---------- F ------ = ∙06 . . .

1∙75 344

we conclude that the two roots are imaginary.
It is obvious that the foregoing analysis, conducted, as it is, 

without any sure principle to guide us to a suitable transforma
tion, is much inferior to the process by Sturm’s rule, both as 
respects simplicity and expedition.

We shall not attempt the analysis of the equation by the me
thod of Budan : Mr. Lockhart,* after determining the cha
racter of the roots by a peculiar process, adds, “ If M. Budan’s 
algorithm had been used, about thirty-eight transformations must 
have been employed.”

These transformations, however, would no doubt be greatly 
reduced by introducing Fourier’s test as recommended at (147); 
or by narrowing Budan’s intervals as there suggested.

(161.) It will be unnecessary to add to the foregoing examples 
in this place : further applications of the theorem of Sturm will 
occur in next chapter, with additional illustrations of that of 
Fourier, in connexion with the actual solution of equations. 
Sufficient has been already done, however, to unfold the peculiari
ties of the different methods of analysing an equation to which the 
last three chapters have been devoted. Of these it is obvious that 
that of Sturm is the only one of which the practical difficulty does 
not increase with the proximity of the roots to one another; as it is* Lockhart’s Resolution of Equations, Oxford, 1837, page 28.
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the only one which enables us to pronounce at once upon the 
character of an interval, however wide, without first inquiring 
whether, by rendering it narrower and narrower, the roots indi
cated in it can be actually separated or not. This gives a theo
retical perfection to Sturm’s theorem that all other methods 
want; but it is certainly counterbalanced by a practical disadvan
tage of no small moment; which is that, in general, it involves 
the same amount of numerical labour whether the equation sub
mitted to it be of the easiest or of the most difficult character, 
and which labour increases solely with the magnitude of the coeffi
cients and the degree of the equation. In the method of Fourier 
the only thing that very materially increases the tediousness of 
the operation is that of which Sturm’s method is altogether 
independent—the proximity of the roots; and thus the labour is 
more nearly proportionate to the inherent difficulty of the case. 
It is on this account that the method of Fourier, modified as 
we have proposed in Chapter ιx, will always be the more eligible 
when the degree of the equation is high, and the coefficients of the 
terms large numbers. Still it is an interesting and an important 
truth, that we have a method for analysing an equation of universal 
application, every step of which is characterized by unerring cer
tainty ; so simple in its principles that nothing beyond the theory 
of the common measure is requisite to comprehend it; and of 
which the only difficulties in the practice are merely those attend
ant upon common multiplication. The method, however, may 
be so modified as that, like that of Fourier, the length of its 
operations shall become proportionate to the proximity of the 
roots. The contrivance by which this is effected changes to a 
certain extent the character of the method; but by dispensing 
with the computation of the latter steps of the work, it often 
effects a considerable saving of numerical labour. We have fully 
explained and illustrated the nature of this modification in the 
introductory treatise on Cubic and Biquadratic Equations ; where 
it is shown that, as far as equations of the fourth degree inclusive, 
all except the leading step of the operation for the common mea
sure—which leading step may be executed as at p. 226 with great 
ease and rapidity—may be dispensed with. Up to equations of 
this order, at least, we consider Sturm’s method, modified as
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there recommended, to be that which should always be employed 
—the modification being resorted to only when it is foreseen that 
large numbers will enter the closing steps of the ordinary process. 
In equations of the more advanced degrees it will be necessary, 
when large numbers occur, to check their increase by means of 
the abbreviations suggested at (156). The effect of these abbre
viations will be seen in the next chapter, in the analysis of some 
equations of considerable difficulty.

By fairly exhibiting the actual labour attendant upon Sturm’s 
method, when applied to equations involving large numbers, and 
when the best expedients are adopted to economise the work, we 
shall place the student in a position to judge of its general prac
ticability beyond certain limits : and to form his own conclusions 
as to the relative claims of the methods of Sturm and Fourier, 
beyond equations of the fourth degree, when large numbers are 
involved. In such cases we anticipate a decision in favour of the 
latter method, w hen improved and modified as already suggested. 
The labour of executing the operation for the common measure 
in the cases adverted to will, however, clearly show how greatly 
Fourier’s method is facilitated by disencumbering it of these 
lengthy appendages.

It will be seen that this reduction of the work, taken in con
nexion with the very efficient means of subdividing the doubtful 
intervals, that will be unfolded in next chapter, confers upon the 
method of Fourier a practical value, to which it could lay but 
comparatively little claim, in the form under which it has hitherto 
been presented.
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CHAPTER XII.

SOLUTION OF EQUATIONS OF THE HIGHER ORDERS.

(162.) The method of approximating to the real roots of nu
merical equations to be discussed in the present chapter is that 
■which was first proposed by Mr. Horner, and published by him 
in the Philosophical Transactions, in the year 1819. It is a 
process of remarkable simplicity; consisting merely of a series of 
easy transformations, conducted according to the directions given 
at (71), and uniformly adopted in the preceding chapters, and 
blending with each other in a continuous course of recurring 
operations, by which the figures of each root are evolved one by 
one.

The general principles of this method have already been ex
plained, with very considerable detail, in the introductory volume 
on Cubic and Biquadratic Equations. It will therefore be suf
ficient here briefly to describe, in symbolical terms, the several 
steps of the process, whatever be the degree of the equation: and 
then, in connexion with the examples to be given in illustration of 
it, to examine into the practical difficulties that may sometimes 
retard its operations; and to ascertain what are the cases of 
peculiarity, in which a reference to other principles and other 
considerations may be of advantage, either in adding to the 
facility of its steps, or in increasing the certainty of its conclu
sions. In this inquiry we shall find the researches of Fourier, 
as delivered in the preceding chapters, of considerable service: the 
methods of Fourier and IIorner may indeed be made mutually 
subservient to one another: the analysis of Fourier may be 
expedited by the method of approximation of Horner; and the 
ambiguities and uncertainties, that would occasionally accompany 
the method of Horner, may always be removed by the rules and 
tests of Fourier ; or by others that will be investigated presently.
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(163.) When the first figure r of one of the roots of the equa
tion

is determined, it is easy to obtain the transformed equation

involving the remaining portion of the root; and, as this portion 
forms one of the entire roots of the transformed, if the first figure 
of it be found, we shall have the second figure of the original 
root, and, by a repetition of the process of transformation, we 
shall get a new equation, involving the following figures of the 
root. The evolution of any root would, therefore, be effected, by 
finding the first figure by trial, or by a previous analysis, and 
diminishing the roots by it; then finding the first figure of this 
reduced root from the transformed equation, diminishing the 
roots by it, and so on till the proposed root be entirely evolved, 
or determined to any required number of decimals.

It is evident that, after the determination of the first figure, and 
thence of the transformed equation, we shall not be left to con
jecture the value of the following figure; for, as in the case of 
cubic and biquadratic equations, so fully developed in the intro
ductory volume, we may regard N', when transposed to the right, 
as a dividend; and, if the true first figure of the root x' be √, 
we shall have so to determine rl that, when the dividend is 
divided by

the quotient may be r'; and we are evidently assisted in this de
termination of r, by A', the known portion of the true divisor. 
The influence of this trial divisor will indeed be readily foreseen, 
after what has been done in the work referred to.

When, by help of the trial-divisor, the new figure r, of the 
root is ascertained, and the divisor completed, we may proceed 
to the next transformation by diminishing the roots of the last 
transformed equation by ri; we shall thus have an equation of the 
form
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the first figure rzz, in the root of which, must be such that, when 
Nzz is divided by

the quotient must be r"∙. and, for discovering rzz, we have the trial
divisor Azz.,, which is previously known.

It is plain, therefore, that the determination of the several 
root figures, r, r', r", &c. in succession, is effected by a continuous 
and uniform arithmetical process; the several trial-divisors Az, Azz2, 
&c., all presenting themselves as they are wanted, in passing from 
one transformation to another.

(164.) These trial-divisors, it must be observed, although 
always valuable aids towards suggesting the successive figures of 
the root, must not be regarded as unerring guides in this re
spect : the influence of the preceding coefficients, in the trans
formation which the anticipated figure is to complete, should 
always be estimated and allow,ed for, just as in the common ope
ration for the square root an estimate of the influence of the 
suggested figure upon the divisor always operates in determining 
that figure.

It is of importance to keep this in remembrance ; since the 
trial-divisor, if left unchecked by the consideration adverted to, 
may remain widely at fault through several leading steps of the 
development.

It is further worthy of observation, that if two roots do not 
commence with the same figure, r, then, in approximating to the 
root whose first figure is r, the first transformed equation cannot 
have more than one root, whose leading figure is below r in the 
numerical scale ; that one root being that to which our approxi
mation is at the outset directed. For if the transformed equation 
had tw o roots (∕r, k') below r in the numerical scale, then the ori
ginal equation would have had two roots x = r + k, and 
a? = r -f- k,, commencing with the same figure. Consequently, in 
passing through the successive transformations, in Qur pursuit of 
the single root fixed upon for development, we may be quite sure 
that no ambiguity can ever arise from tιvo roots of any transformed 
existing in the numerical scale below that of the root-figure last 
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reached. Similar reasoning shows that when two roots com
mence with the same figures, and not more than two, the trans
formed equations can have no other roots but these—dimi
nished by the common figures already determined—occupying 
places in the numerical scale below the last of these figures. 
And so on, whatever number of roots commence with the same 
figures.

In approximating to these nearly equal roots, the theorem of 
Budan will always apprize us when any of them are inadver
tently overstepped; and when not only nearly equal, but also 
imaginary roots are indicated between the same limits, the crite
rion of Fourier, as also others, to be hereafter investigated, will 
always enable us to determine whether two real roots have been 
overstepped, or only an indicator of two imaginary roots. And 
thus in all cases may we carry on the approximation without the 
slightest ambiguity or embarrassment.

λVe shall commence with an example or two of no more than 
the ordinary degree of difficulty, merely for the purpose of 
showing the general method of arranging the operation. This 
arrangement admits of some little variety : we shall give the two 
forms most to be recommended for compactness and ease of exe
cution. The plan, according to which the entrance of unneces
sary decimals into the several columns of the work is provided 
against, is that already so fully explained in the introductory trea
tise : the intention of it is to secure the greatest possible accuracy 
with the least possible expenditure of figures. A different mode 
of contraction was adopted by Mr. Horner ; in which we be
lieve lie has been followed by every expositor of his method; but 
we have always considered this mode of abridgment as involving 
the chief practical defect in the operation; since in some parts of 
the process useless figures are retained, and in other parts really 
effective ones dismissed. The consequence is, that the final deci
mal of the root can never be depended upon, and not unfrc- 
quently error sensibly affects both the last and the last but one. 
In the method of contraction here to be employed, accuracy is in 
general secured to the nearest unit in the last figure of the root; 
and we therefore consider the change to be a real practical im
provement in the mode of working. As an illustration of the 
correctness with which all the roots of an equation may be com
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puted under the guidance of this principle, reference may be made 
to the introductory volume, pp. 221, 231.

(165.) 1. One root of the equation 

is found to lie between 3 and 4, required the development of it to 
seven or eight places of decimals.
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2. One root of the equation

is found to lie between 4 and 5: required the development of it.

In the two preceding examples the steps of the general investi
gation have been rigidly conformed to, and the arrangement 
which the operation thus takes is that which is in general to be 
preferred on the ground of simplicity; it may however be varied
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so as to assume a form of greater compactness, and which may be 
the more convenient form to give to the work, when, from the 
magnitude of the coefficients, it would otherwise spread over too 
large a space. In the chapter on cubic equations in the intro
ductory volume (Chap, hi), we have shown how to reduce cer
tain portions of the work when the leading coefficient is unity: a 
similar reduction may be applied to the more advanced equations. 
This reduction chiefly affects the first column of figures. But 
Mr. Horner so arranged the process, that the subsequent co
lumns up to that which supplies the divisors inclusive, were dimi
nished in length: we shall exhibit the effect of both these princi
ples of abbreviation in the solution of the following equation of 
the fourth degree, of which the roots have been developed, as 
in the foregoing example, at page 211 of the introductory 
treatise, and with which the operation that follows may be 
compared :—

3. Let the equation be

of which one root lies between 2 and 3.
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In this process the first column on the left is formed, like that 
in the operation for cubics ; the multiplier being the index of the 
degree, in this case 4. In the second column each addend is 
formed from the immediately preceding one, by adding to it the 
square of the last root figure. The addends in the third column 
are as usual formed by multiplying those of the preceding column 
by the last root figure ; and every trial divisor is the sum of the 
three numbers above it, as in cubic equations.

Precisely in this way may the first and second columns always 
be formed, whatever be the degree of the equation ; but when 
there are intermediate columns of work, between the second and 
that which supplies the trial-divisors, as must always happen 
when the equation is above the fourth degree, the addends in these 
must each be formed, in the abridged method, by multiplying the 
corresponding addend in the preceding column by the last root 
figure, and, at the same time, taking in the addend immediately 
above; so that every addend in these intermediate columns helps 
to form the one immediately under it, by being incorporated 
with the product, which in the unabridged process, is carried 
from column to column. The following example, taken from 
Mr. Horner’s paper in the Philosophical Transactions, with no 
further alteration than that which concerns the decimal contrac
tions, the abbreviation of the first column, and the preservation of 
the trial-divisors, will sufficiently illustrate our meaning :—
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4. Required a root of the equation

a? ÷ 12a^ + 59zr3 + 150a?2 + 201a? = 207.

Hence one root of the equation is ,638605803327∙
The only objection that could be brought against this mode of 

arranging the numerical process, is, that in the third column of 
the work, such arrangement requires us to perform the operations 
of multiplication and addition simultaneously. But, in the case 
of a biquadratic equation, no such objection can apply, and, con-
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sequently, the foregoing arrangement of the work may perhaps 
be preferred on the score of practical facility.

(166.) We have observed above, that in the foregoing exam
ple, from Mr. Horner’s paper, we have slightly modified the 
process, and it ought to be mentioned that, in so doing, we have, 
in fact, increased the length of the operation. This has arisen 
from our having actually exhibited the trial-divisor derivable at 
every step from the last root-figure.

By dispensing, however, with this, and merely writing under 
the true divisor the addend which is due to the formation of the 
next trial-divisor, we may, without actually performing the addi
tion, readily foresee what the leading figures in that divisor would 
be, and thence discover the new figure of the root. In the fore
going example, no inconvenience can arise from this suppression 
of the trial-divisors, even from the commencement of the ope
ration, on account of the smallness of the addends in the divisor 
column. But, where the addends are of considerable influence, 
we think it preferable always to exhibit the trial-divisors. The 
work of the last example stands in Mr. Horner’s paper as be
low ; and it is easy to see, from the circumstances just adverted 
to, that after the first step, every true divisor may be safely taken 
as a trial-divisor for the next figure of the root, for the addends 
recede sufficiently far to the right to allow the leading figures of 
the divisors to continue constant. After a step or two, such will 
indeed usually be the case when but a single root lies in the interval 
under examination; but not when two or more roots so lie, nor 
even when indicators of imaginary roots occupy the same interval, 
and occur in the divisor column, because this column will then 
tend to zero as well as the final column. In the case of nearly 
equal roots this is plain, since when roots accurately equal enter, 
diminishing by one of those roots reduces as many of the ad
vanced columns accurately to zero as there are repetitions of the 
root, page 140. And in the case of imaginary roots the state
ment is authorized by (122). Moreover, in all cases of difficulty, 
where an appeal to the theorems of Budan and Fourier be
comes necessary, the entire row of transformed coefficients should 
always be exhibited. Nevertheless, the compact form given to the 

17

www.rcin.org.pl



258 SOLUTION OF EQUATIONS

work in the following arrangement, may recommend it to adoption 
in cases where the length of the operation is the only difficulty.
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(167.) In each of the preceding examples the root developed 
is the only one lying between the same two consecutive numbers 
in the arithmetical scale, that is, no second root exists having the 
same leading figures. When such is the case we shall usually find, 
as here, that the trial-divisors become efficient in suggesting the 
successive figures of the root from a very early stage of the 
approximation. But, as already observed, this will not happen 
under different circumstances. For let a be an approximate value 
of a root of f («) = 0, that is, a number consisting of one or more 
of the leading figures of that root; and let the remaining portion 
of the root be Λ. Then

Now as, by the increase of α, h diminishes and becomes less 
than unit, the terms involving Λ2, Λ3, &c. diminish also; and if 
the coefficients of these also diminish with Λ, or even slightly 
increase, these terms must at length diminish more rapidly 
than h itself, and become with respect to it very small. Conse- 

N'
quently the quotient ----- -- will then give one or more of the 

f∖∖a)
leading figures of h∙. that is, the trial-divisor fl{a) of Nz will be 
fully efficient in determining the next figure of the root after a.

But if ∕"1(α) also regularly and rapidly diminish with h, whilst 
/ (<∕) ∕2(α) does not, then it is plain that the second term A2,
2∕ι ∖a) 

of the preceding development, as well as the first, must form an
N' 

important part of the whole; so that will no longer give

the leading figure of ħ but the leading figure of h 4- h2.
2∕ι∖a)

What we have now described must evidently happen if the equa
tion fl (x) = 0 has a root with several leading figures the same as 
those of the root a + h of f {x) = 0 ; or if this latter equation 
have two nearly equal roots in the interval under examination (98).
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If there be three such roots the trial-divisor will be still more 
at fault: for then ∕1(o) will diminish as λ2, and f2(a) will 
diminish as Λ : so that the third term as well as the second being 
thus of the same order of magnitude as the first, must be retained 
with it, as an approximation to the whole series. Thus, when 
nearly equal roots enter the equation, the difficulty of separating 
them will be very considerable if we depend entirely upon the 
trial-divisors for the discovery of the successive figures of the 
root. An example of the total inadequacy of these may be seen 
at page 227 of the introductory treatise.

(168.) In order to remedy this defect let us take the limiting 
equation of [1] : then we shall have

/,(«) +ΛW⅛ + ^Λ2 + &c. = 0 . . . . [2]

This would be accurately true in conjunction with [1] provided 
two roots, A, of [1] were accurately equal (97) ; and it must 
approach nearer to the truth as the roots approach nearer to 
equality. The leading figure of the root h of this latter equation 

∕* (ct∖
is given by — 1 , agreeably to the general principle.

f∙2∖a)

If three roots approach to equality, or continue the same for 
several decimals, then, continuing the derivation, we have for 
approximating to h the equation

∕2(β) + f.Mh + &c. = 0 . . . . [3]

and consequently for the leading figure of the repeated root

— And so on.
Λ(α)
The transformed coefficients

- N', A', A'2, A'3, A'4,....................A'n.

furnished by diminishing the roots by a, in Horner’s process, 
are (116)

zw, zw, ..............
• ∙ ∙ n
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Hence, according as a single root, two roots, three roots, &c. 
lie in the same narrow interval should we employ, to obtain the 
leading figure of the root of the transformed equation, one or 
other of the expressions

These conclusions supply a useful theorem for approximating 
to roots very nearly equal: cases of this kind are reduced by it to 
the same simplicity as the common case in which only a single 
root lies in the interval within which our search is directed.

(169.) If we write the equations [1], [2], [3], &c. in the usual 
notation, the preceding conclusions may perhaps present them
selves with greater clearness : for we thus have

where for two, three, four, &c. nearly equal roots the correspond
ing approximate equations are

and the leading figure, common to these roots, is by the general 
principle,

It is plain that the process for computing the function f (x) 
for any value of x supplies, in its progress, the computations of 
the subordinate functions t∕j(^), ∕2(ir), Λ(λ7)> ^or t^e same 
value; so that if there are m nearly equal roots, we approximate 
to the single root of the equation ∕m-1(tf) = 0 having the same 
leading figures in common with them, in the act of approximating 
to the proposed root in f {x) = 0.

We may consider this subject under a different aspect:—We 
know that when a single root only lies in a given interval, we 
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speedily reach a transformed equation, which, by neglecting all the 
terms except the last two, fx(a)x — Nz, furnishes a simple equa
tion ∕,1(α).r — Nz = 0, from which a correct figure or two of the 
sought root may be determined. This simple equation becomes 
more and more effective as the approximation advances; till at 
length it, alone, is found sufficient to supply as many correct 
figures as are necessary to complete the stipulated amount of 
decimals in the root, and thus to close the operation. It is to 
this simple equation that the successive transformations tend in 
approximating to a single isolated root.

But when instead of a distinct individual root we approach 
simultaneously to a pair of roots, then of course the process in 
like manner tends towards a quadratic equation, the leading co
efficient of which becomes less and less influenced by the addends 
to it accruing from the preceding columns of the work. Both 
roots of this quadratic, commencing, by hypothesis, with the 
same figure, this common figure will be found by dividing the 
second coefficient, with changed sign, by twice the first (see In
troductory Treatise, p. 143). When three roots are thus simul
taneously approximated to, the operation tends to merge into a 
cubic equation involving those roots diminished by the preceding 
root figures : and as by hypothesis these three roots commence 
with the same figure, it is plain that one third of their sum will 
commence with that figure. Hence, the common figure will be 
obtained by dividing the second coefficient of this approximate 
cubic equation, taken with changed sign, by three times the 
first, or simply minus the third by the second : and so on. And 
these are the conclusions established above.

We thus see that the last two coefficients of the equation of the 
n — (tn—l)th degree which furnishes an approximation to a sin
gle one of the contiguous roots, are the first two in the equation 
of the wztlι degree which is the approximate equation involving all 
these m roots. It is interesting to notice that in the case of the 
approximate quadratic the leading figure common to both roots 
will otherwise be obtained by dividing twice its final term (Nz) 
by the preceding coefficient A', as is obvious. In the case of the 
approximate cubic the leading figure common to the three roots 
will be found by dividing three times Nz by the preceding coeffi
cient Az: and so on.
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(170.) We at once see, from these principles, how tedious it 
would be, when roots proceed together for several places of 
figures, to reach the place at which they separate by seeking 
each new figure through a set of trial-transformations cori

n' f (a)mencing with —, or which is the same thing, with j - λ, as in 

the method of Fourier, and proceeding onwτards from this, 
through all the intermediate transformations, till we arrive at 
twice, three times, four times, &c. this quantity, according to the 
number of roots in the interval. By preliminary transformations 
Fourier finally renders the interval so narrow as to comprehend 
but two roots : if others are close to these their preliminary se
paration is very laborious : but even when the interval is made to 
comprehend only two roots proceeding together for five or six 
places of decimals, the separation of them, by commencing every 
new set of transformations with a trial-number only half the value 
it ought to be, thus rendering on the average three or four trial 
transformations necessary for every figure of the root, we say that 
even in this simplest case of contiguous roots the separation is 
so laborious as to justify the observations upon its impracticability 
which we ventured to make at (131).

(171.) From what has now been shown, it appears that when 
roots have leading figures in common, the proper expressions for 
suggesting the true figures up to the place at which the roots se
parate are as follow, the denominators of these expressions being 
the trial-divisors in reference to the numerators :

These, therefore, are to be employed in the cases under consi
deration, till a root becomes detached, when the ordinary trial
divisor may be brought into operation to carry forward the 
approximation of the single root thus separated. We shall 
generally be apprised of our arrival at this point by a discrepance 
between the figure given by the suitable expression above, and 
that given by the corresponding expression in the series
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But by continuing to pursue the root of ∕m-1(aτ) = 0, whose 
figures are given one after another by the proper expression in 
the former series, as long as these figures are the same as those 
of the roots to be separated, we shall of course always of neces
sity effect the separation desired, and be informed of it by the 
loss of variation in the series of transformed coefficients, agreeably 
to the theorem of Budan. It is true that this theorem, as well 
as the discrepance adverted to above, may indicate the separation 
of a group of roots : but as we should then treat each group by 
itself, we may here suppose a single root to detach itself—the least 
of the group.

Now when the separation is accomplished it will be advisable 
to pursue this smallest of the nearly equal roots, to at least one 
figure beyond that at which the separation takes place; and to 
employ the resulting transformation for the nearly equal roots 
that still remain, remembering that these will present themselves 
each diminished by the figure by which the preceding approxi
mation was extended. For of the roots of this transformed 
equation, one will commence with zero, in consequence of the 
advanced step recommended, and the others will commence 
with a common figure, supposing the common figures of these 
to be not yet exhausted. Hence, as our approximate equation 
involving the roots in question, and of which the first co
efficient is Am, and the second A ., has the sum of its m 

A'
roots expressed by —τF~; and since the leading figure of one of 

A m
these roots is 0, and that of the others the same figure, it follows 

Az
that ----- tn. —, or this expression minus 1, will furnish that

(⅛-l)A,m
figure. And thus the common leading figure of the — 1 roots still 
remaining unseparated, may be easily discovered, and then the next 
root separated by the process above described, the trial-divisors, 
after the transformation by this leading figure, being advanced to 
the column next adjacent on the right, to that which supplied the 
divisors at first. But if after the separation of the first root, 
those that remain do not, as supposed, commence with the same 
figure, then the figure, determined conformably to that sup
position, will either be the first of the root next in order, or will 
effect a new separation: in the former case, the figure increased 
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by unit will effect the separation. And in this uniform manner 
are we to proceed till all the roots are separated and severally 
developed as far as necessary.

All that it is requisite to attend to in seeking the separation of 
roots one after another, w hich have several leading figures in com
mon, may be summarily stated in the following precepts:—

(172.) 1. Find the leading figure common to all the nearly 
equal roots by a previous analysis of the equation, and effect with 
it the usual transformation.

2. Find the next figure common to the roots by the proper 
expression (c) ; the first being used if there be but two roots, the 
second if three, and so on. The figure thus determined will be 
the same as that suggested by the corresponding expression 
(d), as soon as (c) becomes effective for the root of∕jn~1(ιr) = 0.

3. Continue to determine the successive common figures in this 
way, either till a change of sign in Nz informs us that a root has 
separated—which will of course be the least root, supposing all 
to have been rendered positive, or till a discrepance between the 
figures determined by (c) and (d) announces a separation. If 
several roots separate at once, we must deal in this w7ay with each 
distinct group, till the least in that group detaches itself.

4. By aid of the ordinary trial-divisor, extend the approxi
mation towards this least root one figure further, and employ 
the resulting transformed equation for the separation of another 
root.

5. To find the leading figure common to the remaining roots 
take the multiple of the divisor in (c), hitherto employed, a 
unit less ; and employ the expression, thus modified, to furnish 
the first transformation ; and then proceed anew7 as above, using, 
for future figures of the roots still unseparated, the expression in 
(c) immediately preceding the one before employed, till an
other root separates : this root increased by the figures of the 
former root, will exhibit a second root of the proposed equation. 
The supposed common leading figure will, in all cases, either be 
the true figure of the next root—or it w ill effect a separation—or 
it will exceed the first figure of the remotest root by 1.

Or, instead of being guided by the last two precepts, we may 
proceed as follows. Having separated, as above directed, the 
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least root of the group in the interval within which our approxi
mations are confined, we may take the transformed equation to 
which this separation is due; and remembering that our ope
rations are now to be confined within the narrower interval com
prising only the remaining roots of the group, after these have 
been diminished by the figures resulting from the former set of 
transformations, we are to direct our approximation towards the 
root of ∕m-2(^) = 0, lying in the interval, just as at first it was 
directed towards the root of= 0. The proper expression 
suggestive of the root-figures is that one of (c) which precedes 
that before employed. This expression will continue to suggest 
the correct figures of the root of ∕m-2(^) = θ> so long as these 
are the same as the figures in the roots still unseparated. A dis
crepance here will, as before, indicate thlat the figures have ceased 
to concur; and the true root-figure wiħ elect second separation. 
And so on till the analysis is completed.

(173.) We have only one more particular to notice in reference 
to the general theory of the trial-divisors : — It is, that in the 
earlier steps of our approximation to a root it will sometimes 
happen that the absolute number, which we seek to exhaust, will, 
instead of continually diminishing as true figures of the root 
become determined, increase and diminish alternately till a point 
is reached where all oscillations of this kind cease and the abso
lute number tends progressively to zero. A reference to the 
values assumed by N' in the leading steps of the approximation 
at pages 181, 218 of the treatise on Cubic and Biquadratic 
Equations will exemplify these circumstances. The cause of this 
peculiarity may be easily discovered from an examination of the 
general expression for N' at page 259: for from that expression 
we have

which will uniformly diminish with h provided neither fλ(d) nor 
∕* 2(tf) tends to zero—disregarding for the present the functions
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included under the &c. The consequences of ∕1(a) tending to 
zero with f{a) we have already adverted to: but if ∕2(α) alone 
tend to zero, then, as h diminishes, the coefficient of h2 also 
diminishes; and if this coefficient pass through zero, it must 
afterwards increase, with changed sign.

It is obvious that, at an early stage of the approximation, be
fore h has become very small, this change in the term referred to, 
from additive to subtractive, or vice versa, may have sufficient 
influence upon N, to produce the effect mentioned. If several 
such changes occur during the process—that is, if several roots of 
f,(x) = 0 are passed over in our approximation to the single root 
of∕(^) = 0, then several of these oscillations of N, may take place. 
It is plain that similar reasoning wrill apply to the more advanced 
terms of the above general expression for Nz; so that the pecu
liarities noticed, arise from derived functions vanishing, and reap
pearing with changed signs, during the development of a root of 
the primitive function. These fluctuations, however, become in
sensible when h has reached a certain small value.

We shall now proceed to illustrate what has been established 
in these latter articles by two examples of peculiar difficulty. We 
shall prepare for the development of the roots by an actual ana
lysis of the equation by the method of Sturm, which we shall 
at first present without any abbreviation.*

• These equations were publicly proposed for solution by Mr. Lockhart, a gentleman to whom we have been under obligations upon former occasions ; and who has furnished many other examples admirably adapted to try the powers of the modern methods of solution. The laborious computations involved in the analysis and solution of the equations in the text were executed by two very promising young mathematicians—members of the senior mathematical class in Belfast College—Mr. William Finlay of Belfast, and Mr. Smylie Robson of Tobermore, in the county of Derry. The calculations of Mr. Finlay are, for distinction, marked [FJ; those of Mr. Robson with [R].
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(174.) Required the analysis and solution of the equation

www.rcin.org.pl



OF THE HIGHER ORDERS. 269

Hence, Sturm’s functions are,

As the signs of the leading terms of these functions present one 
variation, we infer that the equation has a pair of imaginary,a nd 
consequently three real, roots: and as the signs of the final terms 
present two variations more than those of the leading terms it 
follows, page 216, that two of these roots are positive, and 
consequently one negative. The situations of these are found as 
follows :

In developing the negative root we shall convert it into posi
tive hy changing the alternate signs of the equation.
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Development of the root [150, 160.]
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Development of the two roots [0,1].
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The trial-divisors whence the several figures of the root in the 
preceding development are obtained, are all supplied by the 
column A2; the column A supplying the corresponding divi

dend. Thus :—The general form for the root figure is —7-,2A 2 
agreeably to the precept at p. 263 ; so that when the transforma

tion 1 is obtained the fraction  —■—- supplies the cor-2 × 14 . . . 11
responding root-figure 6. In like manner, from the transforma-

382 
tion 2, we get for the next figure----------- -----= 1 ; and so on,2 × 14 . . . 
the trial-divisor being constantly 29. The place at which the 
roots separate is determined as soon as there is a discrepance

A, 2N'
between — ——, and ——- as stated at(171).

2A'2 A v
This discrepance in the above operation does not appear till 

the transformation 6 is reached; when we have

Hence the roots separate after the 7. Carrying on the approxi
mation to the least root one figure beyond this, by aid of the 
ordinary trial-divisor — 1314, we find 1 for the seventh decimal. 
For 2 the absolute number in 6 becomes plus, and continues so 
for all numbers up to 7 inclusive; but for 8 it is again minus. 
Hence 7 is the seventh decimal of the other root. But if, agree
ably to the precept 5 at p. 265, we had taken the transformation 
7 and had divided — Az by A'2, that is, 102 by 14∣7, we should 
have got 6; which increased by the advanced figure 1 of last 
root gives 7 for the corresponding figure of the second root. 
Thus the roots are

•5612971 . . ., and ‘5612977 . . .

(175.) In the following solution of the foregoing equation the 
analysis is conducted differently in the final step, and the subse
quent developments are according to the more compact arrange
ment exhibited at (165).
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The value of x in this last function, when equated to zero, is 
•56129744509275 ; which, substituted for x in the preceding 
function, gives ∙0000029, &c. Hence the sign of X5 is —. 
Consequently the functions are

From these functions we infer at once that there is one pair of 
imaginary roots; and that of the three real roots, two are 
positive.

Thus both the positive roots lie between 0 and 1, and the fol
lowing is the operation for finding them:—
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If 1 be taken as the next figure of the root there will be no 
change of sign in the last column; but if 2 be taken there will be 
a change of sign. If 7 be taken as the next figure, there will be 
a change of sign, but if 8 be taken, there will be no change of 
sign. We infer, therefore, that the first seven places of figures 
of the two positive roots are *5612971  and ,5612977.

It is plain that the results which complete each step in the 
third column when multiplied by 2 become the divisors, and the 
bracketed numbers in the next column the dividends for suggest
ing, as before, the successive figures of the root.

In the operation below, the negative root is, for the sake of 
convenience, converted into a positive one, by changing the alter
nate signs of the equation.

Development of the root in the interval [150, 160].
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The preceding development was placed first in order, that 
those which follow may each be presented entire at one opening 
of the book. The contractions of the several columns have com
menced at a period of the work sufficiently remote, to secure 
accuracy in the root to about eight places of decimals.

In the following operation all curtailment of the decimals is 
postponed till the seventh decimal of the root is obtained: the 
reduction might however have been safely introduced after the 
completion of the second transformation, as is obvious from a 
glance at the final column of the work. A great deal of multi
plication might thus have been spared and the work reduced in 
extent by about one third. But these reductions have been dis
pensed with, as in the case of the calculation of Sturm’s func
tions, in order to secure greater perspicuity in a case generally 
considered to involve difficulties of a peculiar kind, and requiring 
more than ordinary caution in its management. The same 
example will be hereafter solved in a form in which economy of 
space and figures is more especially consulted.

As to the difficulty of executing the several steps of the fol
lowing work, it involves in it nothing of what has hitherto been 
considered as peculiarly embarrassing when the separation of the 
roots is so long delayed. By the principles established at (171) 
the transformed coefficients in the third and fourth columns of 
the work supply with certainty and rapidity the successive figures 
of the root, till we reach the transformation 4. Extending the 
process to this, we find the suggested root-figure to be 4: * the 
employment of this, however, changes the sign of the absolute 
number; and one change only is lost by the transformation: hence 
the three roots cannot concur beyond ,3666. Resorting now to the 
ordinary trial-divisor we find 002 to be the true value of the next 
figure of the least root; and we may now extend the approxima
tion to it as far as we please.

* The root-figure suggested by the other expression,is 7, a discrepancy which, as remarked at (172), informs us that the hypothesis of the roots continuing together beyond the point reached is untenable.
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Development of the roots
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in the interval [0, 1].

In the foregoing operation the expression which suggests the 
several figures of the root may be taken either

A' A'
— or-----77~3 A β A 2

as remarked at (171). Till we reach the transformation 4 all 
three of the expressions

Az2 _ jV___ 3N'
~ ∑ζ^, Λz√ A'

concur in furnishing the same root-figure : but at this point their 
determinations all differ. As remarked above, the first expres
sion gives 4 ; as this produces the loss of a single variation, we 
conclude that the discrepancy adverted to arises from the passage 
of a single root—the least of the three, which separates from the 
next root after concurring with it as far as ,36C6. The variations 
furnished by the above-mentioned 4, by which this root is sepa
rated, are two in number, the sign it gives to the absolute num
ber, left untransposed, being minus : and it will of course continue 
minus till the next root is separated. But, as the following step 
will show, we need not, as heretofore, seek, by trial-transforma- 
tions, whereabouts this separation takes place.
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Development of the roots

In this final step we know that two roots, and only two, are 
comprehended in the interval [∙0000600 ...., ∙00000 . . . . ] 
where the dots stand for unknown figures. The approximate 
quadratic will furnish the leading figures of these roots. But as 
the leading figure of the one sought is in the sixth place, and the
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development from ,36660, the 0 being a figure beyond that at 
which the least root separates from the others. We know that 
this root-figure will either be the true first figure of the second 
root of the equation, when diminished by the former development, 
or it wall separate, or else pass over, the remaining roots (172). 
As it leaves the variations given by overstepping the first root, 
unchanged, we conclude that no such separation or passage is 
effected; and that consequently the 6 is the true figure of the 
next root.

sixth place of the other is zero, we infer, as above, that the lead
ing figure sought is

Thus the three roots are separated; and the first step, in each of 
the three distinct directions which they severally take at sepa
rating, is actually exhibited ; so that we may now pursue them in 
these directions, to any extent we please, by aid of the ordinary 
trial-divisors.
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Development of the root [160, 170]
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alternate signs being changed.
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alternate signs being changed.
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(177.) The solution of the foregoing equation when the entire process is exhibited in its most compact form 
is as follows:—

www.rcin.org.pl



www.rcin.org.pl



As the roots of X4 = 0, found by the general method, are *36662, &c., and *36666051, and the root of X5 = 0 is 
*3666604, if the root of X5 = 0 be substituted for x in X4 the result will be negative. We infer, therefore, that 
the sign of the last function is plus. It will be seen that, in the last two steps of the process, there has been 
retained one, or perhaps two figures more than was sufficient to obtain this result.

Consequently, Sturm’s functions are
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Development of the root [10, 20].

In explanation of the process on the next page it is necessary 
to remark that the three roots do not separate till after the fourth 
figure. The equation whose roots are (a? — ,3666) is that below 
the first series of double lines, from inspecting which it appears 
that any significant figure in the fifth or sixth place, or 3 in the 
seventh place would produce a change of sign in the last column 
showing that a root had been passed over. The least root is, 
therefore, ‘3666002. When 6 is put in the fifth place there is a 
change of sign in the last column, indicating the passage over 
the root already determined. Had 7 been put in the fifth place, 
three variations would have been lost, showing that the three roots 
had been passed over. Hence we infer that 6 is the fifth figure of 
both of the roots still sought, and the equation whose roots are 
{x-∙36666) is that below the second series of double lines. As any 
significant figure, either in the sixth or seventh place, would cause 
the loss of more variations, it appears that the middle root is 
‘3666600, and as 2 in the sixth place, or 1 in the sixth place and 
1 in the seventh place, would make all the signs of the trans
formed positive, we have for the greatest root ‘3666610.
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Development of the three
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We need not subjoin to the preceding solution anything by 
way of comment or explanation ; the remarks which accompany 
the former solution at page 281, equally apply to this. The 
same precepts guide us to the successive common figures of the 
roots, and to the places at which they separate and become dis
tinct, whichever mode of arranging the work be adopted. In 
the method above, however, these precepts cannot be applied 
with the same facility as in the former mode of arrangement; but 
something, as regards facility of operation, must be expected to 
be sacrificed where brevity and compactness are the principal 
objects sought; and these are very completely attained in the 
process just exhibited.

roots in the interval [0, 1].
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(179.) The foregoing examples sufficiently confirm all that has 
been stated in the preceding parts of the present work as to the 
entire efficacy of the methods of Sturm and Horner in the 
analysis and solution of numerical equations, since they have been 
so framed as to put the competency of these methods to the 
severest test. The principal part of the labour involved in the 
solutions just given is that expended upon the preparatory ana
lysis : this, on account of the large coefficients which enter the 
equations, is very considerable, more especially in the second ex
ample, even when the entrance of redundant figures is provided 
against, as at page 289. It is easy to see that this labour is en
tirely attributable to the magnitude of the coefficients, conjointly 
with the number of steps in the process, and not at all to the 
proximity of the roots to each other: and we can thus at once 
infer what are the circumstances which in general set bounds to 
the practicability of Sturm’s method. In the subsequent deve
lopment of the real roots, these circumstances affect the length 
and difficulty of the operation in but a comparatively small de
gree : the magnitude of the coefficients interfering but little with 
the progress of the work, after the first figure or two of the root 
has been correctly determined, and we are sure that our pursuit 
of the subsequent figures is in the proper direction.

(180.) The difficulty that has hitherto retarded the process— 
affecting every step of it with uncertainty till verified by trial
operations—is that which has always been found attendant upon 
the separation of roots having several leading figures in common. 
In such cases the -work of the true development, as exhibited to 
the eye, could convey but a very inadequate notion of the time, 
and cautious deliberation, expended upon each step of the work, 
up to the figure at which the nearly equal roots are found to se
parate. By means of the principles established at (171) this 
difficulty is now entirely removed, and roots having a great num
ber of leading figures in common may now be developed and 
separated with even more ease and expedition than so many roots 
already isolated. So long as the figures of the nearly equal roots 
actually keep together, the foregoing examples sufficiently illus
trate the case and rapidity with which their development may be 
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carried on : when their point of separation is reached we shall 
find indications of the circumstance spontaneously to present 
themselves, either at the step itself, or at that immediately be
yond : for if not at the place where the figures cease to be alike, 
yet at the place immediately beyond it, we shall find a contra
diction between two expressions (c), (d), page 263, which on 
the principle of the non-separation of the roots must agree. 
The comparison of these tests, as we proceed from step to step, 
involves no trouble : it is made at a simple inspection. But we 
need not make the comparison at all, or may disregard it till it 
spontaneously offers itself to our notice. We may continue to 
develope the root of the function = 0, which lies be
tween the nearly equal roots (see page 261) till the changes of 
sign in the transformed coefficients inform us that the separation 
is accomplished. It is true that the intervening root of ∕m-1(^) =0 
spoken of, may itself concur with the figures of one of the sought 
roots, between which it lies, beyond the place at which these 
latter roots themselves separate; but it must detach itself from 
both at last; and thus make known, by the changes of sign re
ferred to, that the roots sought cannot concur beyond the place 
thus reached, although they may separate before reaching that 
place : yet actually up to it will the figures of one of the sought 
roots be correctly exhibited. To find the exact place at which 
they separate—whether we direct our attention to these latter 
indications of the separation, or to the former—we must start 
anew with the transformed coefficients with which we are fur
nished by the step immediately beyond that at which the se
paration was discovered, as explained at (171), and proceed to 
develop the remaining roots in the interval as there directed: the 
first significant figure, w ith which this new course of operations 
commences, points out distinctly the place where the preceding 
root has separated from the others.

Generally speaking, the figure at which the root of fm _ 1 {x) =0 
separates the roots sought, will be that at which the roots them
selves separate, as in the preceding examples; for it is improbable 
that a number, restricted only by the condition of lying between 
two others, should not become distinct from both at the point 
where they themselves separate from each other : but w hether or
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not such be the case, the directions already given will infallibly 
make known whereabouts the separation must take place; and it 
is impossible that we can be carried more than a figure or two 
beyond it without the discrepancy adverted to above forcing itself 
upon our attention.

(181.) When, as in the improbable case just adverted to, the 
intervening root of the derived function continues to coincide 
with one of the two roots of the primitive between which it lies, 
after those roots themselves have separated, we should also 
become acquainted with the circumstance by increasing the last 
found figure of this intervening root by unity; for we should thus 
obtain a new transformation, making known, by its loss of 
variations, that a root or roots had been passed over in the inter
val between it and the former transformation. We say roots, be
cause it is possible, where several lie close together, that the 
intervening root of which we speak may separate more than one 
on each side. Hence, if we continue our development till the 
discrepancy already mentioned presents itself, and then increase 
the last figure of the development by unity—should the roots 
remain unseparated—we shall assuredly separate them if real, or 
else discover that they are imaginary.

(182.) The more nearly the doubtful roots in any interval 
approach to equality; or to speak more accurately, the more 
minute the change in the constitution of an equation which 
suffices to make these roots equal, the longer, of course, will the 
determination of their true character be delayed. Such must be 
expected to be the case, whatever tests be employed for distin
guishing imaginary roots from real. But, of all methods for 
effecting this object, that must be pronounced the best which, 
when the doubtful roots prove to be real, accomplishes the 
separation of them with most ease and expedition. For the tests 
in question become effective only when that point of the develop
ment is reached, the next step of which, to be correct, must 
involve an imaginary expression. Till this point is attained, the 
approximation is perfectly accurate, whether the roots ap
proached to, eventually prove to be real, or imaginary : since that 
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must be regarded as a true approximation to a value of x, in the 
equation f(x) = 0, which commences by furnishing for f{x) a 
value f(x) = α, and thence a continuous series of values, in which 
α, by losing its leading figures one after another, tends con
tinuously to zero. This is a sure criterion of a true approxima
tion ; and consequently, as far as it extends, we should seek in 
vain for any peculiarity among its steps that would enable us to 
predict whether this tendency of a towards zerocould continue 
indefinitely, by the continual accession of real increments to x ; 
or whether, beyond a certain point, the leading figures of a can 
be destroyed only by making the increment imaginary (p. 163.) 
It is at this point only that peculiarity can be first introduced.

The operation by which this point is reached—supposing such 
to exist—is precisely that which separates the roots—supposing 
them to be real: so that, as stated above, the method which is 
competent to effect the separation of nearly equal roots with the 
greatest ease, is that which will also conduct us the most 
readily to the peculiarity alluded to when the roots prove to be 
imaginary.

(183.) This peculiarity may manifest itself in various ways :— 
by satisfying the criterion of Fourier [a] at page 165 ; by ful
filling the conditions of Budan (144) ; by forbidding a tendency 
towards zero in the absolute number beyond a certain limit, 
as noticed above and explained at p. 163 ; or lastly, by causing 
the discrepancy, between the expressions (c), (d) at page 263, 
so much dwelt upon in the present chapter. All these may be 
regarded as concurrent — or, as very nearly concurrent—indica
tions of the same thing. Fourier’s criterion keeps us in sus
pense during the steps of the approximation till a certain point 
is reached. This point is that at which the roots separate, if 
they are real:—it is that at which the approximation becomes 
defective, if they are imaginary. When they prove to be real, 
the operation, which has just discovered their character, has also 
supplied us with their approximate values; when they prove to 
be imaginary, the same operation has furnished a real value which 
more nearly satisfies the equation than any other. The same 
observations apply to the transformations of Budan. These 

www.rcin.org.pl



300 SOLUTION OF EQUATIONS

equally furnish the figures of the real roots, up to the point of 
separation, and those of the imaginary roots up to the point 
where the imaginary part becomes essential to the further con
tinuance of the approximation towards zero.

(184.) It would seem then to be of but comparatively little 
moment what test we employ to distinguish nearly equal roots 
from imaginary ones. What is of real importance is that we take 
the safest and shortest path towards the point which must be 
reached before such test can be effective; and that our arrival at 
this point be intimated to us by unequivocal marks or indications, 
so that we may be spared the labour of a continual appeal to the 
test at every step we make.

These two important objects have, we conceive, been accom
plished in the present chapter : a rapid and certain means of 
separating the roots has been theoretically established, and prac
tically illustrated in examples well calculated to try its efficiency : 
and means, as ready and certain, for determining the point w here 
the indicator of imaginary roots lies, have also been added. The 
process of approximation is but an extension of Mr. Horner’s 
own method to the case of nearly equal roots:—a case but in
adequately provided for by the general operation as applied to 
roots lying singly in distinct intervals. The additional precepts 
that have been furnished, for distinguishing between these nearly 
equal roots and those that are imaginary—as delivered at pages 
299 and 2∣l∏, are, we believe, altogether new : and from the ease 
with which they may be applied, as the approximation proceeds, 
without requiring any actual calculation, they appear to be well 
adapted to general use, and to possess obvious advantages over 
the methods hitherto employed.

(185.) In the researches of Fourier, so fully discussed in 
Chapters vπι and ιx, we have seen that the object first to be 
accomplished, in the analysis of a doubtful interval, is to reduce 
the last three of the indices to the values o, 1, 2. Till we get 
three such consecutive indices, either for the three final functions, 
or for some preceding three, Fourier’s peculiar method of pro
ceeding docs not come into operation. In bringing about this
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arrangement of indices, the proposed interval must be narrowed, 
with a view to the detection of the situations of those roots of the 
derived equations which require to be passed over, or separated, 
before the desired arrangement can be presented. In the search 
after these extraneous roots, in the proposed interval, we are not 
supplied by Fourier, with any guide ; but are left principally 
to mere random conjecture, as to the situations where they are 
most likely to be found; so that this part of the analysis is 
purely tentative. When the desired arrangement of three 
consecutive indices is obtained, the trial-transformations, in the 
prosecution of the analysis, are limited within a certain definite 
range of values, .fixed by the criterion [a] at page 165: and in 
our practical applications of Fourier’s method, our substitu
tions have always been controlled by this formula; although 
Fourier himself never makes any distinct reference to it for 
this purpose. Now in carrying out Fourier’s plan—in con
nexion with Horner’s method of effecting the several transfor
mations, and of arranging the successive steps in one continuous 
process—we shall not be left without the necessary guidance to 
those roots of the derived equations, which occur in the same 
interval as those of the primitive, and which we wish to exclude 
from that interval. For the arrangement adverted to presents us 
with trial-divisors, suggestive of the figures which enter one after 
another into the development of the root to be excluded. These 
trial-divisors, it is true, may at first suggest figures wide of the 
truth : but the modifications which they undergo, in passing into 
the character of true divisors, are always to be more or less accu
rately anticipated from an inspection of the antecedent tributary 
columns of the work ; which inspection the arrangement peculiar 
to the method greatly facilitates.

The correct figures of the root, to which our approximation is 
more immediately directed, may thus be rapidly, and accurately, 
determined; so that by increasing either of these figures by 
unity we can inclose the root spoken of within two consecutive 
numbers whenever we please, without expending any useless 
trial-transformations. And thus the desired arrangement in the 
advanced indices will be facilitated. When this arrangement is 
brought about, we have seen, by the foregoing precepts and
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examples, how we may pursue the analysis without any of that 
ambiguity attending our steps, which is unavoidable when those 
steps may range anywhere within the limits fixed by Fourier’s 
criterion. The separation of the roots in the second of the pre
ceding examples, with nothing but this criterion to guide us, 
would be nearly impracticable.

(186.) It is thus by combining the accurate and comprehen
sive theoretical views of Fourier with Horner’s practical 
development, extended, as above, to the hitherto perplexing case 
of nearly equal roots, that the problem of the solution of nume
rical equations of the more advanced degrees may be reduced to 
a practicable form.

The principles delivered in the present chapter, taken in con
junction with'what is established at (101) respecting the criteria 
of equal roots, and combined with the theorem of Budan (107), 
contain all the essential elements of this solution.

(187∙) There is no absolute necessity for Fourier’s formula 
[a], in order to complete the analysis which the theorem of 
Budan but partially accomplishes. The precepts (172) and the 
directions at pages 298-9 will, in general, effect the objects of 
that formula more readily, and with quite as much certainty. 
We should not in general, therefore, recommend any appeal to 
this test: unless indeed immediately before the initial step in the 
approximation for separating the roots suspected to be nearly 
equal—after the leading figure common to both has been found— 
or, which is the same thing, after the consecutive numbers 
between which they lie have been determined—by the theorem of 
Budan. But if in any case a further reference to Fourier’s 
test be thought advisable, the foregoing directions will guide us 
to the exact spot where that reference should be made.

(188.) We shall now show how the analyses of the foregoing 
examples are to be effected by aid only of the principles and pre
cepts here referred to.

The first of those examples is

√, + l∕3x4 + 2356ar, + 10468a?2 — 14101a? + 4183 = 0.
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And by (89) a superior limit to the positive roots is 3: hence, in 
seeking the situations of these, we have merely to contract the 
interval [0, 3]: it is plain, from the variations in the signs of the 
terms, that there can be but two such roots. It is further ob
vious, without any calculation, that the transformation (1) will 
have all its terms positive. Hence,

Consequently two roots are indicated in the interval [0, 1].
In order to examine the negative intervals it will be convenient 

to change the alternate signs, or, which is the same thing, to 
substitute — x for x, and then change all the signs, writing the 
original polynomial thus

—/(— x) =x5- 173x4 + 2356^3- 10468a:2- 14101a: — 4183.

As the superior limit here is so great as 174, it would be im
prudent to advance in our transformations merely by units. 
Advancing at first by 10, we see, without any calculation, that 
the transformation (10) must render the third, and all the fol
lowing coefficients, negative; so that two roots will be indicated 
between 0 and 10 ; or, in the proposed equation, between 0 and 
— 10. Subdividing now this interval, in order to find between 
what consecutive numbers the roots are to be sought, we have the 
following results :
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Hence, two roots are indicated between 5 and 6; or, in the 
original equation, between —5 and —6. As only one other root 
remains, the situation of it may be found from the proposed 
polynomial alone : we thus discover it to lie between — 100 and 
— 200.

Two doubtful intervals therefore remain to be examined; viz., 
the intervals [0, 1] and [—5, — 6]; which latter, in reference to 
the transformation (5), is also the interval [0, 1]. If the roots 
of the equation — a?) = 0; in this last interval, are real, they 
will either commence with the same leading decimal, or will 
separate at this decimal. They cannot commence with the same 

172 
figure, because of the palpable discrepancy between × and 

25456—: and, by actually performing the first step of the approxi- 
1/2

mation to the root of t∕,2(— x) = 0, we find that the roots of 
ι∕j(— x~) = 0 do not separate. We conclude therefore that they 
are imaginary. The same conclusion would have immediately 
resulted from the criterion of Fourier ; which gives

Examining now the the interval [0, 1], in the original equation, 

we find no inconsistency between the trial-expressions

It is true that ∙6 is suggested by the former, and 

only ,5 by the latter; but, upon trial, we find ,6 to exceed the 
root of f} (x) = 0, to which our approximation is directed: there
fore -5 is the true figure. Setting out with this, we proceed, step 
by step, guided by the expressions (c), (d) at page 263, as at 
page 272 ; where we see that the roots separate at the seventh 
decimal.

(189.) In the second example

«6+378a?5+38189.r4+492368ar3—572554^2+213720^-26352= 0

3 is a superior limit to the positive roots (89). But it is easily 
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seen, from an inspection of the coefficients, that the transforma
tion (1) will render them all positive; so that three variations 
will disappear in passing over the interval [0, 1]. We have, 
therefore,

(0).... +1 +378-f-38189+ 492368—572554+213/20 —26352
0 12 3

(1) .... + + + + + + +

Now as there is a perfect consistency among the expressions

572554 213720 3×26352
3x492368’ 572554’ 213720 ’

as far as the initial-figure in each quotient is concerned, we take 
this initial-figure, ,3, for the first figure of the indicated roots; 
and proceed, guided in like manner, to each successive figure, 
as at page 280; when we find the roots to separate as there 
shown.

As the remaining roots are wide apart, their situations will be 
made known by Bu dan’s transformations, without the aid of 
any additional principle.

It may be proper to remark here, in reference to the doubtful 
interval [5, 6], in the former example, that if the roots of 
fχ ( — x) = 0 had been real, we should have continued to develop 
the root of fi(-x~) = 0, as in this example, extending the work 
up to f(— x), till the roots of ∕1( — x) = 0, or of /(— x) = 0, 
had separated. And thus should we proceed in all cases where 
several final indices are alike, remembering to use for — N' the 
proper expression (169) due to the earliest of these indices.

(190.) In order to illustrate still further the practical efficacy 
of the theory established in the present chapter we shall apply it 
to the equation

12zc3 — 120z2 + 326λ∙- 127 =0

which has already been analysed, by help of the criterion of 
Fourier, at page 244.

20
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The doubtful interval is found, as at page 243, to be [4, 5] ; 
that is, the first figure of the root of ∕1(λ,) = 0, to which our ap
proximation is to be directed, is 4 ; or taking the equation already 
obtained from transforming by this 4 ; agreeably to the partial 
analysis at page 243, the first figure will lie between 0 and 1. 
The true first figure is to be found, as usual, by aid of the trial
divisor, in this case 2 × 24, conformably to the precepts at (172): 
the dividend — A' being 58. Regard being paid, however, to 
the influence of the preceding coefficient 12, it is easily seen that 
the figure sought is -7

It is obvious that from this step the trial-divisors become fully 
A'

effective ; that is, — will henceforth always furnish the
2A 2

correct root-figure. If the doubtful roots of /(#) = 0, in the 
interval under examination, are real, they have ,7 for a common 
leading figure : they have also the number suggested by the 
second trial-divisor, that is, by 2 × 49-2, and which is the num
ber 6, for the common second figure, provided this same 6 is 

, 2Nz
furnished by -γ- ; otherwise the roots, if real, must separate after 

the first figure (172). The latter alternative must have place, 
since the number given by the second expression is not 6 but 8. 
Transforming by -06, the roots do not separate :—no changes 
are lost. Hence, if they are real they must of necessity separate 
for the transformation ,07 (181) : but this causes two variations 
to disappear. Consequently the roots arc imaginary.
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Fourier’s test applied to the transformation (,76) authorizes 
this conclusion immediately, as at page 244, and thus saves the 
additional transformation. The discrepancy, however, which it 
required this transformation to interpret, pointed out the exact 
place where Fourier’s test ought to be introduced. But, 
in strictness, we should not regard the entire transformation, 
but only that portion of it which determines the absolute 
number, as expended in testing the character of the roots : we 
refer to the transformation ¢07), which is deduced from the 
transformation (,06), by transforming by an additional unit. 
For where actual solution is the object, the process of develop
ment ought not to terminate as soon as the roots are ascertained 
to be imaginary. We ought, on the contrary, to continue this 
development till the absolute number becomes stationary in its 
leading figures, and converges towards zero only as respects its 
remote decimals : after which, it should be matter of delibera
tion whether we are to reject the root as imaginary, or to retain 
it as real, rejecting only the imaginary increment (p. 163). It is 
a very prevalent, but a very grave mistake, to admit only the ap
proximate values of the real roots of an equation, and to reject 
indiscriminately all those that are imaginary. It is an important, 
though we believe hitherto an unnoticed fact, that in the case of 
imaginary roots the real development, carried on up to the point 
adverted to above, is of far more practical consequence than 
would be the complete determination of the imaginary roots 
themselves ; since from these roots the real development could 
not be inferred. In other words, a more effective and available 
solution would be furnished to an equation by substituting the 
real development here mentioned for the imaginary roots, than 
by actually exhibiting those roots themselves in their complete 
form. This, doubtless, seems paradoxical; but the truth of the 
statement will appear presently.

(191.) We shall now return to our equation and pursue the 
development of the root of ∕∣ (x) = 0 till Nz ceases to diminish in 
its leading decimals, and thus becomes convergent, not towards 
zero, but towards a finite constant.
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It is not necessary to extend the operation further : the abso
lute number, as far as the first four or five figures of it, will 
obviously remain constant, however far the root of f∖(x) = 0 be 
carried. The necessity for an imaginary increment clearly dis
covers itself after the transformation 2.

It may be remarked here, that after having obtained the trans
formation 2 above, we might, agreeably to the directions before 
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given, increase the root-figure '06, which led to that trans
formation, by unity, in order to decide whether the roots se
parate at the figure '7, or are imaginary, and might perform the 
following bye-operation:

The final sign being minus shows that the roots do not separate, 
and that they are therefore imaginary.

(192.) The development just exhibited when the 4, by which 
the roots were at first diminished, is introduced, is 4'76705. It 
would obviously be a real root of the proposed equation if the 
remainder —'047 . . . above were actually zero ; that is, if the 
original absolute number had been 127'047 . . . instead of 127. 
In other wτords the value 4,76705 is accurately a root of the 
equation

12a?3 - 120a?2 + 326a? — 127'047 ... = 0 . .. [1]

as far as five places of decimals. And from the final result of the 
middle column of the work above, it is clearly also a root of the 
limiting equation

36a?2 - 240a? + 326 = 0 . .. [2]

to the same extent of decimals. Thus the equation [1] has a 
pair of roots equal to 4'76705. And this same pair must be re
garded as approximate roots of the proposed equation

12ar*-  120a?2 + 326a? — 127 =0,

provided the left-hand member of [1] be regarded as an approxi
mation to the left-hand member of this last equation; or pro
vided the nature of the inquiry be such that the 127 may be taken 
for 127'047 . . ∙ without transgressing the limits of error which 
that inquiry may be permitted to involve, without appreciable in
jury to its conclusions.
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We know that in almost every physical inquiry the numbers 
furnished by observation, and of which the coefficients of the 
equations employed in that inquiry are functions, are more or less 
affected with error : and thus, on the principle of disregarding 
imaginary roots, certain real solutions of importance might be re
jected as imaginary, and on the other hand imaginary roots might 
be replaced by real. It would doubtless be the safer, as well as the 
more consistent plan to retain, as real approximate solutions, all 
those developments which, like that above, really indicate ima
ginary roots, but yet accurately solve equations which are close 
approximations to those under discussion.

If we were actually to determine the complete imaginary roots 
of the equation here treated, we should find, as stated above, that 
they would afford us no clue to those approximate real values 
which, for a proposed extent of decimals, satisfy the equation 
more nearly than any other real values of like extent: for these 
real values are not, in general, the real parts of the imaginary 
roots. In the example before us, the real root of the equation, 
computed to seven places of decimals, is ∙4656774,*  so that hvice* The actual development of this root is as follows:
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120 
the real part of the imaginary pair is —-----*4656774  : that is,

the imaginary roots are 4*76716  . . . ÷ β ∖∕ — 1. And thus the 

imaginary increment α ÷ β χ∕ —1 (foot-note, page 163), re
quired to complete the approximate root 4*76705,  is *00011  . . . 
±β ∖∕ — 1 ; but we have nothing to guide us to the real part 
of this imaginary increment, whether the imaginary part be 
determined or not: so that it is really true that the develop
ment 4*76705  furnishes a more accurate and effective real solution 
to the equation proposed than the complete imaginary roots them
selves could supply.

(193.) It might not be amiss to call such developments imper
fect roots of the equation. As remarked at page 162 (foot-note), 
these developments are something more than mere indicators of 
imaginary roots : they would be perfect real roots of the equation 
were a slight correction introduced into the absolute term : and 
whether in reference to this correction, or in reference to the 
imaginary increment omitted, the designation of imperfect roots 
seems sufficiently expressive of the peculiarities by which they 
are distinguished : and thus, real numerical results, available in 
actual practice, become redeemed from the neglected mass of 
imaginary quantities.

With respect to the second class of imaginary roots, com
mented upon at page 162, and which are merely indicated by the 
developments of roots of certain limiting equations inferior in 
degree to fx (x) = 0, they are not to be replaced by real imperfect 
roots, like those of the first class : the imperfect roots which sup
ply these latter indications replace imaginary roots in the inferior 
limiting equations, and not those in the primitive equation. We 
shall merely remark further, that after it was ascertained, as 
above, that the roots under examination were imaginary, we 
might have developed the corresponding pair of imperfect roots to 
any extent of decimals without regarding the final column of the 
work, which is useless for that purpose. But, by completing this 
column, simultaneously with the others, we ascertain the amount 
of correction for N that would render the imperfect root perfect, 
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which correction it is necessary to know. We might thus express 
the general solution of the preceding equation as follows:

One root, '4656774 ....: One pair of imperfect roots, 4*76705  : 
Correction of N = '047.

(194.) From what has now been delivered it appears that we 
have at least three efficient and easily applied methods for deter
mining the true character of doubtful roots. Each is indivi
dually fully competent to remove the doubt: but they are so 
related to one another that, as already observed at (183), each 
becomes conclusive at nearly the same stage of the analysis; at 
which point either may be indifferently applied; or, if need be, 
they may be concurrently employed as mutually confirmatory of 
one another. The chief matter of importance is not which 
criterion shall be used, but how we may approach, with most 
certainty and ease, the point where either becomes effective. And 
for this we have furnished ample directions in the present chapter.

The first of the methods here adverted to is that of Fourier, 
taken in connexion with the improved method of subdividing the 
doubtful interval, explained and illustrated in the preceding rules 
and examples.

The second method is that developed at (168-9), embodied in 
the precepts (172), and commented upon at pages 297-302 ; and 
which dispenses with the criterion of Fourier.

The third method is founded upon the principle delivered in 
the foot-note at page 163 and adverted to further, at (192-3). 
Agreeably to this principle we are to develop the intervening 
single root of the derived equation immediately inferior in degree 
to that in which the doubtful pair occurs in the same interval, 
just as in the other methods. This development we are to 
continue, as in the example above, being guided to the successive 
figures by the expressions [c] at page 263 either till it becomes 
obvious that the absolute number Nz is converging, not to zero, 
but to a finite constant, and consequently can never change its 
sign however far that development be continued—a clear proof of 
imaginary roots (182), or till a change of sign actually presents 
itself in Nz, thus announcing that the roots have really separated.

It is probable that this last method, being altogether indc- 
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pendent of external tests or bye-operations, may be found, in 
practice, as useful and convenient as either of the others. For if 
the roots under examination turn out to be real, we shall thus 
have found the development of one of them at the same time as 
we have determined their character; and if they prove to be 
imaginary, we shall, in like manner, with the detection of their 
nature, have accomplished the development of the pair of im
perfect roots which supply their place.

(195.) We arc thus furnished with means, more than sufficient, 
for overcoming all the difficulties so long attendant upon the 
problem of the general solution of numerical equations :—there 
is no conceivable case of this problem which the methods now 
developed can be found inadequate to cope with.

The practical facility with which these methods may be 
brought into operation depends mainly, as we have abundantly 
shown, upon the ease and rapidity with which we can develop a 
single isolated root, situated in a known interval, or having a 
known leading figure. In further attempts to expedite the 
numerical process, attention should be chiefly directed therefore 
to this—the simplest of the various cases that can occur. The 
trial-divisors, which are to direct us to the successive figures of 
this isolated root, will become gradually more and more efficient 
as the preceding tributary coefficients in the successive trans
formations become more and more unimportant in numerical 
magnitude, in relation to those divisors. When therefore the 
proposed equation is such that the coefficients diminish consi
derably in magnitude from the first to the last, the case will, in 
general, be unfavorable to the early efficiency of the trial-divisors. 
But it may be converted into a favorable case by simply reversing 
the order of the coefficients; thus changing the equation into 
another whose roots are the reciprocals of those in the original. 
This is the transformation which we adverted to at page 90, as 
occasionally useful in reference to Horner’s method of developing 
tbe roots of equations.

(19G.) We might here terminate these researches: but the 
beautiful theorem of Sturm, which they in a great measure super
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sede as respects equations beyond tlιe fourth degree, demands a 
few additional observations, more especially in reference to the 
abbreviated form of computing the functions exhibited at pages 
273 and 288-9.

It is obvious, from inspecting these computations, that a very 
considerable saving, both of space and labour, is effected by means 
of the reductions there employed. The calculation of the com
plete coefficients that enter the advanced functions in Sturm’s 
series is, as we have sufficiently seen in the preceding examples, 
a work of great arithmetical labour in high equations w ith rather 
large coefficients : and the principal part of this labour is expended 
upon what invariably turns out to be mere useless redundancies. 
It is superfluous, in the computation of Sturm’s functions, to 
aim at a greater degree of accuracy than is sufficient to secure 
correctness in the leading figure of the final constant, or in fact 
in the sign merely of this figure. We are not, however, in pos
session of any means by which all superfluous figures may be 
excluded ; all that we can do is to provide against the entrance, 
into the final result, of more than a predetermined extent of 
figures, by some such method of setting bounds to their increase, 
as that recommended at (156).

We have acknowledged at p. 235 that this method is open to 
the objection of presenting the final result, in certain extreme 
cases, abridged of all its significant figures, leaving only a row of 
zeros, from which of course the character of one pair of roots 
would remain dubious.

In the case of a pair of roots, accurately equal, the final result 
would be accurately a row of zeros ; and the repeated root would 
be accurately obtained by equating the preceding function, of the 
first degree, to zero : this function being the common measure of 
X and X1, and hence the root of it a common root of X = 0 
and X1 = 0. But when significant figures occur in the final 
result, then there is only an approach to these circumstances ; 
which approach must evidently become more and more close, as 
the first significant figure recedes more and more to the right; 
leaving a larger number of consecutive zeros, or unoccupied places, 
before it. It has been mentioned in the introductory treatise so 
often referred to, page 224, and will be proved hereafter, that 
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the pair of nearly equal roots thus indicated must concur in their 
leading figures to about half the number which expresses these 
unoccupied places; that is, supposing the roots indicated to be 
real and not imaginary. But in either case it is clear, that a 
slight variation in the final term of the original equation would 
convert the roots indicated into a real equal pair. Hence, 
although the character of the roots indicated by Sturm’s final 
remainder, when preceded by several unoccupied places may be 
altogether unknown, from our curtailments having caused all but 
the zeros to disappear, yet we may confidently infer that an equa
tion, differing from that proposed only by a minute variation in 
its final term, will have two equal roots, each given by equating 
the function of the first degree to zero, its other roots being the 
same as those of the proposed. If six or seven zeros, or blank 
places, supply leading figures in the remainder, then, by the 
principle adverted to above, we may conclude that the two equal 
roots mentioned will agree with the two roots of the proposed 
equation to about three places of figures ; if eight or nine zeros 
occur, to about four places, and so on, when the latter roots are 
real. When they are imaginary, the same equal roots may never
theless be taken, to the same extent of places, as approximate 
roots of the proposed equation, or as what we have called real 
imperfect roots ; and which, as we have already seen, deserve to 
be taken into account in the practical solution of numerical 
equations.

Suppose then that, in employing Sturm’s method for the 
analysis of equations, we so regulate our abbreviations, where 
large numbers are involved, as to secure accuracy to the extent of 
ten or twelve places in the final remainder. Should these places 
all turn out to be blank, we may safely take the root of the simple 
equation, furnished by the preceding remainder, for one of a pair 
of equal roots of the proposed.*• It should be borne in mind that in all practical inquiries it is a waste of effort to attempt an accuracy in which even the data of our calculations is deficient: such an attempt is moreover as likely to lead us wrong as right.The following observations, by Professor Peacock, are so completely in harmony with some of the views set forth in the present chapter, that the author feels it obligatory upon him to quote them :“ If the root of an equation be determined approximately, the equation may
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If, however, for any other purpose, apart from practical utility, 
it be desired to determine the exact character of the doubtful 
roots then, without caring to secure half the above-mentioned 
number of true places in the final remainder, we may proceed to 
develop the root of X1 = 0, commencing our approximation with 
the leading figure furnished by the simple equation adverted to, 
and extending the process up to X, as at page 271, till, by aid of 
Fourier’s criterion, or the other tests proposed in the present 
chapter, the nature of the roots is ascertained.

If the function immediately preceding the last—the function 
of the first degree—have both its coefficients in like manner pre
ceded by blank places or zeros, we may infer the approach of 
three roots of the proposed towards equality, or else of two dis- 

- tinct pairs of roots : for it is plain that the antecedent function of 
the second degree would, under these circumstances, require no 
change to be made in the leading figures of its coefficients to 

be depressed, and the general processes of solution, or of approximation, may be applied to find the roots of the quotient of the division. Thus in the equation x3 _ 3x 2,0000001 = 0one of the roots is very nearly equal to 1 : if we divide the equation by x — 1, and neglect the small remainder which results from the division, we shall get the quotient x2 — x — 2 = (x — l)(ι-f-2) = 0whose roots are 1 and — 2; or we may suppose one of the roots to be 1,0001, the second ∙9999, and the third — 2; or we may suppose two of the roots to be imaginary, namely, 1 ± ,001x∕— 1. All these roots are approximate values of the roots of the equation, which different processes, whether tentative or direct, may determine : and it is obvious that when two roots are equal, or nearly so, an inaccuracy of the approximation to those roots which are employed in the depression of the primitive equation, may convert real roots into imaginary, or conversely. Such consequences will never follow when the limits and nature of the roots are previously ascertained, and every root is determined independently of the rest: but it is not very easy to prevent their occurrence when methods of approximation are applied without any previous inquiries into the nature and limits of the roots, though the resulting conversion of imaginary roots into real, and of real roots into imaginary, may not deprive them of the character of true approximations to the values of the roots which are required to be determined.”—Report of the Third Meeting of 
the British Association, p. 349.
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render it an exact divisor of the cubic that precedes it, or, which 
is the same thing, to render the coefficients of the functions of the 
first degree, referred to, accurately zero, and, consequently, the 
quadratic function accurately a common divisor of X, and X1. 
Hence, if the roots of the quadratic are equal, three such roots 
must enter the equation X = 0 ; if they are unequal, each must 
enter twice into X = 0. An examination of the leading figures 
of the roots of this quadratic must determine to which of these 
circumstances the case before us approximates. These leading 
figures will supply, as before, the first steps in the approxima
tions towards the doubtful roots.

In this manner may all ambiguity that might otherwise attend 
the more advanced functions of Sturm, when extensively cur
tailed, be satisfactorily cleared up. And instead of thus comput
ing all the functions up to the last, we may, if we please, stop at 
the quadratic, as recommended in the treatise on Cubic and 
Biquadratic Equations ; and instead of examining the intervals 
thus left in doubt, by the method there taught, we may proceed 
to discuss them agreeably to the directions given in the present 
chapter.

We thus see that by combining the methods of Fourier and 
Horner with that of Sturm, the calculations which would 
otherwise enter into this last method may be very considerably 
reduced.

(197.) But before finally dismissing this method of Sturm it 
may be proper to show that it is in itself fully adequate, not only 
to determine the character of the roots of an equation under all 
circumstances, but likewise to remove every ambiguity that might 
present itself in the course of their subsequent development, 
without the aid of any other theorem whatever—even the theorem 
of Descartes, called the rule of signs.

The following example, taken from Sturm’s Memoire, is suffi
cient to show this; and to point out the mode of proceeding 
whenever any such ambiguity occurs.

Let the equation
ars + i iλ72 _ 1θ2a7 + 181 = 0

be proposed for analysis and solution.
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First, in order to ascertain the number and situation of the 
roots, we form the functions

from which, as all the leading signs are +, we infer that all the 
roots are real (page 214.)

To determine the intervals of the positive roots, we make the 
substitutions

Hence the equation has two positive roots, both comprised 
between 3 and 4 ; so that the first figure, common to both, is 3. 
Therefore, by our method of approximation, the first step of the 
process will be as follows :
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and the resulting transformed equation, whose roots are those of 
the original, diminished by 3, is

The first figure of the root of this, or the second figure in the 
quotient above, appears to be ,2, because, of all numbers occu
pying the place of the second figure, we find this to be the one 
which produces a result nearest to — 1. Still we cannot always 
affirm, independently of all reference to any other principle, 
that the number which produces a result nearest to the absolute 
number, or which, when the terms are all arranged on one side, 
produces a result the nearest to zero, is necessarily the first figure 
of the root, unless the next figure in the scale produces a change 
of sign in the absolute number, which is not the case here. To 
test the figure ,2, therefore, we transform all the other functions, 
as well as the first X, by diminishing the value of x in each, by 3, 
as above; and we find these results, viz.

which, for x' = ,2, gives the series + — — 4- two variations 

and for x' = ,3 . . . . + + + + no variation;

so that two roots of [2] are comprised between ,2 and -3, and 
thus ,2 is the correct second figure of both roots of [1].

If the substitutions, -2, -3, had not given series of signs, 
differing by two variations, we should have concluded that the 
root figure, -2, was incorrect; and should have continued to sub
stitute, in the transformed functions, the successive values, 
0, ,1, ,2, -3, ,4, . . . . 1, till such a difference of variations had 
been obtained, and should have taken the less of the two num
bers, to which the change was due, for the true second figure.
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We may now, therefore, complete the second step of our solution, 
and shall thus have 

and may thence proceed, without hesitation, to any extent, with 
our approximation; for the trial-divisor indicates ,01 as the third 
figure of the root, and, trying ∙02, we find a change of sign in the 
absolute number, a sure indication that the two roots separate at 
the second figure, and become distinct. The roots, as far as 
three decimals, are 3,213 and 3,229.*

* For a further discussion of the theorem of Sturm, with examples of its application to equations of the seventh degree, the reader is referred to the 
Mathematical Dissertations, by the author of the present work.

To determine the remaining two roots of an equation after the 
others have been computed.

(198.) Let the second term of the proposed equation be re
moved by (79) before any of the roots are developed; or, if this 
term be retained, let the developed roots be reduced to those 
belonging to the equation after the removal of the second term. 
We are to suppose that all the roots but two have thus been found,
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and our object is to obtain a formula for the determination of 
these two. It will be sufficient, to illustrate the method proposed, 
to confine our investigation to equations of the sixth and inferior 
degrees. Let then the equation of the sixth degree, deprived of 
its second term as proposed, be generally represented by

a?6 + pxi + qx* + . . . . = 0.

and let its six roots be denoted by

¾, *^"4,

the sum of which must be zero on account of the absence of the 
second term of the equation; so that

xx + x2 + x.λ + x4 = — (x5 + ⅜) . . . . [1].

Now p being the sum of the products of all the roots taken two 
and two, we have

Equations [1] and [2] furnish expressions for the sum and 
product of the two roots a?5, x6; and consequently for the coeffi
cients of the quadratic involving them. Hence, for the roots of 
this quadratic, that is, for the values of λ,5 and x6, we have the 
formula

which will give the remaining two roots of an equation of the 
sixth degree after four are determined.

If the equation be only of the fifth degree then a?4=0; and the 
formula becomes
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If it be of the fourth degree, then a⅛=0, and for the two remain
ing roots, after two are determined, we have

ab ÷ a⅛ ■ / Γ o ∕arJ ÷ x2∖2 1 γ,-,
----- k2— ± √ { - 3 (—2--- ) ~P + } ∙ ∙ ∙

And finally when it is of the third degree, or a?2 = 0, we have for 
the required form the expression

-i±√{-3(¾-)-j,}...[6].

This last expression is, we find, also given by Garnier, in his 
Analyse Algebrique, page 216. The others are, we believe, new. 
It would be easy to vary their forms: indeed different forms for 
the third and fourth degrees have already been given in the 
introductory treatise, pp. 236-241. But the above are the most 
convenient on account of their simplicity, involving no division 
operations, nor any of the advanced coefficients of the original 
equation: so that if all the roots but two are computed, without 
depriving the equation of its second term, then, in making the 
requisite change in it, for the application of the preceding for
mulas, we may stop the process of transformation when p is 
obtained. But the most convenient way of obtaining p is from ♦ 
the formula

„ = An—2 _ w (w - 1) fAn-112 

a∏ 2 1 wAn J

which is readily deduced from the expressions at page 86.
For introducing the coefficient An of the first term into those 

expressions, in order to give them the greater generality, we 
have for the third term of the transformed equation

n (n — 1) n , . A„_, A 9
2 , + ~ 11 inr + ny

in which, that the second term of the transformed may vanish, 
we must have

r _ _ An~1

«An '
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Putting therefore this in the third term above, that term becomes

= a∏~2 _ w (w ~ 1) f a∏-∏2
‘ An 2 ∖ wAn J

As an example of the application of these formulas we may 
take the equation

whose roots are 1, 2, 6, — 4, — 5; and any three of these sub
stituted in [4] will determine the remaining two.

But the utility of these expressions is not confined to this ob
ject: a reference to them will often save many steps of calculation 
in the analysis of equations. Thus, in treating the equation of 
the fifth degree, at (188,) by the method of Fourier a good 
deal of calculation was found necessary in order to determine 
that two of the doubtful roots were imaginary: if these had been 
allowed to remain doubtful till the others had been developed, the 
character of the former might have been discovered, with but very 
little trouble, from the formula [4], after the determination of 
ρ, which is soon effected: thus,

and it is obvious, from the formula, when the roots already deve
loped are each increased by 34,6, in order to reduce them to 
those belonging to the equation after the removal of the second 
term, that the quantity under the radical will be

so that the two roots xi, x5 arc imaginary.
In equations of the fourth degree it will sometimes be found 

more convenient to substitute the following for the formula [5] 
above, viz.
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As an example let the equation

be proposed.
Two roots of this equation are found, in the introductory trea

tise, page 231, to be —126,3166644731 and — 186*3166651784.  
The determination of the remaining roots, in the treatise referred 
to, was attended with considerable trouble, on account of their 
character remaining long doubtful from their close proximity to 
each other. If we change the proposed equation into another of 
the form

312 . ...
by increasing the roots by = 78, the two roots just exhibited

will be changed into —48,3166644731 and —108,3166651784 : 
and for p we shall have

so that the preceding formula will become

the two values given by which are 78-3166651 .... and
78,3166644 .... Consequently, subtracting the 78, by which 
the original roots were increased, we have for the two remaining 
roots of the proposed equation

On the Determination of the Integral Roots by the Method 
of Divisors.

(199.) It was demonstrated at (62) that no equation in which 
the coefficient of the first term is unity, and those of the other 
terms integers, can have a fractional root; so that the roots of 
every such equation can comprise only w hole numbers, and in-
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terminable decimals. These latter we have shown above how to 
approximate to as closely as we please ; and, although the same 
method wrill furnish us, figure by figure, with every integral root 
also, yet it is worth while to explain here a distinct process for 
the discovery and determination of every such root. The method 
we advert to was proposed by Newton, and is called the method 
of divisors. We may apply it to detect fractional roots by (82).

Let

be an equation of the nth degree, in which the coefficients are all 
whole numbers; and let a be an integral root of it, then we must 
have

from which we infer that must be a whole number; hence 

every integral root must always be a divisor of the last term N. 
Call the quotient of this division Q, then, by transposing — A> 
and dividing by «, the last equation will become

consequently, is also a whole number, which, calling Q2,

and transposing — A2, we have, after division by a,

O2 + A2 .
lienee ———----, or Q3, is also a whole number ; and, continuing

this process, we shall obviously have the quotients

all whole numbers, and the last Qn, will be — 1.
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(200.) We infer, therefore, that for a to be an integral root of 
an equation, the last term must be divisible by it, and so must 
the sum of the quotient and next coefficient; and throughout, 
the sum of each coefficient and preceding quotient must be divi
sible by a, the final quotient being always — 1 ; which are con
clusions analogous to those at page 185.

Hence, after having determined all the divisors of the absolute 
term in an equation, we must submit all those of them which are 
between the limits — L and + L' of the roots, found by the rules 
in Chapter vι, to the foregoing tests, and retain only those divi
sors which satisfy them all.

(201.) When, however, one divisor is found to succeed, we 
need not, in order to test the others, return to the original coeffi
cients, since, as it is easy to show, the quotients Q, Q2, Q3, &c., 
are no other than the coefficients of the depressed equation with 
their signs changed, or, which is the same thing, the coefficients 
in the quotient of N 4- Aa? 4- A.2^2 . . . . xa by a — x; for, by 
actually performing the division, and recollecting that
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It follows, therefore, that a being a root of the proposed equa
tion, the equation

Q ± Q.2.r + Q3a?2 .... — a?n_1 = 0 . . . . [2]

will be the depressed equation involving the remaining roots, for 
changing the signs of all the terms does not change the roots. 
Hence the other integral roots of the original equation will also 
be roots of this; so that, for the discovery of them, we may 
employ this depressed equation instead of the proposed. If we 
multiply every term of the depressed equation by a, keeping in 
mind the conditions [1] above, it will become

N + (Q + A) x + (Q2 + A2) a?2 .... — aa?n_1 = 0 .. .. [3],

the roots of which are, of course, the same as those of [2] ; so 
that, for the discovery of another integral root, we may, if we 
please, use the form [3] instead of [2], in which case the final 
quotient must be — a.

As an example, let us take the equation

a?5 + 5a?4 ±ar, — 16a?2 — 20a? — 16 = 0.

The divisors of 16 are

±16, ±8, ±4, ±2, ±1.

A superior limit to the positive roots is, by (87),

1 ± χ∕16 or 4;

and, by substituting — a? for a? in the proposed, or, which is the 
same thing, by changing the signs of the alternate terms, the 
equation will be

a? — 5a?4 ± a?3 + 16a?2 — 20a? + 16 = 0,

and a superior limit to its positive roots is, by (89), 6 ; but it 
is easy to see at a glance that 5 must also exceed the greatest
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positive root, therefore — 5 is a limit to the negative roots of the 
proposed. Hence the divisors not within the limits — 5, 4, that 
is, the divisors 

must be rejected; we have, therefore, to try only the divisors ÷ 2 
and — 4 :

Hence ÷ 2, —2, and — 4, are integral roots: the coefficients 
(a), (δ), (c), are those of the successive depressed equations, re
versed : the final depressed equation is 

or rather 

the roots of which are imaginary. (Algebra, art. 107.)
We have not applied the method to the divisors + 1 and — 1, 

because it is easy to ascertain whether or not these are roots of 
the equation, and to depress the equation accordingly by (51). 
In fact the method of art. (51) will equally serve for the dis
covery of all the suitable divisors, and is perhaps on the whole 
but little inferior in facility to that above. We should indeed, 
by the method of (51), have in all cases to arrive at the final 
term of the transformation, before we could affirm that the num
ber under trial was a root or not; whereas, in the method here 
explained, there is a chance of detecting the unsuitable divisors
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at every division, as the quotient may be fractional. It is scarcely 
necessary to observe that, when such quotients occur, the work 
is to be erased, and a new divisor tried; thus: suppose it were 
required to find whether the equation

has any integral positive roots. We readily see that 5 is a su
perior limit to the positive roots; so that the only divisors of 72 
to be tried are 2, 3, and 4. Trying 2, we have

the divisor 2 must be rejected, as the next quotient would be 
fractional. Trying 3, we have

the divisor 3 is also unsuitable, as this gives Q2 fractional. 
Lastly, trying 4, we have

which must be rejected for a like reason, so that there are no po
sitive integral roots. ∙

When the divisors of the last term between the limits — L and 
+ Lz are very numerous, the trials may become tiresome; but it 
is easy to devise a contrivance for diminishing the number of su
perfluous divisors thus:

(202.) We have seen (201) that
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the second member being an integer for every integral value of x, 
because the coefficients are all integral; the simplest integral 
values of x are + 1 and — 1; hence the first member shows that 
when 4- 1 is put for x, in the original polynomial f(x)i no divisor 

/(1)
a can be admissible which does not render --------- an integer;

a — 1
and, putting — 1 for x, we see that no divisor can be admissible 

∕,(- O
which does not render -------- - an integer. The divisors between

β 4^ 1
the limits may, therefore, be advantageously submitted to these 
tests before those at (200) are applied to them. We know from 
(53) that /(1) will be the last term of the transformed equation 
in (x— 1), and /(—1) will be the last term of the transformed 
equation in (x -j- 1); hence the best mode of proceeding will be, 
to effect one step of each transformation by (71), and to divide 
the final term in the first by each divisor minus 1, and the final 
term in the second by the same, plus 1; and then to employ only 
those divisors which furnish integral quotients. Should the final 
term in either transformation be 0, it will be a proof that the 
divisor unity is a root, and then we must employ the depressed 
equation for the other roots; the coefficients of this depressed 
equation will have been written down in proceeding to the final 
term, as at (51).

(203.) Let the equation 

be proposed.
The limit of the positive roots is 18 + 1 = 19; and, changing 

the alternate signs, we have (88)

for the limit of the negative roots; hence the only divisors of 72 
which can comprise the integral roots, are
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Let us, therefore, now proceed to determine /(1) and /(-1),

1 -5 -18 + 72(1,-1

—4 -22 50 = f(∖)

—6 -12 84 =/(- 1).

Now those among the foregoing divisors, which, diminished 
by 1, divide 50, and which, increased by 1, divide 84, are

2, 3, -4, 6;

and, by trying these in succession, we find 2 to fail; but for 3, 
— 4, and 6, we have

3) /2 — 18 —5 + 1
24 2 — 1

-4) 6 -3 0
— 18 3

6) — 12 0
12

0

hence the roots are all integral, and are 3, —4, and 6.

Newton s Method of approximating to the Incommensurable Roots 
of an Equation.

(204.) The method proposed by Newton for approximating 
to the incommensurable roots which may still exist in an equa
tion, after the integral roots have been removed by the method of 
divisors, requires, like all other approximative methods, that we 
know the intervals in which the roots are situated. It requires, 
moreover, that before commencing the approximation to any
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root, we render the interval so narrow, that the extreme limits of 
it may not differ by more than -τ1<y ; in which case, either limit 
must be within the fraction τ1σ of the value of the root. Call 
the initial value, thus obtained, a/, and its difference from the 
true root £: then, in the proposed equation/(a?) = 0, we have

and, consequently,

and, since δ is less than τ⅛, δ2 must be less than τ⅛0-, b3 less 
than -τθ⅛θ, &c.; hence, rejecting the terms into which these dimi
nishing factors enter, we have, for a first approximation to the 
value of the correction b, the expression

which will give the value true to two places of decimals: adding, 
therefore, this approximate correction to x', we obtain a nearer 
value, x", to the root, the error bl being below -r⅜θ.

For a second approximation, put

which will usually give the value of the correction, as far as four 
places of decimals, and this correction applied to x" will give the 
more correct value x," for x, being the true value, as far as about 
four decimals; and, by repeating the operation, we shall get a 
new value, true to about eight decimals, and so on.
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The following is the example chosen by Newton to illustrate 
his method, viz.

f(x) ■= xi — 2x — 5 = 0, .,. t∕"](tf) = 3a?2 — 2.

The root of this equation lies between 2 and 3 ; to narrow 
these limits, diminish the roots of the transformed in x — 3, 
by ,5, and we shall find no change of sign in the final term; 
hence the root is between 2 and 2,5. Diminish the roots of this 
transformed by -4, and still the final sign is preserved; hence the 
root is between 2 and 2,1, so that the first two figures of it must 
be 2,0, that is,

a? = 2∙0 + S;
also,

δ = _ ∕(2'9) _ ~ 1 _ .1
∕1(2∙0) 10

.∙. a? = 21 + δ'

=__29L__.OO54∕1(2∙1) 11-23“ ('

.∙. x = 2-0946

t,, ∕(2∙0946) -0005416δ = - ⅛⅛ = - ^τπτ6255 = - ∙θθθ04852∙

.∙. x = 2-09455148.

In this particular example the approximation is very rapid; this 
arises from the circumstance that, in the expressions for δ', δ", &c. 
the numerators are very small when compared with the denomi
nators ; such, however, will not be the case, when the root, to 
which we are approaching, differs but little from another root; 
because, as the roots approach to equality, the expression fl(x), 
when the value of one of these roots is put for x, approaches to
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zero (98) ; and hence the denominators of the foregoing frac
tions will he very small, as well as the numerators. In such a 
case, too, the terms rejected in the values of δ', δ", &c. might ex
ceed in magnitude those preserved, and thus no approximation to 
the true corrections would be obtained. These imperfections in 
Newton’s process render its application unsafe, when the root 
sought differs by only a small decimal from any of the other 
real roots, unless, indeed, at each approximation, we test the 
value obtained, by actually substituting it in the proposed 
equation.

As an illustration, let the equation,

be proposed.
After a few trials, a root is found to lie between 1,3 and 1,4, 

and to be nearer to 1,4 than to Γ3. Let us assume then

then we have

To verify this approximation, let Γ35 and 1 *36  be separately put 
for x in the proposed equation, the results are

which, being of contrary signs, shows that our approximation is 
correct.

For a second approximation, we have
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To verify this approximation, let 1,3568 and 1,35G9 be substi
tuted for x, in the proposed, the results will be

for x = 1 ∙3568, f(x) = + ‘000141586432

for x = 1∙3569, f(x) = - ‘000006100991 ;

which, being of contrary signs, proves the correctness of our ap
proximation : lienee the root is betwreen Γ3568 and Γ3569, the 
former number is, therefore, the true value, as far as four places 
of decimals.

It will not escape the observation of the student, that the pro
cess for the determination of the successive values of f(x'}, f(ff'}, 
fχ(ff),j∖(f'}, &c- as a^so the operations for verifying the several 
approximations, may all be conducted with great advantage, 
agreeably to the method of arranging the transformations uni
formly employed throughout this volume.

(205.) Had this been the arrangement adopted by the original 
cultivators of the Newtonian method, that method would, no 
doubt, soon have been perfected into the more general and com
pact process of Horner ; and Newton’s divisor—which we see 
is nothing more than that which in the preceding pages has been 
employed as a trial-divisor—instead of being used to determine 
the figures of the root, would, in the early steps of the develop
ment, merely have been referred to to suggest those figures, and 
thence have been perfected into a true divisor before the opera
tion with it came to be actually performed.

If we take Newton’s example at page 333, and arrange the 
steps of the work there given agreeably to the method of trans
formation referred to, the operation will stand thus:—
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The root-figures after the comma are negative, since in the 
second transformation the root is overstepped; and in this 
manner may we always proceed whenever, either by mistake or 
otherwise, too great a root-figure is employed in any step. By 
actually subtracting the negative portion of the root from the 
positive we find x = 2,0945514815423.

On account of the smallness of the correction by which each 
trial-divisor is converted into a true divisor the preceding example 
is peculiarly favorable to the method of Newton : yet the ope
ration conducted as above, and by which a single figure only is 
determined at each step, is even in this case far more brief and 
simple than the corresponding process of Newton, though several 
figures of the root are furnished at each step. This will be more 
clearly seen by comparing the foregoing work with the details of 
the calculation as given by Fourier, in pages 212-216 of the 
Analyse des Equations, according to what he considers an im
proved mode of conducting the Newtonian operation.

Before closing this long chapter on the general solution of 
equations wτe have briefly to notice a new method of solving 
equations just published by Mr. Weddle of Newcastle-upon- 
Tyne. It is an ingenious and useful addition to the means we 
previously possessed for overcoming the practical difficulties of 
this important problem ; more especially in reference to equations 
of advanced degrees in which several terms are absent. For it 
has the peculiarity of conducting its steps by aid of transforma
tions, through all of which the zero coefficients in the original 
equation are transmitted, and are never, as in other methods, 
replaced by significant numbers; so that every zero coefficient in 
the proposed equation enables us to dispense with an entire 
column of the work, and thus to compress the solutions of cer
tain equations of a very high degree into a comparatively small 
space. The extent to which the researches in the present chapter 

22
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have been carried precludes our doing more than to make this 
brief mention of Mr. Weddle’s performance, and to recommend 
it to the perusal of those interested in the progress of improve
ment in the general solution of Numerical Equations.*

* The work is published in a quarto tract under the title of “ A new simple and general method of solving Numerical Equations of all orders. By Thomas Weddle and is sold in London by Hamilton, Adams, and Co. price 5s.
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CHAPTER XIII.

SOLUTION OF RECURRING AND BINOMIAL EQUATIONS.

Recurring Equations.

(206.) It has been shown at (74) that every equation of an 
even degree, of the form

λ,2π -|_ Aa>2n-1 A.2√2n~2 _|_ A3aj2n-3 _p „ _|_ A.? -f- 1 = 0,

in which the coefficients of any two terms, equally distant from 
the extremes, are alike both in magnitude and sign, has one half 
of the entire system of roots, the reciprocals of the other half; 
that is, if n of the roots be

β∣, ¾> .... an,

then the other n roots will be

111 1
a}, a2 aΛ an

and, moreover, that even when the equidistant coefficients are 
like only in magnitude, and unlike in sign, the same relations 
will exist, provided only the middle term of the equation be 
absent.
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It has also been shown, that if the equation is of an odd 
degree, then, whether the equal and equidistant coefficients have 
like signs or not, the same relations among the roots will have 
place, and that one root will always be -∣- 1 or — 1, according 
as the sign of the last term is — or + ; so that a recurring 
equation of an odd degree may always be depressed to a recurring 
equation of a degree lower.

On account of these peculiar properties of recurring equations, 
they may always be reduced to others of inferior degrees ; in fact, 
every such equation of an odd degree may, as we have just re
marked, be at once reduced to the next inferior even degree ; and 
this, as we shall now prove, may be further reduced to an equa
tion of half the dimensions.

(207.) Suppose the exponent 2n, in the general equation 
above, to be successively 2, 4, 6, &c. then dividing every term 
by xn, we shall have the several equations

These several equations in z are of a lower degree, by one half, 
than those from which they have been deduced ; and, if in either 
of these the value of z be found, x will be obtained by the solu
tion of a quadratic, from the condition

It is worthy of remark, that the depressed equations in z are
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formed according to a certain law, easily discovered from the 
general relation,

which, by replacing x + - by z, gives

a formula from which the expression a?n+1 H—is obtained in 

terms of the two preceding expressions; hence we have

the expressions in z, obviously forming a recurring series, of 
which the scale of relation is (— 1, z), {Algebra, art. 172).

(208.) Let now the recurring equation,

4a?6 - 24a?5 + 57a?4 - 73a?-3 + 57a?2 — 24a? + 4 = 0,

be proposed for solution; or, which is the same thing, the equa
tion
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which, by putting

and, taking account of the foregoing expressions, becomes

an equation of a degree, lower by one half than the proposed. 
One root of this equation we find to be 1 ; thus

and, for the depressed equation, containing the other roots, we 
have 

of which the first member is a perfect square, because the square 
of half the middle term is equal to the product of the extremes;

5 its root is evidently 2z — 5 ; hence s has two values equal to —; 

and, therefore, the six values of x are given by the three quad
ratic equations,

the roots of the proposed equation are, therefore,

That the first pair of roots, viz.
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are the reciprocals of each other, will be readily seen by multiply
ing the terms of the latter by

1 + √≡T

Again, let the equation

a?5 — 1 la?4 4- 17a?3 + 17a?2 — 1 la? + 1 = 0,

be proposed for solution.
Then, as this equation has necessarily the root x = — 1, we 

immediately get the depressed biquadratic,

x4 _ 12ics + 29λ,2 _ 12a? + 1 = 0,

or, dividing by a?2, and bringing the equidistant terms together,

(*2 + ⅛ “12 <* + ς-) + 29 = 0>

which, by means of the assumed relation,

a? -∣— =z, or a?2 — zx = — 1,
a?

becomes
z* — ∖2z + 2/ = 0.

By solving this quadratic, we have, for z, the values 9 and 3 ; 
and consequently, the values of a? in the preceding biquadratic 
equation are involved in the two quadratics following, viz.

a?2 — 9a? = — 1, and a?2 — 3a? = — 1 ;

these values are, consequently,

μi√ζ7, μi√s.

hence the five roots of the proposed equation are

ι 9 + √77 9 - √77 3 ÷ √5 3 - √5
’ 2 ’ 2 2 2 5
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or, if the terms of the second of these fractions be multiplied by 
9 — ∖Γτi, and those of the last fraction by 3 + >v∕ 5, the four 
last roots will assume the following forms, viz.

each being accompanied by its reciprocal.

(209.) It has been observed above that an equation of an 
even degree is recurring only when the equidistant coefficients 
are like in sign as well as magnitude; if, however, the signs are 
unlike, the equation may be reduced to a recurring one, by 
dividing its first member by x — 1 ; for it is plain that a root of 
the equation 

is 1, since the substitution of this for x renders the first member 
zero ; this first member is, therefore, divisible by a? — I; and the 
resulting quotient must evidently be the same as that which we 
should get by dividing 

by 1 — x, because this dividend and divisor are no other than 
the former with changed signs ; the terms, however, of the latter 
quotient would be those of the former, reversed.

The coefficients of the first quotient would, it is plain, be all 
obtained by dividing 

by 1 — 1 ; and the coefficients of the second quotient would be 
obtained by dividing 

by 1 — 1 ; the same series of coefficients are, therefore, produced 
in both cases; but this latter series is no other than the former, 
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taken in reverse order, therefore the coefficients in the quotient, 
arising from dividing the proposed polynomial by x — 1, furnish 
the same series, whether taken in the direct or in the reverse 
order. The depressed equation, therefore, resulting from the 
elimination of the root 1, is a recurring equation of an odd 
degree, whose equidistant terms are equal in magnitude and 
sign. This depressed equation has, therefore, the root — 1, and, 
consequently, equations of the kind, here considered, have always 
two roots equal to + 1, and — 1, wτhich may be eliminated, and 
the resιdting equation lowered to one of half its degree.

Binomial Equations.

(210.) Binomial Equations are those which consist of merely 
two terms; the one being some power of the unknown quantity, 
and the other the absolute number. The general form of such 
equations is, therefore, 

in which a'x represents a known quantity. By substituting ax 
ftv∣∙ n flip form hppnmps 

or, more simply, 

to which form we shall always suppose the equation to be re
duced.

(211.) The following particulars respecting these equations, 
result from the simplest considerations.

1. If n be even, the equation xn — 1 = 0, or xn = 1, has two 
real roots, viz. + 1 and — 1, and no more. That it has these 
two roots is plain, for an even power of ÷ 1 is always + 1 ; and 
that it has no other real root is equally obvious, because no other 
number can, by its involution, produce 1. Hence the binomial 
xn — 1 is divisible by (x + 1) (a? — 1) = x2 — 1. By actually 
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performing the division, we have the equation 

a recurring equation in which all the n — 2 roots must be ima
ginary. For example, the equation

divided by a?2 — 1, gives

so that the six roots of the proposed equation are

2. If n be odd, the equation xn — 1 = 0 has only one real 
root, viz. + 1 ; for + 1 is the only real number of which the 
odd powers are + 1 ; hence a? — 1 is the only real simple factor 
of xn — 1 : dividing by this, we have the recurring equation

of which all the n — 1 roots are imaginary. 
For example, the equation

divided by x — 1, gives 

whence
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so that the three roots of the proposed equation are

3. If n be even, the equation a?n + 1 = 0, or xn = — 1, has 
no real root, for V — 1 is then impossible; so that all the roots 
of this equation are imaginary. For example, the four roots of 
the equation 

as determined by the rules for recurring equations are

4. If n be odd, the equation xa ⅛ 1 = 0, or = — 1, has 
one real root, viz. — 1, and no more, because this is the only 
real number of which an odd power is — 1 ; hence, if the equa
tion x3 + 1 = 0 be proposed, the first member being divisible by 
x + 1, we have the equation 

so that the three roots of the proposed equation are

5. The roots of the equation 

are all unequal; for the limiting polynomial «a?n-1 having no 
divisor in common with a?n ÷ 1, the proposed cannot have equal 
roots (98).

PROPOSITION I.

(212.) If α be one of the imaginary roots of the equation 
.r" — I = 0, then any power of α will be also a root.
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For, since α is one root of the equation xn — 1 = 0, therefore 
αn = 1, and consequently, 

the values

thus satisfying, the conditions of the equation are roots of it.
Cor. 1. It hence appears that the roots of the equation 

xn — 1 = 0 may be represented under an infinite variety of 
forms, each term in the following series being a root, viz.

in which series, however, there cannot be more than n quantities 
essentially different, otherwise the equation would have more 
than n roots.

PROPOSITION II.

(213.) If α be one of the imaginary roots of the equation 
xn + 1 = 0, then any odd power of α will be also a root.

For, since α is one root of the equation α>n = — 1, therefore, 
αn = — 1 ; and, since every odd power, whether positive or 
negative, of — 1 is also — 1, therefore

so that the quantities

are roots of the equation. These roots, therefore, assume an 
infinite variety of forms, although there cannot be more than n 
essentially different.
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PROPOSITION III.

(214.) When n is a prime number, the roots of the equation 
xu — 1 = 0 are all exhibited in the series

1, α, α2, a3, ∙ ∙ ∙ ∙ an-1,

or a", an+1, an+2, an+3, ∙ ∙ ∙ ∙ a2n-1,

or a2n, a2n+1, a2n+2, a2n+3, ∙ ∙ ∙∙ a3n~,

or 1, a-1, a~2, a-3, . ...a-<n-D

or <z-n, a-n-1, a-n-2, a-∏-3j.... a-∏-(∏-ι>

It lias been shown in prop, ι., that every one of the foregoing 
quantities is a root of the equation if α is a root; if, therefore, 
no two of the n quantities in each series are the same under a 

.different form, each series will exhibit all the n roots of the 
equation.

Now, if we suppose any two of the roots in either series to be 
equal, as for instance αP and αt, in which t > p, then by dividing 
the equation αt = αP by aP, we have at-P = 1 ; and that this 
equation is impossible may be proved as follows :

Because n is a prime number, and t — ρ necessarily less than 
n, therefore the numbers n and t — p are prime to each other; 
and consequently two whole numbers, x' and y', may always be 
found such that

(t — p) √ = ny' ⅛ 1 ;*

and, as αt^P=l, therefore a(t-P)x'=l, and consequently a1,y'+1 = l, 
that is, a1,y'. a = 1 ; but ayl is a root (prop, ι.) ; hence any, = 1, 
therefore, from the last equation, α = 1, which is impossible, 
because, by hypothesis α is imaginary. Hence, each of the 
series announced above, comprises the n roots of the equation 
under different forms.

* See the Algebra, third edition, page 271.
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PROPOSITION IV.

(215.) When p and q have no common measure, then the 
equations ad’ — 1 = 0 and a∕> — 1=0 have no common root 
except unity.

If possible, let α be a root common to both equations, and 
different from unity, then we have α>, = 1 and α'i = 1 ; and, 
since p and q are prime to each other, two whole numbers, a∕ 
and y', may always be found such that px' = qy' + 1 {Algebra, 
p. 271.) Consequently α*,x' = αfiy'+1 = aw'. a. But aA is a 
root of each equation : hence αtιy' = 1, therefore a = 1, which is 
contrary to the hypothesis. Hence the root common to the two 
proposed equations can be no other than unity.

Cor. When the equations xn — 1 = 0, a,,m — 1=0, have an 
imaginary root in common, the exponents m, n, must have a 
common measure.

PROPOSITION V.

(216.) When n is a composite number, formed of the factors 
p, q, r, &c., then the roots of the equations x? — 1 = 0, 
λ,,i — 1 = 0, χχ — 1 = 0, &c,, must all of them be roots of the 
equation xn — 1 = 0.

This is obvious; for the two quantities xn, and 1, may be 
regarded as the result of the two quantities χV, and 1, raised to 
the qr &c. power, or as the result of x⅛ and 1 raised to the pr &c. 
power, &c. ; and the difference of two powers is always accu
rately divisible by the difference of their roots. {Algebra, p. 201.)

PROPOSITION VI.

(217.) When n is the product of two prime numbers, p and ¢, 
the roots of the equation a?" — 1 = 0 will be expressed by the n 
products arising from multiplying every root of the equation 
.rP — 1 = 0, by every root of the equation art — 1 = 0.
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Let the roots of the equation xv — 1 = 0 be

and those of the equation ari — 1=0,

These two series of roots are all different, with the exception 
of the common root unity (prop, ιv.), and are, therefore, so 
many different roots of the equation a?n — 1 = 0, (prop. v.). 
The pq products also, arising from multiplying the one series by 
the other, will be so many roots of the proposed equation. For, 
let αh βk represent any one of these, products, then, since αtl and 
βk are roots of xn — 1 = 0, we have αhn = 1 and βkn = 1 ; and 
consequently, (αh ∕3k)n = 1, or (ahβk)n — 1 = 0; hence ah ∕3k 
must be a root of xn — 1 = 0. The products are all different: 
for, if possible, let

Now, whether h — g and m — k be positive or negative num
bers, the expression αh-β is, necessarily, a root of ri, — 1=0, 
and the expression βm~k, a root of ari — 1 = 0; and as these 
roots are, by prop, ιv., essentially different, except when they 
are both unity, it follows that the equation deduced from our 
hypothesis cannot exist; that hypothesis, therefore, is not true, 
so that no two products can be equal to each other. As, there
fore, the products are pq in number, all different, and all satisfy 
the equation .xa — 1 = 0, they must express the pq roots of that 
equation.

Tn the foregoing reasoning, it is, of course, presumed that the 
component factors, p, q, are unequal. If they are equal, then 
the roots of the equation, a?n — 1 = 0, will not all be comprised 
in the aforesaid products.

As an example of the application of this proposition, let it be 
required to determine the six roots of the equation, xr' — 1 = 0.
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As 6 is composed of the two prime numbers, 2 and 3, we have 
first to find the roots of

The roots of x2 — 1 = 0 are 1 and — 1. The roots of 
ari — 1 = 0 are, p. 347,

Consequently, the six roots sought are the six products, 
arising from multiplying these three roots by 1, — 1, and are, 
therefore,

PROPOSITION VII.

(218.) To determine the roots of the equation a?n — 1 = 0, 
when n is the square of a prime number p.

Put a?P = z, then x? — z = 0, and z? — 1 = 0j and let the 
roots of this last equation be 1, β, β2, β'3, . . . . ∕3p~1, then, by 
substitution,

hence the pp values of x, in these p equations, w ill evidently be 
all different, and w ill be the roots of the equation a;PP — 1 = 0.

To determine these roots, it will be sufficient to advert to 
art. (75), which proves that the roots of x? — β = 0 are equal 
to the roots of χiy — 1=0 multiplied by ^∕β ; and, in a similar 
manner, the roots of x? — β2 = 0 are equal to the roots of
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a?p — 1 = 0, multiplied by V/32, &c.; therefore we immediately 
conclude that the roots of

For example, let it be required to find the roots of x9 — 1 = 0. 
The roots of λγ3 — 1 = 0 are

hence the roots of a?9 — 1 = 0 are

From the preceding propositions we may infer, as at (42), that 
every root has as many values as there are units in its index; for, as 
there are n different quantities which satisfy the equation xn = 1, 
it follows that V 1 has n different values ; and it is plain that if 
each of these values be multiplied by the common arithmetical 
value of ∖∕a, the n products will all be different, and such that, if 
each be raised to the nth power, the result will always be a; hence 
the products of which we speak are so many different values of r/«. 
The determination, therefore, of the n roots of n√β requires that 
we are able to extract the nth arithmetical root of a, and to ex
hibit all the imaginary roots of n√T. The foregoing propositions 
have been devoted chiefly to an examination of the properties and 
relations of these roots, and not to the actual exhibition of their

23
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values, although, as in the proposition above, one or two exam
ples of the solution have been given to illustrate the reasoning. 
To obtain the imaginary roots, however, in their simplest form, 
that is, in the form β +⅛∖∕-l, and for all values of the ex
ponent, requires the aid of a theorem, borrowed from the science 
of Trigonometry.

(219.) The theorem to which we refer, is the well-known 
formula of De Moivre given in most books on Analytical Trigo
nometry, viz. (see Trigonometry, second edition, page 59,)

which, if the arc 2kτt, {τt being a semicircumference, and k any 
integer,) be substituted for na, becomes

that is, since

so that the expression

comprehends in it all the n roots of unity, or all the particular 
values of x, which satisfy the equation xn — 1 = 0.

Although, in this general expression, the value of k is quite 
arbitrary, yet, assume it what we will, the expression can never 
furnish more than n different values. These different values will 
arise from the several substitutions of

0, 1, 2, 3 . . . .

up to the number inclusively, if n is odd, and up to
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is even ; and for substitutions beyond these limits the preceding 
results will recur. To prove this, let us actually substitute as 
proposed: we shall thus have the following series of re
sults, viz.

Each of these expressions, except the first, involves two distinct 
values; so that, omitting the value given by k = 0, there are n— 1 
values, and, consequently, altogether, there are n values; and that 
they are all different, is plain, because the arcs

being all different, and less than it, have all different cosines. The 
arcs which would arise from continuing the substitutions, are 

or, which are the same, 

and the sines and cosines of these are respectively the same as 
the sines and cosines of the arcs
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which have already occurred.*

If n is an even number, the final substitution for k must be

71 - 1
instead of------- , as above; and therefore the final pair of con-

2
jugate values for x will be

which values of x differ from all the other values, because in them 
no arc occurs so great as ∏r.

The arcs which would arise from continuing the substitutions 

beyond are

or, which are the same,

and the sines and cosines of these are respectively the same as the 
sines and cosines of the arcs

which have already occurred.*
It is easy to see that in every pair of conjugate roots, each is 

the reciprocal of the other. In fact whatever be ki

* The signs of the sines will, however, be different; but the only effect of this difference is evidently to furnish each pair of conjugate roots in an inverse order.
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which shows that the two factors in the first member are of the 

form α, -.
a

We have proved (212) that every power of an imaginary root of 
the binomial equation is also a root; but, unless n be a prime 
number, we could not infer that all the roots would ever be pro
duced by involving any one of them. Such would not indeed be 
the case. There is always, however, one among the imaginary 
roots of which the involution will furnish all the others ; it is the 
first imaginary root, or that due to the substitution k = 1, in the 
foregoing series of values; for, by De Moivre’s formula, the 
powers of this produce all the others, thus :

These powers of the first imaginary root, which we may call α, 
thus furnish one half of the entire number of imaginary roots, and 
the reciprocals of these being the other half, all of them are deter
mined from the first; the imaginary roots are, therefore,

When n is even, the last power will be
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and the imaginary roots are, therefore,

(220.) By the same general formula (page 354), we are enabled 
to determine all the roots of the equation

for, since

that formula gives

hence the n values of x are all comprised in the general expression

which, by putting for k the values 0, 1, 2, 3, &c. in succession, 
furnishes the following series of separate values, viz.
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or, when n is even,

Now that the foregoing system of n roots are all different is 
obvious, since

are all different arcs, of which the greatest does not exceed a semi
circumference. If the preceding series be extended, it will be 
easy to prove, after what has been done at page 355, that the 
values formerly obtained will recur.

As in the former case of the general problem, so here, each root 
may be derived from the first pair of the series: thus, denoting the

first root, according as the 

upper or lower sign is taken, we evidently have, for the pre
ceding series, the following equivalent expressions, viz.

and

when n is odd.

when n is even.

For further researches on the theory of binomial equations, 
the student may consult Lagrange’s Traitć de la Resolution des 
Equations Numeriques, Note 14; Legendre’s Theorie des 
Nombres, Partv.; the Disquisitiones Arithmetic® of Gauss; 
Barlow’s Theory of Numbers; and Ivory’s article on Equations, 
in the Encyclopaedia Britannica.
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CHAPTER XIV.

ON CONTINUED FRACTIONS.

(221.) Let α represent either a fractional or an incommen
surable number; and let a be the greatest integer below the value 
of α, and which, if α be less than 1, will of course be 0. Then, 

since α—a is less than 1, it follows that must be greater

than 1. Put

and let ó be the integer which in value is immediately below β; 

then β — b is less than 1, and consequently must be greater 

than 1. Put

and let c be the greatest integer below the value of y; then will 

y — c be less than 1, and therefore greater than 1. Put
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Continuing this process, we obviously have, by substituting in 
the foregoing expression for α the values of β, γ, &c. in succes
sion, the following development of the value α, viz.

which development is called a continued fraction.
If either of the quantities β, γ, δ, &c. is a whole number, the 

development must of course terminate at that number; and this 
will necessarily be the case if α be rational, or a finite fraction; 
but if α be irrational, then the fraction representing its develop
ment must be interminable. This is readily admissible; it is, how
ever, an unavoidable conclusion from what follows.

A
(222.) If α be a rational fraction —, we may very easily arrive

B
at its equivalent continued fraction. For the first term a will be 
the quotient of A by B ; and, calling the remainder C, we shall 
have

In like manner, the division of B by C gives 6; and putting D 
for the remainder, we have

Similarly the division of C by D gives c, and so on.
Hence a, b, c, &c. are no other than tbe quotients which sue- 

www.rcin.org.pl



362 CONTINUED fractions.

cessively arise in the process for finding the common measure of 
A

the terms of the proposed fraction —; thus:
n

It is easy to see that when α is a rational fraction, the expres
sion deduced for it, in the preceding article, is readily derivable 
from this operation of the common measure; indeed the form of 
the continued fraction, as deduced from this process, will have 
greater generality than that given in last article. For without 
restricting the foregoing quotients to be integral and positive, we 
shall evidently have, in every case, 

so that

in which a, b, c, &c. are quotients, positive or negative, integral 
or fractional, derived by the foregoing operation. In most appli
cations of continued fractions, integral and positive quotients
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only are employed; but it is useful to show that these restrictions 
are not essential to the form of the development; which is pre
served, whatever be the character of the quotients. This is a 
truth that we shall have occasion to avail ourselves of at the close 
of the Chapter; at present, however, we shall require only posi
tive and integral quotients.

(223.) As a particular application, let the proposed fraction be 

* 1*̂ ; then, by applying the process for the common measure, 
887

the several quotients furnish the following development, viz.

and if the fraction be we have the following equivalent de

velopment, viz.

Since the process of seeking the greatest common divisor of 
two numbers always terminates, it follows that every rational 
fraction may be expressed in a finite continued fraction.

(224.) We might obviously, by reduction, collect into one the 
successive portions

of a continued fraction, by putting for a, in the first,
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then b + — for b, and so on; we should thus have the results 
c

so that every finite continued fraction may be reduced to an 
ordinary finite fraction; but an incommensurable quantity 
cannot be expressed by a terminate continued fraction.

The partial sums which we have just obtained are called con
verging fractions; for, as we shall presently demonstrate, they 
approach nearer and nearer to the whole value of the continued 
fraction.

For the sake of simplicity, let us represent the series of con
verging fractions by

then we shall always be able recognize the particular fraction 
represented, by observing that the capitals A, B, C, &c. corre

spond to the quotients a, b, c, &c. last introduced; so that 

will renresent

will represent

and so on. This notation being agreed upon, we may readily 
demonstrate the following proposition: viz.

In any three consecutive converging fractions
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we shall always have the property

r being, as observed above, the quotient last introduced into the 

value of

As to the first three converging fractions, viz.

or

it is plain that the property announced has place; for we imme
diately recognize the relation

If then we can show from this, that the succeeding fraction 
must have the same property, similar reasoning would apply to 
the next following fraction, and so on throughout the whole. 
We have only then, in order to establish the proposition, to prove 
that from the condition

The expression for differs from the expression for only 

by having in place of c; so that, by changing in

c into nusthave ; therefore
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hence, generally,

which shows that both numerators and denominators go on con
tinually increasing.. By means of this property we may form the 
series of converging fractions with great facility, when only the 
first two are given; and we may thence arrive at the entire sum 
of the series when it terminates, and thus obtain the value of the 
original fraction.

For example, let it be required to determine the fraction of 
which the development is

Here the first two converging fractions are , from which

we deduce the third by multiplying the two terms of the second 
each by 9, and adding in the corresponding terms of the first 
fraction ; from the third we get the fourth, using the next quo
tient 2 as the multiplier, and adding in the corresponding terms 
of the second fraction, and so on, as follows :

(225.) We can now show the propriety of calling these results
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converging fractions, by proving that they continually approach 
nearer and nearer to the true value of the continued fraction.

That these fractions are alternately less and greater than the 
developed form may be readily seen, without the aid of the above 

property; for, calling the entire value x, we have the first,

less than x, because the positive quantity is neglected.

The second α + — is greater than x, for the denominator is less 
o

than it ought to be, by the positive quantity — yet, if we
c -j- <‰c.,

take in , that denominator will be increased too much, because

is greater than _p ⅛ ’ s0 *s ^ess ^ιaπ x,

and so on. But to prove the proposition announced in a gene
ral manner, we shall employ the equation

before established, either member of which will necessarily 
express the value of the entire fraction x, if we substitute in it 

r + — „ for r. The quantity r + — is always greater
s + &c. s + &c.

than unity, because r is not less than unity. Calling it y we have

and, consequently, by subtracting first and then from each 

side, we have the equations

which showτ that the differences have contrary
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P . Q
signs ; so that if x be greater than —, it will be less than —, and 

vice versa ; and, as x is greater than the first converging fraction 

if a is 0), it follows that, throughout the series of con

verging fractions, the 1st, 3d, 5th, 7th, &c. of them are each below 
the true value ; and the 2d, 4th, 6th, 8th, &c. above the true value.

As to the relative values of the differences

is plain that the latter is less than the former, because y is greater 
than 1, and Qz greater than Pz, since the denominators increase 
as the fractions advance (224). It follows, therefore, that the 
converging fractions approach continually nearer and nearer to 
the true value of the continued fraction; and, therefore, this 
value may be approximated to as closely as we please when the 
first two converging fractions are found. It follows, moreover, 
that the odd terms of the series of converging fractions form an 
increasing series of values, approximating to the truth, and 
that the even terms form a decreasing series of approximating 
values.

(226.) Let us now inquire what is the limit to the error we 
commit, in taking any one of these converging fractions for the 
complete value.

In the first place, it is clear that this error cannot be so great 
as the difference between the fraction taken and that which im
mediately follows it, because the true value lies between these 
two. Now the numerator of the difference between two consecu
tive fractions is obtained by multiplying the terms crosswise, and 
subtracting; the denominator is obtained by multiplying together 

P Qthose of the given fractions. Let, then, be any two
r Q

consecutive fractions, and we shall have, for the numerator of their 
difference, the expression

and, for the numerator of the difference between or, which
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is the same thing, between we shall have the ex

pression

the very same as the former difference, only with contrary sign. 
Hence, throughout the series, if the difference between each 
fraction and the next following be taken, the numerators of the 
results will always be the same in magnitude, but will have alter
nate signs. To determine the actual value of the numerators, we 
have, therefore, only to ascertain it in one instance. Let us then 

take the two leading fractions, which are and we

have

hence the numerators in question are always unity, so that the 
Q

error we commit in taking the converging fraction, —, for the true 

value, is always less than qz^∕∙ This leads to a valuable property 

of these fractions : which is, that between any two consecutive 
terms, it will be impossible to insert a fraction of intermediate 
value, whose denominator shall not exceed that of each of the 
proposed fractions, for it is obvious that no fraction can be smaller 

than --∙γ, unless its denominator be greater. Hence, the con- 

verging fractions not only approximate continually to the value 
of .r, but they present themselves in the most simple forms pos
sible ; so that it would be impracticable to substitute for any one 
of them another, more approximative, that would not be more 
complex. That the converging fractions always present them
selves in the lowest terms is plain from the condition just referred 
to, viz.

the first member of which would admit of an integral divisor if 

were not in their lowest terms, which integral divisor is 

forbidden by the second member.
24
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These converging fractions are, therefore, highly useful for the 
purpose of enabling us to express, in small numbers, a near 
value of a ratio of which the terms may be too large to be easily 
managed in computation. For instance, the ratio of the diameter 
of a circle to its circumference is known to be very nearly as 
100000 to 314159; and to get a series of other ratios, more 
simply expressed, and continually approximating to this, we pro
ceed as follows :

The second of these ratios, viz. 7 to 22, is that which was first

www.rcin.org.pl



CONTINUED FRACTIONS. 371

given by Archimedes, and is.sufficiently near the truth for many 
practical purposes ; the ratio, 113 to 355, is that of Metius, and 
is a still nearer approximation. The ratio of Archimedes differs 

from the truth, by a quantity less than —----- ——, and the ratio

of Metius differs from the truth, by a quantity less than 

as appears from the foregoing expression for the 

limit of the error.

(227.) We may easily obtain a limit to the error, that shall be 
independent of the denominator of the fraction which follows 
that at which we stop; although such a limit will not be so small 
as that just deduced. For, since the denominators increase, we 
must have

hence the error committed by taking the converging fraction,

for the value of x, must be less than

From this expression for the limit of error, w,e can always de
termine a converging fraction, which shall approach as near to 
the true value as we please, or which shall differ from that value 

by less than any assigned quantity ∆ ; for, in order that

may be the fraction, it will be sufficient that do not exceed ∆,

or, that Q' be not less than

The property established in (226), that PzQ — PQ'= 1, will 
also furnish an expression for the inferior limit of the error, as 
well as for the superior limit; for, in consequence of this pro
perty, we have (225)
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and, therefore, dividing the numerator and only part of the de
nominator by y, we have

P
Hence, taking either of the converging fractions, —, for the 

true value of x, we have the following limits to the error, viz.

(228.) In the examples hitherto given of the development of 
α, in the form of a continued fraction, α has been considered to 
be a rational fraction, and the several quantities a, b, c, &c. have 
been obtained by means of the operation to find the greatest 
common measure of the terms of the proposed fraction. But, 
when α is an irrational quantity, it is obvious that wre must de
termine a, b, c, &c. by some other means. Let us here recall the 
principles with which we set out at the commencement of the 
Chapter, and, from which, without any restriction as to the 
rationality of α, we arrived at the expressions

and so on; and let us follow the successive steps there pointed 
out, in order to effect the reduction of χ∕T9 into a continued 
fraction; that is, let α = ∖∕19.

Now the greatest integer in ∖Λ 9 is 4, .∙. α = 4, and conse

quently, -------------= β∙ In order to perceive more readily the
√19 — 4

greatest integer in this, multiply both numerator and denominator
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by , then , in which the greatest integer

is obviously 2; hence

and, by proceeding in this way, we have

As we have now arrived at the same expression as that which 
we have already had for β, it is plain that the series b, c, &c. 
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must recur; and that the continued fraction, as far as one period, 
w ill be

and the series of converging fractions, which may be carried to 
any extent, now that we have got a, δ, c, for a complete period, 
will be

which does not differ from the truth by so much as

It is not only in the particular example which we have here 
chosen, that the continued fraction is periodical, for it is the 
property of all quadratic surds to give rise to these recurring 
fractions; but, for the proof of it, we must refer the student to 
Barlow’s Theory of Numbers, or to the Theorie des Nombres 
of Legendre, page 43.

Application of Continued Fractions to the Summation of 
Infinite Series.

(229.) In our treatise on Algebra, page 248, we promised to 
furnish, in the present volume, a direct and easy method of sum
ming every infinite series of which the generating function is 
rational. The method to which we alluded, is one of the many 
deductions from the doctrine of continued fractions, and may, 
therefore, without impropriety, be given in this place.
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1. Let the sum of the infinite series 

be required.
Regarding this series as the numerator of a fraction, whose de

nominator is unity, and, dividing the denominator by the nume
rator, we obtain for quotient 1 and for remainder 

dividing the former divisor, that is, the original series, by this re

mainder, we have, for quotient —, and for remainder,
3<τ

dividing the last divisor by this, we obtain for quotient , and 

for remainder,

and, lastly, dividing the preceding divisor by this, we get, for 
4

quotient — —, and for remainder, zero. Hence the proposed

series may be replaced by the continued fraction,

We may get rid of the fractional denominators, one by one, in 
the usual way, thus : omitting the leading term, multiply nu
merator and denominator of the remaining fraction by 3x, then 
omitting the second term, multiply numerator and denominator
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of the remaining fraction by 4, and, finally, omitting the pre
ceding terms, multiply numerator and denominator of the remain
ing fraction by 3a?, and the continued fraction will then be

or rather

This may be easily reduced to an ordinary fraction, by collecting 
the several terms, commencing at the last; and we thus find, for 
the sum of the proposed series, the expression

2. As a second example, let the series

be proposed.
By proceeding as in the former example, we find the following 

series of quotients and remainders, viz.
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Hence the equivalent continued fraction is

or rather,

which, reduced to an ordinary fraction, is

1
(I + ⅛2 i

of which the proposed series is the development.

3. Let the series be

Then proceeding as in the last example, we have the following 
table of quotients and remainders, viz.

hence the equivalent continued fraction is
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or rather

which, reduced to a common fraction, is

the development of which is the proposed series.

By treating, in a similar way, the series

we find its generating rational fraction to be

These examples are sufficient to show that the foregoing pro
cess, founded on the determination of the greatest common 
divisor, between unity and the proposed series, furnishes a direct 
and simple method of summing every infinite series of which the 
generating function is rational. We are indebted for it to a paper 
by M. Le Barbier, published in the Annales de Mathetnatiques, 
for March, 1831.*

Application of Continued Fractions to the Solution of Equations.

The method of approximating to the incommensurable roots* It is proper to mention, that the preceding method is also embodied in a paper by Mr. Horner, “ On the use of continued Fractions in the Summation of Series,” published in the Annals of Philosophy for June, JS2β. 
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of an equation, by continued fractions, is due to Lagrange. An 
example or two will suffice to illustrate it.

1. Let the equation 

be proposed. It is soon seen that 2 is the first figure of the real 
root, the other two are imaginary, because 4( —2)3 4- 27 × 52 > 0 

(Introductory Treatise, page 106). Substitute, then, -2 4—y 

for x, and we have the following transformed equation, in which 
the root √ must necessarily exceed unity :

Of course we effect this transformation, not by the actual sub

stitution of 2 4—- for x, in the proposed equation, as Lagrange
X

did, but by operating as in (73), thus :

and, consequently (73), the transformed equation is

The first figure of the root of this equation, found by trial, is 
10; putting, therefore, 

we have, for a new transformed, the equation
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the first figure in the root of which is 1. Put, therefore,

- J + ⅛∙

and effect a third transformation, which will be

54√zz3 + 25√,'2 - 89√zz — 61 = 0;

in which the first figure of the root is 1. Continue this process, 
and we shall have, for the leading figures of the root of the 
original equation, the expression

1
x = 2 + — 1

10 + — 1
1 +- _L

^*^ 2 + &c.

which furnishes the converging fractions following,

112 13 11 12

21 23 44 111 155 576 731 1307 16415
2, 1Ó’ TT’ 21’ ^53^, "74"’ 275’ 349’ 624 ’ 7837 ’ C’

and these are alternately below and above the true value of the 

root. The fraction is greater than the true value : but

the error being less than -p, by (227), that is, less than 

164150000000163, it follows that the approximation, --------, will be
7837

true as far as the seventh decimal. The root is, therefore, 
2-0945514, true to seven places.

In each of the transformed equations, which occur in the fore
going operation, the root is necessarily greater than unity, and 
but one real root exists in each ; so that, in searching for the first 
figure, we are to limit our trials to the numbers 0, 1, 2, 3, . . . . 
10, 11, &c.

When the equation has several real roots, they may all be 
separately evolved, as above, provided wre know their number and
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situation. This knowledge the application of Sturm’s theorem 
will always supply, and the method of Lagrange may thus be 
perfected. The same thing may also be effected by the transfor
mations of Budan, or by the methods expounded in Chap. xιι. 
But, as remarked at (146), the method of Budan is that which 
best unites with Lagrange’s process for developing the roots. 
We shall exemplify it in its application to the equation

By the first series of transformations exhibited at page 198, we 
find the interval [1, 2] to be doubtful: hence if the equation 
have any real positive roots, they must lie between 1 and 2, so 
that we must have

where a∕ must be determined from the transformed equation

Applying Budan’s method to this, we are led to the second 
series of transformations at page 198, which resolves the doubt, 
and at the same time supplies the leading figure of each of the 
two positive values of a/; that of one of these values being found 
to be 1, and that of the other 2. It is thus that Budan’s trans
formations, for determining the character of a doubtful interval, 
facilitates the actual development of the roots under examination 
whenever they eventually prove to be real: for, as here, each 
series of transformations supplies an additional term in the con
tinued fraction by which the developments are expressed, till the 
roots separate and proceed singly, lying in distinct intervals.

In order to approximate to the first of the above roots, which 
have now separated, put as before 

and we shall have the transformed equation 
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to which there will be no necessity to apply the transformations 
of Budan, because we know that it has one root, and only one, 
greater than unity, so that two consecutive numbers in the series 
0, 1, 2, . . . ., must, when substituted for x, give results with 
contrary signs. These numbers are 2 and 3.

To approximate to the other positive root, we must put

which will furnish the transformed equation 

which has one, and only one, root greater than unity; and, there
fore, its situation may be easily found by trial to be between 
1 and 2. We have, therefore, now to make the substitutions

and we thus have the new equations 

each of which has one, and only one, root greater than unity; 
and the first figure of each is found by trial to be 4. The next 
transformation is consequently 

the first figure of the root of which is 20; and therefore the next 
transformation is
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the first figure of the root of which is 2; the next transformed 
equation is

the first figure of the root of which is 3; and, by continuing these 
transformations, we have, for the values of x sought, the following 
developments, viz.

The converging fractions deduced from these are

Hence, for near values of x, we have

or, in decimals

which are true as far as six decimals, and are but a unit below 
the truth in the seventh place.
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(230.) The two equations just solved are both given by 
Lagrange in illustration of the method, proposed by Waring 
and himself, for discovering the character of roots by means of 
an auxiliary equation, technically called the equation of the squares 
of the differences, and also for the purpose of exhibiting, as above, 
the actual development of those that are thus ascertained to be 
real, by his peculiar process of continued fractions. The forma
tion of the auxiliary equation, which will be explained hereafter, 
is in general impracticable beyond very narrow limits, on account 
of the long computations required: and it is therefore advan
tageously replaced by the transformations of Budan, as in the 
example just considered. As before remarked, these transforma
tions actually supply the leading terms of Lagrange’s develop
ment, up to the point where the roots are found to separate, when
ever those roots turn out to be real; so that of all the methods of 
analysis that might be proposed, that of Budan would seem to 
claim a preference in connexion with Lagrange’s process of de
velopment. But in those cases of difficulty, so fully discussed in 
the preceding chapters of the present work, where roots approach 
very near to equality, Budan’s trial-transformations become in 
general too numerous to be available in actual practice. On the 
average four or five of these transformations must be calculated 
upon for each effective step in the analysis ; so that the separation 
of the two contiguous roots, in the equation of the fifth degree 
proposed at page 268, might be expected to involve about four 
times the labour which was expended upon the same object at 
page 271. (See articles 145, 146.)
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THE SOLUTION OF TWO EQUATIONS, CONTAINING TWO 

UNKNOWN QUANTITIES : THEORY OF ELIMINATION.

(231.) Two equations, each containing two unknown quanti
ties, x, y, together with known numbers, may be thus ex
pressed, viz

and their solution consists in determining the system of values 
for x and y, which simultaneously satisfy both equations.

In order that y may have a value /3, which will equally 
belong to both equations, it is obviously necessary, and it is 
sufficient, that there exist a value for x, competent to satisfy the 
two equations

that is, these two equations in x must have a common root, and 
therefore the polynomials F(λ,, β'),f(x, /3), must have a common 
factor, or admit of a common measure in x. In order, therefore, 
to ascertain whether any proposed value, β, for y is consistent 
with the conditions [1], we should have to perform the operation 
for the common measure upon the functions F(x, β), f(x, /’)• If 
a common measure, which is a function of x, be found to exist, 

25
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the proposed value for y is admissible, and the common mea
sure, equated to zero, will be an equation whose roots will be 
the corresponding values of x; but if no such common measure 
exist, we must then reject the assumed value of y, as being incom
patible with the conditions [1].

To assume different values for one of the unknowns, and, in 
this way, to try their eligibility, would, in many cases, require 
an endless series of operations. The most direct and obvious 
mode of proceeding, in order to obtain values for y, which must 
necessarily cause the functions in x to have a common measure, 
would seem to be this, viz. to arrange the terms of each poly
nomial according to the powers of x, and to operate upon them, 
for the common measure, till we arrive at a remainder inde
pendent of <r,eand then to equate this remainder in y to zero. For 
the values of y, which satisfy this equation, are all such as to 
cause the remainder to vanish.

It must be remembered, however, that, in the operation of find
ing the greatest common measure of two algebraical expressions, 
we have frequent occasion to suppress certain factors, and to intro
duce others, and, before we could affirm with confidence that the 
values of y, which cause the remainder to vanish, necessarily fulfil 
the proposed conditions, we must examine whether or not this 
remainder is affected by the factors, which may have been re
jected or introduced. If, however, the process for the common 
measure, in any particular case, requires neither the suppression 
nor the introduction of a factor, we may then safely infer that 
the final remainder, or that which is independent of xi will, when 
equated to zero, furnish all the values of y consistent with the 
proposed conditions ; because, if each value thus determined were 
to be put for y, in the original polynomials, and the common 
measure in each case found, we should, obviously, arrive at the 
very same series of collateral expressions for x.

For example, suppose the equations

a?3 + 3yx2 + (3y2 — y + 1) x ⅛ y3 — y2 + 2y = 0

x2 + 2yx + y2 — y = 0

were proposed for solution.
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As the polynomials are already arranged according to the de
creasing powers of x, we may at once commence the operation 
for the common measure, which is as follows :

Having now got a remainder, independent of x, we have for 
the determination of all those values of y, which cause the pro
posed polynomials to have a common measure, the equation

y2 — y = 0 Λ y = 0, y = 1 ;

and the values of x, corresponding to these, are, of course, those 
furnished by equating the common measure to zero; they are, 
therefore,

x = 0, χ = — 2.

It is plain that y = 0, and y = 1, are the only values which, 
when substituted in the proposed expression, will cause the pre
ceding operation to terminate ; if other values for y existed, the 
final remainder above would necessarily contain them.

If a like process be performed with the two equations

x* + 2yaj3 + (2y2 + l)τ2 + (y3 + 9y2 + y — 81) x + y2 = 0

xi q- 2yx2 + 2y1x ÷ y2 + 9y3 — 81 = 0,
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we should find, without suppressing or introducing any factor, 
the expression 9y2 — 81, for the remainder in y, and the expres
sion x2 4- yx ÷ y2, for the corresponding divisor ; hence the final 
equations for determining x and y, are

the solution of which will furnish the values which satisfy the 
proposed equations.

But let us examine the consequences of introducing or sup
pressing factors in the course of the process for finding the com
mon measure, or of arriving at a remainder Y independent of x.

There are three distinct cases to consider, viz.
1. The value attributed to y may reduce to zero neither of the 

factors which have been introduced or suppressed.
2. It may reduce to zero one of the factors which have been 

introduced.
3. The value may be such as to reduce to zero one of the 

factors which have been suppressed.

(232.) 1. Suppose a value to be attributed to y that does not 
render any of the factors introduced or suppressed zero. If we 
substitute this value in the two polynomials, and perform the 
operation with the resulting functions of x, we shall obtain for 
remainder the same value that would be furnished by the sub
stitution of y in Y, or else a value equal to the result of this 
substitution multiplied or divided by a numerical factor. For 
every algebraic factor introduced or suppressed is, by the substi
tution of the proposed value for y, reduced to a number, because, 
by hypothesis, none of them are rendered zero ; these factors, 
therefore, affect only the numerical factors of the several remain
ders which arise in the course of the operation. Hence, in order 
that the value of y may satisfy the proposed equations, it is 
necessary and sufficient that it satisfies the equation Y = 0.

(233.) 2. Let the value attributed to y destroy one of the 
factors introduced into a dividend to render the division possible ; 
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the dividend thus modified will, for that particular value of y, 
become zero; so that, in order to carry on the division, we have 
introduced a factor that causes a dividend to vanish, which is of 
course not allowable ; for, with such a dividend, the process would 
always terminate, whether there was a common measure or not; 
we cannot, therefore, affirm that the value of y, which causes one 
of the factors that have been introduced to vanish, satisfies the 
proposed equations, although it may fulfil the condition Y = 0.

(234.) 3. Lastly, let the value attributed to y destroy one of 
the factors which have been suppressed, and yet not satisfy the 
condition Y = 0 ; then, such a value of y causes the process to 
terminate at that remainder in which the factor has been sup
pressed, because, when the assumed value is put for y in the 
polynomials, this remainder becomes zero; hence the preceding 
divisor is a common measure of those polynomials, and thus a 
common measure may exist for values of y which do not satisfy 
the condition Y = 0. It must be remarked, however, that if in 
any part of the operation which precedes the suppression of the 
vanishing factor, a factor has been introduced which also vanishes 
for the same value of y, the above conclusion would not neces
sarily follow.

(235.) From the foregoing considerations we see, that to obtain 
the values of y which belong to the proposed equations, we must 
equate to zero the remainder, which is independent of x, as also 
each of the factors in y which have been suppressed in the course 
of the operation, and resolve each equation separately ; secondly, 
that among the values thus obtained, there may be found some 
which are extraneous, and which must therefore be rejected as 
not being consistent with the proposed conditions. If no factor 
has been suppressed in the course of the operation, the equation 
Y = 0 alone will furnish all the suitable values of y, and may 
also contain values not admissible, provided factors have been 
introduced; but when no factor has been either introduced or 
suppressed, then the values of y in the equation Y = 0 all belong 
to the proposed equations, to the exclusion of all other values.

Having thus examined the influence of the factors introduced 
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or suppressed in the course of the operation upon the final re
mainder in y, let us now return to the original polynomials 
F (x, y), f(x, y), and analyse the process by wτhich we must 
arrive at this remainder.

(236.) The proposed functions being arranged according to 
the descending powers of x, will each be of the form

where the coefficients a, δ, c, &c. are all independent of x.
As these coefficients may have a function of y for a common 

divisor, let us suppose that the greatest common divisor of the 
coefficients in F (x, y) is Fz(y), and that the greatest common 
divisor of the coefficients in f(x, y) is f(y) ; also of these two 
divisors let the greatest common divisor be φ (y), which will 
therefore be the greatest divisor common to all the coefficients of 
both equations. If now we represent by A the quotient of 
r (*>  y) by f∕Gz) ; by B tbe quotient of f(x, y) by ∕(y) ; by 
F'(y) the quotient of Fz(y) by φ (y) ; and by f' (y) the quotient 
of f(y) by </» (y), we shall obviously have

both of which equations will be satisfied by the condition

as also by either of the following pairs of conditions, viz.

The conditions
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it is evident, cannot exist, because they involve but one unknown 
quantity, and their first members have no common factor.

As to the equation <∣> (y) = 0, it furnishes certain values of y 
for which x is indeterminate; for the proposed equations will 
evidently be satisfied for any value of x in conjunction with these 
values of y.

To find the solutions of the system Fz(y) = 0, B = 0, we must 
resolve the first equation, which contains only y, and substitute 
the resulting values separately in B, and we shall thus have so 
many equations in x to determine the corresponding values. The 
system ff(y) = 0, A = 0, requires similar treatment.

This preliminary examination being disposed of, the equations 
will be thus reduced to the simplest form for the application of 
the general method, viz., to the system A = 0, B = 0, in which 
neither A nor B has any factor in y. To determine the solu
tions which satisfy this system, we must apply the process for 
finding the common measure.

(237∙) 1 ∙ Suppose that the first step of this process conducts 
to a remainder, R, of a lower degree in x than the divisor, with
out our being obliged to use any preparation to render the divi
sion possible, or to avoid the occurrence of y as a denominator 
in the quotient Q ; then, if A is the polynomial taken for the 
dividend, we shall have the identity

A = BQ + R,

which shows that whatever values of x and y satisfy the equations 
A = 0, B = 0, the same must also satisfy the equation R = 0; 
and that whatever values satisfy the equations B = 0, R = 0, 
satisfy also the equation A = 0; so that the solutions of the 
proposed equations

A = 0, B = 0,

are exactly the same as those of the equations

B = 0, R = 0,
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which are more simple than the former system, inasmuch as one 
is of an inferior degree in x. The same conclusions evidently 
follow when the dividend A is multiplied at the outset by any 
numerical factor.

It is easy to prove that the consequences just deduced could 
not have place if the quotient Q contained y in a denominator, 

ττ
For suppose the form of the quotient to be Q = —, K being a κ
quantity containing y; the identity above would then be

If we gave to x and y all the values which fulfil the conditions

A = 0, B = 0,

among these values there might be some for y which, for aught 
we know to the contrary, might render K zero, in which case

would become $, which is not necessarily zero ; so that 

A = 0, B = 0, would not necessarily imply R = 0; and we could 
not therefore assert that all the solutions of the system A = 0, 
B = 0, were equally given by the system B = 0, R = 0.

(238.) 2. Let us now suppose that, to avoid fractions in the 
quotient, it be necessary to introduce an algebraical factor into 
the dividend A : call it C, and let Q, R be the corresponding 
quotient and remainder, as before. We shall thus have the 
identity

CA = BQ + R.

which shows that the solutions of the equations

B = 0, R = 0,

are the same as those of the equations

CA = 0, B = 0.
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Now this last system divides itself into two others, viz.

A = 0, B = 0, and C = 0, B = 0.

Consequently the equation B = 0, R = 0, will give all the solu
tions of the proposed system A = 0, B = 0, but they will give in 
addition, solutions to the system C = 0, B = 0.

These latter solutions we can separate from the others; for 
C = 0, containing only y, will furnish all the values of y which 
are doubtful, and the values of x, corresponding to these, are 
given by the solutions to B = 0, R = 0. Those pairs of these 
values which, substituted in the equation A = 0, satisfy its con
ditions are admissible, the others are to be rejected.

(239.) From the preceding discussion it appears that the 
solution of the two equations proposed is reducible to the solu
tion of the two equations

B = 0, R = 0.

As the polynomial B contains no factors depending only on y, 
if R contain any such factors, we may of course suppress them ; 
but then we must take account of the solutions which reduce to 
zero these factors, connecting each value of y with that value of x 
which satisfies B = 0, when the said value of y is substitutedin B.

We shall now give an example or two of the application of this 
theory.

EXAMPLES.

1. Let the system of equations be

Here the coefficients having no common measure, these equations 
may be regarded as the equations A = 0, B = 0, treated above; 
and from these we are to determine, agreeably to the general
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theory, the system B = 0, R = 0, which will contain all the solu
tions required. Dividing A by B, we have

the equations which furnish the solutions are, therefore,

and each of these systems may be solved.without repeating the 
divisions; the solutions are

2. Let the equations

be proposed.
The coefficients having no common measure, we have, by dividing 

the first polynomial by the second, the following remainder, viz.

hence the solutions to the proposed equations are those of the 
systems

The first system furnishes the solutions
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To solve the other system, proceed as at first; that is, divide 
the second polynomial by the first, and there will result the 
remainder 

hence the system is replaced by the new system 

which gives for solutions

so that there are, in all, four solutions to the proposed equations.

3. Let the equations 

be proposed.
Multiplying the first polynomial by y, to render it divisible by 

the second, and then performing the division, we have

As we have multiplied the dividend by the factor y, the equa
tion y = 0 may be a solution to test. Substitute 0 for y in the 
proposed equations; one, viz. the divisor, furnishes the value 
x = 0, which value does not satisfy the other; hence the factor 
introduced supplies no solution. We must now proceed with 
the polynomials B and R; and, in order to this, must multiply
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the dividend B by (— ~y + 9), and we shall have, for the re
mainder arising from the division, the polynomial

25/ - 70y4 — 126/ + 414/ — 243y.

The final equations are, therefore,

( — 7y + 9) x + 5/ — 7y = 0

25/ — 70/ — 126/ + 414/ — 243y = 0;

the roots of the second are
- 3 ÷ 3 √Tθ 

y = 0, y = 1, y = 3, y =--------- - --------

and to these correspond the following values of x, deduced from 
the first, viz.

x = 0, a? = 1, x = 2, a? = — 5 + χ∕10.

No extraneous solution has been introduced by means of the 
factor —7y + 9, by which we have multiplied the second dividend, 
because none of the above values of y cause it to vanish; but an 
inadmissible solution has been introduced by the factor y, which 
multiplies the first dividend, viz. the solution y = 0, x = 0; re
jecting this, therefore, we have, for the entire number of true 
solutions, the four systems following, viz.

— 3 + 3 √Tθ — 3 — 3 √10
y = 1 y = 3 y =-------------------- y =---------- ---------

x = 1 x = 2 x = — 5 — √Tθ x = — 5 + χ∕10

4. Let the equations proposed for solution be

(/ — 1) «2 + (2/ — 2y) a? + y4 — 2y2 ÷ 1 = 0

(y2 — 2>y + 2) x2 — yi — 3/ + 7y2 ÷ 15y — 18=0.

The coefficients of the first polynomial admit of the common
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divisor y2 — 1; and those of the second admit of the common 
divisor y2 — 3y + 2; these two factors have themselves a common 
divisor, which is y — 1; so that the proposed equations may be 
written thus :

These are satisfied by the values y = 1, combined with any 
value of x whatever, as observed at page 391.

They are also satisfied by the values which satisfy

which values are

They are also satisfied by the values which satisfy 

which values are

The remaining solutions are involved in the equations A = 0, 
B = 0, (page 391), that is, in the equations 

to which we may apply the method of the common divisor; but, 
as it is easy to see that the second equation gives 

we may substitute these values in the first equation. The first 
value, y + 3, will reduce it to
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which furnishes the values y = — 1, y = — 2 ; and, from the 
relation x = y + 3, we have, for the corresponding values of x, 
x = 2, x = 1. If we substitute, in the first equation, the other 
value, — (y + 3), for x, it will be reduced to 8 = 0; this value, 
therefore, furnishes no solution.

5. As a last example, let the equations 

be taken.
The coefficients having no common divisor, we at once com

mence the operation for finding R; but, to avoid fractions in the 
quotient, we must prepare the dividend by multiplying it by y.

It is necessary now to repeat the operation with B and R; 
and, for this purpose, we must multiply the dividend B by 
3v — 10; the resulting remainder will be found to be 

so that the final equations are

The second of which is satisfied, for y = 0, to which cor
responds x = 0, in the first; but this is an inadmissible solution, 
as it does not satisfy the proposed equations. It is due to the 
factor y introduced in the first division. Suppressing this factor, 
the final equation in y becomes
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which cannot involve any inadmissible values of y, because the 
only circumstance which could cause their introduction is the 
introduction of the factor, 3y — 10, in the second division, and 

this is reduced to zero, by the value y = — ∙ But, as this value
3

is fractional, it cannot be a root of the equation above (62). We 
also see, from other causes, that the factor, 3y — 10, can intro
duce no solution ; the conditions

are incompatible.
The final equation in y has the root y = 1, to which cor

responds x = 1, and the depressed equation in y is

the roots of which involve interminable decimals. Hence, the 
remaining solutions can be obtained only by approximation.

In the Chapter next following, a method will be found of ob
taining the final equation in y, which shall comprise all the 
solutions to the proposed equations, and be unembarrassed with 
inadmissible values.

We shall now proceed to one or two applications of the theory 
just delivered.

On Irrational Equations.

(240.) All the direct methods employed for the solution of 
equations suppose that the unknown quantities in them are not 
affected with any radical sign; when therefore, the unknown is 
found under a radical sign, it will be necessary, before applying 
the process of solution, to employ some preparatory method of 
rendering the equation rational. Such a method is at once 
suggested by the theory of elimination. For, if we equate each 
of the irrational terms with an unknown quantity, and remove 
the radical from each of these new equations by involution, we 
shall have a series of equations (including the original one, with its
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irrational terms replaced by the new symbols,) without radicals, 
from which the quantities, temporarily introduced, may be 
eliminated, and thence a rational equation obtained, involving 
only the original unknown quantities.

The following examples will fully illustrate the mode of pro
ceeding :

1. Let the equation be

Put

and we then have the three following rational equations, from 
which we may eliminate y and 2, viz.

From the last equation we get y = x + 2, and, by substituting 
this value in the first, y becomes eliminated, and we have these 
two equations in x and 2, viz.

and, to eliminate 2 from these, we apply the process explained in 
the preceding articles, and thus get the final equation

2. Let the equation be

Putting

we have the system of equations
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From the last we find y = 1 — 2z, and this value of y, substi
tuted in the first, reduces the system to the two equations

from which, by the process already explained, we obtain the final 
equation,

It will be remembered, in conformity with the remarks at (46) 
that the operations above, by means of which irrational equations 
are rendered rational, introduce foreign roots into the final result 
whenever the signs prefixed to the original irrational quantities 
are intended to indicate the character of the roots. The rational 
equation will always have a greater number of roots, or be satisfied 
for a greater number of values of x, than the irrational equation 
which it is intended to replace, unless the signs of the irrational 
terms be perfectly unrestricted.

Method of Tschirnhausen ι∕br Solving Equations.

(241.) As another application of the theory of elimination we 
shall briefly illustrate the principle upon which Tschirnhausen 
proposed to accomplish the general solution of equations, but 
which, as observed at (81), was soon found to be of but very 
limited application, not extending beyond equations of the fourth 
degree; and even within this extent too laborious for general use. 
The principle consists in connecting with the proposed an aux
iliary equation of inferior degree with undetermined coefficients, 
and of as simple a form as possible consistently with the office 
it is to perform, but involving, besides the unknown quantity x, a 
second unknown y. The unknown, common to both equations, 
is then eliminated according to the preceding theory, and a final 
equation in y thus obtained, of which the coefficients are functions 
of the undetermined coefficients in the auxiliary equation. The 
arbitrary quantities, thus entering the coefficients of the final 
equation in y, are then determined so as to cause certain of these 

. 26

www.rcin.org.pl



402 THEORY OF ELIMINATION.

coefficients to vanish ; by which means the equation is ultimately 
reduced to a prescribed form, supposed to be solvable by known 
methods.

(242.) As an example, let it be required to reduce the cubic 
equation

ar3 + axi + 6a? 4- c = 0 . . . . [I]

to the binomial form
y3 -∣- k = 0.

Assume an auxiliary equation

xi + a'x + b' + y = 0 . . . . [2]

and eliminate x from [1] and [2] in the usual way. The re
mainder arising from dividing the first member of [1] by the first 
member of [2] is

(α'2 — aa' + b — b'— y) x + (a! — a) (b' 4- y) 4- c

which equated to zero gives

r = (g ~ gZ) + y) —c
α'2 — aa' + b — b' — y

and this value of x, substituted in the proposed equation, trans
forms it, after reduction, into the form

y3 -∣- Ay2 + ψ + Λ = 0 . . . . [3]
where
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Hence, in order to reduce [3] to the prescribed form, we must 
determine the arbitrary quantities a', b' conformably to the con
ditions h = 0, i = 0; that is, these quantities must satisfy the 
equations

of which the first is of the first degree with respect to a! and b', 
and the other of the second degree; so that their values may be 
determined by a quadratic equation. And these values, or rather 
the expression for them in terms of the given coefficients, being 
substituted in the preceding expression for k, render that symbol 
known ; and thus the required form

is obtained.

(243.) In a similar manner may the general equation of the 
fourth degree

be transformed into one of the form 

which is virtually a quadratic, by eliminating x from the pair of 
equations 

which elimination will conduct to a final equation in y of the form 
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from which the second and fourth terms will vanish by the equa
tions of condition

g = 0, i = 0

the first of which will be of the first degree as regards the arbi
trary quantities a', b', and the second of the third: both quantities 
are therefore determinable by means of an equation of the third 
degree, and thence the quantities Λ, k, which are known functions 
of them.

All this is very laborious; but it really does effect the object 
proposed thus far: that is, it reduces the solution of equations 
of the third and fourth degrees to those of inferior degrees : but 
beyond this point the method fails, as the conditional equations 
resolve themselves ultimately into a final equation that exceeds 
in degree that which they are intended to simplify.

As already remarked (81) Mr. Jerrard has greatly extended 
the principle of Tschirnhausen, and has succeeded in reducing 
the general equation of the fifth degree 

to the remarkably simple forms

so that the solution of the general equation of the fifth degree 
might be considered as accomplished if either of the above forms 
could be solved in general terms.

For a very masterly analysis of Mr. Jerrard’s researches, 
the reader is referred to the paper of Sir W. R. Hamilton in 
the Report of the sixth meeting of the British Association.
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Oh the Equation of the Squares of the Differences.

(244.) We have already remarked that the equation of the 
squares of the differences is an auxiliary equation, employed by 
Lagrange for the purpose of separating the real roots of any 
algebraical equation proposed for numerical solution.

This auxiliary equation is such as to furnish, for its roots, the 
squares of the differences between every two roots of the proposed 
equation; so that when we have ascertained the inferior and supe
rior limits of the positive roots of an equation, if we substitute, 
successively, for x, in it, a series of numbers, increasing from the 
inferior limit, up to the superior, by differences, ∆, not exceeding 
the least difference found to exist between the sought roots, by 
means of the auxiliary equation, no two roots, however close to
gether, can exist in any interval between two consecutive substi
tutions; and, therefore, in thus proceeding from limit to limit, 
there will necessarily be presented as many successive changes 
of sign, in the final term, as there are positive roots between the 
limits, so that the situation of each root will become known. By 
determining the limits of the negative roots of the proposed equa
tion, they also may be separated in a similar manner.

When the auxiliary equation, from which the value of ∆ is to 
be deduced, is found, we shall not be required actually to solve 
it for this purpose; it will, obviously, be sufficient to determine 
the inferior limit of its positive roots, which limit, being less than 
the square of the least difference which exists among the roots of 
the proposed equation, the square root of it may be taken for ∆ .

(245.) Except in the simplest cases, the inferior limit spoken 

of will be a fraction — less than unit, and ∖fl will in general be 

incommensurable; so that it will be convenient to replace ∖fl by 
the whole number k which is immediately superior to it, taking 

- for ∆. Thus, having found L for the superior limit of the 
k
positive roots of the proposed equation, and — L' for that of the 
negative roots, it will only remain, in order to detect the number
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and situations of the positive roots, to substitute for x the follow
ing numbers in succession, viz.

12 3 4
Γ J’ k' k' ■, ’

and to detect the negative roots to substitute in like manner the 
numbers

_ 2 _ 3 _4 —τ,
k' k' k' k..............

the former series will furnish as many changes of sign in the ab
solute number as there are positive roots, and the latter series as 
many as there are negative roots.

But fractional substitutions may be altogether avoided by trans
forming the proposed equation into another whose roots are k 

ytimes as great (75); that is, by substituting - for x. The trans- K
formed equation in y will thus have the differences of its roots k 

times the differences of the roots of the equation in x; and as - 
k 

is less than any of the latter differences, 1 must be less than any 
of the former differences, that is, the differences of the roots of 
the equation in y are all greater than unit; so that the roots will 
all be separated by means of the two series

1, 2, 3, 4, . . . . XL

-1, — 2, -3, -4, . . . . -ΛL'

As the squares of the differences of all the real roots are positive, 
it follows that if negative roots occur in the auxiliary equation 
they must arise from the imaginary roots in the proposed. And 
moreover, if any of the roots of the auxiliary equation are zero 
the proposed equation must have equal roots.

(246.) It is easy to see that the foregoing method of separating 
the real roots, and, consequently, of discovering the number of 
imaginary roots in an equation is infallible; but, as we have before 
observed, the great length of the calculations which are necessary
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to the formation of the equation of the squares of the differences, 
when the proposed equation is above the third or fourth degree, 
renders the method nearly impracticable. This is now no longer 
a matter of regret, as the solution of the important problem of the 
separation of the roots has been rendered, by the researches to 
which the preceding chapters have been devoted, altogether in
dependent of the equation of the squares of the differences; this 
latter problem, therefore, will henceforth be regarded with 
interest only on account of its connexion with the name of 
Lagrange, and with the history of algebraical research.

We advert to the problem here merely to explain its meaning 
and object to the student, and to furnish an additional example 
in elimination.

(247∙) Let the proposed equation be

∕ω = o ∙ ∙ ∙ ∙ [i]>

and let a be any one indifferently of its n roots, α1, a2, a3 ... an; 
then, in order to obtain an equation whose roots may be the dif
ferences between those of the proposed, it will be sufficient to 
establish the relation

y — x — a, or x = a + y;

which transforms the proposed into

/(« + y) = 0;

of which the development is

/(«) + ∕1 («) y + f2 («) ⅛ +Λ («) f 2 3 + &c- =
but since, by hypothesis, a is a root of the proposed equation,

/(«) =0;

hence, suppressing this term, and dividing by y, we have 

/,(») +ΛW ⅛∙ +Λ(∙) ⅛ +........ = l>∙∙∙ [2]
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the roots, or values of y, in this equation, are, by the condition 
above, the differences between any assumed root, a, and the 
n — 1 other roots of the proposed equation. By putting, in suc
cession, all the values for a—that is, in fact, all the values of a*,  
deduced from [1]—in [2], the corresponding values of y, will, 
together, furnish all the possible differences between the roots 
of [1]. In other w'ords, all the possible differences will be 
obtained by substituting the values of x, deduced from the 
equation

in the equation

and this is tantamount to saying that the differences sought arise 
from the solution of this system of equations.

It is easy to foresee the degree of the final equation in y arising 
from the elimination of x from these two equations; for, as its 
roots are equal to the remainders obtained, by subtracting from 
each of the n roots of the proposed, all the other n — 1 roots in 
succession, there are, obviously, in the whole, n(n — 1) roots or 
remainders, hence the final equation, furnishing these roots, is of 
the n(n — l)th degree.

(248.) We shall apply this process to the following equation 
of the third degree

where

Hence the two equations, from which x is to be eliminated, are

www.rcin.org.pl



EQUATION OF SQUARES OF THE DIFFERENCES. 409

and the operation is as follows :

This remainder is now to be taken for a new divisor, and the 
former divisor for a dividend, and the operation continued ; but 
as the foregoing divisor, B, does not admit of division by the re
mainder, R, in its present form, we multiply it by the factor 
2(y2 + p), in order to render the division possible, and proceed 
with the operation as follows :

In the second division we have multiplied twice by y2 + p, in 
order to render the division possible ; but this factor introduces 
no extraneous value of y, for the value which reduces it to zero, 
being given by y2 + p =0, reduces the divisor, R, last employed, 
to q, and not to zero, as it ought, to be a solution. The final 
equation in y, involving the values sought, and those only, is, 
therefore,

yf' + ⅛y4 ÷ ^p2y2 + 4p3 4- 27⅛2 = 0, ∙
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which is the equation of the differences ; and, by putting z for y2, 
we have

for the equation of the squares of the differences.

In the particular case of the equation

we have

and therefore the equation in z is

In order to find an inferior limit to the positive roots of this 
equation, we change it into another, of which the roots are the 
reciprocals of those of [2], agreeably to the directions at p. 101. 
This reciprocal equation is

to the positive roots of which 10 is a superior limit (86) : we 
may ascertain whether this is the closest superior limit by trans
forming the equation successively by 9, 8, &c. We thus find 
that 9 is a limit still closer. Hence, in the present case k = 3 ; 
and consequently δ = ∙⅜. Transform now the proposed equa
tion into another whose roots are three times as great: that is, 

put for x in [1], and we thus have

in which we have only to substitute in succession the numbers 
1, 2, 3, &c. for y, and we thus find the only intervals within 
which the absolute number changes sign to be [4, 5] and [5, 6]. 
Hence the equation [3] has two positive roots, one in each of 
these intervals, and consequently the proposed equation has two 
positive roots, one between 4 and ⅜ and the other between f and ∣∙. 
The situations of these roots have been otherwise determined 
at pp. 198, 381.
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It is obvious that every equation of the differences, as well as 
that just deduced, will be of an even degree, and will contain 
only even powers of y ; because every root, as α1 — α2, is accom
panied by another α2 — al, the roots being equal to the differences 
fZ∣ #2» βι ®3> ∙ ∙ ∙ β[ ®n » ®1’ ¾> ∙ ∙ ∙ ¾ an,
of the roots of the proposed equation ; so that the polynomial in 
y is of the form

(y ~ α) (y + α) (y - /3) (y -f- /3) . . . . ,

or of the form
(y2 — α2) (y2 — ∕32) . . . .,

and therefore involves only even powers of y.

(249.) If in this expression we put y equal to zero, and change 
the sign of the result, we shall obtain an expression for the last 
of Sturm’s functions, or for that function multiplied by a posi
tive numerical factor. This will appear evident from comparing 
the investigations from which the functions of Sturm, and the 
equation of the squares of the differences, respectively result. 
Hence, calling the numerical factor adverted to, P, the final func
tion of Sturm will be expressed by

P(α∕3γ . . . .)2

where α, β, γ, &c. represent the differences of the roots of the 
proposed equation.

If two of the roots α1, α2, α3, &c. have leading figures in com
mon, then one of the preceding differences will have so many 
blank places, where otherwise there would have been significant 
leading figures ; and, consequently, the above-written square will 
have twice that number, or twice the number plus or minus 1, 
of leading places blank that would otherwise have been occupied 
by significant leading figures.

We may infer therefore that when two roots have leading 
figures in common, Sturm’s final remainder will, in general, be 
preceded by twice that number of blank places, or twice that 
number plus or minus 1.
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If three roots have any number of leading figures in common, 
then three of the differences, α, β, γ, will each have that number 
of places vacant, which would otherwise be occupied with leading 
significant figures : their product will therefore have in general 
about three times that number of unoccupied leading places, and 
the square of the product may, consequently, be expected to 
have six times that number—at least w ithin about three or four 
places.

Hence, in the case of two nearly equal roots, half the number 
of blank places in Sturm’s final remainder—or that half plus or 
minus 1—will, in general, denote the number of places in w hich 
the tw'O contiguous roots concur.

In the case of three nearly equal roots one sixth the number 
of blank places—or that sixth plus or minus 1 —will, in general, 
denote the number of places in wrhich the three contiguous roots 
concur. And, generally, in the case of m nearly equal roots, if 
the number of blank places, that would have been occupied by 
leading figures in Sturm’s final remainder, had these roots 
differed in their leading figures, be divided by m(m— 1), the quo
tient—or the quotient plus or minus 1—will, in general, denote 
the number of places in which the m nearly equal roots concur. 
When m exceeds two, blank places will occur in one or more of 
the preceding remainders, according to the excess of m above 2 
(p. 31C) : these blanks are, of course, to be added to those addi
tional blanks by which the final remainder is preceded.

(250.) In each of these cases it is plain that the function of 
the first degree, preceding the final remainder, will be an ap
proximate common measure of the original polynomial X and its 
derived function X1; and this approximate common measure must 
evidently have the character of a true common measure as far as 
the final blank places or zeros extend, since if a true common 
measure could exist, this approximate one would thus far coincide 
with it.

In the case of two nearly equal roots, therefore, the function 
of the first degree, equated to zero, will give for x a value lying 
between the two roots of X = 0, and to as many places as there 
are blanks in the final remainder, actually coinciding with the 
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root of X1 = 0 lying in the same interval; seeing that the simple 
equation actually divides this latter to the extent specified.

As the function of the first degree is thus an approximate com
mon measure of X, X1, it is of course equally so of the subse
quent functions of Sturm.

This is the principle that we have applied to the analysis and 
solution of equations in the introductory treatise, page 224.

In the case of three nearly equal roots, the root of the function 
of the first degree, being still the nearest to the common measure, 
within the extent mentioned, will not coincide throughout that 
extent with a root of either of the preceding functions, but must 
interpose itself between each of the two contiguous roots that 
enter into all these, up to X1, inclusive; just as in the case 
above, it interposed itself between the two contiguous roots of 
X = 0.

Similar remarks apply when the nearly equal roots exceed 
three in number.*

* As observed in the introductory treatise the connexion between the blank places in Sturm’s final remainder, and the concurring figures in two nearly equal roots, was first noticed by Mr. Rutherford. We know not whether any proof of the principle in this particular case, or any generalization of it, has been given.
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CHAPTER XVI.

ON THE SYMMETRICAL FUNCTIONS OF THE ROOTS OF 

AN EQUATION.

(251.) A symmetrical function of the roots of an equation is 
any expression in which all the roots are similarly involved, so 
that any of them may be interchanged without affecting the form 
or composition of the function. The coefficients, for example, 
of every equation are each of them symmetrical functions of its 
roots ; for it has been shown (60) that if the roots of any equa
tion be a1, a2, a;i . . . . an, the successive coefficients will be the 
following functions of them, viz.

and each of these is a symmetrical function, because, however we 
interchange the roots, the function itself will remain unchanged.
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The preceding forms are, we see, immediately given by the co
efficients of the proposed equation ; and it is the object of the 
present Chapter to show that not only these, but every other 
rational and symmetrical function of the roots, may always be 
expressed in terms of the coefficients, without the aid of the roots 
themselves.

Determination of the Sums of the Powers of the Roots
of an Equation.

(252.) As usual, let us represent the general equation of the 
nth degree by

and its roots by

Then ∕1(<r), being the first derived function from the polyno
mial [1], we know (97) that

and, consequently,

Performing now the actual division for any one of these frac- 

tions, as, for instance, for the fraction -j--—, or, which is the 
τ — ft...m

same thing, depressing the original equation [1], by any one of 
its roots, «m, we shall get the polynomial which follows, the co
efficients being formed by the rule at (51),
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and this will equally represent the development of either of the 
other fractions, by putting the corresponding value for m. Con
ceiving, therefore, m to be successively 1, 2, 3, &c. to n, and, 
putting for abridgment,

we shall, obviously, have for the sum of all the developments, that 
is for fλ(x), the polynomial

But the development of∕∣(∙r) is also, p. 110,

hence, by the method of indeterminate coefficients,
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that is,

By means of these equations the functions ∑1, ∑2, ∑3, &c. may 
be easily calculated in succession up to the function ∑n-1.

(253.) The foregoing equations may be extended so as to in
clude the functions ∑n, ∑n + 1, ∑n+2, .... ∑n+pj for, from the 
original equation, we have

and, by multiplying these equations respectively by <qP, α2P . . . . 
α11P, and adding them together, there results the equation 

which, by putting 0, 1, 2, &c. forp, furnishes the following con
tinuation of the foregoing relations, viz.
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Hence, by means of the coefficients merely, we may calculate 
the sums of the powers of the roots of an equation, in suc
cession, to any extent; and it is plain, from the foregoing ex
pressions, that the several sums will all be integral functions of 
the coefficients.

As a particular application of the preceding general formulas, 
let it be required to find the sum of the sixth powers of the roots 
of the equation

If the sums of the negative powers of the roots of an equation 
be required, we might derive suitable formulas from the general 
table above, by considering p to be negative; but it will be 
preferable in this case to transform the equation to another in 

— by (73), and then to employ the formulas in their present 
X 
state.*

* For another mode of investigating the expressions for the sums of the powers of the roots of an equation, and for the use which Newton and Lagrange made of these sums for approximating to the greatest root, see the Author’s Essay on the Computation of Logarithms, page 97, second edition.

(254.) By means of the general expressions in last article, we 
may find the values of the coefficients An_p An_2, &c. in terms 
of the sums of the powers of the roots; thus:
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Determination of any Combination of the Powers of the Roots 
of an Equation.

(255.) By multiplying together the two expressions

we have the two following series of partial products, viz.

Each of these series is a symmetrical function of the roots ; 
the first being the sum of their m + p powers, and the second 
being the sum of the products of every two roots raised, the one 
to the power m, and the other to the power/). This latter func
tion may be represented briefly by S (α1m α2P) ; so that we shall 
have

Hence the function S (αm <z2p) is determinable in terms of the 
coefficients of the equation.
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Again, if we multiply together the expressions

and 

we shall have a result consisting of three series of partial pro
ducts, the terms of each distinct series involving like combinations 
of the roots ; viz. The first series will consist of the products of 
every two roots raised, the one to the power m + q, and the other 
to the power p, and which series may be denoted by S (β1m+9a2p). 
The second series will be formed of the products of every two 
roots raised, the one to the power p + q, and the other to the 
power m, which series may be expressed by S (λ1p+ci α2m). The 
third series will be the products of every three roots raised, one to 
the power ?«, one to the power p, and one to the power q-, and 
which will be represented by S (α1m α2p α3t<). That is, we shall 
have 

and, therefore, bv transposing and replacing the functions, 

by their values in last page, we have 

by which equation the triple function S (α1m a2p ¾q) may be 
obtained in terms of the coefficients.

By continuing this process of deduction, we may obtain ex
pressions for the succeeding combinations. The functions thus 
determined are called the elementary symmetrical functions, and 
it is from the union of these that every complex, rational and in
tegral, symmetrical function is formed. We shall give a few 
examples of these combinations in the following article.

Before proceeding to these, however, it may be proper to

www.rcin.org.pl



ROOTS OF AN EQUATION. 421

show how the above general functions become modified, when the 
exponents m, p, q, &c. are not unequal.

The expression S (<z1m σ2p) is truly the representation of

only when m and p are unequal; for, when m = p, this series 
consists of terms which are equal two and two ; so that, in that 
case, only half the entire sum will be expressed by S(α1mα2m). 
Hence

For similar reasons,

Lastly, when the exponents in this latter function are all three 
equal, the terms represented will be equal six and six; so that

Transformation of an Equation into another whose Roots shall be 
given Functions of those of the original Equation.

(256.) Let it be required to form the equation whose roots 
are the sums of the roots of the equation f(x) — 0, taken two 
and two.

If, as usual, we represent the roots of the proposed equa
tion bv

those of the transformed equation, F(y) = 0, will be
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and will amount in number to the number of different com
binations which can be formed with the roots of the proposed, 
taken two and two. If each were to be combined with every 
one of the other roots, the whole number of combinations wrould 
obviously be n (n — 1) ; but it is plain that every combination 
would then occur twice; so that the correct number of com

binations must be * Hence the number 

• The doctrine of combinations and permutations is given in almost every English treatise on Arithmetic.

denotes the degree of the transformed equation. Let us proceed 
to the composition of its coefficients.

The sums of the powers of the roots of the transformed equa
tion will be expressed by the formulas

Hence the sums of the powers of the roots of the transformed 
equation may be obtained in terms of the sums of the powers of 
the original roots and their elementary combinations; the sums of 
the powers being thus known, for the transformed equations, the 
coefficients of this equation are found by the formulas, at (254), 
as in the following example :
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Let it be required to transform the equation,

xi 4- A2,r2 + Az -j- N = 0,

into another,

ys + Az2y2 + Azy + N' = 0,

whose roots shall be the sums of the roots of the former equation, 
taken two and two.

Let us first calculate the values of ∑1, Σ2, Σ3, as at page 418;

The value of S(β1<z2) is, by p. 421, A; and for S(<⅛), we 
have (255)

Consequently, for the expressions on last page we have

Finally, by the formulas (254),
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Hence the transformed equation is

y3 + 2A2 y2 + (A22 + A) y + A2 A — N = 0.

(257.) By proceeding in a similar manner, we may form an 
equation of which the roots are combinations of those of the 
original equation, of the form aχ + a.1 + kaxa2, αl + β3 + kaxa.A, 
&c. k being any given number. The degree of this equation will, 
of course, be the same as the degree of that formed from the 
sums of the roots; it will, therefore, be denoted by the number 
7l(τi _  1 )—-—-—— ∙ The expressions for the sums of the powers of the 

roots of the transformed equation are

from which it is evident that the coefficients of the transformed 
equation may be expressed in functions of the coefficients of the 
given equation.

(258.) As a second application, let it be required to form the 
equation of the squares of the differences of the roots of a given 
equation.

The proposed equation being f(x) — 0, and its n roots as 
before, the roots of the transformed equation will be

(fl,ι-<⅞)∖ (*1-σ3)2, (α1-α4)2 .... (<⅞~⅝)2, («2—β4)2 ∙ ∙ ∙ ∙
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the number of which, obviously, amounts to the number of com
binations, two and two, that can be formed with the n quantities, 
α1, a2, a.λ, &c. Hence the degree of the required equation is

and, to find its coefficients, we must, as before, first 

determine the values of ∑z1, ∑z2, ∑z3, &c. by the following for
mulas :

As a particular example, let the equation, already considered 
at page 410, viz.

be proposed, in which

By the formulas at p. 418 we have

Consequently,

www.rcin.org.pl



426 SYMMETRICAL FUNCTIONS OF THE

Also, from (255),

Therefore, making these substitutions in the formulas on last 
page,

and hence, finally,

so that the transformed equation is
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On the Degree of the Final Equation, resulting from the Elimina
tion of one of the Unknown Quantities from two Equations, 
containing two Unknowns.

(259.) Let the two equations be

in which the coefficients, A, A2, A3, . . .; B, B2, B3, . . . are 
functions of y.

If we could resolve the first of these equations, we should 
obtain for x, n values, a, b, c, &c. which would be functions of y, 
and which, when substituted in the second, would furnish the n 
equations,

and these equations being solved for y, would make known the 
corresponding values of this quantity.

It is, however, in but few cases that we can actually solve the 
equation [1] for x ; if we could, the determination of the corre
sponding values of x would not require the solution of the n sepa
rate equations, just obtained, because they may all be combined 
in a single equation, viz. the equation

F(α) F(δ) F(c) . . . . = 0 . . . . [3] ;

and it is plain that the product, which forms its first member, 
undergoes no alteration, however we interchange a, b, c, &c. in
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the factors; that is, this product will contain none but rational 
and symmetrical functions of the roots of the equation [1]. 
Hence, the first member of the equation [3] may be determined, 
by means of the coefficients of the equation [1], and the final 
equation in y, thus obtained.

As an example, let us take the equations

(y — 2) x2 — 2x + 5y — 2=0

yx1 — 5x + 4y = 0.

Let us represent the values of x in terms of y, which satisfy 
the second equation by a and δ. These, substituted in the first, 
furnish the two equations,

(y — 2) α2 — 2« + 5y — 2 = 0

(y — 2) δ2 — 2δ + 5y — 2 = 0;

of which the product is

(y — 2)2S(α2⅛2) — 2(y — 2)S(α26) +

(y - 2)(5y — 2)∑2 — 2(5y — 2)∑1 +

4S(aδ) + (5y — 2)2 = 0.

The coefficients A2, A1, N of the terms in the second equation, are

A2 =---- —, A = 4, N = 0;
y

consequently, we have (253, 255)

v _ 5 v 25 — 8y2 v 125 - 6y2
-il — > ⅜ — 2 , ⅛ — a---------

y y y3

20
S(α⅛) = 4, S(α26) = —, S(α2δ2) = 16 ;

y
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and, substituting these values in the preceding equation, there 
results

which is the final equation sought.
It must be confessed, however, that the foregoing method of 

deducing the final equation is usually very tedious ; yet it has the 
advantage of presenting that equation unencumbered with extra
neous roots. But the principal value of the foregoing investiga
tion consists in its readily leading to the establishment of this 
theorem, first demonstrated by Bezout, namely :

The degree of the final equation, which results from the elimi
nation of one of the unknow ns, from tw o equations, of any degree 
whatever, involving two unknown quantities, can never surpass 
the product of the degrees of the tw o equations ; and it is exactly 
equal to that product when the proposed equations are in their 
most general form.

In order to determine the degree in y, of the equation [3], w,e 
must consider that each term of the product [3], is formed 
by the multiplication of one term of the first factor, one of the 
second, one of the third, &c. Let, then, Kβh, Kzδh', K"ch" . . . 
be terms, taken at random, in each of the n factors [3] ; the cor
responding term of the product, wrill be

moreover, the entire product is symmetrical in a, l>, c, &c. so that 
this term forms part of one of the symmetrical functions which 
enter into the composition of [3], which partial function may be 
represented by

It will, therefore, be sufficient to determine the highest degree in 
y of this function.

Now, as by supposition, K«h is one of the terms in the poly
nomial F(α) of the with degree, it follows that the degree of y, in 
K, cannot exceed the in — h degree. In like manner, the degree 
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of y in Kz cannot exceed m — K; the degree of y in Kzz cannot 
exceed in — h", &c. Consequently, the product of the n polyno
mials KKzKzz.... cannot exceed the degree mn-h-h!-Kl....

Let us now ascertain the degree which the polynomial 
S(αh δh' ch'z . . .) cannot surpass.

Referring to the general expressions involving ∑1, ∑2, Σ3, &c. 
at page 418, and recollecting that in our equation [1], page 427, 
the coefficient, An~1, cannot exceed the first degree in y, the co
efficient, An_2, cannot exceed the second degree, and so on, we 
shall immediately see that the expressions for ∑1, Σ2, Σ3, &c., 
deduced from our equation [1], cannot exceed the degree in yi 
denoted by the index suffixed to the symbol Σ. Referring, in 
like manner, to the general expressions in (255), which exhibit 
the double, triple, &c. functions, we there also recognise that, in 
S(αhδhzchzz.. . . ), the degree in y cannot exceed h + h' + h" .... 
Hence, in the expression [4], the degree in y cannot exceed mn.

If the coefficients, An_p An_2, An_3, &c. in the equation [1], 
and those in the equation [2], are in their most general form, 
that is, if they exhibit a series of functions of y, regulirly ascend
ing, in degree, the expressions ∑1, ∑2, ∑3, &c. wil have the 
degree denoted by their suffixed indices, and hence the degree of 
S(αhAh'chz, . . . . ), will be A + λz + Azz . . . . It is plain, too, 
that in this case, K, Kz, Kzz, &c. being, in their most general form, 
their degrees in y will be exactly in — h, nι — h', n. — h", &c. 
Consequently, the degree of the final equation in y, will, under 
these circumstances, be exactly inn.
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THE DETERMINATION OF THE IMAGINARY ROOTS

OF EQUATIONS.

(260.) It has already been proved that imaginary roots always 
enter into equations in conjugate pairs of the form α ÷ β λ∕ — 1. 
And this previous knowledge of the form which every imaginary 
root must take, suggests a method for the actual determination 
of the proper numerical values for α and β in any proposed case. 
The method is as follows :

Let
xn + An-1 azn~1 + . . . . Ax + N = 0

be an equation containing imaginary roots; then, by substituting 
a, + β ∖∕ — 1 for x, we have

(α + ∕3√-l)n⅛ An-1 (α +β∖∕-l)n-1 + ..A(a⅛∕3∖Λ=T) + N=0;

or, by developing the terms by the binomial theorem, and col
lecting the real and imaginary quantities separately, we have the 
form

M + N √~^l = 0,

an equation which cannot exist except under the conditions

M = 0, N = 0 . . . . [1].
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From these two equations, therefore, in which M, N contain 
only the quantities α, β, combined with the given coefficients, 
all the systems of values of α and β may be determined; and 
these, substituted in the expression α + β ∖∕ — 1, will make 
known all the imaginary roots of the proposed equation; those 
that are real corresponding to β = 0.

It is obvious from the theory of elimination as developed in 
Chapter xv, and from the method of numerical solution explained 
in Chapter xιι, that the labour of deducing from this pair of 
equations the final equation involving only one of the unknowns 
α, β, and of afterwards solving the equation for that unknown, 
will in general be impracticable for equations above the third 
degree. Lagrange, by combining with the principle of this 
solution the method of the squares of the differences explained at 
(247), avoids both the elimination and subsequent solution here 
spoken of. It is easy to see how this may be brought about if 
we have any independent means of determining one of the un
knowns β : for the adoption of these means would enable us to 
dispense with the elimination; and as the substitution of the 
value of β in both of the equations [1] would convert those 
equations into two simultaneous equations involving but one un
known quantity, their first members would necessarily have a 
common factor of the first degree in α, which, equated to zero, 
would furnish for α the proper value to accompany β ; and thus, 
instead of solving the final equation referred to, we should only 
have to find the common measure between the two polynomials 
M, N containing the unknown quantity α.

Now c∩rresnonding to every pair of imaginary roots
there necessarily exists, in the equation of the 

squares of the differences, a real negative root, — 4 β2; so that if 
all the negative roots of the latter equation be found, the quantity 
— 4 ∕32 mufet appear among them; from which the value of /3 
would be immediately obtained, and thence, by aid of the com
mon measure as just explained, the corresponding value of α.

But the equation of the squares of the differences may have a 
greater number of negative roots than there are pairs of imagi
nary roots in the proposed; which however cannot happen 
except two nun-conjugate imaginary roots have equal real part%
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or except a real root be equal to the real part of an imaginary 
root. Lagrange discusses these peculiarities, and establishes 
the exactness and generality of the principle in question, as 
follows :

When the real parts α, y, &c. of the imaginaries

are unequal, as well when compared with one another as when 
compared with the real roots a, b, c, &c. it is evident that the 
equation of the squares of the differences cannot have any other 
negative roots than those furnished by the several pairs of conju
gate imaginary roots, and which are

All the other roots, not arising from the differences furnished 
by the real roots a, b, c, &c. will evidently be imaginary; those 
between the real and imaginary roots supplying the forms

and those between the non-conjugate roots the forms

so that in this case every negative root in the auxiliary equation 
will indicate a pair of imaginary roots in the proposed, and will 
moreover supply the value of the imaginary part. But if it 
happen that among the quantities α, y, &c. there be found any 
equal among themselves or equal to any of the quantities α, b, c, 
&c. then the auxiliary equation will necessarily have negative

28
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roots, corresponding to which there can be no imaginary pair in 
the proposed equation.

For let α=α; then the two imaginary roots
will become — β2 and — β2, and conse

quently real and negative; so that if the proposed equation con
tain only two imaginary roots, α + β √ — 1 and α — β ∖∕ — 1, 
then, in the case of a = a, the equation of the squares of the 
differences will contain, besides the real negative root — 4∕32, the 
two — β2, —β2, both negative and equal.

We thus see that when the equation of the squares of the 
differences has three negative roots, of which two are equal to 
one another, the proposed may have either three pairs of ima
ginary roots, or but a single pair.

If the proposed contains four imaginary roots,
then the equation 

of the squares of the differences must contain the two negative 
roots — 4∕32, and — 4£2; if α = a, it must also contain the two 
equal negative roots — ∕32, — β2; and if moreover γ = b it must 
contain, in addition to these, the negative pair — δ2, — δ2 : and 
lastly, if α = y the four imaginary roots 

will be converted into the two negative pairs

Hence we may deduce the following conclusions, viz.
1. When all the real negative roots of the equation of the 

squares of the differences are unequal, then the proposed will 
necessarily have so many pairs of imaginary roots.

If in this case we call any one of these negative roots — w, we 

shall have β = - ™ ; and if this value be substituted for β in 

the two equations [1], and the operation for the common measure 
of their first members be carried on till we arrive at a remainder 
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of the first degree in α, the proper value of α will be obtained 
by equating this remainder to zero. Thus each negative root 
— w will furnish two conjugate imaginary roots 
and α — β Vz — 1.

2. If among the negative roots of the equation of the squares 
of the differences equal roots are found, then each unequal root, 
if any such occur, will, as in the preceding case, always furnish 
a pair of imaginary roots. Each pair of equal roots may, how
ever, give either two pair of imaginary roots or no imaginary 
roots, so that two equal roots will give either four imaginary 
roots or none ; three equal roots will give either six imaginary 
roots or two; four equal roots will give either eight imaginary 
roots, or four, or none : and so on.

Suppose two of the negative roots — w, — w, are equal: then 

putting, as above, β = we shall substitute this value of β 

in the two polynomials [1], and shall carry on the process for the 
common measure between these polynomials till we arrive at a 
remainder of the second degree in α ; since the polynomials must 
have a common divisor of the second degree in α, seeing that the 
equations [1] must have two roots in common, on account of the 
double value of β.

Equating then this quadratic remainder to zero, we shall be 
furnished with twro values for α : these may be either both real 
or both imaginary. In the former case call the two values a! and 
a,"; we shall then have the four imaginary roots

In the second case, the values of α being imaginary—contrary 
to the conditions by which the fundamental equations [1] are 
governed— we infer, that to the equal negative roots — w, — w, 
there cannot correspond any imaginary roots in the proposed 
equation.

If the equation of the squares of the differences have three 
equal negative roots, — w, — w, — w, then, putting as before

we should operate on the polynomials [1], for the 
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common measure, till we reach a remainder of the third degree 
in α : this remainder equated to zero will furnish three values 
of α, which will either be all real, or one real and two imaginary. 
In the first case six imaginary roots will be implied: in the 
second only two ; the imaginary values of α being always re
jected, as not coming within the conditions implied in [1].

The foregoing principles are theoretically correct: but the 
practical application of them, beyond equations of the third and 
fourth degrees, is too laborious for them to become available in 
actual computation. We give the following illustration of them 
from Lagrange.

To determine the imaginary roots of the equation

Computing the equation of the squares of the differences from 
the general formula for the third degree at (248), viz.

in which p = — 2 and // = -5, we have

In order to determine the negative roots of this equation, change 
the alternate signs, or put z = — w, and then change all the 
signs, converting the equation into

and seek the positive root, which is found by trial to lie between 
5 and 6. Adopting Lagrange’s development, p. 379, this 
root proves to be

from which wc get the converging fractions

Knowing thus an approximate value of w, we know
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In order now to get the equations [1], page 231, substitute 
α + βvz — 1 for a? in the proposed equation; and form two 
equations, one with the real terms of the result, the other with 
the imaginary terms : we shall thus have the equations [1] re
ferred to, viz.

in which β is knowrn.
Seeking now the greatest common measure of the first mem

bers of these equations, stopping the operation at the remainder 
of the first degree in α, and equating that remainder to zero, we 
have

and thus both α and β are determined in approximate numbers.

(261.) There is another method of proceeding for the determi
nation of imaginary roots, somewhat different from the preceding, 
being independent of the equation of the squares of the diffe
rences. It is suggested from the following considerations :

Since the quadratic involving a pair of imaginary conjugate 
roots is always of the form

every equation into which such roots enter must always be accu
rately divisible by a quadratic divisor of this form : that is, the 
proper values of α and β are such that the remainder of the first 
degree in x, resulting from the division must be zero. This fur
nishes a condition from which those proper values of α and β 
may be determined; the condition, namely, that the remainder 
spoken of, A.x — B, must be equal to zero, independent of parti
cular values of x ; and this implies the twofold condition

A = 0, B = 0,

from which α and β, of which A and B are functions, may be 
determined.
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As an example let the equation proposed be

a?4 + 4a?3 ⅛ 6a?2 4* 4a? + 5 = 0.

Dividing the first member by

a?2 — 2aa? -∣- α2 + β2

we have for quotient

a?2 + (4 q- 2α) a? 4- 6 4- 8a 4- 3a2 — β2

and for the remainder of the first degree in a?

which, being equal to zero whatever be the value of a?, furnishes 
the two equations

Krom the first of these we get

and this, substituted in the second, gives

two roots of which are 0 and — 2 : the other two are imaginary, 
and must consequently be rejected as contrary to the hypothesis 
as to the form of the indeterminate quadratic divisor.

The two real values of α, substituted in the expression above 
for β2, give
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and consequently the component factors of the original quadratic 
divisor, viz. the factors

x — a. — β ∖∕ — 1, x — α + β ∖∕ — 1,

furnish these two pairs of imaginary roots, viz.

and x = — 2 — χ∕ — I, x — — 2 -∣- vz — 1

This method, like that before given, is impracticable beyond 
very narrow limits, because of the high degree to which the final 
equation in α usually rises. And it is further to be observed of 
both, and indeed of all methods for determining imaginary roots 
by aid of the real roots of certain numerical equations, that when
ever, as is usual, these real roots are obtained only approximately, 
our results may, under peculiar circumstances, be erroneous. For 
instance, in the two methods just explained we have two equa
tions f (a) = 0, F(∕3) = 0, where the coefficients of a in the first 
are functions of β, and the coefficients of β in the second func
tions of α; hence, whichever of these symbols be computed ap
proximately, in order to furnish determinate values for the coeffi
cients of the other, these coefficients must vary slightly from the 
true coefficients; and, consequently, under this slight variation 
of the coefficients, real roots may become converted into imagi
nary and imaginary into real,—see page 315.
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CHAPTER XVIII.

ON THE SOLUTION OF CUBIC AND BIQUADRATIC 

EQUATIONS BY GENERAL FORMUŁ®.

(262.) In the former chapters of the present treatise ample 
instructions have been given for the complete solution of every 
algebraical equation whose coefficients are expressed in known 
numbers.

It still remains for us to give a concise account of the labours of 
mathematicians, as far as they have been successful, in the solution 
of equations with literal coefficients. The problem wre now pro
pose to consider is therefore this, viz. to determine finite expres
sions for the roots of an equation in functions of the coefficients; 
a problem long regarded as the most important in Algebra, 
because of its involving the complete solution of numerical equa
tions. But the recent discoveries, unfolded in the former part of 
the present work, have reduced this celebrated problem to one of 
comparative insignificance ; and have removed that regret, which 
was so long and so universally felt, on account of the failure of 
every attempt to extend the solution of literal equations beyond 
the first four degrees. We shall, therefore, content ourselves 
with briefly explaining the principal formulas which have been 
proposed for the solution of cubic ami biquadratic equations.
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Solution of a Cubic Equation by the Method of Cardan.

(263.) Let the proposed equation be first deprived of its second 
term by the rule at (79), it will then have the form

xi -∣- px + q = 0 . . . . [1]

Assume x equal to the sum of two other unknown quantities; 
that is, put

x = y + z,

we shall then have

<r3 = y3 + *3 + 3y? (y + .?) ;

that is, replacing y + z by x, and transposing,

ar3 — ⅛yzx — yi — ca = 0,

and, in order that this may be identical with the proposed equa
tion, we must determine y and z so as to satisfy these conditions, 
viz.

∕,~ = - y> y3 + = - 2∙

The problem is therefore reduced to the determination of y and 
z from these two equations.

From the first we have

j~ ~ 27,

hence, combining this with the second, we have the sum of two 
quantities, yi + c∙'i, and their product, y3 zs, given to determine 
the quantities : a problem which we know may be solved by help 
of a quadratic equation (Algebra, p. 156), viz. the equation

ι∙2 4- q>'---- — = 0 ∙ ∙ ∙ ∙ [2]27
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of which the two roots, or values of v, will be the expressions for 
yi and 23 sought. Hence, solving the equation, and separating 
the two roots, we have

and consequently, since x = y + z, there results the following
general expression for the roots of the proposed equation, viz.

which is the formula of Cardan.
Since the cube root of y3 may be represented indifferently by 

either of the three expressions, page 352,

and the cube root of 53 by either of the expressions

it would seem that a? = y + £ admits of nine values, or that the 
proposed equation has nine roots. It must be remembered, howr- 
cver, that in all cases when we assign the root of any expression, 
a tacit reference is made to the generation of the proposed pow er, 
the root being in fact assumed to be the expression from which 
the given power has been actually produced. When wτe speak of 
any proposed power having a multiplicity of roots, wτe merely 
refer to the various expressions from either of which that power 
might be generated; and as many of these as prove inconsistent 
with the conditions involved in the production of the pow er, are 
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of course to be rejected. Now one of the conditions in virtue of 
which y3 and zi have been produced, is

that is to say, the products of the roots y, z, must be possible; 
but of the nine products which the preceding expressions for y 
and z are competent to furnish, six will be found to be imaginary: 
such a combination of values must therefore be rejected, as incon
sistent with the conditions to be fulfilled ; the other three pro
ducts are possible.

Hence the only admissible solutions are the three following, 
where the product of y and z fulfils the condition above

But a form will be given to Cardan’s formula hereafter, that 
shall be unencumbered with superfluous values.

The equation [2], upon the solution of which that of the pro
posed cubic is made to depend, being of the next inferior degree, 
is called the reducing equation. The roots of this reducing equa
tion are exhibited in [3] and [4]. If these are real, the formula 
for x will consist of the cube roots of two real quantities : but if 
the roots of the reducing equation are imaginary, then the. expres
sion for x will be the cube roots of two imaginary quantities; 
and, consequently, each root must itself be imaginary : that is to 
say, if the relation between p and q be such that

the expression for x will consist of two parts, each of which is 
imaginary.

But the sum of these parts, that is, the complete expression 
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for x, must of necessity be real; because the preceding relation 
between p and q is that which necessitates the reality of all the 
roots of the equation. (See introductory Treatise, page 106.) 
Still, with the exception of a few particular cases, it is impossible 
to deliver the compound expression for the roots from its imagi
nary symbols, without developing each part separately, and then 
by incorporating the two, representing the aggregate by an 
infinite series, from which the imaginary symbol shall have dis
appeared.

The cases of*exception referred to are those in which [3] and 
[4^∣ are each complete cubes. For then the roots involved in the 
expression for x will be expressible in finite terms : and as they 
must be of the forms, page 54,

P + Q √T∏ and p _ Q √^Ξ∏ _ _

it follows that x will be expressed, without series, by the finite 
quantity 2P.* Moreover, in what may be regarded as the ex
treme case of the above condition respecting p and q, viz. the 
case in which

^ + ^-3 = o
4 27

which implies two equal roots in the reducing equation, and also 
two equal roots in the cubic, the formula for x becomes real and 
finite, because the quantity under the quadratic radical vanishes.

With these exceptions we may lay it down as a general rule, 
that Cardan’s formula is incompetent to furnish cither of the 
roots of a cubic equation, in a finite form, when all three are 
real. The formula can present a real root in a finite form only 
when the remaining two roots are imaginary, or the expression 
under the quadratic radical positive.

The case in which the three roots are real has hence been

• In the above observations we refer merely to the fact that, when the expressions in question are complete cubes, α∙ must admit of an expression in finite terms : whether the roots of these complete cubes can be actually determined in all cases, and thence the finite value of x deduced, is a distinct inquiry. It is considered in the foot-note at the bottom of next page.
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called the irreducible case of cubic equations, and many attempts 
have been made to convert the irreducible expressions in this case 
to a finite real form.

It is obvious that these attempts can succeed only to the ex
tent mentioned in the instances of exception adverted to above. 
The two parts of the formula for x can never be replaced by finite 
expressions such as [5], unless [3] and [4] be perfect cubes. It 
has been regarded as anomalous and paradoxical that the value of 
x should not appear under a real finite form whenever the roots 
represented by x are known to be real; and yet to expect such to be 
the case is to expect that every expression of the form 
must be a perfect cube.*

* In order to deduce a general expression for the cube root of whether b be positive or negative, put 
then, cubing each member, we have 
and equating the rational terms with the rational, and the irrational with the irrational, we have the following equations of condition for determining A and B, viz.
If from the square of the first of these we subtract the second, we shall have
It appears therefore that, in order that in any case the proposed extraction may be possible, in finite terms, di — b must be a perfect cube. This condition, it will be observed, is fulfilled by each of the expressions [3], [4], in the text; otherwise the cube roots of these could never be obtained in finite terms.Putting for brevity α2 — δ = c3 , we have
substituting this in the first of the above equations of condition, we have the final equationor multiplying by 2, and putting x for 2 A,
Thus the proposed cube root necessarily involves in its expression the roots of a
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Each root of such a cube would take the form P ÷ Q vz — 1 ; 
and by multiplying any one of them by the respective cube roots 
of unity, all the values implied in the original cubic expression 
would be obtained. Now P must be a rational function of a 
and b : for if radicals entered P, the assumed form would involve 
more values than the original. Hence, when a and b are com
mensurable numbers, as they must be when the coefficients of the 
equation are, P, and consequently 2 P, one of the roots, must be 
commensurable. But such is not necessarily the case; the roots 
being, in general, incommensurable. Consequently, the supposed 
finite form for the cube root is impossible, except in particular 
cases.

(264.) When one root x, of a cubic equation, is determined, 
we have seen (198) that the formula for the other two roots is

Consequently putting, agreeably to the foregoing hypothesis, 
y + z for xl, and 3yz for —p, we have for the other two roots

As remarked above, the expression y + z, when each term of it is 
developed in a series, by the binomial theorem, becomes in the 
irreducible case (P + Q>∕ — 1) ÷ (P — Qvz — 1), P and Q re- cubic equation; and when this cube root is that of either of the expressions [3], [4], these being in the irreducible case—the cubic just deduced will be also in the irreducible case: for b being then negative, c3 is positive, and greater than a2; hence, in the final cubic above, the coefficient of x is negative, and the twenty-seventh part of the cube of it greater than the square of half the absolute number. Thus in attempting to convert Cardan’s irreducible forms into finite expressions, we are invariably conducted back to the same forms; so that actually to exhibit the first member of [a] in the form given to the second member, whether b be positive or negative, we must determine x or 2A from [c], either by trial or by numerical solution, and thence deduce B from [δ.] It is plain that in general both A and B will be incommensurable numbers.
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presenting real series. Hence, p. 54, y — z will be expressed 
by Consequently, the three 
real values are

It is not worth while actually to exhibit here the general series 
for P and Q,, as they are of little practical importance in the com
putation of the roots, on account of the trouble of calculating the 
successive terms, and their general slow convergency.

(265.) The irreducible case may be otherwise solved by help of 
a table of sines and cosines.

Tims lιv Trio∙∩nnτnf>tw (rΓriπ n Γ>0 t

Substituting the first expression in the second, 

whence

In the proposed cubic equation 

put the unknown r cos θ for x ; or, which is the same thing,
x

put — for cos θ ; and [1] becomes

Comparing this with [2] we have 

and 
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Consequently, the trigonometrical solution of the proposed cubic, 
that is, the determination of θ, and thence of rcosθ, depends 
upon the trisection of an arc, or the determination of cos 0 from 
cos 3 0, which latter cosine is, we see, given in terms of the 
known coefficients. The mode of proceeding by aid of trigono
metrical tables is obvious : we are to seek in the table of cosines 

√27
—, this will be the angle 

30, and consequently one third of it will be 0 ; and the cosine of 

this multiplied by r, or 2 5/ —, will give r cos θ = x, for one of o
the real roots of the equation [2]. As the given cosine, 
— √—ζ, belongs equally to three arcs, viz. 30, 2# + 30, 

and 2π, — 30; by taking the cosine of one third of each of the 
latter two, we shall have the values of the remaining roots. 
Thus all the three roots will be expressed as follows, viz.

2 . cos 0, 2 . cos 4 (2τr + 3 0), 2 . cos ⅜ (2τr — 30)
«5 3 3

or using the supplements of the two latter arcs instead of the 
arcs themselves, and remembering that the cosine of an arc is 
equal to minus the cosine of its supplement, we have, somewhat 
more simply, the three values of x in the following form :

2√^ . cos 0, - 2 . cos (60o - 0), - 2 . cos (60o + 0).
3 3 3

It is worthy of notice that this trigonometrical method of 
solving a cubic equation applies, with a single exception, ex
clusively to the irreducible case : for as the trigonometrical cosine 
of an arc is always less than unit, except when that arc is a 
multiple of 180o, we must have

• ? /27 . <Z2 #
2vP<'∙∙T<27

O2 or - ----- —< 0
4 27

When 30 is a multiple of 180o, two roots must be equal, p. 444.
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Euler’s Method of Solving a Biquadratic Equation.

(266.) Let the proposed biquadratic, when deprived of its 
second term, be

Assume x equal to the sum of three other unknown quantities; 
that is, put

then

Put P for w2 + v2 + w2, and we shall have

that is, putting Q for w2 v2 + w2 w2 + v2 w2, and replacing 
u + υ + w by x,

and, in order that this may be identical with the proposed equa
tion, we must have these conditions, viz.

29
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The conditions show that the quantities w2, v2, w2, must be the 
roots of the cubic equation

or, putting

the roots of the equation

Call these roots √, z", z"', then the roots of [2] will be

and hence the expression [1] for x takes the following forms, viz.

But some of these values are inadmissible, since a necessary 

condition is, that vow — — ~ i hence, we must preserve only
8

those of the foregoing trinomial expressions of which the product 
of the radicals gives always a sign contrary to that of q, and these 
are, when q is positive,
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and when q is negative

And these formulas exhibit the four roots of the proposed 
equation : they will be given in a better form hereafter.

Solution of an Equation of the Fourth Degree, by the Method of
Louis Ferrari.

(267.) Taking the same general form as before, viz.

•we have, by transposition,

Add the quantity
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to both sides, and we shall then have 

and it remains to determine k, so that the second member of this 
equation may be a complete square. In order to this, k must fulfil 
the condition 

since, in every perfect square, four times the product of the ex
treme terms is equal to the square of the middle one.

Actually multiplying the two factors, and dividing by the co
efficient, 2, of Λ3, wre have, finally, the cubic equation, 

and a root of this being determined by the rule of Cardan, or 
otherwise, the solution of the proposed biquadratic is reduced 
to that of the two quadratics following, viz.

For a better form, see the Scholium at the end.

Solution of the Biquadratic by the Method of Descartes.

(268.) Taking the same general form as before, viz.

let the first member be decomposed into two quadratic factors, by 
assuming it equal to the product 

and then determining the unknown coefficients k, f y, so as to 
bring about the desired identity between the two expressions. 
For this purpose we have by actually executing the multiplication
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and equating the coefficients of the like terms in [1] and [2]

Multiplying the first of these by k, and then adding and subtract
ing the second, we have

Lastly, multiplying these together and introducing the third con
dition, viz. 4fg = 4r, we get finally

or, putting z for k2, the reducing cubic

which is the same as that in Euler’s solution.
When z is determined from this equation, k becomes known, 

being the square root of z : and from the first two of the equa
tions of condition Γ31 we have

and, consequently, the tw o quadratics for determining the four 
values of x are

All the preceding methods of investigation involve particular 
analytical artifices. That which follows, and which we believe to 
be new, has the peculiarity of being altogether independent of 
these artifices. It furnishes at the same time the results both of
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Descartes and Euler, which are shown to be immediate in
ferences from the known composition of the coefficients of the 
biquadratic, without the aid of any additional principle.

New Method for Equations of the Fourth Degree.

(269.) As in the preceding cases let the proposed equation be

and let its four roots be represented by xv x2, x3, x4 : then, since 
the sum of any two of these is equal to the sum of the remaining 
two, the quadratic equation involving the roots xλ, x4, will be

and, consequently, the roots themselves will be expressed by

This expression, as remarked at (198) may be converted into a 
variety of different forms from attending to the known composi
tion of the coefficients p and q. Two of these forms are exhibited 
at (198) ; a third is obtained as follows :

Since

it follows that the expression under the radical is
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so that, substituting this in the expression referred to, we have

If the other two roots, z3, λ,4 be substituted fox* these, then 
since xλ + xi = — (aq + a?2) we shall have for all four of the 
roots the fornxula

or putting m for xl -⅛- x.2,

where, it is to be observed, that the double sign of the radical ap
plies whether the upper or the lower sign of m be taken. Now 
if we multiply all these four values together the product must 
evidently be r. This multiplication is very easily performed in 
consequence of the double sign adverted to furnishing for each 
sign of m a pair of expressions, forming the one the sum and the 
other the difference of two quantities, so that, taking the upper 
sign of m, we have foι, the product of the corresponding pair of 
values

In like manner, for the product of the other pair of values, we have

These two products form also the sum and difference of two 
quantities : hence the final product is

that is
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or finally
mz6 + 2pτrii + (p2 — 4r) m2 — q- == 0

And this, when z is put for m2, becomes

zs + 2pz2 + (ρ2 — 4r) z — q2 = 0 . . . . [2]

the reducing cubic of Euler and Descartes. If a root of this 
cubic be found, and the square root of it be put for m in the 
general formula [1], the four roots of the biquadratic will be 
exhibited.

(270.) These four roots are evidently those given by the pair 
of quadratic equations in the solution of Descartes.

If all three of the roots of the reducing cubic be found, then 
representing them by z,, z'l, J"; and observing, from the coeffi
cient of the second term of that cubic, that

— 2p = z' + z" + √"

and from the final term that q2 = √ z"z'", the general expression 
[1] for the four roots of the biquadratic may be written thus :

which expression resolves itself into the four expressions of 
Euler for the roots of the biquadratic.

It should be remarked that, as in [1], the second of the am
biguous signs in this result always preserves its double significa
tion, giving a pair of values corresponding to each single value of 
the preceding term. But the third ambiguous sign, that of ∖Jz"'i 
is not equally arbitrary. It must always be fixed by the condi
tion that the product of the three radicals in each of the four 
results may furnish a sign opposite to that of q, as in Euler’s 
investigation.
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Thus, taking any three of the combinations which those radi
cals represent: as,' for instance, the three

we have for their product

(page 454.)

But for the purposes of actual computation, the formula [1] at 
first deduced, where any one of the three roots of [2] may be put 
for m2, is the more convenient. In the Scholium at the end of 
next Chapter, we shall offer some remarks upon certain im
perfections with which the formulas of Cardan, Euler, and 
Ferrari are chargeable.

The methods just exhibited for solving by general formulas 
equations of the third and fourth degrees are isolated, having no 
observable bond of connexion with one another. Other investi
gations have been prosecuted with more general views, and by 
more uniform and connected processes, in the hope of extending 
the powers of the analysis beyond equations of the fourth degree. 
But the great difficulties with which the inquiry is beset, when 
carried on beyond equations of the fourth degree, and the fruit
lessness of the attempts hitherto made to vanquish them, have at 
length led to the entire abandonment of the research. We shall 
however give, in conclusion, a short chapter exhibiting the gene
ral character of the investigation by which Lagrange sought to 
extend the formulas for the solution of equations beyond the 
fourth degree ; referring the student, for another mode of con
sidering the same comprehensive problem, to a paper, by Sir 
John W. Lubbock, in the Philosophical Magazine, 1839: as 
also to the Notes appended to the Traite de la Resolution, &c. 
of Lagrange.
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CHAPTER XIX.

SOLUTION OF EQUATIONS OF THE THIRD AND FOURTH

DEGREES, BY MEANS OF SYMMETRICAL FUNCTIONS.

(271.) We shall now explain the methods which Lagrange 
has employed for the general solution of equations of the third 
and fourth degrees by means of equations of inferior degrees. 
These methods, which are founded upon the theory of sym
metrical functions, were first developed by Lagrange, in the 
Berlin Memoirs for 1770 and 1771, and are also given with some 
modifications in the Traitć de la Resolution des Equations Nume- 
riques, Note xιιι.

Equation of the Third Degree.

Let the proposed equation be

a?3 + px 4- q = 0,

in which the second term is absent. Call the roots a, a2, a.A, then 
we immediately have the relation

a + a2 + α3 = 0 ;

and, if we could discover two other equations of the first degree 
in a, a2, a.A, the values of these quantities might be easily deter
mined by elimination.
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Let us assume the relation

la + wια2 + nai — z ;

then, as there is nothing to distinguish one root from either of 
the others, the relation which we have just assumed may be in
differently one or the other of the six following, viz.

and these could all be given by the solution of an equation of the 
sixth degree, in z. But, in order that such an equation might be 
solved as a quadratic, it must be of the form

*β + A*3 + B = 0 . . . . [1] ;

which, if we put u for za, becomes

hence, putting

and recollecting that the three cube roots of unity are 1, α, ag, 
we have, for the six values of z, the following expressions, viz.

z', az, a3z,, z", az", aiz";
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taking, then, any tw o of the six expressions above, for z' and z", 
as, for instance,

the four others must fulfil the following conditions, viz.

which must be formed so that the coefficients of a, a.,, a.i, in one 
member of each, shall be different from those in other members, 
in order to avoid contradictory conditions.

The four equations, just deduced, are transformable into the 
following, viz.

which will evidently be satisfied if we can fulfil the conditions

which are reducible to the two following, viz.

for, from α3 = 1, we have , and ; so that m = al

is the same as whence In like manner, 
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is the same as n = — Z; whence I = an. Lastly, the α
relations, m = al, n = a?l, divided the one by the other, give

, and n — am; hence it will be

sufficient to consider the two relations,

from which, as we have just seen, all the others are deducible. 
We thus have m and n expressed in terms of I, which, being 
arbitrary, put it for simplicity equal to unity; then we shall have

and thus the three values, Z, »i, n, are no other than the three 
cube roots of unity.

Substituting these values in the expressions

they become

We may, in like manner, substitute the same values in the 
four remaining equations, and afterwards form, by multiplication, 
the equation in z; as, however, we know that this equation is to 
be of the form [1], its six roots must be comprised in the two 
equations,

or, which is the same thing, in the single equation,

By actually performing the multiplication here indicated, and 
comparing the coefficients of the resulting terms with those of 
the corresponding terms in [1], we have these conditions, viz.
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Hence the coefficients of the equation,

√5 + A*3 + B = 0,

are symmetrical functions of the roots proposed.
If we develop these values of A and B, and keep in mind that 

α3 = 1, a4 — a, a.5 = a2, a6 = 1, &c.

and, because the coefficient of the second term in y'i — 1 = 0 is 
zero, that

1 + α -∣- α2 = 0, and, therefore, a + a2 = — 1,

we shall have these values, viz. (see page 422),

Now, from the original equation,

x3 + px + q = 0,

we obtain, in terms of the coefficients, p, q, the following values 
for these symmetrical functions (255), viz.

Moreover,
αα2β3 = — q ;

hence, substituting these values in the preceding expressions for 
A and B, we have

consequently, the equation in z is now fully determined; it is

^6 + 27qz3 — 2~p3 = 0 ;

www.rcin.org.pl



THIRD DEGREE. 463

from which we get

and thence

These values being now known, we have, for the determination 
of the roots, β, a2, α3, the three simple equations,

By adding these equations together, taking account of the 
property,

we have

which gives, for the root a, the value

that is, substituting for √, zn, their values in terms of p and q, as 
expressed above,

which agrees with the formula, before found, by the method of 
Cardan, (p. 442).
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To obtain the other two roots, multiply the second of the 
three equations above by α, the third by α2, and add the results 
to the first, we shall thus have

Lastly, multiply the second by α2, the third by α, add as 
before, and we shall have

and thus all three of the roots are determined.

Equation of the Fourth Degree.

(2/2.) Let the equation, 

be proposed for solution.
As the second term is absent, one relation among the roots is

Let us endeavour to obtain three other relations of the first 
degree, in a, a2, α3, a4. For this purpose, assume

then, as there is no distinction between the roots expressed in 
this relation, it may represent indifferently any one of the 24 
equations which arise from permuting the letters a, a2, a.A, a4, in 
all the ways possible. Hence the equation in z, which would be 
satisfied for any one of these 24 values, indifferently, must be of 
the 24th degree; and, in order that it may be resolvable by 
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the formula for equations of the third degree, it must take the 
form

It is possible to reduce the degree of this equation; for, since 
ki I, m, n, are indeterminate, we may suppose k = I, and thus 
reduce the number of distinct equations to twelve. By sup
posing, moreover, m = n, the equations are further reduced to 
six, which are as follows :

l(a + α2) + m(⅝ ÷ 04) = s
I (a + «3) + m(a2 + α4) = z

l(a + o4) + mz(λ2 -∣- af) = z

l{a2t + α4) + m(a + β2) = z

l(a2 + α4) + m(a + α3) = z

l(a2 + a3) + m(a + «4) = z.

The equation in z will, therefore, under these restrictions, be 
only of the sixth degree, and, in order to solve it, it must be of 
the form

and whatever value of z satisfies this equation, the same value, 
with contrary sign, will also satisfy it. The roots are therefore 
equal in magnitude two and two, but of contrary signs ; and it 
is plain that the six values of z exhibited above will represent 
these relations by putting I — — m = 1 ; in fact, we shall then 
have for the values of z the expressions, 

30
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where the last three values of z are, in magnitude, the same as the 
first three, but with opposite signs. Hence, by transposing, and 
multiplying the several pairs of factors together, we have the 
following single equation in z, involving all the six values 
above, viz.,

and as this involves none but symmetrical functions of a, ai, a<i, a4, 
its coefficients may be expressed by means of the coefficients of 
the proposed equation; but the following considerations will faci
litate their determination. By actually squaring the quantities 
within the brackets, we have

but

therefore,

In like manner,

putting, therefore, for abridgment,

the equation in z will be transformed into the following, viz.

which is of the form,
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its coefficients being

Now, from the formula at page 421, we have,

in which

Hence, substituting these values in the expressions for Bz and C', 
we have

and thus the equation in u is

and replacing u by its value or, for simpli

city, by z-l + p, we have, for the final cubic, the equation

Calling the roots of this equation zf, z", z"', we shall have 4√, 4z", 
4z"' for the squares of the expressions a + σ2 — a3 — ai,
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a + a3 — «2 — c4, a + a4 — a<i — a3; that is, these ex
pressions are

also,

By adding these, we find

Again, adding the first and fourth, and subtracting the sum of the 
other two from the result, we have

Similarly,

As to the proper signs of the radicals v∕√, ∖∕z", ∖Jz"i we must 
observe that since

(« 4- α2 — α3 — α4) (a + a3 — a2 — ai) (a + a4 — fl2-«3) = — 8q, 

these signs ought to be such as to render their product positive 
if q is negative, and negative if q is positive. The values thus 
deduced are the same as those otherwise determined in the pre
ceding chapter, and commented upon in the Scholium following.

(273.) The above method of investigating analytical expressions 
for the roots of equations by means of symmetrical functions, may 
be extended to equations of higher degrees than the fourth; but 
the auxiliary equation in z, to which the investigation leads, is, 
after the fourth degree, of a higher order than the proposed. In 
equations of the fifth degree the auxiliary one rises to the 120th
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degree, which, hy means of certain artifices, is, however, capable 
of depression. But no method has yet been devised, whereby an 
equation of the fifth degree can be solved by help of an auxiliary 
equation below the sixth. It has indeed been the object of ana
lysts of late to demonstrate the utter impossibility of such a 
solution by any combination of algebraic symbols; on which sub
ject the student is referred to the profound paper of Sir William 
Hamilton in the Transactions of the Royal Irish Academy, 
vol. xvi.

It is of course to be understood that the impossibility referred 
to does not exclude particular classes of equations from becoming 
solvible in general symbols. It would, indeed, be easy to assume 
particular irrational forms for the roots, and, by eliminating the 
radicals, thence to deduce an equation of any degree we please, 
the coefficients of which should be literal quantities, ready to 
receive any numerical values we may choose to give them. But 
these would only be equations of a particular class ; the coeffi
cients of which w ould be related to one another by a fixed law, 
virtually implied in the form assumed for the roots ; and could, 
therefore, be only of very rare application in actual practice. 
Such particular forms have, however, been investigated by 
De Moivre, Waring, and Euler: an account of the mode of 
deducing them may be seen in the second volume of the Algebra 
of Meyer Hirsch.* The formula of De Moivre, for a certain 
class of equations of the nth degree, we shall give in the scholium 
below; because of the direct and simple manner in w hich it may 
be investigated without assuming the irrational form of the roots, 
and also because of the celebrity which it has acquired.• This work of Hirsch contains a very comprehensive discussion of the theory of the symmetrical functions of the roots of equations : a subject upon which we have been precluded from dwelling at any great length in the present volume on account of the space occupied by more useful inquiries. In addition to this work of Hirsch, we would also direct the attention of the student to the researches of Mr. Murphy, as contained in his Theory of Equations, and in his papers in the Cambridge Transactions for 1831, and in those of the 
Royal Society for 1837. A view of the method of approximating to the roots of equations by the method of Recurring Series may be seen in Euler’s 
Algebra ; and in a more extended form in Murphy’s Equations adverted to above.
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Scholium.

(274.) The formula of Cardan for the roots of a cubic equa
tion, and the expressions of Euler for the roots of a biquadratic, 
furnish exemplifications of the doctrine at pp. 26, 40 respecting 
the limited sense in which irrational results must be taken when 
the signs of the radicals are brought under any control by 
stipulated conditions. One of the irrational terms in Cardan’s 
formula takes a fixed and determinate sign as soon as the sign of 
the other irrational term is determined upon, on account of the 
controlling condition at page 443. And in like manner any 
one of the three irrational terms in Euler’s forms becomes 
fixed in sign as soon as the other two radicals, which are entirely 
independent and uncontrolled as to sign, become fixed, because 
of the overruling condition ⅛uυw — — q, page 449.

In the expressions for the four roots of the biquadratic at p. 451 
the signs prefixed to the radicals thus point out the character of 
the roots, and limit the generality that would otherwise belong 
to them. But it is easy to avoid all inadmissible generality in 
the formulas referred to, and to deduce them at once free from 
extraneous values : and it is undoubtedly better to do this than 
to encumber our results with what must afterwards be rejected 
upon adjusting the formula to the case in hand. The necessity 
for any such supplementary adjustment does in fact imply some 
imperfection in our method, or some mistake in our reasoning : 
unless indeed the original restrictions of the problem are such as 
unavoidably to limit the generality of the ordinary symbols of 
operation from the outset. This is not the case in either of the 
problems referred to : the limitation to which the result ought 
to conform has been introduced in the course of the investigation, 
and has then been improperly disregarded, leaving the final result 
uncontrolled by it.

p .
The condition z =------ , introduced into the investigation of

3y*
Cardan’s formula, ought to have had its influence upon every 

subsequent step : 23 should have been replaced by ( - y^) anc^ 

the final result should accordingly have been written thus :
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from which all superfluous values are excluded.

(275.) The formulas of Euler are open to the same objection. 
The condition

√√ √Z √√" = - i, or √√" = -j=½-r, 

introduced into the investigation, has been disregarded; and thus 
the result is uncontrolled by its restrictions, and involves a su
perfluous radical, like the formula of Cardan. When freed 
from this imperfection, the result of Euler’s investigation will 
take the form

√√ √*" -i
2 2 2√√√y',

which comprehends all that is implied in the four distinct ex
pressions at page 451, and involves no superfluous values, the 
radicals being unrestricted in generality.

It will have been observed that in the formulas of Euler at 
page 451 the signs prefixed to the radicals to designate the cha
racter of the roots are sufficiently explicit for that purpose : but 
in the formula of Cardan, at pages 442 and 463, similar preci
sion cannot be impressed upon the expressions by means of the 
prefixed signs, so that in applying the formula it is essential that 

. the overruling condition 3yz = — p be always borne in remem
brance.

(2/6.) Like observations apply to the formulas of Ferrari 
at page 452 : they are not only faulty inasmuch as they preserve 
no trace of the restrictions that have been introduced into the in
vestigation, but, as in the case of Cardan’s expressions, they are 
also incapable of the necessary adjustment by putting any restric
tions upon the signs of the radicals ; so that as these signs are 
entirely inoperative, it is matter of indifference whether they be 
plus or minus. The requisite precision is only to be attained by 
conforming the values to the condition
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√(2*-J>) √(*≈ _ r) = —-∣-

But if, as in the cases discussed above, we actually introduce this 
condition into the results themselves, the expressions become 
freed from all ambiguity, and take the explicit form 

^+Λ=√(2Λ-jp> + -7^⅛-y

where the sign of the radical is entirely unrestricted. And it is 
in this form that the expression should always be written.

(277.) It may be remarked here that Lagrange, at the end 
of the last edition of his work on Equations, incidentally notices 
the above mode of writing Euler’s form as that in which it may 
be expressed. But he does not insist upon this as the form in 
which it always ought to be written, and which is the only form 
strictly in accordance with the conditions impressed upon the 
symbols in the course of the investigation. Poinsot, in a note 
appended to the above-mentioned work, animadverts somewhat 
upon Lagrange’s remark, and proposes what he regards as a 
preferable mode of interpretation as respects Euler’s ambi
guous forms. We have not space to transcribe this note of 
Poinsot, but must express our entire dissent from the doctrine 
there propounded.

(278.) It may be observed, in conclusion, that the formula of 
Cardan is only a particular case of a much more general ex
pression, an expression which in fact exhibits under a similar form 
the roots of an equation of the nth degree. But the practical 
utility of this general form ceases with the equation of the third 
degree, because for the higher degrees it is in general impossible 
to transform the proposed equation into another belonging to the 
particular class of equations comprehended under the general 
form. This class of equations was first solved by De Moivre, 
and every equation belonging that class is said to come under 
De Moivre’s sohible form.

The general investigation may be conducted in a manner ana
logous to that which has been employed in the particular case;
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the problem to be solved being, indeed, simply this, viz., To find 
tw o quantities, y and z, such that the sum of their nth powrers 
may be a and their product b.

The value y determined by these conditions (Algebra, third ed. 
p. 156), is

and consequently, since w e must have for z the expression

And (Algebra, p. 157), y + z is the value of x in the equation

When n = 3 the equation is

a form to which every cubic may be reduced, as a and b may be 
any values whatever. Making a — — q, and 35 = — p, wre 

have the general form at (263), and for x = y H— the expres
s'

sion already deduced.
When n — 5 the general form becomes

of which the roots are represented by the formula

Many attempts have been made to reduce the general equation 
of the fifth degree to the above solvible form, but they have all 
been fruitless. We shall merely add, that by substituting in tbe 
preceding equation c for 55, we may write the form thus, 

where a and c are unrestricted.
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NOTE.

The principle established at pp. 260-3 and there affirmed to 
remove an imperfection in Horner’s method of appoximation 
was, we find, known to Mr. Horner himself. The author of 
the present work did not discover this till long after the sheet 
referred to was printed. Mr. Horner announces the principle 
as follows :

“ When an equation has α extensive or incommensurable equal 
roots, the following indications will be observed as the work pro
ceeds : simultaneous and regular diminution in the last α terms; 
the preceding terms constant in regard of signs, and, to an in
creasing extent, in their first digits also; the last α -f- 1 signs 
alternately + and —, or — and + ; that mutual relation among 
the last α -f- 1 terms which the expansion of h(a — r)a indicates.

“ From that law of expansion, also, the value of the approxima
tion r may be readily found, and in various ways. E. g. (a) If 
the last term but one be made the search divisor, the dividend 
must be α times the last term. (b) The αth term, reckoning 
backward, may be the dividend, and the search divisor be α times 
the preceding, (c) The last term being the dividend, and the 
cl + 1th term, reckoning backward, the search divisor, the αth 
root of the quotient may be tried for r.

“ The ordinary rules, which are only adapted to the case α = l, 
of course fail when applied to other cases ; but by attending to 
the indications here made out, the new method is divested of 
perplexity, and the transformations may proceed under every 
circumstance without interruption.” (Ley bourn's Repository, 
No. 19, page 63.)

The preceding observations apply to the case of equal roots : 
when the roots are nearly equal Mr. Horner proceeds as 
follows :
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“When two or more roots of an equation agree in their first 
digit or digits, and are at the same time smaller or greater than 
any other root, abstracting the signs, the evolution of the portion 
in which they agree will necessarily be attended with indications 
very similar to those which we have traced to the influence of 
equal roots. Consequently they present the same resistance to 
the Newtonian and similar methods; a fact which Lagrange 
has not failed to dilate upon. But they also share in the facili
ties pointed out in our remarks above; to such a degree at least, 
that an approximation may thence be generally obtained which 
shall at once place the remaining solution within the reach of the 
ordinary methods.” (Ibid, page 67.)

Mr. Horner prosecutes the subject no further than this : he 
illustrates the preceding observation by means of the equation of 
Lagrange, viz. jr3 - 7« ÷ 7 = 0 ; from which it would appear 
that his view of the principle is, after all, very different from 
ours ; as he employs it to suggest the second figure, 6, of one of 
the roots, which figure is w idely different from the second figure 
of the other root. We employ the principle, only so long as the 
figures in the contiguous roots concur, to suggest those figures : 
and we have shown its competency to detect the place at which 
this concurrence ceases. The suggestion of the true root-figure, 
in Lagrange’s example, is mere matter of chance; and proves 
nothing as to the value of the principle in question. But had 
such examples as those developed, by aid of this principle, in the 
text, occurred to Mr. Horner, there is no doubt that he would 
have prosecuted the developments in the same manner. The 
difficulty, however, of ascertaining the exact place at which a root 
separates, and the method of determining the leading figure of 
those that remain—particulars of much importance, would still 
have remained unprovided for.** It may be proper to add to these remarks, that Mr. Lockhart, by examining a great variety of equations of the fifth degree, each having a pair of roots very nearly equal—or concurring in several leading figures—found from 2N,experience, that — - always separated those roots; so that the successive values of this expression, as the approximation advanced, always furnished the concurring figures. See Resolution of Equations by means of Inferior and. 
Superior Limits. 1842.
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The precept 5 at page 265 accomplishes the latter of these 
particulars in a very direct and easy manner : the other mode of 
proceeding, explained in the directions which follow this precept, 
is purely tentative ; and of course far less eligible.

We may here remark that in comparing Fourier’s method of 
analysis with that exemplified at p. 306, it is implied at p. 307, 
that the former method dispenses with a transformation neces
sarily involved in the latter: it must not be overlooked, however, 
that the transformation (4.8), employed in Fourier’s analysis 
at p. 245, is equivalent to the additional transformation adverted 
to ; and, therefore, that the desired conclusion is reached in both 
methods by the same number of steps.

THE END.

FR1NTRP BY C. APLARP, BA∣ITH(>I OMEW C∣Λ9R
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