SULLE ALGEBRE REALI LEGATE AI GRUPPI DI ORDINE FINITO (*)

La struttura di un'algebra legata a un gruppo di ordine finito è pienamente conosciuta, quando il corpo, nel quale l'algebra è data, sia quello complesso. Nel qual caso, detto t il numero dei sistemi di elementi coniugati del gruppo, l'algebra è irriducibile e regolare, se t=1, è riducibile e somma diretta di t algebre regolari, se t>1.

Qui si vuol stabilire un teorema simile per il caso che il corpo nel quale l'algebra è definita sia quello reale.

Precisamente, si vuol dimostrare che:

Se fra i t sistemi di elementi coniugati del gruppo, l(>0) è il numero di quelli che riescono bilateri e 2m il numero (necessariamente pari, ≥ 0) dei rimanenti, ogni algebra reale legata al gruppo è irriducibile e regolare, se t=1 (indi l=1 ed m=0), è riducibile e somma diretta di l+m algebre semplici dotate di modulo, se t>1.

Questo teorema potrebbe esser dedotto per via indiretta ricorrendo a taluni risultati conseguiti dal Frobenius e dallo Schur in una loro bella Memoria sulle rappresentazioni reali dei gruppi finiti (« Berliner Sitzungsb. », 1906); ma, giacchè può essere anche dimostrato utilizzando direttamente la teoria delle algebre, preferisco dedurlo per questa via. Il che faccio tanto più volentieri, in quanto che procedendo a questo modo si vengono implicitamente ad indicare nuove dimostrazioni dei risultati cui or ora è stato alluso.

Chiudo queste poche righe introduttive avvertendo che in quanto segue il mio trattato *Corpi numerici e algebre* (Messina, Principato, 1921) e la Memoria del FICHERA: *I caratteri di un gruppo*, ecc. (« Atti dell'Accademia Gioenia », serie 5ª, vol. XIII), saranno richiamati brevemente con le sigle rispettive *C. N.* eñ *F.*

2. Ciò posto, sia G un gruppo d'ordine finito n, con gli elementi $\gamma_1, \gamma_2, \ldots, \gamma_n$, e sia A un'algebra reale legata a G(C. N., p.

^(*) Rend. Reale Accad. dei Lincei, (6) 4 (1926), pp. 485-491.

437), di guisa che sarà possibile determinare in essa un aggregato di unità u_1, u_2, \dots, u_n , per le quali riesca $u_i u_j = u_k$, ogni qual volta sia $\gamma_i \gamma_j = \gamma_k$.

Se \overline{A} è un'algebra complessa legata a G ed $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_n}$ è un aggregato di unità di \overline{A} tale che da $\gamma_i \gamma_j = \gamma_k$ segua $\overline{u_i u_j} = u_k$, gli elementi di \overline{A} aventi, rispetto ad $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_n}$, coordinate reali costituiscono un'algebra reale equivalente ad A, di cui \overline{A} è il prolungamento nel corpo complesso; quindi, salvo a sostituire ad A, ove occorra, un'algebra equivalente ad essa, possiamo supporre che $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_n}$ coincidano rispettivamente con u_1 , u_2 , ..., u_n e che \overline{A} sia il prolungamento di A nel corpo complesso.

3. Giacchè \overline{A} è il prolungamento di A nel corpo complesso, e giacche \overline{A} è semi-semplice, con modulo (C.N., p. 444), tale è pure A (ibid., p. 397, n. 287); quindi A o è semplice (con modulo), o è somma diretta di algebre semplici (ciascuna dotata di modulo).

In ogni caso, poniamo

$$(1) A = B_1 \dotplus B_2 \dotplus ... \dotplus B_s,$$

con $s\ge 1$ e con le B_1 , B_2 , ..., B_s algebre semplici, intendendo che se s=1, se cioè non vi sia luogo a parlar di somma diretta, la (1) stia per $A=B_1$.

Giacchè ciascuna delle algebre B_4 , ..., B_8 è semplice e, al pari di A, dotata di modulo e reale, per un bel teorema del CARTAN (C. N., p. 400), si potrà porre

$$(2) B_j = P_j \times R_j (j = 1, \dots s),$$

con P_j algebra primitiva di ordine 1, 2 o 4 ed R_j algebra regolare; e i moduli di P_j ed R_j si potranno supporre coincidenti con quello di B_j .

Se i prolungamenti di B_j , P_j ed R_j nel corpo complesso si indicano rispettivamente con \overline{B}_j , \overline{P}_j ed \overline{R}_j , in virtù delle (1) e (2) sarà

(3)
$$\overline{A} = \overline{B}_1 + \overline{B}_2 + ... + \overline{B}_s$$

$$(4) \overline{B_j} = \overline{P}_j \times \overline{R}_j.$$

Quando l'ordine di P_j (e $\overline{P_j}$) è 1, le (2) e (4) mostrano che B_j e $\overline{B_j}$ sono regolari ; quando quell'ordine è 4, ossia P_j è equivalente

all'algebra dei quaternioni reali, \overline{P}_j è un'algebra regolare (C. N., p. 397, n. 288) e quindi, per la (4), anche \overline{B}_j è un'algebra regolare (*ibid.*, p. 363, n. 256); quando invece il detto ordine è 2, \overline{B}_j risulta la somma di due algebre regolari del medesimo ordine.

Ebbene si supponga, come è lecito, che fra le algebre $P_1, ..., P_n$ quelle di ordine 1 o 4 siano $P_1, ..., P_\lambda$.

Allora $\overline{B}_1, \ldots, B_{\lambda}$ saranno algebre regolari, e ciascuna delle algebre $\overline{B}_{\lambda+1}, \overline{B}_{\lambda+2}, \ldots, \overline{B}_s$ sarà la somma diretta di due algebre regolari del medesimo ordine; quindi \overline{A} sarà la somma diretta di

$$\lambda + 2(s - \lambda) = 2s - \lambda$$

algebre regolari.

Ma, se t è il numero dei sistemi di elementi coniugati di G, è

(5)
$$\bar{A} = \bar{A}_1 \dotplus \bar{A}_2 \dotplus \dots \dotplus \bar{A}_t,$$

con le \overline{A}_1 , \overline{A}_2 , ..., \overline{A}_t algebre regolari e con l'intesa che, se t=1, la (5) stia per $\overline{A}=\overline{A}_1$; dunque, per un teorema dello SCHEFFERS (C. N., p. 320), è

$$2s - \lambda = t$$

ed è possibile disporre delle denominazioni delle $\overline{A_i}$, sì che riesca

$$(6) \begin{cases} \overline{B}_1 = \overline{A}_1, \ \overline{B}_2 = \overline{A}_2, \dots, \overline{B}_{\lambda} = \overline{A}_{\lambda}, \\ \\ \overline{B}_{\lambda+1} = \overline{A}_{\lambda+1} \dotplus \overline{A}_{\lambda+2}, \overline{B}_{\lambda+2} = \overline{A}_{\lambda+3} \dotplus \overline{A}_{\lambda+4}, \dots, \overline{B}_s = \overline{A}_{t-1} \dotplus \overline{A}_t. \end{cases}$$

4. Indichiamo ora con $\overline{v}_1, \overline{v}_2, \dots, \overline{v}_t$ i moduli di $\overline{A}_1, \overline{A}_2, \dots, \overline{A}_t$, di guisa che quelli di $\overline{B}_1, \overline{B}_2, \dots, \overline{B}_k, \overline{B}_{\lambda+1}, \overline{B}_{\lambda+2}, \dots, \overline{B}_s$ saranno

(7)
$$\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_{\lambda}, \overline{v}_{\lambda+1} + \overline{v}_{\lambda+2}, \overline{v}_{\lambda+8} + \overline{v}_{\lambda+4}, \ldots, \overline{v}_{t-1} + \overline{v}_t;$$

e, detti S_1, S_2, \ldots, S_t i sistemi di elementi coniugati di G, indichiamo con r_j l'ordine di S_j e con w_j la somma delle r_j unità u i cui indici sono quelli degli elementi γ , che costituiscono il sistema S_j .

Giacchè v_1, v_2, \ldots, v_t e w_1, w_2, \ldots, w_t sono due aggregati di unità della sotto-algebra centrale di \overline{A} (C N., pp. 395 e 440), sarà

(8)
$$w_j = \tau_{1,j} \, \overline{v}_1 + \tau_{2,j} \, \overline{v}_2 + ... + \tau_{t,j} \, \overline{v}_t$$
 $(j = 1, ..., t),$

(9)
$$\overline{v_i} + \tau'_{i,1} w_1 + \tau'_{i,2} w_2 + \dots + \tau'_{i,t} w_t \qquad (i = 1, \dots, t),$$

dove le $\tau_{i,j}$ sono numeri complessi, il determinante $|\tau_{i,j}|$ è diverso da zero, e $\tau'_{i,j}$ è il reciproco di $\tau_{i,j}$ nella matrice $||\tau_{i,j}||$.

Se, in conformità della (5), si pone

$$u_k = \overline{x}_{k,1} + \overline{x}_{k,2} + \dots + \overline{x}_{k,t}$$
 $(k = 1, \dots, n),$

con $\overline{x}_{k,i}$ elemento di \overline{A}_i , e, detto p_i^2 l'ordine di \overline{A}_i , il quoziente della traccia di $\overline{x}_{k,i}$ in \overline{A}_i per p_i si indica con $\chi^{(i)}(\gamma_k)$, la funzione $\chi^{(i)}$ dell'elemento corrente γ_k di G, che così resta definita, è uno dei t caratteri di G (C. N., p. 450).

I valori di $\chi^{(i)}$ per elementi coniugati di G sono, notoriamente, eguali. Ebbene, se il valore di $\chi^{(i)}$ per uno qualsiasi degli r_j elementi di G contenuti in S_j si denota con $\psi_i^{(i)}$, si ha $(F_i, n. 25)$

(10)
$$\tau_{i,j} = \frac{r_j}{p_i} \, \psi_j^{(i)}.$$

Da questa eguaglianza discende che, se $\varphi^{(i)}$ è il reciproco di $\psi^{(i)}_j$ nella matrice $\parallel \psi^{(i)}_j \parallel$ (dove si suppone che i sia costante lungo una riga e j lungo una colonna), si ha

$$au_{i,j}' = rac{p_i}{r_j} \, arphi_j^{(i)}.$$

D'altronde, se il sistema di elementi coniugati costituiti dagli inversi degli elementi di S_j ($j=1,\ldots,t$) si indica con $S_{j'}$ — di guisa che sarà $r_{j'}=r_j$ — si ha pure (F, n. 31)

$$\varphi_j^{(i)} = rac{r_j}{n} \, \psi_{j'}^{(i)},$$

quindi è

(11)
$$\tau'_{i,j} = \frac{p_i}{n} \, \psi_{j'}^{(i)},$$

e, per le (10) e (11), le (8) e (9) divengono

(12)
$$w_j = r_j \sum_{i}^{1...t} \frac{1}{p_i} \psi_j^{(i)} \overline{v_i}$$

(13) $\overline{v_i} = \frac{p_i}{n} \sum_{j}^{\dots t} \psi_{j'}^{(i)} w_j.$

5. A proposito delle $\psi_{j}^{(i)}$ giova osservar quanto segue.

Essendo u_k un elemento di A, per $i=1,\ldots,\lambda,\overline{x_{k,i}}$ riesce un elemento di B_i , quindi la sua traccia in $\overline{A}_i=\overline{B}_i$ è un numero reale; ossia

a) I valori di $\psi^{(i)}$, per $i=1\,,\ldots,\lambda$ e $j=1\,,\ldots,\,t$, sono tutti reali.

Per
$$i = \lambda + 1, \ \lambda + 3, ..., t - 1, \ \delta$$

$$\overline{A}_i \dot{+} \overline{A}_{i+1} = \overline{B}_{\frac{1}{2}(\lambda + i + 1)},$$

ed, essendo u_k un elemento di A, $\overline{x}_{k,i}$ ed $\overline{x}_{k,i+1}$, hanno per somma un elemento di $B_{\frac{1}{2}(\lambda+i+1)}$; dunque, per il lemma del n. 1, la traccia di $\overline{x}_{k,i}$ in \overline{A}_i e quella di $\overline{x}_{k,i+1}$ in \overline{A}_{i+1} sono numeri complessi coningati. D'altronde, essendo eguali gli ordini di \overline{A}_i e \overline{A}_{i+1} , è pure $p_i = p_{i+1}$, dunque:

 $\beta) \ \ Per \ i=\lambda+1, \ \ \lambda+3,\dots,t-1 \quad e \quad j=1,\dots,t, \\ \psi_j^{(i)} \ \ e \ \ \psi_j^{(i+1)}$ sono numeri complessi coniugati.

I valori di un carattere di G per elementi inversi sono numeri complessi coniugati, quindi:

 $\gamma)~Per~i,j=1,\ldots,t, \psi_{j}^{(i)}~e~\psi_{j'}^{(i)}~sono~numeri~complessi~coniugati.$

Adesso si supponga, come è lecito, che tra i sistemi di elementi coniugati di G quelli bilateri siano S_1, S_2, \ldots, S_l e che i rimanenti si distribuiscano in m coppie di sistemi inversi date da

$$S_{l+1}$$
 ed S_{l+2} , S_{l+3} ed S_{l+4} , ..., S_{t-1} ed S_t .

Ciò significa che, per $j=1,\ldots,l,$ è j'=j, e, per j=l+1, $l+3,\ldots,t-1$ è j'=j+1.

Allora da γ) segue che:

da a) e y), che:

$$\epsilon$$
) $Per \ i=1,\ldots,\lambda \ \hat{e}$

$$\psi_{l+1}^{(i)} = \psi_{l+2}^{(i)} \,, \, \psi_{l+3}^{(i)} = \psi_{l+4}^{(i)} \,, \ldots, \psi_{l-1}^{(i)} = \psi_{l}^{(i)} \,;$$

da β) e δ), che:

$$ζ$$
) Per $i = λ + 1, λ + 3, ..., t - 1$ e $j = 1, ..., l$, è
$$ψ_i^{(i)} = ψ_i^{(i+1)};$$

e infine da β) e γ) che:

$$\eta$$
) Per $i = \lambda + 1, \lambda + 3, ..., t - 1$ e $j = l + 1, l + 3, ..., t - 1, e$

$$\psi_j^{(i)}\!=\psi_{j+1}^{(i+1)}\ _{e}\ \psi_j^{(i+1)}=\psi_{j+1}^{(i)}\ .$$

6. Dico ora che ciascuno degli elementi (7) è una combinazione lineare degli elementi

$$(14) w_1, w_2, \dots, w_l, w_{l+1} + w_{l+2}, w_{l+3}, + w_{l+4}, \dots, w_{t-1} + w_t,$$

e che, inversamente, ciascuno di questi è una combinazione lineare di quelli.

Nel sommatorio che trovasi al secondo membro della (13), per $j=l+1,\ l+3,\ldots$, o t-1, il coefficiente di w_j è $\psi_{j+1}^{(i)}$, e quello di w_{j+1} è $\psi_j^{(i)}$; ma per un tal valore di j e per $i=1,\ldots,\lambda$ è, grazie alla ε), $\psi_{j+1}^{(i)}=\psi_j^{(i)}$, dunque è chiaro intanto che ciascuno dei primi λ elementi (7) è una combinazione lineare degli elementi (14).

Si supponga adesso che i sia uno degli interi della serie

$$\lambda + 1, \lambda + 3, \dots, t - 1.$$

Allora per la (13) e per il fatto che p_{i+1} riesce eguale a p_i , si ha

$$\overline{v_i} + \overline{v_{i+1}} = \frac{p_i}{n} \sum_{j}^{1...t} (\psi_{j'}^{(i)} + \psi_{j'}^{(i+1)}) w_j.$$

Nel sommatorio che quivi comparisce i coefficienti di w_j e w_{j+1} , per $j=l+1,\ l+3,\ldots$, o t-1, sono rispettivamente

$$\psi_{j+1}^{(i)} + \psi_{j+1}^{(i+1)}$$
 e $\psi_{j}^{(i)} + \psi_{j}^{(i+1)}$;

ma questi per η) sono eguali, dunque anche i rimanenti elementi (7) sono combinazioni lineari degli elementi (14).

Nel sommatorio che sta a secondo membro della (12) i coefficienti di $\overrightarrow{v_i}$ e $\overrightarrow{v_{i+1}}$ sono $\frac{1}{p_i} \psi_j^{(i)}$ e $\frac{1}{p_{i+1}} \psi_j^{(i+1)}$. Ma, per $i = \lambda + 1$, $\lambda + 3$, ..., t-1 e $j=1,\ldots,l$, è $p_i=p_{i+1}$ e inoltre, grazie alla ζ), $\psi_j^{(i)}=\psi_j^{(i+1)}$, dunque è dimostrato intanto che ciascuno dei primi l elementi (14) è una combinazione lineare degli elementi (7).

Adesso si supponga che j sia uno degli interi della serie l+1, $l+3, \ldots, t-1$.

Allora per la (12) e badando che $r_{j+1} = r_{j'} = r_j$, si ha

$$w_j + w_{j+1} = r_j \sum_{i}^{1 \dots t} \frac{1}{p_i} (\psi_j^{(i)} + \psi_{j+1}^{(i)}) \overline{v_i}.$$

In quest'ultimo sommatorio i coefficienti di \overline{v}_i e \overline{v}_{i+1} , sono

$$\qquad \frac{1}{p_i}\,(\psi_j^{(i)} + \psi_{j+1}^{(i)}) \quad \mathrm{e} \quad \frac{1}{p_{i+1}}\,(\psi_j^{(i+1)} + \psi_{j+1}^{(i+1)}).$$

Ma questi, ove sia $i = \lambda + 1, \lambda + 3, ...,$ o t - 1, sono eguali, perchè allora è $p_i = p_{i+1}$ e inoltre vale la η), dunque anche i rimanenti elementi (14) sono combinazioni lineari degli elementi (7).

7. Da quanto or ora è stato dimostrato, giacchè gli elementi (7), al pari degli elementi (14), sono, come è chiaro, indipendenti, si deduce

$$\lambda + \frac{t - \lambda}{2} = l + \frac{t - l}{2},$$

quindi è $\lambda = l$.

Dopo di che, essendo t = l + 2m, si ha, come volevasi.

$$s = \frac{t+\lambda}{2} = \frac{l+2m+l}{2} = l+m.$$