
The Theory of Constructive Types. 
(Principles of Logic and Mathematics). 

Part II. 

Cardinal Arithmetic. 

By 

Leon Chwistek. 

V. Complements of Part I. 

A. Extension and Intension. 

The Theory of Types, as explained in Part I, may be called 
the P u r e T h e o r y o f T y p e s , as it is based on the most general 
idea of logical types, and as it does not assume any other pro-
positions, than the axioms of the Logical Calculus. This method ena-
bles us to get a system of Mathematics which appears to be a part 
of Logic, and as such may be called Pan-Mathematics. This system 
is more general than Classical Mathematics, as it does not enable us 
to prove that there is a class of inductive numbers other than the 
null-class, which does not contain the greatest element Nevertheless, 
if we assume the axiom of infinity as a hypothesis, we get a spec-
ial system, which is as a matter of fact the same thing as what 
is called Classical Mathematics,— Cantor's theory appears then as a 
hypothetical system that we can get, if we assume the existence of alephs. 
Conformably to the hypotheses which we assume, we can get many 
special systems of Mathematics. As the Pure Theory of Types does 
not assume any existence - axiom and does not lead to Richard's 
paradox, it is a natural base for rational Semeiotics, a science whose 
importance can scarcely be denied Note that the simplified theory 
of types, as expounded on p. 12 of Part I, may be used in Mathe-
matics without any risk of getting a contradiction. To avoid such 
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paradoxes as Richard's or Konig's, it is quite sufficient to assume 
a direction excluding from the scope of the system any function 
which is not constructed with the symbols of the system itself. An 
analogous method is used by mathematicians dealing with the sys-
tem of axioms of Zernielo'). Such a method, though very convc-
venient, is nevertheless inconsistent with certain fundamental pro-
blems of Logic and Semeiotics. Moreover the simplified theory of 
types implies the existence of functions which cannot be built up, 
unless we assume that all functions are extensional functions (the 
Axiom of Extension) 

Now, a purely formal system of Logic ought never to imply 
the existence of such functions; otherwise it might be asked why 
the axiom of infinity, or other existence-axioms are not to be assu-
med as primitive propositions. 

The pi'actical elimination of the Leibnizian idea of identity 
is an essential simplification of Logic, this idea being of no use 
in Mathematics, as we have no means to prove with it the identity 
of objects given by two different expressions. 

Now, here is a most interesting metaphysical problem: Can 
an object be denoted by two different expressions? 

This problem cannot be discussed in a system of formal Lo-
gic, as such a system does not contain the primitive idea „expres-
sion". On the other hand it is eas}̂  to see that such a problem can-
not be solved at all, as we always get two contradictory solutions. 

If you suppose that two different expressions denote two dif 
ferent objects, you cannot prove that two equivalent classes are iden-
tical. To prove that any equivalent classes are identical, we ought 
to suppose that there are objects denoted by two different expres-
sions. The first hypothesis may form the base of a N o m i n a l i 
s t i c system of Metaphysics (Ontology), the other of a R e a l i s t i c 
system. The Realistic Hypothesis, i. e the a x i o m o f e x t e n s i o n 
would be formulated as follows: 

This axiom seems to have had great success in recent years. I ne-
ver should care to discuss its truth. I am convinced we never get 
a. contradiction from using this axiom, but I am also convinced 

') Cf. Fraenkel: Der Begriff »deiinit« und die Unabhiingigkeit des Auswahl-
axioms. Sitzungsbericlite der preufSischen Akademie der Wissenschaften, Berlin lit'2'2. 
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• that its negation is consistent with the primitive propositions of 
the Logical Calculus and with the directions of the Pure Theory 
of Types. 

Moreover, there are other general hypotheses which imply 
the negation of the axiom of extension, yet are at the same time 
very fruitful. 

To see this, let us assume the following definition of the ex-
order Leibnizian identity, the definition of complete Leibnizian iden-
tity being in the Pure Theory of Types impossible. 

W e have: 

With this definition we build up the theory of the a-order Leibnizian 
identity, just as in Principia. E. g. we have the following propo-
sitions: 

For the order Leibnizian identity of classes we have the 
following definition: 

W e have now the following propositions: 
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We see that the order Leibnizian identity of two classes im-
plies their identity (equivalence). 

I shall use the following abbreviations: 

The definition of the Axiom of Intension, i. e. Intax, is as-
follows: 

W e have now the proposition: 

Thus it is obvious that the Intax is not consistent with the Axiom 
of Extension. Now, it is possible to prove, as we shall see belowr 

that Intax implies Infinax (i. e. the Axiom of Infinity) 
On the contrary there seems to be no real simplification of 

Arithmetic, if we assume the axiom of extension — The problem 
of the Leibnizian identity of two equivalent classes or relations can 
be eliminated by simply dealing with extensional classes or relations, 
as we have seen in Part I. The axiom of extension would be need-
ed only in the simplified theory of types, to avoid the proof of 
the existence of classes, which can never be explicitly given. This 
proof is as follows: 

In the simplified theory of types we have the complete Leib-
nizian identity, which is to be defined as follows: 

Now let us assume the following definition, using a, (3 as variable 
class-letters: 

l) The possibility of such a proof was suggested to me by Mr Greniewski-
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W e have the following proposition: 

To see this, suppose we have: 

This proposition being true for every / , it is true for G. 
Therefore we have: 

Here, the hypothesis being true b\r 13-15, we have: 

i e. the proposition (4). 

Now, it is obvious that the function /', whose existence is proved 
by (.4), cannot be equivalent to G Therefore we never shall have 
such a function, unless we assume the axiom of extension. As a sys-
tem containing such an axiom in no longer one of pure logic, we 
see that there is no system of pure logic to be based on the sim-
plified theory of types. 

I do not know whether an adequate definition of the hypo-
thesis of Nominalism is to be found in a system of Ontology using 
no other primitive ideas than purely logical ones. At any rate the 
Intax is a part of the hypothesis of Nominalism. Another consti-
tuent of this hypothesis would be the following axiom, which, as 
is at once to be seen, is inconsistent with Proposition (vie 

This axiom enables us to prove that the class of functions of the 
type W is similar to the class of classes where 

is a function of the type W. The proof of this pro-
position is a trivial application of our axiom. W e should then have 
in any type the same cardinal numbers in spite of Cantor's theory. 
Nevertheless the axiom in question seems unfruitful, if used in a 
system of Mathematics. To obtain a satisfactory one, we ought to 
suppose that any type is similar to a class of inductive numbers. 
W e shall call this hypothesis the A x i o m o f N o m i n a l i s m 1 ) . Note 

l) Cf. Zasadv czvstej teorji typ6w, Przeglqd fit. 19*22 p. 28. 
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that this hypothesis, not less inconsistent with Cantor's theory 
than with the simplified Theory of Types, is nevertheless very na-
tural and quite simple. It conforms to Poincar^'s postulate, stating 
that there are no other mathematical objects than those we can 
build up into a given system. It is interesting to note that with 
the Axiom of Nominalism, we can prove the axiom of Zermelo1), 
and we have nevertheless to do with a continuum conceived as an 
ambiguous symbol (Cf. Part I, p. 19). 

The researches concerning this subject seem to be very im-
portant, many interesting theorems of modern Mathematical Analy-
sis being based on Zermelo's axiom. Note that with the axiom of 
Nominalism we prove, e. g. that a limit point of a class of points 
is a limit point of a progression of points, contained in the given 
class. As the Intax enables us to prove the Axiom of Infinity, it is 
obvious that a system based on the Axiom of Nominalism and on 
Intax should embody modern Mathematical Analysis. 

B. Types . 

It is to be remarked that the use of primitive letters is very 
limited. As a matter of fact, they are only used to build up the 
expression C {x, y). Now, there is another method of obtaining an 
equivalent expression. Let us expunge the primitive letters from 
our system and assume the following definitions: 

ft is obvious that the symbol denotes the proposition' 
is of the same type as as much as the symbol The 

elimination of primitive letters would be an essential simplification 
of the Pure Theory of Types, f f we omit the primitive letters, we-
can have a very simple direction for the construction of functions-
of the same type, i. e: 

D Two functional expressions, containing no primitive letters,, 
denote functions of the same type, 

1° if they denote at the same time functions with I variable? 
(or with II, or with III, or with IV), their corresponding variables-

' ) Cf. Trzy odczyty odnosz^ce do poj^cia istnienia. Przeglqd til. 1917„ 

Rocznik Polskiego Tow matematycznego. 7 
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being determined by the same functional expressions, or being in-
dividual letters; and 

2° if they contain the same elementary letters, and the same 
undetermined variables occurring in both as constituents of the same 
functional or propositional expression. 

With this direction we can write significantly <Ta (E. 6r), with-
out using the directions 0 2, by simply looking on the letters oc-
curring in the expressions E, G. 

In consequence of our direction, an intuitive use of the pure 
Theory of Types appears to be possible. Nevertheless I still keep to 
directions 0 2 , as being more convenient in symbolic practice. 

Note that by the direction D, we have: 

a formula impossible to attain by the directions 0*2. W e see at 
once that this difference is not essential. The first method is most 
in harmony with practice; the second with the primitive idea of a 
logical type. In Principia we have an analogous difference between 
first-order matrices and first-order functions. 

The pure Theory of Types does not enable us to prove the 
existence of functions of a given property, without having an in-
stance of such a function. Nevertheless, it enables us to prove the 
existence of individuals, without having any instance of them. Now, 
Prof. Wilkosz has remarked that a purely formal system of Logic 
ought not to be of any use in proving the existence of objects 
which are not explicitly given in the system. To have such a sys-
tem, it is sufficient to deal with individuals in conformity with 
the method we have applied to classes. We begin with introducing 
the letters /, m, w, which shall be called i n d i v i d u a l c o n s t a n t s . 
W e suppose that these letters denote individuals; and we agree 
that these letters can never be used as noted or apparent variables. 
As there are metaphysical reasons to admit the existence of indi-
viduals of different types, we shall never use such expressions as 

To have noted or or similarly as 
apparent variables, we shall be obliged to begin with such expres-
sion as where the real variable x is determined 

l) Mr Skarzenski, has remarked that we get a serious simplification of the 
system, if we use as a fundamental idea. I see that this method would be 
most conformable to the real meaning of the idea of a propositional function. 
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by the constant m. Then the fundamental Principles of the Calcu-
culus of Functions will be: 

I. The Principle of Deduction: 

II. The Principle of Disjunction: 

With these Principles we can prove that there is an individual of 
the same type as m, we having the proposition: 

but we cannot prove that there is an individual. 
Such a modification of the Pure Theory of Types will be 

made in the complete system of Logic and Mathematics which I 
intend to publish later. 

The theory of functions of the same type, as expounded in 
Part I, is far from being complete. To have a full theory of fun-
ctions of the same type, occurring in a system, it would be neces-
sary to write a very big book, — as a matter of fact a common-
place one. It is therefore more reasonable to prove no other pro-
positions than those which are to be used immediately. In this pa-
per we shall use the following propositions, which do not occur 
in Part I: 
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W e shall use the following abbreviations: 

Note that, if we take this is by no 
means effected by the simple application of 0 l6 :but we first take 
by 12 0 1 0 2 

and then we apply the direction 0 1 6 to this function. 

. Automatical construction of assertions. 

It is to be remarked that the number of definitions needed 
in practice is very great, In this paper we shall not give all defi-
nitions explicitly in cases from which any ambiguity is excluded. 
W e shall also use some simplifications in our construction of ex-
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pressions which are by no means an essential modification of our 
directions, and may without any difficulty be omitted in a complete 
system. E. g. we shall omit one external dot on both sides of onr 
assertions; likewise the brackets in defined symbols, in cases exclu-
ding any ambiguity; we shall also omit the letter a in defined sym-
bols, by a proceeding to be explained later. 

VI. Prolegomena to Cardinal Arithmetic. 

This chapter contains certain definitions and propositions to 
be explicitly used in Cardinal Arithmetic. In spite of the general 
method expounded in Part I., we shall have to deal with definitions, 
built up for special types. 

a. Complements of the Theory of Deduction: 

[to be called: Transp] 

b. Classes and Relations. 
We shall use the following abbreviations: 

2004 extens,, 

20-041 extens 

2104 extensa 

21041 extens 

The difference between the use of extensa(x) and extens (x), (or 
extens„ (i?) and extens (B)), is that the first symbol can be automa-
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tically applied to higher types, so as to have e. g. extens 

for 

The second symbol i. e. extens (x) stands simply for extensa (x). 
Such simplified symbols as extens (x) will be used below without 
being expressly defined, in conformity with the remark on p. 14. 

I pass now to the following list of definitions, which are built 
up for special types to be used in Cardiual Arithmetic. 

Definitions: 
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Propositions: 

extens 

C. Theory of Relations. 
Relative products of tAvo relations. 
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Analogous abbreviations will be used for relative products of 
relations of any type. 

Analogous propositions for other types are here tacitly assumed. 
Limited domains and converse domains. 

Ordinal couples: 
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O n e - m a n y , m a n y - o n e a n d o n e - o n e r e l a t i o n s . 

I omit the definitions 

which are to be got by the same method. 

D. Similarity of Classes. 

W e shall use the following classes and relations to determine 
the types: 
7 3 0 0 2 

7 3 0 0 3 

Our propositions, and 121, imply the following 
propositions concerning the types: 
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Note that, if x or to is not extensional, we have 
1 he proposition is defined as follows: 

For classes of relations of the type A, we have the definition! 

This definition is to be used only in a small number of pro-
positions. The full theory of similarity will be given for 

By the method of Principia we get the following propositions: 
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I now pass to the Schroder-Bernstein theorem and its lem-
mas, assuming the following definitions: 

Note that is ambiguous as to the order of w, therefore 
is a proposition, the expiession being meaningless. 

We now have the following proposition to be srot by the method 
o f Principia: 
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The hypothesis is here irrelevant, but it is neces-
sary in the following lemmas. It is no serious limitation of our 
theory, as we have to apply our lemmas to one-one relations. Fol-
lowing Principia, I write „Hp 73 81" for nthe hypothesis of 73-81".. 

We have: 

http://rcin.org.pl



This is the Schroder-Bernstein theorem. Note that this theo-
rem is true, when are of the type K. but it is not 
proved for being of the type 

VII. Cardinal numbers. 

The Theory of Cardinal numbers, as given in Principia, is 
based on certain conventions enabling us to deal with numbers of 
ambiguous types. These conventions are far from being general 
directions of meaning, as the}r concern arithmetical operations. 
These conventions being required in proofs of propositions, can 
hardly be omitted, therefore it may be doubted whether we can 
build up Arithmetic without supplementary directions. Now the use 
of ascending cardinals seems to be scarcely possible without these. 
Moreover it would be quite useless in our system, as we can 
prove nothing concerning cardinal number of the Universum of 
a given type. There is this essential difference between the Pure 
Theory of Types and a simplified one, that the simplified Theory 
enables us to prove that the cardinal number of the classes of 
classes contained in a given class is greater than the cardinal num-
ber of this class With this theorem, we can prove that if a is 
a cardinal number other than the null-class, there is a cardinal 

») Cf. Principia * 102 1. 
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number (a -f- 1) other than the null-class. Therefore in the simpli-
fied theory it is useful to deal with ascending cardinals; but, as 
I think, we ought at any rate to set aside the special conventions 
o f Principia. In the Pure Theory of Types we have to do simply 
with homogeneous cardinals. This limitation enables us to get the 
theory of cardinals without any supplementary convention. 

A. Homogeneous Cardinals. 

Let us assume the following abbreviations: 

W e see that Bed (a)) is the hypothesis of reducibility of sub-
classes of o>, as much as of one-many relations, whose converse 
domain is a sub-class of co. W e shall deal with reducible classes, 
i. e. classes which satisfy Bed (co), using a method analogous to that 
which we have applied to the problem of extension. As we cannot 
prove that there are in the type DaC classes which are not iden-
tical with the existence of cardinals other than 0,1 
and 2 is not assured by any means in this type. As we can prove 
that the null - class, as well as the classes containing elements 
identical with a unit element, or with one of two given elements, 
are reducible classes our dealing with reducible classes is no serious 
limitation of the theory of homogeneous cardinals. 

I assume the following definition of the relation of similarity 
between reducible classes: 
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This relation enables us to have the following definition of 
a homogeneous cardinal number of the class k having the type 

W e see that is the class of all reducible classes of the 
type which are similar to 

We shall use the abbreviation: 

The numbers 0, 1, 2 are defined as follows: 

The class of cardinals other than being denoted by NC,. 
we have the following definition: 

W e now have the following propositions concerning the use 
of Red o)). 
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With these lemmas we prove now without any difficulty the 
following: propositions, by the method of Principia. 

Here f, is" no special sign; we simply use the class 1 to de-
note the types, according to ihe definition 20042. 
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W e then have: 

This important proposition is got by means of the Schroder-
Bernstein theorem. Note that our definition of A C enables us to 
use this theorem, as we are dealing with no other classes but redu-
cible and extensional ones. 

C. Addition. 

The sum of two homogeneous cardinals is to be defined as 
follows: 
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The dealing with homogeneous cardinals makes the more ge-
neral definition, as given in Principia, irrelevant to our purposes. 
Now we have the following propositions: 
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D. Multiplication. 

I take from Principia the following definition of the arithme-
tical product of two classes: 

The definition of the product of two cardinals is now: 

W e have now the following propositions: 
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I shall use the following abbreviations: 
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E. Exponentiation. 

According to the method of Cantor, I start from the following 
definition: 

W e see that 
extens (x, w).] 

is a class of relations of the type A, 
like By means of i we define o l as follows. 

W e have now the following proposition: 
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To prove the remaining laws of exponentiation, I shall use 
the following temporary abbreviations: 
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W e have the following propositions concerning these relations: 
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This proposition is the third law of exponentiation. W e have 
got the laws of exponentiation by another method than that used 
in Principia. The proofs are here very much shortened; newerth-
less, as the fundamental relations we have to deal with are ex-
plicitly given, there is no further difficulty to obtain full demon-
strations. 

F. Subtraction. 
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The proof of these propositions is to be got by a direct ap-
plication of the method of Principia and of lemmas 101 • 1001 1002. 

VIII. Inductive numbers. 

The Theory of iductive numbers, as based on the pure theory 
of Types, is quite complete and seems very simple. Moreover, it can 
be exposed in a quite popular way, without any serious difficulty. 

I begin with the definition of an hereditary class. 

W e have now following proposition : 

Note that H(g, r) is ambiguous in respect to the type of g. 
I proceed now to the definition of inductive numbers. The class of 
inductive numbers ought to be the logical product of all hereditary 
classes, i. e. all classes g such that H(g,0). Now, we cannot speak 
about „all hereditary classes", these classes not having the same 
type. Therefore we cannot speak simply of inductive numbers, as 
we have different orders of them. 

Let us now lay down the definition: 

Our definition of the O- order inductive numbers will be: 

This definition is a pattern for definitions of inductive num-
bers in any order. W e shall here use the definition. 
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It is obvious that the <Z>- order inductive numbers do not ne-
cessarily belong to all hereditary classes of another order. Now, it 
is useful to speak about N0C induct - order inductive numbers. 

' We shall see below that the inductive numbers of this order have 
all fundametal group - properties of the natural numbers. Therefore 
we shall call these numbers simply i n d u c t i v e n u m b e r s , and 
we shall use the following definition: 

It is easy to prove that all ^inductive nnmbers" are <Z>-order 
inductive numbers. We have the following: proposition: 

The following propositions concerning induct can be pro-
ved by the same method for N G induct. 

To prove this proposition we use 120-001 and we show in 
an easy manner that induct is an extensional class. 

Note that, if any natural number, e. g. 1918, is defined in 
our svstem. we can prove the proposition 1918 induct, using 
1918 times the method of the proof of 110122. 
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Remark: As we deal with numbers of the same type, the 
complicatad proof of Principia is here supplied by the simple ap-
plication of 120'11 to the class: 
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We prove in a similar manner: 

Remark that this proposition is much more general than its 
correlate of Principia. W e shall see its importance fur the further 
development of our theory. 
Rocznik Polskiego T o w . matematycznego, 9 
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To prove the theorem 12013, I assume the following tem-
porary definition: 
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W e now have: 

This proposition is to be proved by the same method as 
120-13. 
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This is the second fundamental theorem concerning the group-
properties of inductive numbers. 

The axiom of infinity is to be defined as follows: 

W e have the following propositions: 
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I shall use the following abbreviations: 
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I shall use the following abbreviations: 
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This is the third and last fundamental theorem concerning 
the group properties of inductive numbers. 

IX. Some remarks concerning Finite and Infinite. 

I assume the following definition of finite classes: 

We see that all inductive classes are finite classes. 
To prove that all finite classes are inductive classes, we need 

the multiplicative axiom, unless we assume that (iV0Cinduct— iVCinduct) 
i 

is not a null-class. With this last hypothesis we get finite num-
bers, which are not inductive numbers; but we can prove that any 
$-order inductive class, being no iV0Cinduct-order inductive class 
must be an infinite class in a sufficiently high order. Now. us the 
multiplicative axiom can be proved in the system of Nominalism, 
as remarked above, we see that in this system we have no other 
finite numbers, as inductive numbers. 

http://rcin.org.pl



137 

Note that Infinax by no means implies the existence of n0. 
T h e existence of any aleph must be assumed separately. — It is 
easy to see that if we deal with alephs, we assume the reducibility 
of the corresponding classes, and by this method we get a system 
which is practically equivalent to the simplified theory of types. 
W e then see that Cantor's theory is closely connected with the 
simplified Theory of Types. 

The fundamental idea of this work being that there are no 
other primitive propositions than those belonging to the Logical 
calculus, we are obliged never to deal with an hypothesis without 
having a parallel system based on a contradictory hypothesis. Now 
it is interesting to see what is to be done, if we assume an hypo-
thesis inconsistent with the multiplicative axiom. Such an hypothe-
sis being somewhat connected with the ideology of Realism, we 
can deal with it by means of the simplified Theory of Types. This 
matter will form the subject of a separate paper l) . Here I wish 
to expound only the fundamental ideas of this work. On the other 
hand, I shall prove the fundamental proposition of Nominalism 
which I have mentioned above. I begin with this proof. 

A. Nominalism. 

I shall use the following definitions: 

The direction 0 4, enabling us to take functions in any type 
for all individuals occurning explicitly or implicitly in a given ex-
pression, we ean use any function instead of a. Then our Theory 
of Cardinals applies to classes of any type. Now we shall have to 
deal with classes of the type fc>""rr) instead of K and with 

corresponding cardinals and inductive numbers. This Theory enables 
us to prove the fundamental theorem Of Nominalism, which I call 
the theorem of M. Greniewski. I use the following abbreviations: 

') „Uber die Hypothesen der Mengenlehre", to be printed in „Mathema-

•tische Zeitschrift". 
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I denote by the function we get from O, if we use fun-
ctions of the type instead of functions of the type K. I shall 
also use the abbreviation: 

The interval determined by is to be defined as follows: 

W e have the following lemmas: 
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This is the theorem of Mr. Greniewski. 

B. Realism and hyperrealism. 

Let us assume the following definition: 

If we assume Transeax, we can prove without any difficulty 
that is a finite class, i. e. a class which is not similar to any 
proper part of itself, not being an inductive class. W e also prove 
the proposition: 
Transeax ^ Infinax. 

It is easy to see that Transeax is not consistent with Multax. 
Nevertheless there is an hypothesis, which is practically as much 
fruitful as the multiplicative axiom, being consistent with the 
Transeax. To get this hypothesis, I shall use the idea of self-
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comparable classes (intspec). We have the following definition of 
this idea: 

With this definition we can build up the following definition 
of the A x i o m o f A f f i n i t y (Affinax) 

We see that Affinax cannot be applied to classes, which are 
not self-comparable. Therefore we never can prove with this axiom 
the multiplicative axiom or some equivalent axiom. It is easy to 
see, although it can by no means be proved that Affinax is con-
sistent with Transcax If we take Transcax for Infinax and Affinax 
for Multax, we get a system, which is as well founded as Cantor's 
system, and which enables us to have a generalised Arithmetic 
and Mathematical Analysis. 

Additional errata to Part 1. 

p. 23, 1. 16 read ^Fundamental class-letters" for ^Fundamental and 
functional class-letters". 

p. zd. tootnote read 

p. 25, footnote 3 read 
p. 26, 1. 22 read „noted individual variables" for „noted variables" 

p. 28, 1. 8 read „are to be used in Ji, as denoting" for ^denote" 
p. 28, 1. 17 read ^expression or a real variable, A'"' for „expres-

sion, Eu 

p. 28, 1. 23 read „we can make any substitution for a letter in 
all its occurrences, allowed in the defining symbol" for „we 
can take a functional expression for a determined real va-
riable". 
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p. 28, 1. 28 read r)F(E') is a propositional expression" for VF(E'), 
h (O) are propositional expressions" 

p. 29, 1. 15 read VE', if all determined variables of E are deter-
mined variables of E'.u for VE'.U 

p. 2t), 1. 17 read „in respect of this expression" for „expressions" 
p. 29, 1. 26 read fundamental indetermined" for ^fundamental" 
p. 29, footnote read ^conformable" for „conform" 
p. 29, 1. 32 read „and if" for „or if" 
p. 30, 1. 12 read „in respect of Eu for „one with another and with Ea 

p. 31, 1. 4 and 1. 11 read „any fundamental letters or any functio-
nal expressions" for „any functional expressions" 

p. 32, 1. 7 read „any compatible propositional" for „any propo-
sitional" 

p. 37, 1. 12 is to be cut out 
p. 42, 1. 2 read = for = 

i/ 
p. 42, 1. 10 read = for = and = for = 

<V dj 
p. 42, 1. 25 read u(a) = u(a) for u = v 
p. 43, read = for = 

a, a 

p. 43, 1. 13, 15 read u' for u and u and v' for v and v 
p. 44. 1. 11 read — V for .a — V. 
p. 44, 1. 12 read —F ( a ) for . jf(a) — F(a) . 
p. 45, 1. 2 read „ = A ' t f o r » = « " 
p. 45, 1. 21 read . -R\atb) — It\a,b) u . for . R\a h)v — u . 
p. 47, 1. 11 and 12, read <7 for D 

Errata to Part II. 

p. 96, 1. 3 read „is" for „in" 
p. 103,1. 10 read extens^ for extens'j 
p. 117,1. 6 and 26 read = for = 

p. 119, last line read 

I am indebted to Mr. Skarzeriski for valuable remarks con-
cerning the errata to Part I. I am also indebted to Mr. M. H. Dzie-
wicki for the reading of proofs. 
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