The Theory of constructive Types.
(Principies of Logic and Mathematics).
‘ Part: .
General Principles of Logic: Theory of Classes and Relations.
By

Leon Chwistek.

Introduction.

The purpose of the present paper is to show how we can build
up a system of Logic and Mathematics, assuming no other primi-
tive ideas and propositions than those of the Logical Calculus. It
is to be remarked that, for foundation of Mathematics, there is
hardly any other method to be found. Suppose we assume any sy-
stem of mathematical axioms: we then must prove that this system
contains no contradiction. To_prove anything, we must have some
primitive ideas and propositions. These in their turn must contain
the primitive ideas and propositions of the Logical Caleulus. There
is no means of building np a system of Mathematics, without assu-
ming the primitive ideas and propositions of the Logical Caleulus,
or their equivalents. Therefore any system of Mathematics must
contain the primitive ideas and propositions of the Logical Caleulus.

We shall see that numbers are classes, and classes are proposi-
tional functions. Therefore, Mathematics is a part of the theory of
propositional functions. Now, the logical calculus being a part of
the theory of propositional functions, it seems obvious that we can
get at least a part of Mathematics without assuming any other pri-
mitive propositions than those which belong to the Logical Caleulus.
This part of Mathematics appears to be the most solidly founded.
Other parts of Mathematics, — the theories based e. g. on the axiom
of infinity or on Zermelo’s axiom — are to be considered as con-
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sequences of these hypotheses. In modern Mathematies two following
problems seem to be of great importance:

19 Can we prove a given proposition without Zermelo’s axiom? )

29 Given a class other than the null-class. can we determine at
least one of its elements?

—~Problem 1. can not be fully answerd without a perfect system
of symbolic Logic and Mathematics, otherwise there always remains
a suspicion we may have tacitly used the axiom of Zermelo.

Problem 2. appears to be very obscure so long as we work
without Symbolic Logic. Then we have no means to reject the po-
stulate of Kronecker, stating that a number is definite when we can
calculate it to as many decimal places as we choose. Now this po-
stulate implies a serious limitation of the domain of classic analysis,
not being itself clear enough ?).

In the system of Symbolic Logic we have no other objects than
propositional functions and propositions. Now, we get propositional
functions from propositions by a formal processus which does not
‘contain any ambiguity. Therefore, to have any objeet, it is neces-
sary and sufficient to have a proposition from which this object is
to be obtained by a wholly determined formal processus.

Il we assume existence axioms, we can prove that there are
objects, which perhaps cannot be determined. In a system based
exlusively on the primitive propositions of the Logical Caleulus,
there is no means to prove the existence of the elements of a class,
without having an instance of such ‘elements 3). ;

A contrary method of working is followed by Prof. Hilbert in
his interesting paper: Neubegriindung der Mathematik ¢). Prof. Hil-
bert assumes a system of axioms containing the primitive proposi-
tions of the Logical Calculus together with some purely Mathema-
tical axioms (e. g. Zermelo’s axio:n); and he endeavours to prove

1) Cf. the important paper of Prof. Sierpinski: L'’axiome de M. Zermelo et
son role dans la Théorie des ensembles et I'analyse, Bulletin de I'Academie des
Sciences, Cracovie 1919. )

?2) For this remark I am indebted to Prof. Zaremba.

') In spite of a remark on p. 136 of Vol. L. of Principia, the system of Whi-
tehead gnd Russell appears to be able to prove existence axioms without using
any instance, as we shail see below.

; ) Abhandlungen aus dem mathematischen Seminar der Humburgischen Uni-
versitit. Hamburg 1920. /
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with the help of ,metamathematical® methods that they imply no
contradiction.  Nevertheless Hilbert must either explicitly or impli-
citly use the primitive propositions and ideas of the Logical Caleu-
lus. Suppose he has proved by means of these primitive ideas and
propositions that a system of propositions (say p, ¢, r) is compatible
with them. Then, he has simply proved these propositions. If he
has used (explicitly or tacitly) other ideas or-propositions, then he
has assumed some new hypotheses which appear as more general
than Zermelo’s axiom ete. At any rate, the system of primitive
propositions of Symbolic Logic and its consequences remains as
basis of any further investigation. Note, that Hilbert does not assume
the Theory of Types. Nevertheless I can hardly assume that we
have a ,Meta-mathematic® at our disposition, which could be really
free from problems connected with the Theory of Types!). To see
this clearly, note, that such a ,Meta-mathematic cannot be essenti-
ally different from the Logical Caleulus, this calculus being as
a matter of fact a simple consequence of the laws of our thinking.
Now, as we shall see below, we can not employ any self-consistent
Logical Caleulus at all, if we do not asume the Theory of Types.
Therefore there seems to be no means of avoiding the “said theory.

I. A Critieal examination of the theory of Prof. A. N. Whi-
tehead and Hon. B, Russell.

A. Functions.

The fundamental hypothesis of the Theory of Types of White-
head and Russell, as developed in their elassic work: Principia
Mathematica 2) consists in the statement that the idea of ,all objects“
is meaningless As a matter of fact, there seems to be no means
of preserving this idea, because it is easy to build up a propositio-
nal function Qz based on this idea, and being a contradictory object.
Suppose all objects are possible values of a propositional function
@z, and suppose we can speak about all properties of z (i. e. all
propositional functions @z such that either @x or ~ @, [which is

1) As we shall see below, there is a Meta-mathematic, dealing only with the
meaning of symbols, but never with the truth or falsehood of propositions, There-
fore there is no meaus of proving a mathematical or logical proposition with such
a Metamathematic. )

?) Vol. I. Cambridge 1910,
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not-@z]). Now let us write (H®D) instead of ,for some Dz“,
= instead of ,is identical with* and @z .yr instead of ,®Px and Pr“.

With the help of these ideas, which seem to be essential to any
system of symbolic logic, we can build up the proposition:

(AD) . Bx = a .~ Da,

which we shall denote by (Ja. Now, it is easy to see that )z is a con-
tradictory object, we having propositions ¢ Qr) and ~ O(Qx)").

avoid such objects, there seems to be no other means than to sup-
pose with Whitehead and Russell, that (z can be no possible value
of the argument of Qx, the idea of ,all values of the argument of
@z being not equivalent to the 1ded of ,all objects“. Moreover,
we should assume that the idea of ,all ob)ects is meaningless, we
having a hierarchy of types of ObJECtS Suppose we can speak about

sall properties of z“ i. e. about d]l propositicnal functions @z such,
that either @r or ~dz“. We shall have to deal 1° with individuals
i. e. objects being neither propositions nor propositional functions; 2°,
with propositional functions whose arguments take individuals as pos-
sible values, i. e. propositional functions of the 1** type; 3% with propo-
sitional functions whose arguments take functions of the 1** type as
possible values, i. e. propositional functions of the 2% type.. and
so on. Such a simple hierarchy of types would be, as a matter of
~ fact, sufficient to build up a self-consistent system of Svmbollc Logic,
there being no purely Logical paradoxes based on the idea of ,all pro-
perties of z“. Nevertheless, as this last idea does not exclude such
contradictions, as Richard’s paradox, or Konig's, it seems to be in-
teresting to get a system of Symbolic Logie, free from such con-
tradictions. To avoid these we must agree with Whitehead and
Russell that the idea of ,all properties of z* is meaningless.

Then we cannot speak about ,all functions @z such, that
either @z or ~ @z*, we having moreover a hierarchy of functions
of different types (or, as we call them, functions of different orders)
having & as a possible value of their argument.

We see that this seriously complicates the primitive theory
of types. Now, such symbols as (z) i. e. ,for all #’s“ or (Hx) i

yfor some z's“ have meaning only if = denotes individuals. To

1) Cf. Uber die Antinomicen der I’ rinzipien der Mathematik, Mathematische
Zeitschrift 1922,
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have such symbols for functions, Whitehead and Russell build up
the idea of a matrix. i. e. of a funection, having no such constituent
as (z) or (Ux). Such fynctions are to be denoted by symbols like
Oz, P!z, ). ete. Having these functions, we can use symbols
(@), (4®) for them, and build up matrices of the 2 type, whose
arguments are ®!z, and of which there are no such constituents
as (z), (Ux), (@), (AD). These matrices are to be denoted with symbols:

FADL2), f1(Dlz, x) ete.

Other functions are to be obtained from matrices, using symbols:

like (r), (Hz) (@), (D), e

(@) pl(a, y), (da). flUDlz, @),
(D). [1(Dlz, x) ete.

This part of the Whitehead-Russellian Theory of Types. we
shall call the pure theory of types, or the theory of constructive ty-
pes. This theory with formal modifications is to be developed in
the present paper.

The theory of Whitehead and Russell, as assumed in their
,Principia Mathematica®, cannot be treated as a pure theory of types;
these authors having supplemented this theory with an jexistence
axiom“1) they call the axiom of reducibility, and this axiom being
neither a purely logical axiom, nor a simple application of the ideas
of the pure theory of types. This axiom states that:

(UD). Ple = ,ya,

i. e. yevery function of a variable is equivalent for all values, to
some predicative function?), i. e. to a matrix.

Now, it is obvious that, given any,function @z, we have
sometimes no means of building up a matrix equivalent to this fune-
ction. So, if we affirm the existence of such a function, we. must
suppose that there are matrices which we cannot build up, i. e. ma-
trices which are uot constructive. Now, we can prove, by the method
used by Richard, that, if there are onl y constructive functions, the

1) Cf. Trzy odezyty odnoszgce sie do pojecia istnienia, Przeglad filozo-
ficzny 1917.
%) Prince’pia Vol L p. 177. )
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axiom of reducibility is false!). If we assume the theory of classes
and relations developed by Whitehead and Kussell, and the Richard’s
idea of expression, we can build up a contradicetion quite analogous
to Richard’s paradox. This theory being based on the axiom of
reducibility, it seems obvious that this axiom implies contradiction 2).
Nevertheless. as we shall see at once the definition of funections of
classes (or relations) given in the Principia appears to be ambi-
guous. If we deal simply with propositional funetions, there seems
to be no means to get Richard’s paradox.

B. Classes.

1. The definition of a function of a class, given in Prineipia
(#20:01) is as follows:

ey . = (HD): Bz . = . wa : f{D!2). Df

This definition is completed by the‘followiug convention about
the scope of the symbol 2(p2):

The scope of the symbol ,,2'(!/1?)“ is the smallest proposition en-.
closed in dots or brackets in which 4z(P2)" occurs?).

Now. this convention appears to be insufficient to avoid all
ambiguity. Let us take for f{@!z‘} the function: ~(¢!£=0!;), and
put this function info the following proposition (¥20-1), we deduce
immediately from our definition of a function of a class:

fe(@2)) . =:(AD): Olz. =, . pa: 1{Dl2).

Then we get:

I

C~(e(p2) = 012). =: (Hy): Ola. =, . gz : ~ (D2 = 012).

Now, apply our convention to this last proposition. We get:

()~ (HD): Dz =, .pz: (D2 = 012): = (AD): Dlo. =, . pa:
~ (D12=0!2).

1) Zasada sprzecznoSei w fwietle nowszych badain B. Russella, (Akademja
~ Umiejetnogei, Krakéw 1912).

?) Uber die Antinomieen der Prinzipien der Mathematik 1. c.

3) Cf, Principia Vol. 1. p. 197 and 181.
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Now let us take 612 for @z Tt is easy to prove the proposition:
(UD): Dl =, . Olz: Bl =01,
whence we get immediately by (1):
~(AD): Blo. =, 0lz:~ (Dl2=06l2), i e.
Olz.=,.0lxz. Dg. Olz=0lz
Then, assuming the convention of Whitehead and Russell we
have proved that all equivalent matrices must be identical; which

is a paralogism. So we cannot assume Whitehead and Russell’s
convention. As and I see no means of making any other useful

convention, I have tried to note explicitly the scope of ,2(2)%,
i. e I have assumed the following definition:

[2(p2)] fLa(pe)}. =: (D) : Dla .=, pr: f{DI2). Df

~« With such a definition of a function of class we avoid all
ambiguity, but it soon appears that we get no simplification of
the caleulus of functions. This becomes clear if we remark that,

e. g ~[;(wz)|._f{$(zpz)} and [é(wz)J ; ~f{é(tpz)}_ are two different
funetions. It is to be noted that, if we do not assume that any two
equivalent matrices must be identical, we have the proposition:

[2)]. [2(w2)] : 2(w2) + 2(2),
where the symbol == is given by the definition (13-02)
sy .= ~(@=y). A Df

The most important consequence of our noting the scope of
the class-symbols is as follows:
We can prove:

[2(w2)]: [2(P2)] . 2(p2) = 2(P2): == : 92 =, . Dz (#20.1D),
but we eannot prove: )

Oz.=,.92. D g{l2(p2)]. [12(w2)]} . = . g{|:(2)] . /1[2(D2)]}.

Therefore, given any function of the form:

4_(]{[a]f!a}.
we cannot take for e any elass § such, that:

zew. =, zef.
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Of course, in practice this substitution is always possible, as
we have to use only extensional functions, but we must prove, for
any- given instance that our function is extensional. Now, for the use
of extensional functions the use of the Leibnizian idea of identity
is, as a matter of fact, superfluous. Hence, our definition of a fune-
tion of a class seems to be useless.

2. I pass to the following difficulty of the Whitehead-Russel-
lian theory of classes, which seems to be more essential. Let us
prove #20-7 for classes of classes. Thus we must first write #1211
in the following manner:

(4r) :,/‘z{mz(o:z;ej,} o= 5. g{D)(0!2)).

Le us now write explicitly #20-7. We have. -
(ELf): () pla. = . Dla:/ (! a): = 4: (Ay): pla. =,. Ola:g(y!a).
It is obvious that to prove such a proposition, we should have:

(Af):/{Ola). =4 g{Dla}.

Now, remark that this proposition has the following meaning:

Gf) . F{(H0): 0. =, yla:0Y013)): =4 g{(H6): 6!z . =,. gl2:D1(6]2)}.

Thus, we see that the axiom of reduclblhty must be assumed
for variables of the type:

(U6): 01z . =, . gz : BI(6!2).

Note that the same difficulty subsists, if we note explicitly
the scope of the class-symbols. If we will not assume the axiom
of reducibility for such functions as: ¢{(46): 0!z .=, . yla: BI(612)),
such a primitive proposition being of course some-what artificial,
we should assume this axiom for variable functions of any type.
Now, in Principia we have no other functions but those of matrices
or individuals. Therefore a radical modification of the system of Whi-
tehead and Russell seems absolutely necessary. even if we agree
with the axiom of reduecibility. We then meet the following dif-
ficulties:

A. Suppose we agree with such symbols as:

YDz} gl{ f(Dx)},
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it is easy to see that our notation will imply contradictions. Let
us take the function /(¥!z, a) of the variable ®!z, and let us write:

g!{f(‘f’! é, a)}.

Now by #9156, ,if for some a, there is a proposition fa, then there
is a “function fz“, we have the following function of z:

gl {f (D! 2, 7).

On the other hand, given any funetion F(®12 ), of P!z 2, the
expression:

9!{.f((f)! 2, 2)}
denotes a proposition. Thus the same expression denotes a function
of » and does not denote it.

The same contradiction can be constructed for matrices, if we
agree that ®!q, i. e. the function of one variable funetion P!z of
individuals, is a matrix (Cf. Principia, Vol L. p. 170). Now, we can
take f!(¥!2, a) fer ®!a (Cf. Principia Vol. I p. 1565). Therefore .
S!(®!2,a) is a matrix. To avoid this ambiguity I shall write z[®z| for
Pz and 2y [P {xy}] or yz|P{x,y}| for ®{z, y}.

B. If we have no other variables as matrices, we cannot use
the axiom of reducibility as a general hypothesis. like Zermelo's
axiom, because we cannot write with meaning:

(@®):(HY):dle.=. Pz

If we assume functions of any type as variables, then we
must have means of speaking of ,all functions of the same type
as a given function > z¢. As a matter of fact, it will be seen below
that we can construct following expression :

(P)gs :(HY):Ylz.=.,Px

Here (P),; means: ,for all functions of the same type as ¢ zt.
Such propositions as those, given above, can be used as hypo-
theses, like Zermelo’s axiom, therefore if we assume functions of
any type as variables, there is no serious reason to have the axiom
of reducibility among our primitive propositions, even if we are
willing to pass over all the other objections I have stated above.
It is to be remarked that there are hardly any propositions -
of mathematics to be found, which require the Axiom of reduci-

Roeznik Polskiego Tow. matematycznego. 2
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bility as hypothesis. We shall have to do with other, less general
hypotheses i. e. the axiom of finite numbers and the axiom of the -
continuum. We may also note that these hypotheses are of secon-
dary importance.

Suppose we sacrifice the Whitehead-Russellian theory of clas-
ses to preserve the axiom of reducibility in its primitive “form.
Then we shall have no such propositions as /12(®2)} and be obli-
ged to use the complicated method of‘ substitation: (M ): ! z. =
:—:,.&’x:f{n[;!x}. At any rate the following remark seems to be
conclusive. To have the Theory of Types, we must speak about
Junctions of the same type. Now, it is natural to have variables de-
noting funections of the same type. The axiom of reducibility would
therefore appear to be a hypothesis, like the axiom of infinity.

C. Arguments of Whitehead and Russell. General remarks.

There are in Principia 3 arguments to prove the uneccessity
- of the axiom of reducibility or some equivalent axiom for a system
of Logic based on the Theory of Types.

The 1% argument says: There is no possibility of giving an
adequate definition of identity without the axiom of reducibility 1).

The 2! argument is based on the opinion that ,if we assume
the existence of clisses, the axiom of reducibility can be proved*?).

The 3% argument is as follows:

,If Mathematics is to be possible, it is absolutely necessary
that we should have some method of making statements, which will
usually be equivalent to what we have in mind when we (inaccu-
rately) speak of “all properties of z“. Hence we must find, if pos-
sible, some method of reducing the order of propositional funetion
without affecting the truth or falsehood of its values“ ?).

The three arguments quoted above do not appear to be suf-
ficient. y '

1° Of course, a general definition of identity is hardly possible
without the axiom of reducibility, but such a definition is irrelevant
in practice. In a system of Logic and of Mathematics we have to
deal ‘as a matter of fact with statements concerning identity either

1) Principia Vol I. p. 60.
?) Ibd. p. 60.
3) Ibd. p. 173.
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of classes or of relations, and, as we shall see below there is a defi-
nition of identity to be given, which is quite sufficient for this
purpose.

2° If classes are such objects as satisfy the postulates of Hun-
tington’s Theory of classes, then their existence does not imply the
axiom of reducibility. We shall have to deal with such objects.

3° It is to be remarked that Mathematics, as developed in
Principia, being in practice conformable to ordinary Mathematics,
is as a matter of fact much more general. Now, it is natural to try
to construct a system of Mathematics, which being more general
than the system of Principia, would be in practice equivalent to
ordinary Mathematics. We shall see that there is no serious diffi-
culty in the realisation of this purpose. It is true that we shall have
no such a thing as the class of inductive numbers, but we shall
have nevertheless to deal with no such class as the continuum,
but we shall nevertheless have to deal with the continuum, concei- |
ved as an ambiguous symbol!), which will allow us to develop the
theory of Lebesgues’ measure and other chapters of the classic theory
of functions?). Only there is no means of constructing the theory
of transfinite cardinals, without any existence-axiom. With such, we can
of course prove all propositions of Principia without any difficulty.

There being no serious difficulty in our purpose, it is natural
to try and to realise it. It is to be remarked, that the syg;tem of
Whitehead and Russell is very useful as base of our researches.
No primitive propositions are to be adopted, which are not to
be found in Principia. We have to take directly from Principia all
that remains true, if the axiom of reducibility is false and if functions
of a given type are used as variables instead of matrices. The other pro-
positions are of 3 kinds. The 1** class contains propositions which ean-
not be proved at all. The 2% class consists of propositions which can be
proved by some new method, or have at least an equivalent confor-
mable to the general ideas of our system, and which can be proved.
The 3" class contains propositions which can be proved only for
some classes or relations, e. g. for one-one relations.

1) Cf. Hermann Weyl: Uber die neue Grundlagenkrise der‘Mathematik,
Mathematiseche Zeitschrift.

!) Miara Lebesgue'a, Archiwam Lwowskiego Towarzystwa Naukowego,
Lwéw 1922,
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It is easy to see that my system must be much more com-
plicated than that of Whitehead and Russell. It might be thought
that any further complication must be useless to clear up the ideas
on which Mathematics is to be based. But it may be erroneous to
think that clear ideas are never complicated: while, we must agree
that many simple ideas are, as a matter of fact, very obscure.

The system of Whitehead and Russell, being the most per-
fect and most ingeniously constructed system of Logie I know,
I hardly conceive that any other method in working on these matters
can be unsed. The knowledge of Principia is therefore quite suffi-
cient to understand what is said in this paper. All the propositions
used as corollaries being stated, there is as a matter of fact no
essential difficulty in understanding my proofs without the knowledge
of Prineipia.

To sum up my system is based on a most consistent appli-
cation of the Russellian theory of types. Mathematical ideas are
developed step by step, with the help of special hypotheses, if ne-
cessary, which affords a base for constructing the hierarchy of dif-
ferent stages of Mathematics. This method seems to prove that there
is no one unique system, but on the contrary many exclusive sy-
stems of Mathematics.

The name ,constructive types“ is based on the theoretical
possibility of construetion of all functions belonging to a given type
of my system.

11. Directions coneerning the meaning and the use
of symbols.

It is to be remarked that we can hardlu imagine a system
of symbolic Logic without some directions concerning the meaning
of symbols. Take e. g. the proposition f{pp}. We having an ope-
ration consisting in taking ¢ for pin ¢ p, we might think that ¢ was
one of the possible values of f{ypp}. Now, it is easy to see that
such an interpretation of our symbols implies a contradiction. Let
us write:

op =14,

(where the Leibnizian idea of identity is assumed).
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Then, by our hypothesis we must have:
P9=7/q

Hence we get: 9p =/p.D).09=f¢.
Now, put » ) » for ¢r and » D) p for fr. We get:

POP=p IpP-D:q)q.-=.9)p.

Here the hypothesis being true, we must have

¢4.-=-92p
which is evidently false.

Now, we must conclude that there is no such logical operation
flop) as consists in getting og out of gp. To avoid such false
interpretations of symbols as we have seen above, we need some
directions for their meaning.

When we assume the Theory of Types, our contradiction disap-
pears at once. This is clear when we note that if f{op} is a func-
tion of op, we can take for @p any proposition of the same type
as op, e. g ¢. Now, f{q} can have no meaning, as.there is no
variable argument in g. Therefore f{pp} cannot be a function of gp.

The Theory of Types of Whitehead' and Russell contains some
philosophical theories which seem to be useless. Now, it is impor-
tant to have some directions for working with symbols. Therefore,
in this part I cannot follow the method of Principia.

The theory of expressions to be given below is as a matter
of fact that conforms to the theory of Principia. I assume letters
denoting individuals, but I do not assume any analysis of the idea
of an individual, these objects never being used for any actual
substitution and their only use consisting in their being of the same
type. An analogous remark may be made about predicative functions ').

The essential difference of the actual theory from that of Prin-
cipia consists in the assumption of variable functions of assigned
types. Many directions, which seem to be tacitly assumed in Prin-
cipia are here explicitly given.

To avoid ambiguity in the notation of the functions, I use
symbols analogous to those which Whitehead and Russell use for
classes and relations.

1) For this remark as for many other valuable pieces of advice I am most
indebted to Prof. Wilkosz.
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Following the theory of Prof. Sleszyiski and Prof. Wilkoss 1).
I have  strictly separated verbal directions from primitive propo-
sitions, and I do not assume any verbal proofs. Moreover I have
not assumed any verbal primitive ideas. In what follows, such words
as e. g. expressions, propositions, functions, types ete. have no intrin-
sic meaning, their use being purely practical and defined step by
step by our directions. Note that our directions are a simple abbre-
viation, that we use instead of a full list of expressions belonging
to our system. Without such a list, or a machine furnishing as
many useful expressions as we like, there is no perfect system of
Logic to be thought of. This part of the system of Logic and Mathe-
matics may be called the real  Metamathematic“. In comparison with
the theory of Prof. Hilbert?) our idea of ,Metamathematic* seems
to be more precise. It 'is obvious that there can be no such things
as verbal proofs in a system of Logic and Mathematies. Verbal proofs
seem to be the common imperfection of Principia?) and of the the-
- ory of Hilbert.

A. Directions concerning the meaning of symbols,
000 Letters

0-01 Expressions p, g, 7, s are elementary letters.

0:011 Elementary letters denote elementary propositions.

002 Expressions u, 7, 2z are individual letters.

0021 Individual letters denote individuals.

003 Expressions 0, 9, 4, 7 are primitive letters.

004 Expressions f, g, h. j are fundamental letters.

005 1l % is an elementary, (individual, primitive, or fundamental)
letter, as the case may be, )’ is an elementary (or individuﬁl,
or primitive, or fundamental) letter.

0051 If % is a letter, 2’ is an essentially different letter, (like ¢ and 7).

006 If X is an individual (or primitive, or fundamental) letter, % is
-an individual (or primitive, or fundamental) noted variable.

!) For the notice of this theory and for the suggestion of the name ,direc-
tion* T am indebted to Mr. Nikodym.

3 Loe

3) Note especially the proposition # 10:221. It is to be remarked that we
have no real proof of this proposition in Principia, Nevertheless, this proposition
seems to be assumed as equivalent to other propositions asserted in Principia.
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0061 If » is an individual (or primitive, or fundamental) letter, X is
an individual (or primitive, or fundamental) apparent va-
riable.

0062 An expression containing only one individual (or primitive,
or fundamental) letter % and no other letters and symbols,
is an individual (or primitive, or fundamental) real variable.

007 Expressions a, 3, v,d are functional class-letters.

0-071 Expressions L, M, N, T are functional relation-letters.

0-072 Functional class-letters are functional expressions with
[ variable.

0-073 Functional relation-letters are functional expressions
with II variables.

0-08 Espressions 5, 7, %, 0 are fundamental classletters.

0081 Expressions P, ¢, B, S are fundamental relation-letters.

0-082 Expressions u, v, w, t are determined letters.

0083 Fundamental and functionel class-letters, fundamental relation-
letters and determined letters are fundamental letters.

009 Expressions a, b, ¢,d are pseudo-letters.

0:091 All pseudo-letters occurring in a given expression stand for
funetional class-letters or relation-letters.

0092 If % is a fundamental class-(or relation-) letter, (or a functio-
nal class- or relation-letter, or a determined, or a pseudo-
letter), then )’ is a fundamental class-(or relation-) letter,
(or a funetional class-or relation-letter, or a determined, or a
pseudo-letter).

0110 Expressions.

011 If E, F are expressions denoting logical propositions, then
.l| F. denotes logical proposition !).

Remark: The dots are an essential part of the expression . K| F.
Note that there is no need of a further theory of dots. For
this theory of dots I am indebted td Prof. Leéniewski. The
idea of p|g was introduced by Mr. Sheffer 2). If we use the

') Numbers 0 1-11 correspond to % 1'7-71 of Principia. Logical propositions
make up the lowest type of propositions. In our system there are no other pro-
positions. Nevertheless, if I am speaking about logical propoesitions, 1 am working
with propositions which are not logical.

?) Transations of American Mathematical, society 1915,
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0111

012

013

0-131

definitions given by this author (to be given below) we shall.
have: ..plg.=~.pVy-.

Any expression denoting logical proposition is a proposi-
tional éxpression.

Propositional (or funetional) expressions are significant,
they have a meaning in isolation.

If 2 is any primitive or fundamental variable or any fune-
tional expression and & #, {, 4 any individual or fundamental
variables or any functional expressions, then the expressions
A{E), 44§ u}, A{§ n, &}, A{& n, T, ) are funectional pat-
terns with I, with II, with III, or with IV argu-
ments. Here 4 isa functional sign, § % § ¢ areargu-
ments belonging to 4.

In functional patterns A{&}, u{&’} or A{§ %}, u{& v}, or
A& 0, Y, wi€ ', ), or A& n 8, L)y nlg, o, 9,0} the
arguments 8, & where 8 is %, or #, or {, or $}, are corres-
ponding arguments.

0-1311 Any functional pattern, whose functional sign is a primitive

0132

014

0-141

or fundamental real variable and whose arguments are indi-
vidual real variables, is a propositional expression
If in a significant expression K, the fundamental variable &
and a functional expression M having no letters in common
with & are corresponding arguments belonging to the same
functional sign: then § is a determined variable, or a
variable determined by M.

If E(2), or KE(4, 1), or H(\ u ), or I(\ u, v, 0) are any
propositional expressions containing the individual, primitive,
or determined real veriables: 7, or A u, or A, u, », or A, u, », g:
thent hee xpressions: A[E(%)], or Au[G (A, w)], or v H(\, i, 9)),
or uwe[I(3, u, v, 0)] are functional expressions with I, or
with II, or with III, or with IV variables. Here we have tur-

ned real variables into noted variables.
If EQ), G0, W), H(, u, v), I(, u, v, g) are any expressxons

contammg the noted variables %, or X, @, or %, m, », or

oty v,0; and if: [ (EN], Xu[G(y w), Au»[HO, n )],
v (103, p, », 0)] are fuuctxonal expressions, then the expres-
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0-151

0152

0186

0161

25

sions: E(\), G(. p), H(.u,v), I(h uv) are propositional
expressions ?).

If E()) is any propositional expression containing the indi-
vidual (or primitive, or determined) real variable A. then
(%) E(%) is a propositional expression. Here'we have turned
a real variable into an apparent variable.

If the expressions:

) () £ p)y (1) (W) B p)
are propositional expressions, they denote the same logical
propositions, i. e they have the same meaning?).

Any functional expression containing no fundamental letters
and no apparent variables is a primitive funectional
expression. :

Suppose that %. p. v, ¢ are any individual. (or primitive, or
determined real variables) and F'(%). or G (% u), or H(h p.v)
or I(k p, v, g) are any propositional expressions containing
the variables 7, or A, u, or % u, v, or A w v, 5. Suppose
that A, A/, or w, v’, or v, v, or g ¢’ are at the same time
two different individual (or primitive, or fundamental) real
variables, or that %, (z, v, or p) is a determined real variable
and A" (u/, ¥, or ') is any functional expression having
no letters in common with 2%, (1, v, or g). Then. if (V)
or G(X,p"), or H(N,p', v), or I(N,p' v.5") denotes a lo-
gical proposition. )\[F()\)]')\’} or 7u[(1(/ )] {N, v}, or
/:1;;) [H(, ‘:; \;)}{A TR RS 7\3/,*/9 [( 4 y., v,ﬁ NN, s v, 07}

t
’

denotes the same logical proposition 3). Here % 2’ and p., p/,
and v, v/ and ;, ¢ are connexed one with another.

Note that here the alphabetical order and the order of varia-
bles in expressions F(d), G(Ap), HO w.v), I u, v, ) are
irrelevant.

If & is a determined variable, and if Z is an argument conne-
xed with %, then % is a determined variable.

) Directions 0-13:131 corregpond to X915 of Principia,
!) This direction correspond to # 1107 of Principia.
3) Without a direction of this kind we could not write e. g.

Svaivigl et

The need of a particular direction concermng this matter was first pointed out to
me by Prof, Leéniewski.
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017

0171

0172

0173

018

0-181

0-19

02

Fundamental class-letters are undetermined functional signs
of functional patterns with I argument.

Funetional class-letters are undetermined functional signs of
funetional patterns with I argument being an individual va-
riable.

Fundamental relation-letters are undetermined functional signs
of functional patterns with II arguments. ;
Funectional relation-letters are undetermined funectional signs
of functional patterns with II arguments being individual
variables. :

The functional class-letter % stands for :[)\{z}], where % is
any individual letter.

The functional relation-letter % stands for 7. [)\{:;, 5;}] where %, p.
are individual letters.

Determined letters are fundamental lelters determined by a
funetional class-letter or a functional relation-letter.

020 Types. :

All primitive functional expressions with I (or II, or IIL or IV)

: individual variables denote predicative functions of

023

024

0241

the same type.

If in a given functional expression we change the order of
noted variables preceding th angular brackets, we get a fune-
tional expression denoting a function of the same type.
E. g expressions: xo[o{z}], ox[o{x}] denote functions of
the same type.

If E, G are any expressions such that .| (. contains the
noted variable 2 and if ):[.E]G.] is a functional expression,
then [. G|E.] denotes a function of the same type.
If K, G are any expressions such that . /|G . contains the
noted variable %, and if A[. £]G.] is a functional expression,
then ‘;\[..E|G.|G.], denotes a function of the same
type. 4

0.2411 If E, G are any expressions such that %[ £|p.), 3[1G|p.] de-

0:2562

note functions of the same type, the.expressions A[E], A[G]
denote functions of the same type.

If £, G are any expressions and % any real variable. then
if 1| E], %|G] denote functions of the same type, and if )\[IL| G.]

-
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0243

025

026

-0-261

027

0271

028

217

is a functional expression, it denotes a funection of the
same type. \

If rLE), /[GJ denote functions of the shme type, then if
A.E|H.]. A[.G|H.] are functional expressions, they denote
functions of the same type.

If EQ,p), G(vg) are exprPSsiona containing noted variables
dy s o v, 0. and if . E(h,p ) | G(v,¢). is a propositional expres-
sion, the expressions: API—EO/ y\], vp{(}(v, ¢)] denoting fune-
tions of the same type, then the expressions: l[(ﬂE(A,F)],
v[(¢) G (v, 0)| denote functions of the same type.

If E()), G(») are expressions denoting funections of the
same type, and containing the real variables %, or p., the
expression v{L(v), G(p)}, where v is a primitive or funda-
mental letter absent in K(v) and G/(p), being a propositional
expression. the expressions: v E(1.), v. G(v) denote functions
of the same type.

Given the individual, or fundamental letter. or the funectional
expression F' and the expressions If{(i), G containing the
noted variable %, then if AE(A), G/ (}) denote funcetions of
the same type, and if K(F), G(F) #re functional expres-
sions, these expressions denote functions of the same
type

If E(., ) is any expression containing the variables 9 and
and H is any propomtlonal expression, then 1f7\ (p ).H| Iqu, )\) ]
W[ H|(3) Eiz,2).] are functional expressions, they denote fu n c-
tions of the same type!).

If E()) is any expression containing the fundamental real
variable 7, then the expressions AEN]. % X{,}|1y(1) ], res-
pectively MEN), A3 {E )| E( %).] denote functions of the
same type, if they are functional expressions.

If K, F, G are any expressions such that the expres-
sion: . K|.F|G.. contains the noted variable %, and if the
expressions: A [.E|.F'|G..], A[..K|F.|G.] are functional
expressions, they denote functionus of the same type.

Remark : Statements 02—0-28 concern the idea of ,being of the

same type“. In Principia, we have a definition of this idea
(# 9:131). Nevertheless, it is 1° a verbal definition, 2° it seems

') This direction corresponds to the definitions * 903'04 of Principia.
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0-29

0-3

0-31

032

0321

033

0-34
1:01

to imply vicious circle. because to define the idea of being
of the same type, we must use the very same idea. Now,
verbal directions are essentially different from the proper
propositions of the system. Therefore, there is no adventage
in putting them in the form of a definition..

If there is a significant expression, which contains functional
expressions F, G as corresponding arguments of the same
functional sign, then £, F denote functions of the
sametypel).

D30 Bra £l nikine s

Given any expression F, we can use instead of K any other
expression £, if it has 1° no meaning in isolation, 2° if it
contains no significant letters or expressions unless real appa-
rent or noted variables, elementary letters or funtional expres-
sions present in £, 3° if it has no such components X, ¥
that Q is X Y and X or Y is a funectional (or propositional)
expression, [ being a functional (or propositional) expression.
Then we write :
Q= FE,

ds

This expression is a definition. Here K isthe defining
expression, { the defined symbol.

In a defined symbol {1 we can turn real variables into noted
or apparent variables and we can take a functional expression
for a determined real variable, but no other modifications
of the defined symbols can be allowed. ?)

If Q= F and F(£) is a propositional (or funetional) expres-

sion, tgen. F(€2) has the same meaning as F'(K).

If Q= kK, and if F(E’), F({2) are propositional expressions,
E ha\:’ing the same meaning as FE, the expressions F(F),
F(Q) have the same meaning.

~p 4 -plp:

LV plgele. )

B0 4ozt P N g

1) This direction corresponds partly to # 914 of Principia
?) Without such a direction we could never he sure to avoid ambiguities

as noted in Chap. 1. 9 et 1 0:
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040 Substitution.

04 In any significant expression K take for any individual (pri-
mitive or fundamental) letter used as an apparent (or noted)
variable, any other individual (primitive or fundamental) letter
absent in K. We get au expression £’ having the same mea-
ning as £.

041 In any propositional (or functional) expression E, take for
any functional expression (1). or any individual (2), (or pri-
mitive (3), or und e termined fundamental (4)) real variable,
in some of its oceurrences, any fundamental letter absent
from K, which appears after the substitution to
be a determined variable (1), or any individual (2),
(or primitive (3), or- fundamental (4)) real variable, being
absent from £ We get a propositional (or functional) expres-
sion k',

A Compatible expressions.

042 1If two significant expressions are present in a given signi-
ficant expression. they are compatible expressions.

0-4201 Any significant expressions are compatible in respect
of a common elementary letter.

0421 Two significint expressions are compatible in respect
of a common individual letter, if this letter is in both
expressions used as a real, (respectively noted, or apparent)
variable.

0422 Two significant expressions are compatible in respect
of a common primitive or fundamental letter, if
this letter is in both expressions used as real. (respectively
noted, or apparent) variable, and if it oceurs in both expres-
sions as a part of a common functional expression. !).

0423 Two significant expressions are compatible in respect
of a common fundamental letter, if it oceurs in beth
expressions as a real, (noted, or apparent) variable, or if
it is determined in both expressions by the same expression.

0424 Two significant expressions are compatible, if they are
compatible in respect of all common letters.

1) Directions 042—0422 are conform to the practice of Principia,
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043

044

Application to the construction of significant expressions.

If 2,7, 9 are 'any compatible functional expressions or indi-
vidual letters, and % is any primitive, or fundamental letter
absent from &, #, 7, %, then: M&}, MZ, 7}, ME& 0, 2} and 3{&, 7,2, 9}
are propositional expressions.
E. g. the following expressions are propositional expressions,
vz}, ol ), ol y, 2}, ol y, 2, ')
f{;x}a f{xa Y}, f{‘? ya?}a f{x:‘."/af.- x'}
ele(h{z}]}, ol 2[h{z}]), Floleda}]}.
Subordinate expressions.
In any expression A, take for any elementary letters, any
propositional expressions compatible one with another and
with K. We get a subordinate expression £’?).
E. g. the following expressions are propositional expressions:

~ . ~o{z[h{x}]} V ~ o{z[h{z}]}.

S oy Vo okt o - A
~.~x[h{z}{a} V ~(9)~ . ~plz[h{z}]} VV ~ p{z[h{z}]}..
- ~o~gla} Vo~ (9~ ~9{g) V ~of{z[h{x}]}.. [0-41]

0441 Given any propositional (or functional) expression % contai-

045

z

ning an individual (or primitive) real variable %, or a fun-
damental real variable 7, determined by a functional expres-
sion H, take for Z any individual (or primitive) letter absent
in K, or used in K as a real variable, and for 7, any funda-
mental real variable absent in K, or determined by H, or any
tunctional expression compatible with £ and denoting a fune-
tion of the same type as the function denoted by H, We get
a subordinate propositional (or functional) expression £,
compatible with . %)

E g if Eis (g)~.~¢{g}\/ ¢ {#[h{x}])., then K’ can be:
@)~ ~e{2[~h{z)} V o {x[h{}]}

Derived expressions.
In any propositional expression k, take for some elementary

letters any propositional expressions compatible one with
another and with E. We get a derived expression F'.

1) This direction corresponds to * 9'61'62:63 # 10:13 of Principia,
?) Directions 0-29'341 correspond to # 914 of Principia.
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0-451 In any propositional expression K, containing no implicit in-
dividual letters, i. e. no symbol {2 defined by an expression
F' containing individual letters absent in (), take for all in-
dividual letters any functional expressions denoting funections
of the same type and compatible one with another and with K.
Then we get an expression £'. If A’ is a propositional
expression, it is a derived expression in respect of K.

0452 Given any propositional expression £, containing fundamental
real variables, which never occur as arguments of a
functional sign (undetermined variables), take for these
letters any functional expressions, compatible one with another
and with £k, whose variables appear after the substitution
to be determined by functional expressions denoting functions
of the same type as those denoted by the connexed arguments,
or to be individpal, or primitive variables at the same time
as the connexed arguments. then we get a derived proposi-
tional expression /1)

The Logical Calculus.
B. Directions concerning the use of symbols.

Any Logical Caleulus must follow fundamental directions of
the use of symbols, i. e. the Modus Ponens, the Law
of Generalisation and the Law of Substitution.
As an abbreviation, useful for avoiding the repetition of pri-
mitive propositions and proofs for functions of the same type
as a given funection, / also assume the Law of the Auto-
matieal construction of Assertions. To understand
the use of these directions the following remarks seem to
be necessary. Directions concerning the meaning of symbols
enable us to have as many significant expressions as we choose.
Suppose we have d list of expressions denoting logieal
propositions. It is interesting to have a method of discer-
ning the expressions denoting true logical propositions
from other expressions present in onr list. Now, we assume
some primitive propositions, which are eommon rules
of the Logical Calculus. The expressions denoting these pro-
positions are expressions denoting true propositions. Other
———

1) The use of the derived expressions is conform to the practice of Principia.
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expressions denoting true propositions are to be got by
the following directions.

05  Any expression asserted in the system will be preceded by
the sign f=.

Modus Ponens.

061 If we have the assertions: p= £ and j=. £7) F'., where £, F'
are any propositional expressions, we can assume the asser-
tion = F.

Remark : Note that in Principia, some difficulties arise by the
use of the Modus Ponens. E. g. we can get the following
assertions:

(1) postiz, (2 p.octd'z) Ncoll—w>2..
Now, by the Modus Ponens we should have: ;
(3) 7 - NcollU—o>2

Here « is undetermined as to type; therefore we can take
for w e. g.+"« and we get the doubtful assertion: jm=. Nye"t'2>21)
In our system there is no means of proving that Nyc‘'wl ) —o>2
is a propositional expression [0-41'43], as we have no other
undetermined variables as functional signs of certain funetio-
nal patterns.

The Law of Generalisation.

052 If an expression A, containing an individual, primitive, or
determined real variable, is asserted, then the expression A’
we get from £ by turning this variable into an apparent va-
riable can be asserted 3).

The Law of Substitution.

0563 If an expression ¥ is asserted, then its subordinate expressions
can be asserted. ‘

1) Cf. Principia Vol II p. 35.,
%) Cf. Principia Vol II. p. 35,
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The Law of Automatical Construction of assertions.

054 If an expression K is asserted, then its derived expressmn E

12

1-3

14

can be asserted.

Remarks: 1. Note that this direction is constantly used
by Whitehead and Russell. Using it, we tacitly assume that
the given proposition is got from primitive propositions con-
cerning functions of the same type as those oceurring in our
proposition, by the directions 0-51'52:53.

2. These directions seem to be quite sufficient to get all true
propositions denoted by expressions present in our list. Now
we may hope to have complete demonstrations of our propo-
sitions !). It is obvious that we have no need of a definition
of demonstration. I think such a definition cannot be useful
in any science. At any rate I cannot agree with a theory of
demonstration based on the idea of finite numbers.

C. Primitive Propositions.

[The following primitive propositions are taken from Prineipia
with their numbers and names].

The Principle of Tautology [Taut.|

.2Ve.Dp.

The Principle of Addition [Add.]

FeD.pVy..

The Principle of Permutation [Perm.]
F.pVe¢DqVp.

The Principle of Association [Assoc.|
feiip\Log V7 D \pNirs..

The Principle of Summation [Sum]

g D) N Y P\

The following primitive propositions are to be assumed in
Principia, if we choese the ,alternative method“. 2)

1) On this subject c¢f. the important paper of Prof. Zaremba: Essai sur la

théorie de la démonstration dans les sciences mathématiques. I’enseignement
mathém, Nr. 1. 1916.

) Cf. Principia, Vol L. p. 144,

Roeznik Polskiego Tow. matematycznego* 3
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The Principle of Dedunetion [Ded|
101 |-.@) @)D Fiy

The Principle of Disjunction [Disj.|
1012 o (@).p VA ). D p V@) (3.

II1. Logical Caleulus. Funetions of the same Type.
A. Logical Calculus.

With our directions and primitive propositions we get the
Logical Calculus of elementary propositions by applying the
method of Principia (numbers#1— 5). There is no reason
to repeat this here. I shall simply quote the definitions and
propositions to be used below as lemmas..

AL

dar

202 |-.¢D.pDy:

208 =2 Dp.

221 p.~pD.PDy:

301 .p.g.:—j_~.~p\/~q. '
326 |=:p.q.Dp. '
333 P=p )gigri ). pOT:
33 :p:pHg:Dyg.

401 .qu.TZPDgZ.qDPI

42 |=.p=p.

521 |=ip=q.= ¢q=p:

422 |feip=qiq=r:) . p=r
43 |:p.q.=.q.p:

432 fip.qir.=.piq.1

436 |=ip=q.D:ip.r.=.q.r:
483 |=:.pDq~pq:g.

485 |:ip=q.D:rDp.=.7r Q-
532 fpip).g=ri=:p.q.=.p.r.
534 p.~p)ip.q.=.p.r.")

1) This proposition seems to be absent in Principia.
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Dem. |-.2:21 [»L;J a

F~pD.pD.q=r:

[3:33.5:32] D =. Prop.

Analogous remarks as those given above apply to the theory
of apparent variables (numbers # 10 and # 11 of Principia).
Nevertheless this theory cannot be taken textually from Prin-
cipia, the following modifications being necessary:

1>

1° We omit all verbal propositions, using our directions ex-
clusively.

20 We use the expressions given above instead of those of
Principia.

3° We use other definitions.

4% Numbers 9 and % 12 of Principia are to be omitted.

Definitions.

1001 (AZ) = ~(z)~
10-011 (Hu) = ~(u) ~

The Whitehead-Russellian definition: (M) f{z} = ~ (x) ~ f {2}
is useless, because e. g. the expression (dz)f{z,y} has no
meaning at all. We could as a matter of fact use the expres-
sion: (U Z)2[f{z4)]{x}, but here 2[7 {2y} {x} would not be
treated as a functional pattern, no other operations than sim-
ple substitution being allowed in defined symbols. For the same
reason we cannot use the abbreviations # 100203 of Prineipia.

1101 (z,y) :(Fm (y)

1102 (z,y,2) :f)w (2)
11021 (7,7, 2, =) (.z') ) (@
1103 (A 7z, )_ ax ) (A7)
11:04 (A7, y, z)_(w 7) (d@3)

Analogous abbrewatlons are to be assumed for fundamental

letters. The following propositions are to be used below:

1024 }.7{y} D Uz f{x}.
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10271 | E EEg{i} RrE=0)9{:
10281 |-.(2)./ 2 }E_q{ } D .2 [z} =E2)g{z)
1185 |=.(z, y)./{&, g} D p. = . (A=, ) / {=, y}.Dp-

B. Functions of the same type.

For expressions containing determined variables, let us use
following definitions.

1201 Cfayh = @) 7} D7 D HB D)+
12:02 7, {y} i Sy} Yy}
12021 £, {u, 2} =.f{u,2}.T{u,a}.
12:022 f, {z,u} ; JS{zuy. T{u,a}.
12-03 £, .{u, 2} ; S {wz}. C{ua): C{z,x}.
12-031 f, . {3 uf: 1f{zu). T{u,a} : T{z,x}.
12:0311 £, , {z,u} d:= Sf{zu}. C{a,x}: T{u,a}.
12:032 /1, ,{=',y'} % sty Elxs 2 ey, v
Note that here any other operations than simple substi-

tutions are impossible. Take e. g. in 12:02 the expression
2[.o{2}\/ {2} ] for £. We get the expression: z[.o{e}\/ L{z}.]1{4},
which is no functional pattern, the letter x being present.
Therefore for the further use of our symbol we must use the
definition 12-02.

I pass now to the proof of the proposition: p= &{z, y}. This
proposition enable us to construet a formal method to get as
many expressions as we choose denoting functions of the
same type. Some applications of this method are given below 1).

121 = C{, g}

Dem. |=208 D |=.9{y} D #{y}- (1)
(202] D=:0ly} D ely}.D:
qp{x} D ofx}. D .o{y} D oly): (2)

(1).(2).051 D f=: o{x} D o{x}. D .o{y} D oly):
[0:52] ) |=. Prop. '

1) The method of writing the demonstrations is textually taken from Principia.
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The following propositions are immediate consequences of 12-1.
12411 f=. &, y} = T{y, x}. [5'1.12:1.051]
12-12 f=: &z, y}. C{x, 2} . D T{y,2}. [12:1.2:02.0'61]
The following propositions appear to be true, if s1gn1ﬁcant
by 121 and 2-02.

1222 |= Ulzlglz}), #[~g{a})}
Constr 1). |= 12:1.0:451-252:33:421-422424:53 7)
=z [2[g {2} {2}, = ~2[g¢2)] =} ])-
[0-16] D) = Prop.
In an analogous manner we get:
1223 |- Haylg{a, v}, yalgle, y})}-
12:2301 | Caulgu{a, uy], ur(g.{z, u}l).
1224 |- &{a[.plg{z} ], =[.g{z}|p.]}-
12:241 |= ¢{z[. q{x}|p J¢ x[ g{x}|~ PR} 2 [0.241-243-28]
12242 |-. { /. y{w}}D cxlg{x}], 9{x}lf{x} e
122421 |=. T, 2y (gtx, v} D Clwylolx, v} ), wyl-gla. v} fix, y)))-
Constr. |= 17 1242 D)
Tlx(giz, y), xlgla, y)1} D Clglr, vl x(.98z wigla v). 1)
[0-26° ?BJDI- \xylg{xa./n '”./Lg{‘la‘/!hj
Clxylgie, y)l, zy(-o{w. ylg{. v} 1)
[0:16:4] D |=. &{22"[9{2. 2"}, 2y (g4, y}]} D
czylga, v} 2| gl f/}lzz 942 #'}{@ 4} -1}
[(041] D) |= Prop.
12:2422 |=. ¢{/, zu(g.{z, u}]} D
T{xul g, ud). xul. g {o. uy \/ f{@yu}.]).
1220 |=. &, 22lgla, 33 D Clally) fi. v)). 2ot )
122501 |=. CLf, 20[g. 2. v}]) D
Ll fufa, uy), @[ () g.{x, u}]).
122502 |=. c{f. xv[g.{z,v}]} D
c{ull@)f. {x. u}, ul(@)g.{z, w}|}.

1) Here .Constr.* is an abbreviation of .Construction“. I use this symbol
instead of ,Dem" (demonstration) in proofs concerning the meaning and not the
truth of propositions.
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12261 |=. ¢{/; zylg{z, y}1} D
(7:{‘;7[ {{:737 2}]3 '%Jg{‘;% Z}J }
12:2611 f=. T{f. zug.{z, u}]} D
(/"{‘;7[]0:-{?7 t}l: %lga{:‘év t}] }
12:2612 |=. C{f, xu[g.{z, u}]} D
c{ul /{2 ), ulg.le; w]).
1227 |- C{y[(@). p| 7 {9} )yl p (@) 20 )
122701 = {y [(w)-pl /. (w9} hy [ 2|0 /. (g} 1)
122702 = ¢{ul(@)- p| /. {w, wp}ul . pl (@) f.{z; u}1}
12271 f=C{u[f {u}), u . wlx}|f {u}.]}
122711 f=c{u [ fo{u), . w{a} | fo{u}. ]}
122112 |=C{x [/, (@ u) @ [ i@, g} | /o, w0} 1}
12:2713 |=C{x | fuf{x, u}), x [ . u{x, y}| fu{x,u}.]}
1228 I-@'{il-/'{i}lﬂ-plqﬂzicl :./'{Ec}lp;IqJL
122801 |=Cix|.f {2} |.gla}|q ), z[:f{x} | g (=} .| ¢.]
12:2802 |= T {x [.f {a}|. g (x| hiz} ), 2 [ / {a} |g {ad . | hia) . ]
122808 |=Cix [.p| g (@ |h @) 2 [:plg @) |hiz}.]}
122804 |=Clz[.p|.q|hia) ) 2 plg.Jhia}.]}
: I pass to the following applications of propositions:
12:22—12:2804.
123 | Clal.f {2} \/ gia} .|, 2| . Flx}|gia}.]}
Constr. j= 12242, 0-34 7) = Prop.
12:311 = Cla(: fla) \Vglxy bz} ], 2. f{z} V. gla}\V hia}: ]}
Constr. =.12:3.0.243.7).
b Cla[ Az glad Jhia} ], @[ : fla} | gla} Jhlad . ]).
[12:3:2802] D T{[: f{a}\/ gla} \/ hiz}.) 2] x| g | hdad ]} (1)
{12:3.024324] D .
clz|. [z} gl [Rix} :), 2. Flay\/.gla}\/giz}:]). (2)
b=.(1).(2).12.12. ) j= Prop.
12312 = Ciz[. g @) \/ [} . | 2 [.~glx} \/ / {2} ]}
Constr. |=. Z{x[.2[g{}] {x} v Fia}. )2 [.2[g{) @ V fl@) ]}
.Tlzlgda], 2 [g 4] . [043:44:141D)
[12:22.054-441] O
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= clz[. ‘[g{;}]{;} Ve ., z[. 2| ~g {2} {z} \ Lz} ).
{2\ ~g 23 2[g{e ]
(8-27.0561] D
= Clal.2[g{2} e}V fa} ), [.2[~g{2){x} \/ f}]}
[0°16] O) |=.Prop.
12:313 |= C{a[. g{@} \/ 1@} ), [ g} V gl . flad ]}
Constr. as 12:3.
12:32 |= cla[.g{a} ./ {&).), [ g{a} V .g{a). 1 (&} ]}
Constr. J=12:22.3:01 D)
= Cix[.gla}. iz} ], o[ .~ g2} V/ ~ Fla}.]}
(12:313.0-54.12:12] D
x| gia). fla} ) 2~ g @)\ ~ g @}/ ~f b))
[12-311.064.12°12] D
b=l g fia} . ), 2| ~glad V. ~g )V ~ flad: ]y (1)
[12:312.054.12:12.301] D
J=C{a.g{z} . f{@}.], 2[.~gla}V .gla}. fla}: ]}
[12:312.054.12:12] D) |= Prop.
12:33 = C{z[. ula} if, {u, z} . £, v, 2} :), 2 [ f, (o, 23]}
Constr. |=.12:241.0411.12:22 )
= Cla|. f, {u, @) . f, {u, 2} ] 2 fo lut, )]}
[0:41.12:1] D = [ . £l 2} . fo {0, @) ), @[ fo v, 23]} (1)
J=. 122712 D)
|- ¢ {aul. wizy: fouluy @y . f, {v, ay:)wul. folu, z} . fa{v,x} I
[12-2611] D
= c{x u{z} 5 [t z). fa {0, x} :],x[.fa{u, z). flv) ) g
[(1).12:12] D = Prop.
This proposition is used in 120-152 (Part II) and in other
propésitinns.
1234 |=clx2]. /(@) . g {,2}. ), 22[: 1 (&) .9 85,20 . D2} |}
Constr. |= (1) ad 1232 )
. F @ gty ) 2 [ ~f@ N o~z V ~gla, b
[12:2401] D
bl .S} glayd Lo (i~ ~g{my) .V ~flah)
(12:3] D
b el 4o} gl yd ) o] ~~~t @} ~g (). V ~ (@) ]}
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(12:3.3:01]D
ezl @) gloy) bz~ /(o) gte g} VS i) )
(L0 D = Cfe [./{a). glrv)-Lz[:fla} .g{xy) . D fla).)

[0-26]D

F oyl a5 9} e i 12/ (@) (500D F (o))
12261) D b € (5 .F()-9 (e )b 3 /-0 5 31 D 7 ).
041D ey [.f{<) g (). L y[:/ {2} .9 (xy) D Fl}. )
[026) D
[12:261] D

Fclzl.fla-glay) .1, 2[: /(a) g (my}. D fia) . )
(026] D | . Prop.

1V. Classes. Relations. Identity. Deseriptions.
A. Classes. Relations.

There is no difference at all between a function with I va-
riable and a class, or between a function with II variables
and a relation?). The theory of classes and relations is
based on the following definitions,

2001 o, = ulw, {u)]
2101 R, U]—_- uv R, ,{a, )]
21011 R, —Td—/h’(,,, =
210111 R, : = yo[R, (v}
21012 R, ., = wy (R, . {uy)]
The idea; of a class (of a relation) can be defined as follows:
2003 Cls,,, = u| T {u, )
2103 Rel,,, Tﬁw{u‘, M)
21031 Rel, = u[C{u, R,,.,)]
¢ ds
1) Cf. Zasady Caystej Teorji Typéw, Przeglad filozoficzny 1922
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The calculus of classes and relations is based on the follo-
wing definitions:
22:01 .o B.=(z).2{z) DL (z}.
dr
22011 .00, C 7r = (). 60, {ut} D 7o {0

22:02 .a\p.=x[.2{z).t (z}]
af

22:021 .64 Ta Tg[.% {u). 7 oy {u)]

22:03 .zu.[‘,.d:;z:[.jx{i}\/fj{z:}.]

23031 .o, ‘r;,,. = ] 6w {u} Vrm{u))

2204 —2=i[~2{}]

22:041 ——c(:)=12[~c‘,){12}]

22-06 .1—(5.—%.1(’] —8

22061 5 — %o = -0 () — oo

2301 .MCN.= () (). M{z,y} D N{z,y}.

23011 . ProiyC Qua.or =10 )- Proyy {6 0} D Qe {:0}-
28012 P C Qoeir =) 0 Py (493 D Qe {73
2302 . M\ N.=ayl. M{z,y}.N{z.y}]

23021 . Py M) Quuor = w0 [ Prayy{ ity 0} Qo vy {4y 0}.]
23022 . Py .y Y, );j_—?/ U[ P, oy {.’/ v}. Qe «_a){A% v}]
2303 . MUN.=z y[. M{z, g} V M{z y}]

28081 . P, ,,\U Q(u,,,).TIZ 0. P iyt 0} V. Qe 1y {20, 0}.]
23032 . Pi, U €, ")'7‘;/;)[' Pe, o499} V Qi {4, })
2304 — MTx y[~ M{x,y})

23041 — P( = w |~ Py, 1 {u, v}]

23:042—F, a)d—_".;/ o[~Pe. s {3 0}

2306 .M—N.=.MN—N.

d’
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23-051 P(,,b, 4)(,.,.—P(ub).. Qa, v

23052 . (x a) Q(z, ) T P(x,u) m Q(x, a)
Remark that Whitehead and Russell use for relations instead
of (Z,M. U, —the symbols: (« . (+),(+), —; nevertheless, as these
symbols have no meaning in isolation, we having only such
expressions as « (C#. or M _ N, ete. the use of different sym-
bols in hoth cases is, as a matter of fact, superfluous. —

B. Identity.

The definition of the identity of two classes (relations) is as
follows:
1301 .a=p.=(x).« {z}=p{a}.
ar

13011 .0, =T .d:(m% (==, {u}.
13012 . (; () . M{z, vy = N {z, 7).
13013 . P, , = Q(,,, b= () (0:- Pra, 5y {00, 0} = Qiar »y {1, 9}

13014 . P, o= Gz, o - ‘/) U’ e a){‘/a ”} = 0., {y ”;-

302 o =0 .-—:w.x_b. ete.
13:022. .M :*: N.= ey M= N. ete.

W
We see that identity of classes (and of relations) is essentially

different from the Leibnizian identity used by Whitehead and
Russell. With our definitions we have no such proposition as
c2=20.7).f{a}=f{f}: but, as a matter of fact, this pro-
position is completely useless, as we need only another and
less general proposition, to be given below. I begin with the
following abbreviation:

18016 .u='v.= . u=207C{u,a}::¢{v,)}.
ab ar
18016 .u=v.=.u=0:C{u.6,}:C{v,7,}.
() t(a)
ete.

Now, [ pass to the definition of an extensional funetion:

1308 exens (1] = /15918 =5, 7. = .63 €17, wih

13:041 extens |/, ,,,,] = (u,v w t) e

> ”
Nl

a

D /”{u,u}—f.,7_} {f, (a,»)}l
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13042 extens [K,,, ] = f' |, v, 105 8) 2wt = v.: sz=7
*(a),*(a)
nt:l

1 f‘()b{u w}=7,,(\,,{v t} "f .

(a). !
13043 exteus B, ek ,,)] = [u v w, t) U= v: _L U
P(Ilt) P(uc) B,

. 3fp(u, a0 {% “’} Efp(u, 0, W, ty: T/, R(P(,,_ D) y:l
Now we can prove the following proposition :
1312 Jm:u=1v.D):fa{u} . extens [z,]{f}.=.f.{v} . extens [x,]{/}:
Dem |=.5347)
J= : ~extens [%.]{f} D
if o {u} . extens [xq)){f}.=.7.{v}. extens |x,)|{f}:D
u=0.") :fo{u}. extens [x, | /}=. /,\v} extens [%.,]{/}:: (1)
=420
j=. extens |x.,)]{/} D (u,v) Tu :——ﬂv. ) :f,,{u}z s {v} EF R
[101] D:u=v D :f, {u} = 1. {o}: TLf, x.}:.
[6:32.12'1] D
cu=v."):7,{u}.extens[x.) {1 }.=.fa{v}. extens[u,,]{ 3%,
[(1).485] D |- Prop.
I add the following important propositions:
1316 =:u=v.=.v=u:
134T Je= . =2 v—w.j ==
As we shall have to do only with extensional funections, the
following definitions are very important:

2002 uex =% {u}.extens (1.} {%u.,}-

af
2102 u R, » P, R 5 {u,v}.extens [Ry 5| {Bu.n}-
21021 u R, , o v—— L {u, v} .extens R, .| {l{nm)b)}'

21022 u R, )v__.lxv,., {uyv}.extens|By, 1 {Be, 0 )
dr

Fea, 5),° a, b),"

Note that with our definition of K. , no conventions based
on the alphabetical order of letters, or on the order of letters
oceurring in a given expression. are needed. ')

The definition 20:02 (21:02) enable us to prove the following
propositions by a simple subsfitution in 1312 of the symbol
UE N, (R - w)"

1) Cf. Principia I. p. 211.
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13121 f=:u=v.0) .ucx, =vex, :

13122 f=:u=v.D) .u R, ,w=vR, ; w:
With these propositions we can establish the whole theory
of identity and the Calculus of Classes and Relations as con-
tained in numbers = 13, # 22, %23 of Principia. Numbers
# 20 and = 21 of Principia are to be omitted.

C. Huntington’s Postulates.
Now, let us assume the following definitions:
2401 V=d/:t [C{x, 2}
24011 V,,, = u[C{n,a}]
2402 A=.:—V.

ay

24021 Ay =% — Yoy

2501 VT;;}[C{;,Q}J

25011 \'f(:, % 7;‘{’[' c{u,a). C{v,b} ]
2560111 V,, ., = zu[.C{x,2"}.C{u,a}.]
2602 A=.M—V.

ar

261021 A, , = R,y — Nis
25092 A . =.Foo— Yiio
2403 Ao = (af'i) o {z}

24031 ! u) = (T we e,

2508 W! M= (4 z,y) M {z,y}

26031 ! R(: » = 1,0) % Ry o) 0
K

5) 1)

156032 A R, ,, =T wu,v)uR,

With these definitions ‘we can construet a complete proof of.
Huntington’s postulates by simple application of our definitions
and of the Logical Calculus.
We have:

22:37 J=.2UB.cCls aey,

2236 |=.2 2. Clspacy,
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2424 = Up.=2.

2426 =2 A-=2.

2297 |=:cUpP. =6 Uz:

2251 =2 B B a:

2269 |—:.7.U’ f'] ab berez g "ﬂv

2268 =2\ B.N.aNT:i=.2MN).L

2421 f=:a\—a2.=A.

2422 |m:aU—2a.=V.

241 |=.AFV.
Analogous propositions are to be asserted for g, , 74 ; an
analogous set of propositions is to be stated for relations:
MNor R 55 Bovy relie:

D. Descriptions.

I cannot agree with the theory of desecriptions of Principia
this theory being based on modifications of defined symbols,
which are not simple substitutions. Now, a general theory
of descriptions seems to be superfluous, as we need only the
following abbreviations:

140) - u= R b)v

pon, R, 5 0. (w) w 1{(,,, SU B w=u:
14011 .R’(a,b)v-— .= U Rgpy. (10). % Rigpy ® Dt =10

ar
14012 K no=u = (L 0): B, nv=wnw==~Rqg  u:

(@5 @
14:02 R nver o= (Tw):Rq, 50 = w:wEe % .
ar
14021 B, 50 Pa, o= (4 w): R, 5ov=w:w Py, yu.
dar

14:022 u P, oy R 0,50 =("w): R syo=w:u B, ,w.

ar

With these definitions we can prove the following propositions:
141 piu=R o= R no=mu:
Dem. [=131T D piu=w.=.w=u:
[48D] Dl=:wRpnv D u=w:=.wER,nyv_, . w=1u:.
[10:271] D= (0). W Bia, 0 Dt =1w0:= (). 10 Rig, v ). 10 =1u:.
[4:36] D) }J=.Prop.
1411 pm: R 0= R0, sy th=. Ryt =R’ 0
Dem |=.141.43")

b= R syv=w:0=R'q nyu:=:R'q pu=w:. w=2R',, 0
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[10-281 )= (H20): R’ (o, pyp—=10:-0=R 4, pyur=(At0): R s, py=10:00=R",. ;0.
(14012] D) |=. Prop.

1412 f=: . Ry yo=w:. Ry pys=w:"). R, 3, = B'(, nyts:
Dem |=.14'1.10240) |=Hp D (T t): B pyo="1: .t = R’ (4 sy tt:.
(14:012| D) j=. Prop.

1413 f=:. B pyv=1:. B nv=mu:_). uﬁt:

Dem |=14:011.327.10-1 0
|=:Runv=u_):u B, snv.t Banv.0).u=t: (1)

=321 D) f=: B, o=1t R..,o. (2)-
J=-(1).(2).432.0) |=-Hp D.
U R 0.0 R 30 u=1:t Bo;
[3:35:27] D) |=. Prop.
14:2 ot —=u: R o= ). B pt=i:

Dem |= 13122 D}-. t=u.D). 1y 0=t By (1)
D) T e T NE zr’lf(,,,,,) v ) w=u=wRg,v ). w=t::
I=-422.D). () w Re,yv D w=wu:=(w). w Ry, 50D . w=1::
[(1)] D} Prop.
1421 f=:. Ry pyu=Re 5yv: . B sy0 =K', 5 t: D . B,y =R’(q, 1y E:
Dem |=432 Dl=:: R pyu=w:.w=R", ,v::. R, o=
R T A I R T RN TE T e
R RS A AR RO e e A A
[4:82] D) : B nu=w:. w=1K" v B n0 =0 0= B ;i
HA T3] YRS s =03 0 mm s w0 5 B b

el R pur b o= ok

[14:18] ). B, sy u= R, st

[11:35] ). J=.Prop.

Our method of dealing with deseriptions implies the following
modification of definitions of the theory of relations. Take e. g. the
definition of the Converses of relations. In Principia we have first
the definition: Cnv:@i’[.x Qy=. ,yPx] Df, and by this defini-
tion, the converse P is Cnv® P.— Nevertheless it is to be remar-
bed that the relation Cnv is never used unless in Cnv® P. There-
fore it seems better to have no such relation as Cnv, but simply
the relation Cnv® P. — This method will be applied to all analo-
gous problems. Then we have:
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3101 Cov' M=y 2| M{z,9})
ar
31011 Cnv* 1')(,,, By ’; l; [P(a, b) {;t' 1;}]
dar
31012 Cnv’ Py =ty [Pe {0, )]

ar

3102 ﬂT Cnv" M etec.

5201 M'y =z [M{x,y}]

32:011 P, ) s [ Pra, 5y {30}
52:012 p(x, u)'”f Y| Pew {%”}J
3202 ﬂfyj;[ﬂz{y,a}}] ete.

8301 DM = 2[(Ay) M{x,y}]
3,011 I P py=ul(A7) L.,y L, 0]
3302 D'M=z 1"(':»17,) M{y, x|

dar

33021 D'Py. »y=u[(d7) P, {v, u}]
33:03 C"M=r|(dy). M{z,y}\/ M{y.z}.]
d’

33081 CP py=t[(H1). P 1,{t,0} \/ Pruy{tyu}]
dr
This method enable us to get the Logic of Relations without
any difficulty. —

Errata.

18. 1. 15, read ,necessitv“ instead of ,neccessity“.

20. 1. 27, read ,hardly* instead of ,hardlu-.

22. 1.:26. ‘read If“ instead  of ; 11%

23. 1. 16., read . functional® instead of ,functionel®.

23. footnote 1. O read ,Transactions of the American Mathema-
tical Society, 1913, instead of ,Trausactions of American
Mathematical, society 1913%.

p- 24. 1. 29. read ,then the expressions® instead of thent hee

expressions‘.

B e
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p- 26. 1. 22, read ,the“ instead of ,th“.

p. 28. L. 4., read ,advantage“ instead of ,adventage“.

p. 29. 1. 9, read ,or primitive (3)) real variable, or any fundamen-
tal real variable, which never occurs as argument
or constituent of an argument of a functional
sign, instead of ,, or primitive (3),or undetermined fun-
damental (4)) real variable®.
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