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SERIES.

[From the Encyclopœdia Britannica, Ninth Edition, vol. xxι. (1886), pp. 677—682.]
A series is a set of terms considered as arranged in order. Usually the terms are or represent numerical magnitudes, and we are concerned with the sum of the series. The number of terms may be limited or without limit ; and we have thus the two theories, finite series and infinite series. The notions of convergency and divergency present themselves only in the latter theory.

Finite Series.1. Taking the terms to be numerical magnitudes, or say numbers, if there be adefinite number of terms, then the sum of the series is nothing else than the number obtained by the addition of the terms; e.g. 4 + 9 + 10 = 23, 1 + 2 + 4 + 8=15. In the first example there is no apparent law for the successive terms ; in the second example there is an apparent law. But it is important to notice that in neither case is there a determinate law : we can in an infinity of ways form series beginning with the apparently irregular succession of terms 4, 9, 10, or with the ∙ apparently regular succession of terms 1, 2, 4, 8. For instance, in the latter case we may have a series with the general term 2n, when for w = 0, 1, 2, 3, 4, 5,... the series will be 1, 2, 4, 8, 16, 32,...;or a series with the general term ⅜ (κ3 + 5n + 6), where for the same values of n theseries will be 1, 2, 4, 8, 15, 26,... The series may contain negative terms, and in forming the sum each term is of course to be taken with the proper sign.2. But we may have a given law, such as either of those just mentioned, andthe question then arises, to find the sum of an indefinite number of terms, or say of
n terms (∕ι standing for any positive integer number at pleasure) of the series. Theexpression for the sum cannot in this case be obtained by actual addition ; theformation by addition of the sum of two terms, of three terms, &c., will, it may be,suggest (but it cannot do more than suggest) the expression for the sum of n terms
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«18 SERIES. [796of the series. For instance, for the series of odd numbers 1 + 3 + 5 + 7 ÷ ..., we have 1 = 1,1 +3 = 4, 1 + 3 + 5 = 9, &c. These results at once suggest the law, l+3 + 5 + ...+(2n-l)=n2, which is in fact the true expression for the sum of n terms of the series ; and this general expression, once obtained, can afterwards be verified.3. We have here the theory of finite series: the general problem is, un being a given function of the positive integer n, to determine as a function of n the sum u∙θ + uι + u2+ ∙∙∙ + un> θr, in order to have n instead of n + 1 terms, say the sum 'if0 + u1 ÷ u2 + ... + ‰-ι ∙Simple cases are the three which follow.(i) The arithmetic series,α + (α + 6) + (α + 2δ) + ... + (α + π — 1) δ ;writing here the terms in the reverse order, it at once appears that twice the sum is = 2α + n-lδ taken n times: that is, the sum = na + ⅜n(n — 1)b. In particular, we have an expression for the sum of the natural numbersl + 2 + 3 + ...+w = ⅜n (n + 1), and an expression for the sum of the odd numbers1 + 3 + 5 + ...+(2n — l) = n2.(ii) The geometric series,
a + ar + ar3 + ... + arn~1 ;here the difference between the sum and r times the sum is at once seen to be 1 — rn ...= a-arn, and the sum is thus = a -- - ; in particular, the sum of the series1 — rn1 + r + r2 + ... + rn 1 = —------ .1 — r(iii) But the harmonic series,1 1 1 1 

a + a+ b + a + 2b + '" + a+(n-l)b,or say ⅛ + ⅜ ÷ ⅛ ··· + -» does not admit of summation ; there is no algebraical function of n which is equal to the sum of the series.4. If the general term be a given function wm, and we can find vn a function of n such that vn+1- vn = un, then we have u0 = v1- v0, u1 = v∙s-υ1, u2 = v3- v2,..., un = vn+1-vn∙, and hence u0 + u1 +u2 +... + zιn = vn+1 — v0,—an expression for the required sum. This is in fact an application of the Calculus of Finite Differences. In the notation of this calculus ‰+1 — vn is written Δ-yn ; and the general inverse problem, or problem of integration, is from the equation of differences ∆υn = un (where un is a given function of ri) to find υn. The general solution contains an arbitrary constant, vn = Vn + C ; but this disappears in the difference ‰+1- v0. As an example consider the series
w0 + w1 + ... + un = 0 +1 + 3 + ... + w (w + 1 ) ;

www.rcin.org.pl



796] SERIES. 61»here, observing that
n (n + 1) (n + 2) - (w - 1) n (n + 1) = n (n + 1) (n + 2 - n - 1), = 3n (n + 1 ),we have vn+ι = ⅛w(w + l) (n + 2);and hence 1 + 3 + b + ... + ^∙zz (n + 1) = fen (n + 1) (?? -f^ 2),as may be at once verified for any particular value of n.Similarly, when the general term is a factorial of the order r, we have1 1 r+1 1 n (w + 1) ... (n + r — 1) _ n(n + 1) ... (n + r)+ 1 + ...+ 12 r ∙ 1 2 ...(r + 1)∙5. If the general term un be any rational and integral function of n, we have

=++ "-⅛i> δ⅛ +... + nc"~V.∙2∙,^∕ + υ *⅛,where the series is continued only up to the term depending on p, the degree of the function un, for all the subsequent terms vanish. The series is thus decomposed into a set of series which have each a factorial for the general term, and which can be summed by the last formula; thus we obtain⅝ + w1... + wn = (n + 1) ⅝ + ⅛±-⅛ ∆ι⅞ + ... + (n 12* ¾ (p + ^u° ’

which is a function of the degree p+ 1.Thus for the before-mentioned series l + 2 + 4 + 8 + ..., if it be assumed that the general term un is a cubic function of n, and writing down the given terms and forming the differences, 1, 2, 4, 8 ; 1, 2, 4; 1, 2 ; 1, we have
, n n(n-l) n(n — l)(n — 2) f , z . mw = 1 + ι -t------,-----------------1 9 3----- “ {= ⅛ (n + 5n + b.), as above} ;and the sum„ , , + „ _ . + 1 + <κ + 1>,1 + (" + l)>>("-l) (w + l)n(n-l)(B - 2)“· + “■ + ··· + “» n + ι+ 1 2 + 1.2.3 + 1.2.3.4 ’= ⅛ (n4 + 2ws + llw2 + 34n + 24).As particular cases we have expressions for the sums of the powers of the natural numbers— 12 + 22 + ... + w2 = ⅛w (∏ + 1) (2n + 1); l3 + 23 + ... + w3= {n2(n + l)2: observe that the latter =(1+2 ...+n)2; and so on.6. We may, from the expression for the sum of the geometric series, obtain by differentiation other results: thus 1 — rn1 + r + r2 + ... + rn~1 = —------1 — r

78—2

www.rcin.org.pl



620 SERIES. [796gives i∕ i _ rn i _ nrn~1 + (η — 1 ) rn l+2r + 3r2+...+(n-l)rn 2 = ^1-=---------(1-r)≈--------- ’and we might in this way find the sum w0 + w1r + ... + wnrm, where un is any rational and integral function of n.7. The expression for the sum u0 + u1 + ... + un of an indefinite number of terms will in many cases lead to the sum of the infinite series u0 + u1 + ... ; but the theory of infinite series requires to be considered separately. Often in dealing apparently with an infinite series u0 + u1 + ... we consider rather an indefinite than an infinite series, and are not in any wise really concerned with the sum of the series or the question of its convergency: thus the equationil + mx-∖----- j—2—7ir2+ ... ħ 1 + nx -I----- —+ ∙∙∙ ), z x (wι + n) (τn + n - 1 ) „
= 1 + (m + ri) æ + -----------j—9------------ - a? + ...really means the series of identities

(m + ri) = m + n,

(m+ri)(m + n-Γ) m(m-l) m n n(n — 1) c 
----------- 2—ς>----------- — ^~■—j—g--------f p q "i------ Ï—2— ’ °z^c∙>obtained by multiplying together the two series of the left-hand side. Again, in the method of generating functions we are concerned with an equation φ(t) = Ao + A1t+ ...+Antn+..., where the function φ (i) is used only to express the law of formation of the successive coefficients.It is an obvious remark that, although according to the original definition of a series the terms are considered as arranged in a determinate order, yet in a finite series (whether the number of terms be definite or indefinite) the sum is independent of the order of arrangement.

Infinite Series.8. We consider an infinite series u0 + u1 + w2 + ... of terms proceeding according to a given law, that is, the general term un is given as a function of n. To fix the ideas the terms may be taken to be positive numerical magnitudes, or say numbers continually diminishing to zero; that is, un>un+1, and ‰ is, moreover, such a function of n that, by taking n sufficiently large, un can be made as small as we please.Forming the Successive sums S0 = u0, S1 = u0 + u1, S2=u0-↑-u1 + u2,..., these sums 
So, S1, S2,... will be a series of continually increasing terms, and if they increase up to a determinate finite limit $ (that is, if there exists a determinate numerical magnitude $ such that, by taking n sufficiently large, we can make $ — Sn as small as we please), $ is said to be the sum of the infinite series. To show that we can
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796] SERIES. 621actually have an infinite series λvith a given sum $, take w0 any number less than then S — u0 is positive, and taking ux any numerical magnitude less than 8-u0, then 
8 — u0 — w1 is positive. And going on continually in this manner we obtain a series t⅞ + w1 + Ma+...» such that for any value of n however large 8 — u0- u1 ... — un is positive; and if as n increases this difference diminishes to zero, we have w0 + w1+m3+..., an infinite series having >9 for its sum. Thus, if S =2, and we take υ0 < 2, say w0=l ; w1<2-l, say w1 = ⅜j ⅝<2-l-⅛, say m2 = |; and so on, we have l + ⅜+J+...=2j1•or, more generally, if r be any positive number less than 1, then l+r + r2+... = j—-,that is, the infinite geometric series with the first term = 1, and with a ratio r< 1,!.. . 1 — rnhas the finite sum ------ . This, in fact, follows from the expression 1 + r +r2... + rn~1 = ,1 — r 1 — rfor the sum of the finite series ; taking r < 1, then as n increases rn decreases tozero, and the sum becomes more and more nearly = —-.9. An infinite series of positive numbers can, it is clear, have a sum only ifthe terms continually diminish to zero ; but it is not conversely true that, if this condition be satisfied, there will be a sum. For instance, in the case of the harmonicseries 1 + ⅜ + ⅜ + ..., it can be shown that by taking a sufficient number of terms thesum of the finite series may be made as large as we please. For, writing the series in the form 1 + ⅛+(⅛ + ⅛) + (⅛ + ⅛ + ∣ + ⅛) + ∙∙∙, the number of terms in the brackets being doubled at each successive step, it is clear that the sum of the terms in any bracket is always > ⅜ ; hence by sufficiently increasing the number of brackets the sum may be made as large as we please. In the foregoing series, by grouping theterms in a different manner 1 + (⅛ + ⅛) + (⅛ + ⅛ + ⅛ + ⅛) + ∙ ∙., the sum of the terms inany bracket is always < 1 ; we thus arrive at the result that (w = 3 at least) thesum of 2’1 terms of the series is > 1 + ⅜n and < n.10. An infinite series may contain negative terms ; suppose in the first instancethat the terms are alternately positive and negative. Here the absolute magnitudes of the terms must decrease down to zero, but this is a sufficient condition in order that the series may have a sum. The case in question is that of a series v0 — v1 + v2-..., where υ0, v1, v2,... are all positive and decrease down to zero. Here, forming thesuccessive sums S0 = v0, S1 = v0-υ1, S2 = v0 — υ1 + v2,..., 80, S1, S2,... are all positive, andwe have S0>S1, S1<S2, S2>S3,..., and 8n+λ-Sn tends continually to zero. Hence the sums So, S1, S2,... tend continually to a positive limit >5' in such wise that So, S2, S4,...
are each of them greater and 81, 83, S5,... are each of them less than $; and wethus have $ as the sum of the series. The series 1— ⅜ + ⅜- ⅜ + ... will serve as an example. The case just considered includes the apparently more general one where the series consists of alternate groups of positive and negative terms respectively; the terms of the same group may be united into a single term + vn, and the original series will have a sum only if the resulting series vq-v1-∖-v2... has a sum, that is, if the positive partial sums v0, v1, v2,... decrease down to zero.The terms at the beginning of a series may be irregular as regards their signs ; but, when this is so, all the terms in question (assumed to be finite in number) may
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622 SERIES. [796be united into a single term, which is of course finite, and instead of the original series only the remaining terms of the series need be considered. Every infinite series whatever is thus substantially included under the two forms,—terms all positive and terms alternately positive and negative.11. In brief, the sum (if any) of the infinite series u0 + u1 + u2+... is the finite limit (if any) of the successive sums u0, u0 + u1, u0 + u1 + u2, ... ; if there is no such limit, then there is no sum. Observe that the assumed order u0, u1, u2,... of the terms is part of and essential to the definition ; the terms in any other order may have a different sum, or may have no sum. A series having a sum is said to be “ convergent ” ; a series which has no sum is “ divergent.”If a series of positive terms be convergent, the terms cannot, it is clear, continually increase, nor can they tend to a fixed limit : the series 1 + 1 + 1 + ... is divergent. For the convergency of the series it is necessary (but, as has been shown, not sufficient) that the terms shall decrease to zero. So, if a series with alternately positive and negative terms be convergent, the absolute magnitudes cannot, it is clear, continually increase. In reference to such a series Abel remarks, “ Peut-on imaginer rien de plus horrible que de débiter 0 = ln — 2n + 3h ~ 4,i + , &c., où n est un nombre entier positif?” Neither is it allowable that the absolute magnitudes shall tend to a fixed limit. The so-called “ neutral ” series 1 — 1 + 1—1... is divergent : the successive sums do not tend to a determinate limit, but are alternately + 1 and 0 ; it is necessary (and also sufficient) that the absolute magnitudes shall decrease to zero.In the so-called semi-convergent series, we have an equation of the form S = Uo- U1 + U2-...,where the positive values Uo, U1, U2,... decrease to a minimum value, suppose Upt and afterwards increase; the series is divergent end has no sum, and thus $ is not the sum of the series. $ is only a number or function calculable approximately by means of the series regarded as a finite series terminating with the term + Up. The successive sums Uo, Uo - U1, Uo-U1 + U2,... up to that containing + Up, give alternately superior and inferior limits of the number or function $.12. The condition of convergency may be presented under a different form : let the series u0 + u1 + u2 + ... be convergent, then, taking m sufficiently large, the sum is the limit not only of u0 + u1 + ... + um but also of u0 + u1 + ... + um+r, where r is any number as large as we please. The difference of these two expressions must therefore be indefinitely small; by taking m sufficiently large the sum um+1 + um+2+... + um+r. ( where 
r is any number however large) can be made as small as we please; or, as this may also be stated, the sum of the infinite series um+1 + um+2 +... can be made as small as we please. If the terms are all positive (but not otherwise), we may take, instead of the entire series um+1 + um+2 + ..., any set of terms (not of necessity consecutive terms) subsequent to um; that is, for a convergent series of positive terms the sum of any set of terms subsequent to um can, by taking m sufficiently large, be made as small as we please.
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796] SERIES. 62313. It follows that, in a convergent series of positive terms, the terms may be grouped together in any manner so as to form a finite number of partial series which will be each of them convergent, and such that the sum of their sums will be the sum of the given series. For instance, if the given series be u0-t-u1 + m2 + ... , then the two series w0 + m2 + m4+... and zq + w3 + ... will each be convergent and the sum of their sums will be the sum of the original series.14. Obviously the conclusion does not hold good in general for series of positive and negative terms: for instance, the series 1— ⅜+⅛- ⅛ + ∙.. is convergent, but the two series l+⅜÷⅜+... and -⅜-⅛-... are each divergent, and thus without a sum. In order that the conclusion may be applicable to a series of positive and negative terms the series must be “ absolutely convergent,” that is, it must be convergent when all the terms are made positive. This implies that the positive terms taken by them­selves are a convergent series, and also that the negative terms taken by themselves are a convergent series. It is hardly necessary to remark that a convergent series of positive terms is absolutely convergent. The question of the convergency or divergency of a series of positive and negative terms is of less importance than the question whether it is or is not absolutely convergent. But in this latter question we regard the terms as all positive, and the question in effect relates to series containing positive terms only.15. Consider, then, a series of positive terms w0 + w, + w2 + ... ; if they are increas­ing—that is, if in the limit un+1∕un be greater than 1—the series is divergent, but if less than 1 the series is convergent. This may be called a first criterion ; but there is the doubtful case where the limit =1. A second criterion was given by Cauchy and Raabe ; but there is here again a doubtful case when the limit considered = 1. A succession of criteria was established by De Morgan, which it seems proper to give in the original form ; but the equivalent criteria established by Bertrand are somewhat more convenient. In what follows lx is for shortness written to denote the logarithmof x, no matter to what base. De Morgan’s form is as follows:—Writing un = Γ7~x, φ (n)put p0 =X ; if for x = oo the limit α0 of p0 be greater than 1 the series is conver- 
r ' φxgent, but if less than 1 it is divergent. If the limit α0 = 1, seek for the limit of 
plj ≈(p0 — l)lx ; if this limit a1 be greater than 1 the series is convergent, but if less than 1 it is divergent. If the limit α1 = l, seek for the limit p2, = (p1 -1) llx ; if this limit a2 be greater than 1 the series is convergent, but if less than 1 it is divergent. And so on indefinitely.16. Bertrand’s form is:—If, in the limit for n = ∞, I — Un be negative or less

mλ∕than 1 the series is divergent, but if greater than 1 it is convergent. If it =1, thenif I JL ∣Un be negative or less than 1 the series is divergent, but if greater than 1 
nun Iit is convergent. If it =1, then if I nu^i j be negative or less than 1 the series is divergent, but if greater than 1 it is convergent. And so on indefinitely.
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624 SERIES. [796The last-mentioned criteria follow at once from the theorem that the several series· 111 1having the general terms —, zτ . , -β—-√-, -7-7;—zττy , respectively are each6 6 na n (hι)a- nln (lln)a nlnlln (lUn)a r jof them convergent if α be greater than 1, but divergent if α be negative or less than 1 or = 1. In the simplest case, the series having the general term the theoremmay be proved nearly in the manner in which it is shown above (cf. § 9) that the harmonic series is divergent.17. Two or more absolutely convergent series may be added together,{w0 + M, + u2 + ...} + {r0 + v1 + v2 + ...} = (w0 + v0) + (wι + v1) + .;that is, the resulting series is absolutely convergent and has for its sum the sum ofthe two sums. And similarly two or more absolutely convergent series may be multipliedtogether{⅞> + M1 + u2 + ...} × {v0 + v1 + v2 + .. .J = Z<ovo + (u0v1 + w1r0) + (⅜0r2 + u1v1 + M2∙y0) + ... ;that is, the resulting series is absolutely convergent and has for its sum the productof the two sums. But more properly the multiplication gives rise to a doubly infinite series—
ιι0υ0, u0v1, u0v2... 
u1υ0, u1v1, u1v2

—which is a kind of series which will be presently considered.18. But it is, in the first instance, proper to consider a single series extend­ing backwards and forwards to infinity, or say a back-and-forwards infinite series ... + m_2 + + u0 + ul + u2 + ... ; such a series may be absolutely convergent, and the sum is then independent of the order of the terms, and in fact equal to the sum of the sums of the two series u0 + u1 + u2 + ... and W-1 + w_2 + m_3 + ... respectively. But, if not absolutely convergent, the expression has no definite meaning until it is explained in what manner the terms are intended to be grouped together ; for instance, the expression may be used to denote the foregoing sum of two series, or to denote the series w0 + ("1 + w_i) ÷ (w2 + U-2) + ∙ ∙ ∙ and the sum may have different values, or there may be no sum, accordingly. Thus, if the series be ...— ⅜ — { + 0 + ∣ + ⅜+ ..., in the formel* meaning the two series 0+f+⅛ + ... and — { — ⅜-... are each divergent, and there is not any sum. But in the latter meaning the series is 0 + 0 + 0+..., which has a sum = 0. So, if the series be taken to denote the limit of(m0 + u1 + u2 + ... + um) + ( w_1 + w_2 + ... + u_ m'∖where m, m are each of them ultimately infinite, there may be a sum depending on the ratio m : m', which sum consequently acquires a determinate value only when this ratio is given.19. In a singly infinite series we have a general term un, where n is an integer positive in the case of an ordinary series, and positive or negative in the case of a
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796] SERIES. 625back-and-forwards series. Similarly for a doubly infinite series, we have a general term 
um, n, where m, n are integers which may be each of them positive, and the form of the series is then

¾ 0 J ^0, 1 > '⅜, 2 ∙ ∙ ∙

Ml, 0, Mj, 1, ¾ 2

or m, n may be each of them positive or negative. The latter is the more general supposition, and includes the former, since ‰ι n may =0 for m or n each or either of them negative. To put a definite meaning on the notion of a sum, we may regard w⅛, n as the rectangular coordinates of a point in a plane; that is, if m, n are each of them positive, we attend only to the positive quadrant of the plane, but otherwise to the whole plane ; and we have thus a doubly infinite system or lattice-work of points. We may imagine a boundary depending on a parameter T which for 2τ= ∞ is at every point thereof at an infinite distance from the origin ; for instance, the boundary may be the circle x2 + y2- T, or the four sides of a rectangle, x = + aT, y = + βT. Suppose the form is given and the value of T, and let the sum ∑mot, n be understood to denote the sum of those terms wwι, n which correspond to points within the boundary, then, if as T increases without limit the sum in question continually approaches a determinate limit (dependent, it may be, on the form of the boundary), for such form 
of boundary the series is said to be convergent, and the sum of the doubly infinite series is> the aforesaid limit of the sum The condition of convergency may beotherwise stated : it must be possible to take T so large that the sum 2‰ι n for all terms um, n which correspond to points outside the boundary shall be as small as we please.It is easy to see that, if the terms um> n be all of them positive, and the series be convergent for any particular form of boundary, it will be convergent for any other form of boundary, and the sum will be the same in each case. Thus, let the boundary be in the first instance the circle x2 + y2 = T; by taking 2’ sufficiently large the sum X⅝ι, n fθr points outside the circle may be made as small as we please. Consider any other form of boundary—for instance, an ellipse of given eccentricity,—and let such an ellipse be drawn including within it the circle x2 + y2 = T. Then the sum X‰ι n for terms ‰,n corresponding to points outside the ellipse will be smaller than the sum for points outside the circle, and the difference of the two sums—that is, the sum for points outside the circle and inside the ellipse—will also be less than that for points outside the circle, and can thus be made as small as we please. Hence finally the sum X‰,n, whether restricted to terms um>n corresponding to points inside the circle or to terms corresponding to points inside the ellipse, will have the same value, or the sum of the series is independent of the form of the boundary. Such a series, viz. a doubly infinite convergent series of positive terms, is said to be absolutely convergent; and similarly a doubly infinite series of positive and negative terms which is convergent when the terms are all taken as positive is absolutely convergent.20. We have in the preceding theory the foundation of the theorem (§ 17) as to the product of two absolutely convergent series. The product is in the first instance

C. XI. 7 9
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€26 SERIES. [796expressed as a doubly infinite series ; and, if we sum this for the boundary x + y = T, this is in effect a summation of the series unv0 + (u0υ1 +m1v0) + ..., which is the product of the two series. It may be further remarked that, starting with the doubly infinite series and summing for the rectangular- boundary x ≈ aT, y — βT, we obtain the sum as the product of the sums of the two single series. For series not absolutely con­vergent, the theorem is not true. A striking instance is given by Cauchy : the series1111-------- 1---------- — + ... is convergent and has a calculable sum, but it can be shown√2 √S y 4without difficulty that its square, viz. the series 1 — j÷ (χ∕g ÷ ⅜) - ∙∙∙ > *s divergent.21. The case where the terms of a series are imaginary comes under that where they are real. Suppose the general term is pn ÷ qni, then the series will have a sum, or will be convergent, if and only if the series having for its general term pn and the series having for its general term qn be each convergent ; then the sum = sum of first series + i multiplied by sum of second series. The notion of absolute convergence will of course apply to each of the series separately ; further, if the series having for its general term the modulus V∕>2n + q2n be convergent (that is, absolutely convergent, since the terms are all positive), each of the component series will be absolutely convergent ; but the condition is not necessary for the convergence, or the absolute convergence, of the two component series respectively.22. In the series thus far considered, the terms are actual numbers, or are at least regarded as constant ; but we may have a series u0 + u1 + u2 + ..., where the successive terms are functions of a parameter z ; in particular, we may have a series α0 + a1z + a2zi + ... arranged in powers of z. It is in view of a complete theory necessary to consider z as having the imaginary value x + iy = r (cos φ + i sin φ). The two com­ponent series will then have the general terms anrn cos nφ and anrn sin nφ respectively ; accordingly each of these series will be absolutely convergent for any value whatever of φ, provided the series with the general term anrn be absolutely convergent. More­over, the series, if thus absolutely convergent for any particular value R of r, will be absolutely convergent for any smaller value of r, that is, for any value of x + iy having a modulus not exceeding R ; or, representing as usual x + iy by the point whose rectangular coordinates are x, y, the series will be absolutely convergent for any point whatever inside or on the circumference of the circle having the origin for centre and its radius = R. The origin is of course an arbitrary point : or, what is the same thing, instead of a series in powers of z, we may consider a series in powers of z — c (where c is a given imaginary value — a + βi). Starting from the series, we may within the aforesaid limit of absolute convergency consider the series as the definition of a function of the variable z ; in particular, the series may be absolutely convergent for every finite value of the modulus, and we have then a function defined for every finite value whatever x + xy of the variable. Conversely, starting from a given function of the variable, we may inquire under what conditions it admits of expansion in a series of powers of z (or z — c), and seek to determine the expansion of the function in a series of this form. But in all this, however, we are travelling out of the theory of series into the general theory of functions.
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796] SERIES. 62723. Considering the modulus r as a given quantity and the several powers of r as included in the coefficients, the component series are of the forms α0+α1 cosφ+α2cθs 2<∕>+... and a1 sin φ + α2sin2φ + ... respectively. The theory of these trigonometrical or multiple sine and cosine series, and of the development, under proper conditions, of an arbitrary function in series of these forms, constitutes an important and interesting branch of analysis.24. In the case of a real variable z, we may have a series a0 + a1z + a2z2 + ..., wherethe series a0 + a1 + a2 + ... is a divergent series of decreasing positive terms (or as a limiting case where this series is 1 + 1 + 1 + ...). For a value of z inferior but indefinitely near to + 1, say ^= + (l-e), where e is indefinitely small and positive, the series will be convergent and have a determinate sum φ(z), and we may write φ(+l) to denote the limit of φ(+(l-e)) as e diminishes to zero; but unless the series be convergent for the value z=±l, it cannot for this value have a sum, nor consequently a sum = <∕>(± 1)∙ For instance, let the series be z + -% + , which for values of z betweenthe limits +1 (both limits excluded) = — log (I— z). For z = + l the series is divergent and has no sum ; but for z = 1 — e, as e diminishes to zero, we have — log e and (1 — e) + ⅜ (1 — e)2 + ..., each positive and increasing without limit; for z≈-l, the series 1— ⅜ + ⅜- ⅛ + ..∙ is convergent, and we have at the limit log 2 = 1 — ⅜ + ⅜ — { + .... As a second example, consider the series 1 + z + z2+ ..., which for values of z between the limits + 1 (both limits excluded) = —-. For z= + l, the series is divergent and has nosum; but for z=l-e, as e diminishes to zero, we have - and 1 + (1 — e) + (1 — e)2 + ..., each positive and increasing without limit; for z = -l the series is divergent and has no sum; the equation —= 1 — (1 — e) + (1 — e)2-... is true for any positive value of e
lλ ~~~ €however small, but not for the value e = 0.The following memoirs and works may be consulted :—Cauchy, Cours d,Analyse de 

l’École Polytechnique—part I., Analyse Algébrique, 8vo. Paris, 1821; Abel, “Unter- suchungen liber die Reihe 1 + —red λj2 + ...,” in Crelle’s Journ. de Math., vol. I.(1826), pp. 211—239, and Œuvres (French trans.), vol. I. ; De Morgan, Treatise on the 
Differential and Integral Calculus, 8vo. London, 1842 ; Id., “ On Divergent Series and various Points of Analysis connected with them ” (1844), in Camb. Phil. Trans., vol. VIII. (1849), and other memoirs in Camb. Phil. Trans.; Bertrand, “Règles sur la Conver­gence des Series,” in Liouυ. Journ. de Math., vol. Vil. (1842), pp. 35—54; Cayley, “On the Inverse Elliptic Functions,” Camb. Math. Journ., vol. ιv. (1845), pp. 257—277, [24], and “Mémoire sur les Fonctions doublement périodiques,” in Éiouv. Journ. de Math.. vol. X. (1845), pp. 385—420, [25], (as to the boundary for a doubly infinite series); Riemann, “Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe,” in Gott. Abh., vol. xιπ. (1854), and Werke, Leipsic, 1876, pp. 213—253 (contains an account of preceding researches by Euler, D’Alembert, Fourier, Lejeune-Dirichlet, &c.); Catalan, Traité Élémentaire des Séries, 8vo. Paris, 1860 ; Boole, Treatise on the Calculus 
of Finite Differences, 2nd ed. by Moulton, 8vo. London, 1872. 79—2
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