954.

ON THE NINE-POINTS CIRCLE OF A PLANE TRIANGLE.

[From the Messenger of Mathematics, vol. xxiII. (1894), pp. 25-27.]
I CONSIDER the circle which meets the sides of a triangle $A B C$ in the points $F, L ; G, M ; H, N$ respectively, where ultimately F, G, H are the feet of the perpendiculars let fall from the angles on the opposite sides, and L, M, N are the midpoints of the sides: but in the first instance, they are taken to be arbitrary points. Taking the radius of the circle to be unity, the coordinates of the point F may be taken to be $\cos F$, $\sin F$, and these may be expressed rationally in terms of the tangent of the half-angle, $f=\tan \frac{1}{2} F$; and similarly for the other points, viz. we may determine the six points by the parameters f, g, h, l, m, n respectively. The sides of the triangle are the lines joining the points $L, F ; M, G ; N, H$ respectively: thus the equations of the sides are

$$
\begin{array}{rl}
\text { for } B C: & x(1-l f)+y(l+f)-(1+l f)=0, \\
" C A: & x(1-m g)+y(m+g)-(1+m g)=0, \quad \\
" & V=0, \\
" A B: & x(1-n h)+y(n+h)-(1+n h)=0, \quad \# \quad W=0 .
\end{array}
$$

We have $A F$, a line through the intersections of $B C$ and $C A$; its equation is therefore of the form $B V-C W=0$, and to determine B, C we have $B V_{0}-C W_{0}=0$, if V_{0}, W_{0} are the values of V, W belonging to the point F, the coordinates of which are
we find

$$
\frac{1-f^{2}}{1+f^{2}}, \quad \frac{2 f}{1+f^{2}}
$$

$$
\begin{aligned}
& V_{0}=-2(f-g)(f-m) \div\left(1+f^{2}\right) \\
& W_{0}=2(h-f)(f-n) \div\left(1+f^{2}\right)
\end{aligned}
$$

and then $B \div C=W_{0} \div V_{0}$: we thus find the following equations:

$$
\begin{array}{r}
\text { that of } A F \text { is } B V-C W=0, \\
" \quad B G \quad C^{\prime} W-A^{\prime} U=0 \\
" \quad C H \quad " \\
A^{\prime \prime} U-B^{\prime \prime} V=0
\end{array}
$$

where

$$
\begin{aligned}
& B: C=-(h-f)(f-n):(f-g)(f-m), \\
& C^{\prime}: A^{\prime}=-(f-g)(g-l):(g-h)(g-n), \\
& A^{\prime \prime}: B^{\prime \prime}=-(g-h)(h-m):(h-f)(h-l) .
\end{aligned}
$$

The condition in order that the three lines may meet in a point is $B C^{\prime} A^{\prime \prime}=C A^{\prime} B^{\prime \prime}$, viz. this is

$$
(f-n)(g-l)(h-m)+(f-m)(g-n)(h-l)=0,
$$

or, as this may also be written,

$$
2 f g h-g h(m+n)-h f(n+l)-f g(l+m)+m n(g+h)+n l(h+f)+l m(f+g)-2 l m n=0 .
$$

Similarly, the equation of

$$
\begin{aligned}
& A L \text { is } \mathfrak{B} V-\mathfrak{C}^{\prime} W=0, \\
& B M \Rightarrow \quad \mathfrak{C}^{\prime} W-\mathfrak{A}^{\prime} U=0, \\
& C N \Rightarrow \quad \mathfrak{A}^{\prime \prime} U-\mathfrak{B}^{\prime \prime} V=0,
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{B}: \mathfrak{C}=-(n-l)(h-l):(l-m)(g-l), \\
& \mathfrak{E}^{\prime}: \mathfrak{A}^{\prime}=-(l-m)(f-m):(m-n)(h-m), \\
& \mathfrak{A}^{\prime \prime}: \mathfrak{B}^{\prime \prime}=-(m-n)(g-n):(n-l)(f-n) .
\end{aligned}
$$

The condition in order that the three lines may meet in a point is $\mathfrak{B} \mathfrak{C}^{\prime} \mathfrak{A}^{\prime \prime}=\mathfrak{C}_{\mathfrak{A}} \mathfrak{B}^{\prime \prime}$, viz. this is the same condition as before; that is, if the lines $A F, B G, C H$ meet in a point, then also the lines $A L, B M, C N$ will meet in a point.

In the case of the nine-points circle, we have $M N, N L, L M$ parallel to $L F, M G, N H$, respectively: the equation of $M N$ is

$$
x(l-m n)+y(m+n)-(l+m n)=0
$$

and this is parallel to $L F$, if

$$
\frac{m+n}{1-m n}=\frac{l+f}{1-l f}, \text { that is, } L+F=M+N
$$

Hence, for the nine-points circle, we have

$$
L+F=M+N, \quad M+G=N+L, \quad N+H=L+M
$$

or, as these equations may be written,

$$
2 L=G+H, \quad 2 M=H+F, \quad 2 N=F+G
$$

viz. it thus appears that the radii to the points L, M, N respectively, or say the radii L, M, N, bisect the angles made by the radii G and H, H and F, F and G respectively.

It may be added that we have

$$
\begin{aligned}
& m+n-l+l m n=f\{1-m n+l(m+n)\}, \\
& n+l-m+l m n=g\{1-n l+m(n+l)\}, \\
& l+m-n+l m n=h\{1-l m+n(l+m)\},
\end{aligned}
$$

viz. f, g, h are expressible each of them as a rational function of l, m, n.
c. XIII.

