941.

NOTE ON THE PARTIAL DIFFERENTIAL EQUATION
 $$
R r+S s+T t+U\left(s^{2}-r t\right)-V=0 .
$$

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxvi. (1893), pp. 1-5.]

It is well known that this equation, R, S, T, U, V being any functions whatever of (x, y, z, p, q), in the case where u admits of an integral of the form $u=f(v)$ (u, v functions of x, y, z, p, q, and f an arbitrary functional symbol) can be integrated as follows; viz. taking m_{1}, m_{2} as the roots of the quadratic equation

$$
m^{2}-S m+R T-U V=0
$$

(that is, writing $m_{1}+m_{2}=S$ and $m_{1} m_{2}=R T-U V$), then, m_{1} denoting either root at pleasure, and m_{2} the other root of the quadratic equation, if the system of ordinary differential equations

$$
\begin{array}{r}
m_{1} d x-R d y+U d q=0, \\
-T d x+m_{2} d y+U d p=0, \\
-V d x+m_{2} d q+R d p=0, \\
-V d y+T d q+m_{1} d p=0, \\
-p d x-q d y+\quad d z=0,
\end{array}
$$

(equivalent to three independent equations) admits of two integrals $u=$ const. and $v=$ const., the solution of the given partial differential equation is $u=f(v)$.

In fact, to prove this, we have

$$
\begin{aligned}
d u= & \lambda\left(m_{1} d x-R d y+U d q\right) \\
& +\mu\left(-T d x+m_{2} d y+U d p\right) \\
& +\nu\left(-V d x+m_{2} d q+R d p\right) \\
& +\rho\left(-V d y+T d q+m_{1} d p\right) \\
& +\sigma(-p d x-q d y+d z)
\end{aligned}
$$

that is,

$$
\begin{aligned}
& \frac{d u}{d x}=\lambda m_{1}-\mu T-\nu V \\
& \frac{d u}{d y}=-\lambda R+\mu m_{2} \quad-\rho V-\sigma q \\
& \frac{d u}{d z}= \\
& \frac{d u}{d p}=\quad \mu U+\nu R+\rho m_{1} \\
& \frac{d u}{d q}=\lambda U
\end{aligned}
$$

and thence

$$
\begin{aligned}
& \frac{d u}{d x}+\frac{d u}{d z} p+\frac{d u}{d p} r+\frac{d u}{d q} s=\lambda\left(m_{1}+U s\right)+\mu(-T+U r)+\nu\left(-V+R r+m_{2} s\right)+\rho\left(m_{1} r+T s\right) \\
& \frac{d u}{d y}+\frac{d u}{d z} q+\frac{d u}{d p} s+\frac{d u}{d q} t=\lambda(-R+U t)+\mu\left(m_{2}+U s\right)+\nu\left(R s+m_{2} t\right)+\rho\left(-V+m_{1} s+T t\right)
\end{aligned}
$$

which equations may be represented by

$$
\begin{aligned}
& \frac{d(u)}{d x}=A \lambda+B \mu+C \nu+D \rho \\
& \frac{d(u)}{d y}=A^{\prime} \lambda+B^{\prime} \mu+C^{\prime} \nu+D^{\prime} \rho
\end{aligned}
$$

and for λ, μ, ν, ρ writing $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \rho^{\prime}$, we have similarly

$$
\begin{aligned}
& \frac{d(v)}{d x}=A \lambda^{\prime}+B \mu^{\prime}+C \nu^{\prime}+D \rho^{\prime} \\
& \frac{d(v)}{d y}=A^{\prime} \lambda^{\prime}+B^{\prime} \mu^{\prime}+C^{\prime} \nu^{\prime}+D^{\prime} \rho^{\prime}
\end{aligned}
$$

whence

$$
\frac{d(u)}{d x} \frac{d(v)}{d y}-\frac{d(u)}{d y} \frac{d(v)}{d x}=\left|\begin{array}{ll}
A \lambda+B \mu+C \nu+D \rho, & A \lambda^{\prime}+B \mu^{\prime}+C \nu^{\prime}+D \rho^{\prime} \\
A^{\prime} \lambda+B^{\prime} \mu+C^{\prime} \nu+D^{\prime} \rho, & A^{\prime} \lambda^{\prime}+B^{\prime} \mu^{\prime}+C^{\prime} \nu^{\prime}+D^{\prime} \rho^{\prime}
\end{array}\right|
$$

The determinant is

$$
\begin{aligned}
= & \left(A D^{\prime}-A^{\prime} D\right)\left(\lambda \rho^{\prime}-\lambda^{\prime} \rho\right)+\left(B D^{\prime}-B^{\prime} D\right)\left(\mu \rho^{\prime}-\mu^{\prime} \rho\right) \\
& +\left(C D^{\prime}-C^{\prime} D\right)\left(\nu \rho^{\prime}-\nu^{\prime} \rho\right)+\left(B C^{\prime}-B^{\prime} C\right)\left(\mu \nu^{\prime}-\mu^{\prime} \nu\right) \\
& +\left(C A^{\prime}-C^{\prime} A\right)\left(\nu \lambda^{\prime}-\nu^{\prime} \lambda\right)+\left(A B^{\prime}-A^{\prime} B\right)\left(\lambda \mu^{\prime}-\lambda^{\prime} \mu\right)
\end{aligned}
$$

The determinants $A D^{\prime}-A^{\prime} D$, \&c., each of them contain the factor

$$
\Theta,=R r+S s+T t+U\left(s^{2}-r t\right)-V ;
$$

viz. we have

$$
\begin{aligned}
& A D^{\prime}-A^{\prime} D=m_{1} \Theta, \quad B C^{\prime}-B^{\prime} C=-m_{2} \Theta \\
& B D^{\prime}-B^{\prime} D=-T \Theta, \quad C A^{\prime}-C^{\prime} A=-R \Theta \\
& C D^{\prime}-C^{\prime} D=-V \Theta, \quad A B^{\prime}-A^{\prime} B=U \Theta
\end{aligned}
$$

values which give

$$
\begin{aligned}
& \left(A D^{\prime}-A^{\prime} D\right)\left(B C^{\prime}-B^{\prime} C\right)+\left(B D^{\prime}-B^{\prime} D\right)\left(C A^{\prime}-C^{\prime} A\right) \\
& \quad+\left(C D^{\prime}-C^{\prime} D\right)\left(A B^{\prime}-A^{\prime} B\right)=\Theta^{2}\left(-m_{1} m_{2}+T R-V U\right)=0
\end{aligned}
$$

as it should be.
Hence, when the partial differential equation $\Theta=0$ is satisfied, we have

$$
\frac{d(u)}{d x} \frac{d(v)}{d y}-\frac{d(u)}{d y} \frac{d(v)}{d x}=0 ;
$$

and we thence have $u=f(v)$ as the integral of the partial differential equation.
It should be possible to express analytically the conditions in order that the systems of differential equations may have one or each of them two integrals.

It is interesting to remark that, if each of the two systems of ordinary differential equations has only a single integral, these two integrals do not lead to the solution of the partial differential equation. Consider, for instance, the case

$$
R=0, \quad S=x+y, \quad T=0, \quad U=0, \quad V=p+q
$$

the partial differential equation is here

$$
(x+y) s-(p+q)=0
$$

which has an integral

$$
z=(x+y)\left\{\phi^{\prime}(x)+\psi^{\prime}(y)\right\}-2\{\phi(x)+\psi(y)\},
$$

where ϕ, ψ are arbitrary functions: the equation in m is $m^{2}-m(x+y)=0$, the roots of which are $m=0$, and $m=x+y$.

For $m_{1}=0, m_{2}=x+y$, the system of differential equations becomes

$$
\begin{aligned}
& \quad d y=0 \\
&-(p+q) d x+(x+y) d q=0 \\
&-p d x+d z=0
\end{aligned}
$$

which has only the integral $y=$ const. ; and similarly for $m_{1}=x+y, m_{2}=0$, the system becomes

$$
\begin{aligned}
& \quad d x=0 \\
&-(p+q) d y+(x+y) d p=0 \\
&-q d y+d z=0
\end{aligned}
$$

which has only the integral $x=$ const. And these two integrals $y=$ const. and $x=$ const. do not in anywise lead to the integral of the partial differential equation.

I take the opportunity of remarking that the complete system of conditions in order that the differential

$$
A d x+B d y+C d z+D d w
$$

may be $=M d U$ is as follows: viz. writing

$$
A, B, C, D=1,2,3,4
$$

$\frac{d B}{d z}-\frac{d C}{d y}, \frac{d C}{d x}-\frac{d A}{d z}, \frac{d A}{d y}-\frac{d B}{d x}, \frac{d A}{d w}-\frac{d D}{d x}, \frac{d B}{d w}-\frac{d D}{d y}, \frac{d C}{d w}-\frac{d D}{d z}=23,31,12,14,24,34$, where of course $12=-21$, \&c., and

$$
\overline{123}=1.23+2.31+3.12, \& c . ; \overline{1234}=1.234-2.341+3.412-4.123
$$

is $=0$ identically;

$$
1234=12.34+13.42+14.23
$$

then the conditions equivalent to three independent conditions are

$$
\overline{234}=0, \quad \overline{341}=0, \quad \overline{412}=0, \quad \overline{123}=0, \quad 1234=0
$$

In fact, the first four equations are

$$
\begin{array}{r}
2.34-3.24+4.23=0 \\
-1.34+3.14+4.31=0 \\
1.24-2.14+4.12=0 \\
-1.23-2.31-3.12 \quad=\quad
\end{array}
$$

hence, multiplying by $1,2,3,4$ respectively and adding, we have the identity $\overline{1234}=0$, so that these four are equivalent to three independent equations: and multiplying by

$$
\begin{array}{r}
12 \cdot \mu-31 \cdot \nu+14 \cdot \rho \\
-12 \cdot \lambda \cdot+23 \cdot \nu+24 \cdot \rho \\
31 \cdot \lambda-23 \cdot \mu \\
-14 \cdot \lambda-24 \cdot \mu-34 \cdot \nu
\end{array}
$$

respectively, (where λ, μ, ν, ρ are arbitrary), we have

$$
(1 \cdot \lambda+2 \cdot \mu+3 \cdot \nu+4 \cdot \rho)(23 \cdot 14+31 \cdot 24+12 \cdot 34)=0
$$

that is,

$$
23 \cdot 14+31 \cdot 24+12 \cdot 34=0, \quad \text { or } \quad 1234=0,
$$

the fifth condition.
c. XIII.

