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932.

ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS.

[From the American Journal of Mathematics, vol. Xv. (1893), pp. 1—T74.]

THE principal object of the present memoir is to develop further the theory of
seminvariants, but in connexion therewith I was led to some investigations on
symmetric functions, and I have consequently included this subject in the title. The
two theories, if we adopt the MacMahon form of equation,

c d
O=1+bo+ga*+5a+...,

may be regarded as identical; but there are still two branches of the theory, viz.
we may seek to obtain for the symmetric functions of the roots expressions in terms
of the coefficients (which expressions, in the case of non-unitary symmetric functions,
are in fact seminvariants), or we may attend to the properties of the functions of
the coefficients thus obtained and which we call seminvariants. But I do not in
the first instance use the MacMahon form, but retain the ordinary form of equation
0=1+bz+ca®+da*+..., and we have thus only a parallelism of the two theories,
and in place of seminvariants we have functions which I call non-unitariants. In
regard as well to these as to unitariant functions, I consider certain operators
®,, A, P—38, and @ — 20b, which under altered forms present themselves also in
the theory of seminvariants.

As regards seminvariants, I consider what I call the blunt and sharp forms
respectively: the great problem is, it appears to me, that of sharp seminvariants,
otherwise the 7-and-F problem—uviz. for any given weight we have to determine the
correspondence between the initial and final terms in such wise as to obtain a
system of sharp seminvariants. I obtain a “square diagram” solution, which is so
far theoretically complete that for any given weight I can, without any tentative
operation, determine by a laborious process the correspondence in question: but I
am not thereby enabled to establish or enunciate for successive weights any general
rule of correspondence; and my process is in fact, as regards practicability, far
inferior to that which I call the MacMahon linkage, but of the validity of this I
have not succeeded in obtaining any satisfactory proof. ‘

C. XIIL 34
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266 ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. [932

I establish an umbral theory of seminvariants which will be presently again
referred to, and I consider the question of the reduction of seminvariants. The final
term of a seminvariant may be composite (that is, the product of two or more
final terms), and that in one way only or in two or more ways, or it may be non-
composite. In the case of a composite final term the seminvariant is reducible, but
the converse theorem that a seminvariant with a non-composite final term is irreducible
is in nowise true; the reason of this is explained. An irreducible seminvariant is a
perpetuant. In regard to perpetuants, I reproduce and simplify a demonstration
recently obtained by Dr Stroh as to the perpetuants for any given degree whatever:
viz. the generating function for perpetuants of degree = is

=" +l1-22.1—-2...1-2";
the theorem was previously known, and more or less completely proved, for the
values n=4, 5, 6, and 7. Dr Stroh’s investigation is conducted by an umbral
representation,
(az+By+yz+..)" z+y+2z+...=0,
of the blunt seminvariants of a given weight.

I consider in regard to seminvariants the theory of the symbols P — &b and
@ — 2wb, and the derived symbols ¥ and Z, each of which operating on a seminvariant
gives a seminvariant. These are, in fact, connected with the derivatives (f, F) of a
quantic f and any covariant thereof F; but except to point out this connexion, I do
not in the present memoir consider the theory of covariants.

The Coefficients (a, b, ¢, d, e, ...) or (1, b, ¢, d, e, ...). Art. Nos. 1 to 9.

1. I consider the series (a, b, ¢, d, e, ...), or put*ing as we most frequently do
a=1, say the series (1, b, ¢, d, ¢, ...) of coefficients, the several terms whereof are
taken to be of the weights 0, 1, 2, 3, 4, ... respectively. We form with these sets
of isobaric terms, or say columns of the weights 0, 1, 2, 3, 4, ... respectively, for
instance,

0 1 2 3 4 5 6
1 b c d e a0
O Abes e bdad Bbe RS0
b ¢ od "ce

beok - bide 1 d?
b= abolbis bie
be. . -bed

b° ¢
b*d

b

bic

b&
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932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 267

and generally a set or column of any given weight. In each term, the letters are
written in alphabetical order.

Taking the whole or any part of a column, for instance the whole column
(d,. be, %), or the part (e, bd, ¢*) of the next column, we may by supplying powers
of @ in such wise as to leave unaltered the terms of the highest degree, that is, by
reading these as (a*d, abe, b*) and (ae, bd, ¢*) respectively, regard them as homogeneous
sets of a given degree in (a, b, ¢, d, ¢ ...); and thus generally we may speak of
the degree of a set of terms.

The terms of the several columns as above written down are in  alphabetical
order, AO; viz. we supply as above the proper powers of a, reading for instance
col. 4 as a%, a*bd, a°c, ab’, b*, where the terms are in alphabetical or dictionary order.

Each column is derived from the preceding one by Arbogast’s rule, it being
understood, for instance, that 0% that is, ab', gives the two terms ab’c and 0%, that
18, b% and b°; and so in other cases.

2. We attend in particular to the non-unitary terms, or non-unitaries, e.g. in
col. 5, f, cd, which contain no b; and to the power-ending terms or power-enders,
ber, b°, which end in a power. It will be observed that, whenever by Arbogast’s
rule a term in one column gives two terms in the next column, the second of
these is a power-ender; and thus in any column the excess of the number of terms
above that in the preceding column is equal to the number of power-enders.

3. I consider the notion of conjugate terms: representing, for instance, the terms

¥ be cd
by dots in the form

and reading the number of dots in columns instead of in lines we derive the
conjugate terms
b bc be?,

and so in other cases. It is clear that the relation is a reciprocal one (thus the

conjugates of 0%, bc, be* are f, be, cd respectively). Moreover, a term may be its

own conjugate; thus cd? arranging the dots in lines and reading them in columns,
: 1s again cd> :

It is at once seen that non-unitaries and power-enders are conjugate to each
other; hence in any column, the non-unitaries and the power-enders are equal in
number, and a preceding result may be stated in the more complete form: in any
column the excess of the number of terms above that in the preceding column is
equal to the number of non-unitaries or to the number of power-enders.

4. The terms of the several columns may be arranged in counter-order CO, thus:

34—2
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268 ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. [932

b? be iBipdii be it bf
b c? cd- ce

b bd b
bt be2 d?
b bed

b bd

c3

b

b

bs

viz. we arrange here according to the highest letters. The counter-order is, in fact,
the alphabetical order with the reversed arrangement (..., g, f, ¢, d, ¢, b, a) of the
alphabet, but in the separate terms we retain the alphabetical order, thus writing
as before bf and not fb. Observe that the difference between the two arrangements,
AO and CO, first presents itself in the col. 6.

In this CO arrangement, each column is derived from the next preceding one
by a rule as follows: We operate on the lowest letter of each term, being a simple
letter, not a power, by changing it into the mnext highest letter, and we further
operate upon each term by multiplying it by b, the operation or (as the case may
be) two operations upon any term being performed before operating upon the next
term.

5. If we compare a column in AO with the same column in CO; for instance

AO co 40 CO rev.
g g g b*
bf of bf bt
ce ce ce b
a? b d? gt
b% d? b bd
bed bed bed bed
c b*d ¢ a2
bd- e bd b%
b b*c? b ce
b btc bic bf
b b be g
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932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 269

it will be seen that the terms are conjugates of each other, the first and last, the
second and last but one terms, and so on; or, what is the same thing, if we reverse
the order of either column, then the pairs of conjugate terms will appear each in
the same line; of course, here a self-conjugate term such as bed is put in evidence.

6L By Wnhing v a,00,%¢, ' d; .. =y, 0y5 s i sess . o kmoret simply | 0,./1, 128, ..
we connect the theory with -that of the partition of numbers: in particular, the
terms of a given weight correspond to the partitions of that weight, or number of
ways in which that weight can be made up with the parts 1, 2, 3, .... It may be
remarked that, in a partition, the parts are wusually written in decreasing order,
whereas (as remarked above) in a literal term the letters are written in alphabetical

order. Thus we have 321 and bed; it would be more correct to write the partition
as 123.

It is frequently convenient, retaining the letters b, ¢, d, ..., to write for instance
¢=a, (¢ a numerical suffix), meaning thereby that ¢ is the letter corresponding to
the place o in the series 1, 2, 3, .... If instead of the indefinite series (1, b, ¢, d, ...)

we consider, as is sometimes convenient, a definite series of terms (1, b, ¢, ..., ¢=a,),
then o is said to be the “extent” of the system. The next preceding letter p will
naturally be =a,_,; and if, increasing the extent by unity, we introduce a new letter
r, this will be @4, and so in other cases, the notation being for the most part
used merely as a convenient way of showing the place of a letter in the series.

7. Considering the terms of a given weight, or say a column, in 40 or CO,
we may represent any portion of the column by means of its initial and final terms,
say I and F, by the notations JaoF and IcoF respectively. But a much more
important notation is IcaF'; viz. this represents the series of terms of given weight
which are in CO not superior to Z, and in AO not inferior to F (a like notation,
which however I do not employ, would be IacF'; viz. this would denote the series
of terms which are in AO not superior to I and in CO not inferior to F). The
definition of ZcaF has been given in the above general form, but we are in fact
exclusively or chiefly concerned with the case where I is a non-unitary and F a
power-ender. It is to be observed that, considering the A0 column as given, then
to form from it the set or interval Ical we may disregard altogether the terms
which are in the AO column inferior (posterior) to F, for by the definition none of
these enter into ZcaF, but it may very well be that there are in ZcaF terms which
are in the AO column superior (anterior) to /. An instance of this first presents
itself for the weight 11; viz. here a portion of the A0 column is (fy, b%, bei, bdh,
beg, bf% ch, cdg, ...): hence in IcaF, if the initial term be ¢*h, for instance in
ctheab’e®, we have terms fg, beg, bf* which are in AO anterior to the initial term
¢h. In order therefore to form ZcaF from the AO column, we must first take the
terms (if any) which being in CO posterior to I are in the AO column anterior to
I, and then from the portion JaoF of the AO column reject the terms (if any)
which are in CO anterior to I. In particular, starting from the A0 column, and
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arranging the non-unitaries thereof in CO and the power-enders in AO, for instance,
weight 12, these are

m 9°
ck cf?
dj e

el . b2f®
oY bde?

Jh ce

There is no difficulty in writing down the terms of the several sets or intervals
meag®, meacf?, meae’, ..., ckeag®- chcacf? ....

Instead of ca we may, if we please, use, and in fact I generally use the conventional
symbol o, or write m ® g%, m wo¢f?, & In any such set, the terms need not be
arranged in AO; if for any purpose it is more convenient, they may be arranged in
CO; but of course the definition of the meaning must not be departed from. The
expressed initial is the highest term in (O, and the expressed final the lowest term
in 40. i

8. I diminish a term by replacing successively each letter thereof by the next
inferior letter; for instance, if the term is cdf, then the diminished terms are
Dcdf, =bdf, ¢*f, cde, and so Db*df, =bdf, b%f, b*de (where the diminished b is a,
that is, 1). Conversely, we may augment a term by replacing successively each letter
thereof by the next superior letter; for instance, Abd =0bdf, cdf, bef, bdg, where
the first augmentation b*df is obtained from the « (which may be regarded as latent
in the term operated upon). Operating upon the letters in order beginning with the
lowest, the several diminutions may be called D,, D,, D,, ..., and the several aug-
mentations 4, 4;, 4., ... (where 4, is in fact multiplication by b). We diminish a
set by diminishing successively the several terms thereof (the diminished terms being
taken without repetition ; that is, each such term once only). Similarly, we may augment
a set by augmenting successively the several terms thereof (the augmented terms
being taken without repetition). It is to be noticed that the two operations are
not reciprocal to each other; if we diminish a set, and then augment the diminished
set, we obtain indeed all the terms of the original set, but in general we obtain
also terms which are not included in the original set.

9. It requires some consideration to see that we have D (L w F)=(D,I o DyF),
where DoF is the diminution performed upon the highest letter of F. Take any
term M of D(I o F), the several diminutions DM, D,M, ..., DyM are arranged in
descending order: D, M the highest and D,M the lowest, as well in CO as in AO.
If then DM is in CO not superior to D,I, then all the DM’s will be in CO not
superior to D,7; and similarly, if DyM is in AO not inferior to D,F, then all the
DM’s will be in AO not inferior to DgF. And this being seen, then if we take
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932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 271

N a term of (D, o DyF), and consider the successive augmentations 4,N, 4N, ..., AN
of N, then these will be in ascending order A4,N the lowest and A4N the highest
in CO as well as in AO. It may happen that 44N or this and neighbouring terms
are in CO higher than 7, and that 4,N or this and neighbouring terms are in 40
lower than F, but there will always be a term or terms which is or are in CO
lower than 7 and in AO higher than F'; and thus not only every term of D (I w F)
will be a term of (D,f o DyF), but conversely every term of (D,f o DyF) will be a
term of D (I o F'), and we thus have the required relation D (I o F)=(D,I o D,F).

Symmetric Functions of the Roots. Art. Nos. 10 to 31.

10. We consider a set of roots a, B, v, O, € ... either indefinite in number, or
else definite, for instance a, B, v, 8. The symmetric functions (rational and integral
functions) are in the first instance denoted in the usual manner

Sae=a+B+y+8+..., SaB=aB+ay+RBy+...,
Se2B = a*B8 + a2+ a’y + ay® + By + By*+ ...,

viz. the S refers to all the distinct combinations of like form with the combination
(a0, a3, or a*B, as the case may be) to which it is prefixed. By omitting the S and
instead of the roots considering merely their indices, these same symmetric functions
would be 1, 11 (or 1%), 21, &c, and then if instead of the numbers 1, 2, 3, &c., we
introduce the symbolic capital letters B, C, D, ..., the same symmetric functions
will be represented as B, B, BC, &c. (21, that is, 12 is written as BC, and so in
other cases, the letters in alphabetical order). The letters B, C, D, ... are considered
as being of the weights 1, 2, 3, ... respectively, and thus the symmetric functions
of a given degree in the roots are represented by the terms of that weight in the
symbolic letters B, C, D, ..., thus the symmetric functions of the degree 4 are E,
BD, C*, B*C, B*; of course these terms may be arranged in 40 or in CO as may
be most convenient for the purpose in hand. The capital letters B, C, D, ... are in
fact umbre, but to avoid confusion with subsequent notations I do not in general
thus speak of them. A form such as Sa® or Sa‘8% in which there is no index 1,
is said to be non-unitary; but a form Sz or S«?3, in which there is an index =1
or two or more indices each =1, is said to be unitary: or, what is the same thing,
in the symbolic representation by capital letters, the form is non-unitary or unitary
according as it does not or does contain the letter B.

11. In the ordinary theory of symmetric functions, we connect the coefficients
(1, b, ¢, d, ...) with the roots (a, B, v, ...) by the equation

l+bz+et+deP+...=1—az.1—-Bzx.1—yz...,
and we thus have

et p Ay R R S S AR T B

Te=af +ay+By+..., =88, =1y =8

—d=aBy+... S Sego R H
&e., &c.;
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and it is to be remarked that, for any given number of roots, there will be this
same number of coefficients: we may for instance have

1+bz+crr+dat=1—az.1—Bx.1—yaz,

that is,
—b=a +8 +v,
+c=aB+ay+ By,
—d=aBy;

and similarly if the number of roots be =4, or any larger number.

12. The symmetric functions of a given degree, say 4, in the roots, viz.
S, Sa*B, Se2B3?, SoBry, SaBys,
4,/. .81, 2, 212, 14

or

or

E, " BD, 0% (BN, B,
are equal in number to the combinations of the weight 4 in the coefficients, viz.
e, bd, oY, b, b4;

and the terms of the one set are in fact linear combinations (with mere numerical
multipliers) of the terms of the other set; but more than this, we have for instance

e=afByd + ..., that is, e= B*:
bd=(a+RB+y+3...)(aBy +aBd +ayd+ Byd...) contains only terms «*By and aByd,
that is, bd is a linear function of B2C and B*:

c=(aB+ay+ad+pBy+ B0+ q¢d...)* contains only terms &*3% o*By and afBvyd, that
is, ¢ is a linear function of C2, B*C and B*; and so on.

13. We have in fact the Table IV (¢) which I quote from my paper “A Memoir
on the Symmetric Functions of the Roots of an Equation,” Phil. Trans. t. 147 (1857),
pp. 489—496, [147],
I e bd c? b b

Sot =4 = +0]
Sa*B =131 B]) - + 1| + 4
Sefffti= 20 =02 +1 | +°2| + 6
Sa’By = 212 = BC +1 | +2 —+75A +12
SaByo = "1*= B4 +1 | +4| +6 | +12 | +24

inserting on the left-hand outside margin the new symbols %, BD, &c., with their
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explanations: the || indicates that the table is to be read according to the columns,
e=+ 1B bd=+1BC + 4B, &c. This table gives conversely a Table IV (b), read
according to the lines and serving to express the symmetric functions &, BD, &c.,
as linear functions of the combinations e, bd, ¢ b%, b* of the coefficients.

14. The (a) and (b) tables are given in the Memoir up to X (a) and X (b):
it is proper to quote here the (b) tables up to VI(b) with only the change of
substituting on the outside left-hand margins the literal terms such as £, BD, &o.,
instead of the symbols 4, 31, &c., originally used to denote these symmetric functions—
it is to be observed that the left-hand symbols are in AO, the upper symbols in
CO0, this distinction first manifesting itself in the Table VI(b), so that it was necessary
to go as far as this in order to put in evidence the true form of the tables.

II (). III (b). IV ().
= ¢ b® = be b* = e od v b b*
ok =2uliad D| -3 +3| -1 F| -4 | +4| +2 | -4 +1
Bl +1 BC | +3 ]| -1 BD | +4 ] =1 =0 ]
-1 S0P +2 ) -2 +1
BC | -4 | +1
B +1
V (b).
= f be edi 1% bely - i bPe b°
F| -5| +5| +5| =5 | =5 | +5 —l‘
BE| 45| -1| -5 +1| +3| -1
ep| +5| -5 | +1| +2| -1
BD| -5 +1| +2| -1
BC*| -5 | +3 | -1
BC | +5| -1
B -1
C. XIIL 35
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BF
CE
D2
BB
BCD
o3
B'D
B C?
B¢

BG

ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS.

VI (3).
g D ebpen s Peh as bediaabid i it o a3 | abte LS
—6’+6’+6 ~g I"p s L giimiseil gt g 1 gy
SRRV B ME =Yy 0 I T SR a8 8 O S R RO e D D R S R |
+ 6| -6 | +2| +2 | -3 | + 4| -2 | -2 | +1
+ 3| <3| =8| +83 ) +3 | <. 3 0 +1
— 6| +1] +2 | =1} +8 | = 3| +1
—-12 | +7 | +4| -3 | -3 | + 1
LR D L 0 +1
+ 6| -1 =2| +1
+ 9 |'=4 ]| +1
— 6| +1
+ 1

[932

It is hardly necessary to remark in relation to these tables that if there are
only two roots, then d=0, &c., viz. Table IL is not affected but all the subsequent
tables assume a simplified form; if there are only thrce roots, then e=0, &ec., viz.
Tables IL and IIL are not affected but all the subsequent tables assume a simplified
form ; and so on. ;

15. We have between the differential symbols 0,, 0, 0a, ...

and 0,, 05, 0

¥s e

certain relations which it is interesting to develop: it will be convenient to consider
successively the cases, three roots, four roots, &c. ;

In the case of three roots, starting from

we have

equations which give conversely 0, 0,, 9; as linear functions of 9,, 9, Dy

—b=a +8 +v,
c=aB + ay + By,
_d=aﬂ')'v

0a =—0y+ (B+ ) 0 — Byda,
0p =—0p+ (v + @) 0, — yads,
a,=-—ab+(d +,8)ac_ o304,
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down the three equations thus obtained together with a fourth equation which I will
explain. The four equations are

/ a3 63 ,YS
I SR % v e S L SOy
0s a—B.a—vq +B—fy.,8—a ﬂ+ry——a.ry-,3 H

o’ B :
-9 = O + O + oy,
? a—B.a—y B—y.B—a " y—a.y—B"
i Ll el SRR o L
a-B.a—y T By B-a®T T ag=B%

i 1 1 1

= — s 0 Oy.
a—B.a—y +,3—ry.8—a B+ry—a.'y-,3 %
In verification of the last three equations, observe that they give
=0+ (B +v) 9 — Byoa

—at(,8+'y)+ﬁ3~ya4_/32 B(B+'y)+b"y +v—v(8+'y)+3'ya
a—8.a—y B—g. B0 Fd.yr 8 "

that is, —0+ (B +4)0,— By0a=0.: and similarly from the same three equations we
deduce the values of 9 and o,; the three equatlons are thus equivalent to the
foregoing three equations for 0., dg, 0y.

As to the first equation, to avoid confusion with a root 8, I have written therein
& (afterwards replaced by &) to denote the degree of a function homogeneous in
(a, b, ¢, d), upon which the symbols are supposed to operate; this is also the degree
in the roots a, B, yv. The four equations give ;

a3+ba2+ca+d

~ (B &)= by~ dhy—diu =~ g7 7

0. + &c., =0,
since
w4bat+ca+d=0, B+0B+cB+d=0, ¥+by+ey+d=0.

The equations thus give
0y, + b0y + €0; + dad =g

which is right, and the first equation is thus verified.

16. From the last three equations for 0;, 0,, 04, we deduce

3a2+2ba+ca +3/S’2+2b8+c 3y + 2by + ¢
a—B.a—y " B-g.B-0a T y—a.y-B
= 0a + 05 + 0y, '

— 80, — 200, — 00 =

a result more easily deducible from the first set of three equations for ,, Op, Oy:
but I have preferred to obtain it in this manner for the sake of the remark that
it is a peculiarity of this combination of 05, 0,, 0; that the coefficients of 9,, g, 0

35—2
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become integral functions of the roots (in the actual case constants and =1): for a
somewhat similar form

co?® + da 5 c;3’+ol/8_a cy® + dy

- dac; i a R ] )
(cp + doc) a—B.a—1y B—w.B—a # y—a.y—RB "

the coefficients are fractional.

We at once have
00, + P08 + ’yay = ba,, + 2¢0, + 3d8d,

viz. these symbols operating upon a function of the roots of the degree w, or what
is the same thing, a function of the coefficients of the weight o, are each of them
equivalent to a constant factor w.

Again, we have
a*0a + B°0p + 40y = — (b* — 2¢) 0 — (bc — 3d) 0, — bddga,
= — b (b0 + 0, + ddg) + 2¢0, + 3do.,

or since ad, + boy+cd, + ddg =98 (if as before & is the degree of the function operated
upon) and therefore b9, + ¢d,+ dog =8 —ad, or say =& —09,, this is

00, + 3%0p + 0y = — b8 + b0, + 2¢0y, + 3d0.,

so that we have here another form — b8 + b0, + 2¢0, + 3d0,, for which the coefficients
of 0., 0, 0y are integral functions of the roots.

17. In the case of four roots, the corresponding equaticas are
—b=a +B8 +v +3,
+c=aB +ay +ad + By+ B+ 3,
—d=aBy+ aBd + ayd + Bys,

+ e =aBys,
and we then have

Oa=—0p+ (B+vy + 8) 0, — (By+ B8+ 38)da + Bydo,,
Op=—0p+ (y + 8 + a) 0, — (8 + ya + 8a) 9 + ydad,,
0y=—0,+ (8 +a+B)0,— (da + 88 + aB) 04 + da/30,,
0 =— 0+ (a + B+ ) 0. — (aB + ay + By) 3a + aByo.,
and the converse set of equations, which for shortness I write in the form
—04+8, —0y, —0,, —0q, — 0

abH 210 Ba, 25,510 '74’ 3,%1,0 84, 8,310

=a—B.a—ry.a—88“+,3—7./3—8./3—aap+';:8.'y—a.ry—,3a"+S—G.S—B.S—fyaa'
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We have, in like manner as in the former case,
— 40y — 300, — 2¢0 — dd,= Ou+ O+ Oy+ Os,
0oy + co.+ dog+ €d,= ad. + B0+ yoy+ 805, = o,
— b8 + b0y, + 2¢0y + 3d0, + 4edg = a*0, + [3°0p + 0y + 605 ;
and similarly in the case of five or more roots.

18. In the case of ¢ roots, I write m =a,, and for shortness
Oy =00y + (' — 1) b0, + ... B LY 5 Y
P = bo, + 2¢0y + 3d0e + ... + 'm0,

so that, besides the equation b0, + 0, ... + md, = Sa0, = ®, the foregoing investigations

show that we have
®a" ST Saa.’

P—-0b= So?0,.

The operand for these symbols is a symmetric function of the roots, which is thus
also a function of the coefficients: it is of the degree o in the roots, and consequently
of the weight o in the coefficients, and its degree in the coefficients is taken to be
=38. It is sometimes convenient to represent this operand, qud function of the roots,
by T and, qua function of the coefficients, by U, so that we have in general T=U.
If T be a non-unitary function of the roots, then we may say that T, =U, is a
non-unitariant.

19. I give some illustrations of the equation ®,= —S0,. Suppose
T=U=8z=FE=—4¢+ 4bd + 2¢* — 4b%c + b*

(Table IV (b)); o’ must be =4 at least and I take it to be 4 and 5 successively;

we thus have
@, = 40, + 3b0, + 2¢0; + do,,

@5 = 50, + 400, + 3c04 + 2do,,
omitting from ®, the term ed, which is obviously inoperative. For any number whatever
of roots, we have ‘
- 80,.Sat=— 482 =— 4 (= 3d + 3bc — 1*), =12d —12bc + 40?,

and this should therefore be the value as well of ®,F as of ®,F. The calculations
may be arranged as follows:

e.K
4 . 4d—8bc+ 40 d+16 —4 12
3b. 4c —4b° bc—32+12 +38 -12
2¢. 4b b +16 —12 + 4,
d.—4
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0,k
5 . 4d—8be+ 4b° d—20 S
4b. 4o —4b? be — 40 +16 +12 219
Sc. 4b b +20—16 | + 4,

d.—4

giving in each case the right result.

[982

20. In the foregoing example, Sa* was a non-unitary function of the roots, but
I take the case of a unitary function. Suppose

T = U=Sa*B = BD =4e —bd — 2¢* + b.

Here —80,.80?38 is not independent of the number of the roots; in the case of 4

roots, we have

— 80,.80%8 = — 38028 — 382%, =—3(3d —bc)— 3 (—3d +3bc —b%), =0d — 6bc+ 3b*;

and in the case of 5 roots, we have

— 80, . Sa?B = — 3828 — 4Sa%, =— 8(3d —bc) — 4 (—3d +3bc — 1), =3d — 9bc + 4b*;

and these should therefore be the values of ©,BD and ©,;BD respectively.

calculations are

®,BD
4 .— d+2bc d—4 +4] 0
3b.—4c+ 0? be+8—-12—-2 ~-6
2c.— b b + 3 +3,
d.+ 4

®,BD
5 .— d+2bc d—5 +8 | +3
4. —4dec+ b be+10—-16-3 -9
3¢c.— b b? + 4 +4,
2d.+ b

The

giving in each case the correct result. We have ®5-®4=ab+bac+cad+dae, and the
examples show that performing this operation on the non-unitariant Se!, =&, we
obtain a result =0; whereas for the unitary function Se?B, =BD, the result is not

=0.

21.  Considering the question generally, I take the highest coefficient in U to
be ¢g=0a, (0 equal to or less than ), or what is the same thing, the extent of U
to be =o; this implies that o' is at least =o; and taking it to be first =¢, and
then to be any number greater than o, we have

®c o _Saa, ®u"= fi B Saa:
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where the function U operated upon by ©, and ®, respectively is in each case the
same function of the coefficients. It is easy to see that, if T is a non-unitary
function of the roots, then whatever be the number of the roots we have S9,.T=a
determinate symmetric function of the roots, and consequently = a determinate function
of the coefficients. We thus have ®, U and 0,0 equal to each other; that is,

] By-8,)U=0;
we may write
O, =00, +(c —1)bo; + ... + Pg,

Oy =00+ ("= 1) b0 + ... + (¢’ — o + 1) pd,,
for the subsequent terms of ®,, as involving 9,, 0., &c., are inoperative; hence
writing
A =0y + b0c + ¢y + ... + poy,
or as we may more simply express it

A=0+b3,+c0p+ ...,

we have @, — 0®,=(¢'—0c)A, and consequently AU=0; A is thus an annihilator of
any function U of the coefficients which is equal to a non-unitary function of the
roots ; or more shortly A is an annihilator of any non-unitariant.

22. Similarly, from the two equations @,=-—80,, and O,=S0, regarded as
operating upon a non-unitary function, we deduce ¢'®; — @y = (o — ') S0,: the left-
hand side is here =(o— o) A,, if

A, = b0, + 2¢0p + 3¢04+ ... + (o — l)paq,

or say
A, = b0, + 2¢0, + 3¢dg + ...,

viz. we have A,=80,; for instance, if as before

T = U= 8ot =— 4de + 4bd + 2¢*> — 4b% + b*,
then

(b0, + 2¢04 + 3d0,) (— 4e + 4bd + 2¢* — 4b% + b*) = S0, . Sa*, =48a®, =4 (— 3d + 3bc —b?),
as can be at once verified. It is to be noticed, however, that S9. operating upon a

non-unitary function of the roots does not in every case give a non-unitary function;
and thus successive operations with A; will not give a succession of non-unitariants.

23. 1 investigate the foregoing result in regard to A in a different manner;
suppose, for instance, that T = U is the non-unitary function Sa* of the roots,
(= — 4e + 4bd + 2¢* — 4b% + ).
The number of roots is at least =4, and I take it to be =4, say the roots are

a, B, v, & Consider a fifth root 6, and let Ty=U,=Sa* be the like function for
the five roots, we have T,=T+6, or say Uy=U+6. Write —b,, ¢, —d,, &, —f,
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for the symmetric functions of the five roots; U, will not involve f, and it will be
the same function of b;, ¢, d;, e, that U is of b, ¢, d, e, say we have

U= U(bu Cy, dl) e).
bh=b—0, c,=c—0b0, di=d—cb, e,=e—db;

But we have

and thus the foregoing equation U,= U + ¢* becomes
Ub-6,c—00, d—cO, e—db)=U + 6*;

it is in fact easy to verify that, for the foregoing value of U, the terms in 6, €, ¢
all vanish, and that the expression on the left-hand becomes = U+ 6. But attending
only to the term in 6, this is =—0(0y+ b0, +cda+ do,) U, =—0AU; viz. this term
vanishing we have AU=0, the result which was to be proved.

In the case of a unitary function, for instance T = U =Sa3, here introducing
the new root @ we have U,=U+ 0Sa®+ 6*Sa; or there is here a term in 6, and
instead of AU =0, we have AU =8¢’ or the unitary function is not annihilated by A.

The foregoing investigation is really quite general, and establishes the conclusion
that A is an annihilator of every non-unitariant.

It is to be noticed that ®, and A are operators, which leave each of them the
degree unaltered but diminish the weight by unity: the operator P — b8, and another
operator 4 —bw which will be considered, increase each of them the degree by unity
and also the weight by unity.

24. Coming now to the equation
P — b8 = Sa*0,,
it is to be remarked that, if ¢’=o, the expression for P ends in ¢o, where, as
before, g = @, is the highest coefficient in the operand; since the operand thus contains

g, the mnext succeeding terin in 79, would be not inoperative, and in order to include
it in the expression of P we may take ¢’ =0+ 1; we thus have ;

P =0, + 2¢0p + 3d0. + ... + (o + 1) 70,,
or as we may more simply write it
P = b0, + 2¢0, + 3do.+ ...;

the operation thus increases the extent by unity. The symbol Sa*d. operating upon
a symmetric function of the roots, gives, whatever may be the number of roots, the
same symmetric function of the roots: and we see further that, operating upon a
non-unitary function, it gives a non-unitary function of the roots. Hence P —bd
operating upon a non-unitariant gives a non-unitariant. I give an example.

25. Suppose, as before,
T = U=So‘=FE=—4e+4bd + 2¢* — 4b%c + b*;

www.rcin.org.pl



932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 281

here 8=4, and therefore

P — b3 =100, + 20, + 3d0, + 4€ds + 5f0, — 4b.
We have

Sa20, . Sat =48a’, =4 (— 5f + 5be + 5cd — 5b%d — 5bc? + 5bic — b%),

and this should therefore be the result of the operation P —b8: the calculation is

b.—12¢ + 8bd + 4c* — 4b% f - 20 -20
20;. 4d — 8be + 4b* be | —12 +16 +16 | +20
3d. 4c — 4b° cd + 8+12 + 20
de . 4b bd | + 8 —-12 —-16 | —20
5(.— 4 ber | + 4—16 - 8|-20
—4b . — 4de +4bd + 2¢> — 4bc+b* bc | - 4+ 8 +16 | +20
b - 4| - 4

which is the right result.

We have seen that every non-unitariant is annihilated by A; it at once appears
that conversely every function of the coefficients which is annihilated by A is a
non-unitariant: it is, in fact, a symmetric function of the roots, and unless it were
a non-unitary function of the roots it would not be annihilated by A. Non-unitariants
are analogous to seminvariants; the precise relation between them will be shown
further on.

26. We can, by an investigation similar to that for seminvariants, show that
P —b8 operating upon a mnon-unitariant gives a mnon-unitariant. In fact, considering
the two operations A and P —0b8, we have

AP—b8)+=A(P—-b8)+A.(P—bs),

the meaning being that, if upon any operand U we perform first the operation P —0b8
and then the operation A, this is equivalent to operating on U with the sum of
the two operations A (P —0b8), and A.P —b3, the first of these symbols denoting the
mere algebraical product of A and P —0b3, the second of them the result of the
operation A performed upon P —03. We have similarly

(P —b8) At =(P = b8) A+ (P -b3). A.

Hence observing that A (P —58) and (P —0b8)A are equal to each other, and
subtracting, we have

A(P —bd)+ — (P —b8) At =A. (P —b3)— (P —8).A.

But from the values
A = ady + b0, + g+ ... 2

and
P —08 = b0y + coy + do, + ... — b3,

(o5l b 36
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we find
A . (P —b8) = ad, + 200y + 3cds + ... — 8,

) (P—-00).A= boy + 2¢0, + ...,
and thence
A.(P—bd)—(P—bd).A=0ad,+bd +¢cd, ... — 6, =0,

since 8 is the degree in the coefficients. Hence writing down the operand U,
A.(P-b8) U-(P-08).AU =0,

where for greater clearness I have inserted the dots, to show that A operates on

(P=b8) U, and (P —-08) on AU. Taking U to be a non-unitariant, we have AU=0;

and this being so, the equation gives A.(P —08) U=0, viz. this shows that (P—08) U

is a non-unitariant.

27. There is another symbol 4@ —bw, which is precisely analogous to P — b8, viz.
operating upon a non-unitariant, it gives a mnon-unitariant: e is, as before, the weight

of the function operated upon, and the expression of @ is

$Q = coy + 3d0, + 604 + ... + 30 (o + 1) 10,,
or say

%Q = ¢0p + 3d0, + 6€0z + ....

The proof is exactly similar, viz. we have to show that
A.(3Q - bw) — (3Q — bw) . A = 0.

A. (3Q — bw) = b0y + 3cd, + 6dds + ... — o,
(3Q—-bw). A= 00, + 3ddg + ...,

We have

and the difference of the two expressions is
boy + 2¢0. + 3dog + ... —w, =0,
since o is the weight of the function operated upon. Hence, as before, if U be a

non-unitariant and therefore AU=0, we have A.(#Q —bw) U=0, that is, (3@ —bw) U
is also a non-unitariant.

28. The symbol $Q—0bw has no simple expression in terms of 9,, O, Oy, ...,
and the form varies with the number of the roots: thus for 3 roots, it is

5 {( co® + 3da

m e bu) 0a + &C.} s

for 4 roots it is

49 f( ca® + 3da® + Gea

a—,B.a—ry.a—-8+ba)a“+&c'}’

for 5 roots it is

4 & 3 2
— - (g S S POt ) 2+
a—B.a—y.a—06.a—e

and so on. It is not easy to find the effect of such a symbol upon a given
symmetric function of the roots, nor in particular when the function is non-unitary
1s it easy to show generally that the result is non-unitary.
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It is to be remarked that, if the function operated upon is of the degree & in
the roots, then we must for }Q —bw take the expression with 841 roots; for
instance, if the function be of the degree 5 in the roots, then, gud function of the
coefficients, this contains f, and it must be operated on with

$Q — bw, =cdy + 3d0, + 6€dq + 10f0, + 15907 — wb,

viz. this expression, as containing ¢, gives the 6-root expression for 4@ — bew.

29. Suppose for instance the function operated upon is F=Se*; here taking
the 6-root expression, this gives

_s {(caﬁ + 3da* + Gea® + 10fa* 4 1592

“—B-“—"/-a—s-a—e.a-—{-l' ba> a4+&c_}’

or omitting for the moment the outside factor —5, the expression in { } is easily
seen to be

= cH, + 3dH, + 6¢H, + 10fH, + 157 + bSa,

where H,, H,, H, H, denote the homogeneous functions of the degrees 4, 3, 2, 1
respectively: the values of these are obtained by adding together all the lines of
the Table IV (b), all the lines of the Table III (b), &c.:
bSa® thus are

the terms exclusive of

¢ (— e + 2bd + ¢ = 3b% + b*)
+ 3d(—d+ 2bc - )
+ 6e(—c+ )
+ 10/ (= b)
+ 15¢9 . 1,
and these are = S&’B+ Sa'B*+ Se’B, as appears by the following calculation :
SR Sat SeiB?

g +15 | +156 | +6 +6 +3 | +15
of - 10 —-10| -1 -6 —3|—-10
ceal sl =26 gl e S B (SR
b2 + 6 +96 1+l 2 R E 8
d? Lk - 3({—-83 -8 +3|- 3
bed | +2 + 6 + AR T e g R
b*d -3 LR ] E O 0 fe g
P | + 1]1+2 -2 +11+4+ 1
pe | 3 o L pide it i Mg
b | +1 s B | + 1
I
36—2
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The omitted term bSe’, that is, —Sxz.S« is — Sa®—Sa’B; the addition hereot
destroys therefore the non-unitary term Se’8, and thus the required expression,
restoring the omitted factor —3, is — 5 (— Sa®+ Se!3* + Sa®8%), or say =5G —5CKE - 5D

a non-unitary form: this then should be the result of the operation
3Q —bw, = ¢, + 3do, + 6€dq + 10£0, + 1590, — 5b,
Se®=F = — 5+ 5be + 5¢d — 5b*d — 5bc* + 5b’c = b’

Performing the calculation so as to omit on each side a factor 5, it is to be shown
that G — CE — D* is

performed upon

= ¢ (e — 2bd — ¢ + 3b*c — b*)

+ 3d(d—2bc + %)

+ 6e(c—b)

+ 107 (b)

+ 159 (- 1)

—  5b(=f+be +cd— b*d — be* + bc — 1b°).
Collecting the terms, and comparing the result with the expression for G — CE — D2,
we have

G - CE - D?
g - 15 -15 6 —6 —3
bf +10 +5 | +15 6 +6 +3
ce | +1 +6 + 7 6 —2 +3
b% -6 -5 | -11 6 —2 -3
a2 + 3 + 3 3 +3 -3
bed | —2 —6 -5 -13 12 —4 +3
b*d +3 +95 | + 8 6 +2 0
A=t -1 2 +2 -1
b%® | + 3 +5 | + 8 9 -1
ble | —1 -5| -6 6
b8 +1 [ + 1 1

and the two expressions are thus identical.

30. Suppose again, 6 roots as before, and that the function operated upon is
we find 0,80°8* = 302Sa? + 2aSa® —

Sas32 g

o
_2(
+5<

¢

=y
ca® + 3da* + 6ea® + 10fa* + 15ga

—B.a—y.a—d.a—¢€.0a—

|
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+ ba) a?. Sa?

+ ba) o . Sa?

ba) o

5a%, and the general term is
ca’® + 3da* + 6ea’ + 10fa* + 15ga
B.a—y.a—8.a—e.a—
co® + 3da + 6ea® + 10fa® + 15ga
a—B.a—y.a—d.a—€.a
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This gives

— 3 (CH, + 3dH, + 6e + bSa®) Sa

—2(CH, +3d + bSa?) Sa?

+5(CH, + 3dH; + 6eH, + 10fH, + 15g + bS),

which is found to be
=—3(BD+C* +bSe®) Sa®

-2 (BC + bSa?) Sa?

+ 5 (BF + CE + D* + bSw).
Here
bSe? = — SaSa? = — Sa* — Sa®B, = — K — BD,

bSa? = — SaSa? = — 83 — SaB, =— D — BC,
and
bSe® = — SaSa® = — Saé — Sa’B3, = — G — BF;

the expression thus is

=—3(—E+0.C that is, — 3 (- Sa* + Sa?B?) S
—2(=D YaiD -2 (- Sa? ) Sa?
+5(-=G+CE+ D), + 5 (— Sa® + Sa3 + Sa?B°).

Here ?
Sa2Sat =8Sa® + Sa!3?, =G+ CE,

Sa*Sa? = Sa® +28a*8, =G+ 2D?,
Sa2Sa?B? = Sx43? + 38a?B%y? = CE + 3C?;
-3 {-G—-CE+ (CE + 30?)
—-2(-G-2D)
+5(— G+ CE + D7),
which iS' =5CE +9D*—-9C® (a non-unitary form). This then should be the value of
3Q —bw, =cdy+ 3d0, + 6¢d, + 10£0, + 1599 — 5b,

S, = OD = 5f— 5be + cd + 2b*d — be?,

and the whole is

operating upon

31. There is for non-unitariants a theorem which is a much more simple form
than the transformation of it afterwards obtained for seminvariants: viz. for any
non-unitariant we have AU =0=(0+ bd.+cda+...) U; attending only to the portion
U’ of U which is of the highest degree, it is clear that we have (b0,+cd;+...) U =0,
and if we herein diminish the letters, then (9, + 09,4 ...) U” =0, where U” is what
U’ becomes by a diminution of; the letters; that is, U” is a non-unitariant, viz. in
any seminvariant, the terms of highest degree U’ are obtained from a non-unitariant
U” by a mere augmentation of the letters: eg. 2¢—2bd+¢* is a non-unitariant
weight 4; augmenting the letters, we have 2bf—2ce+d* which with a change of
sign is the portion of highest degree of the non-unitariant 2g — 2bf+ 2ce — d=.
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The MacMahon Form of Equation. Art. Nos. 32 to 34.

32. The equation connecting the coefficients and the roots is here taken to be

b d
) g Sd a:+1 5 +1 3 ‘;’L‘3+ =1l—az.1-Bz.1—qz...

As to this it may be remarked that, if we had started with a form of the nth
order with binomial coefficients,

n.n—1 n—1.n—2
1 + b +—1~2— x2+—1—2—§——dw3+.—l—aw.l—Bxl—ryx.(n factors),

then writing herein % for «, and also na, nB8, ny, ..., for a, B, v ... and putting
ultimately n=o0, we have the form in question.

We pass from the ordinary form to the MacMahon form, by writing for

Dt d e e e i T

bt d e i s el N b 2’ 8 24’ 120° 720 "

All the results obtained for the ordinary form will, after making therein this change,
apply to the new form. We thus find

O, =00+ (c —1)2b0,+ (¢ —2)3c0q + ... + 1 apo,,
Oy =00y + (¢’ — 1) 260, + (¢' — 2) 3¢y + ... + (¢’ — o+ 1) op0,,
O,— 0, =(c"—0)A,

where A= 3+ 200, + 3¢0g + ... + aPd,,
or say = 0y + 200, + 3c0g + ... .
Also P=00,+ ¢+ do,+...+ 70,
% way =00, + Oy + doo+ ...,

O 0y + 2d0. + ... + 1Dy,
or say s 00y 2d0, + ...

The change a, B, v, ... into na, nB, ny, ... would change S0,, Sad., Sa®. into
n80,, Sad., nSa%, respectively (n=o): but this change is, in fact, compensated for
by the introduction into the formule of the binomial coefficients as above; it is

—Sa, Sap, ... not —nSa, n2SaB, ... which are equal to b, %¢, ...; and the conclusion
is that we have to retain without alteration the symbols S0,, Sada., Sa%.: thus in
the new form as in the old one, we have ©,Sa!=—80,. Sa4=—4Sa3 see the example
ante No. 23.

33. In the new form, a non-unitariant is annihilated by the operator

A, =0 + 2bo, + 3¢0+ ...,
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and conversely any function annihilated by A is a non-unitariant; comparing here-
with the subsequent theory of seminvariants, this is in fact the theorem that a
non-unitariant is the same thing as a seminvariant; or to state this more explicitly:
for the MacMahon form of equation, a function of the coefficients which is a
non-unitary symmetric function of the roots is a seminvariant.

I consider for instance the Table VI (b), but attend only to the non-unitary
portions thereof, viz. the lines G, CE, D? C*: I convert these into columns, at
the same time changing the arrangement of the headings ¢, bf, ce, &c., from CO

to AO: and then making the foregoing change b, ¢, d, ¢, f, g into b, %, g, 51,
1—}2%), 7%0’ but to avoid fractions multiplying the whole by 720, I form the table
+ 720
[ Or g G

§ et -2 +3|+6|— 6

6 of |+2|-8|-6 6

15 ce |—2|-3 i + 2 6

20 & | +1|+3| -3 3

30 b +3|+2|- 6

60  bed -3 | +4|-12

90 ¢ +1|—-2|~- 2

120 d -2 6

180 &% +1]+ 9

360 bl - 6

720 B¢ + 1

[@] [€] [B] [¥]
which is to be read according to the columns: and observe that the outside left-
hand numbers are to be multiplied into the numbers of each column: thus the first
column is to be read ;

0 = SatBiy? = 7;.0 (= 29 + 12bf — 3006 + 20d%),
the second column is to be read
1
D2 = Sa®8t = 790 (39 —18bf ... + 90¢?),
and so on.

By what precedes, the columns are seminvariants,—as afterwards explained, “blunt”
seminvariants; and they are named as such by the outside bottom line of symbols
with a [ ]; viz

[d2] = (= 29 + 12bf— 30ce + 20d7), [¢] =(3g — 18bf ... +90¢*), &o.,’
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where it will be observed that the symbol within the [ ] is, in fact, the power-
ender which is in AO the lowest term of the column; and further that this is also
the conjugate of the capital letter symbol at the head of the column.

The (b) Tables I to X, with only the change b, ¢, d, e, ... into b, %, %l, %,

are given in my paper, “Tables of the Symmetric Functions of the Roots to the
degree 10, for the form

ol
1.2
American Mathematical Journal, t. viL. (1885), pp. 47—56, [829].

1+bz+ +.o.=Q—-ar)(1 = Bz)A —qz)...,”

34. By what precedes, it appears that P —08 operating on a seminvariant gives
a seminvariant, and that @ — 2bw operating on a seminvariant gives a seminvariant:
these operators will be further considered in the development of the theory of semin-
variants. We see further that A, =00, + 3¢dq+ 6do, + ..., operating on a seminvariant
gives sometimes but not always a seminvariant, e.g.

(b0, + 3coq + 6d0,) (e — 4bd — 3c® + 12b%c — 6b¢) =6 (d — 3bc + 20?).

Semainvariants—the I-and-F Problem, and Solution by Square Diagrams.
Art. Nos. 35 to 47.

35. Writing
1 =1
b=0+ 6,

e, =c+ 200 + 6

d,=d+ 3¢ + 308>+ 6,

e, = e + 4d0 + 6¢6? + 4b6° + 6*,
&e.,

then there are functions of the unsuffixed letters which remain unaltered if for these
we substitute the suffixed letters: any such function is termed a seminvariant. We
have for instance

6= c+ 200 + @& ie., e —b2=c —0?
—b2=— 02—200 — @
d, = d+ 3¢l + 3b67, dy, — 3b,¢, + 2b2 = d — 8bc + 20?,

— 8b,¢, = — 3be — 6b°6 — 3b6",
— 3¢ — 6b6* — 3¢°,
+202= 2%+ 6b°0 + 606 + 26",
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and thus ¢—0% d—3bc+2b® are seminvariants; they are, in fact, the first and second
terms of the series

c -0

d—38bc + 203,

e —4bd + 6b%c — 304,

J = 5be + 10b%d — 10b% + 4%,

g — 6bf + 15b%e — 20b%d + 15bc — 5b°,

where the law is obvious; the numbers in each line are binomial coefficients except
the last number, which is the next binomial coefficient diminished by unity. The
successive terms are, in fact, what ¢, dy, e, fi, ¢, ... become upon writing therein

b,

36. Any rational and integral function of these forms is a seminvariant, and it
is to be observed that we can form functions for which (by the destruction of terms
of a higher degree) there is a diminution of degree; for instance,

(6 — 4bd + 6b% — 3b*) + 3 (c — b2y

gives a seminvariant e— 4bd + 3¢

It is important to remark that a seminvariant is completely determined by its
non-unitary terms; thus for e—4bd+ 3¢*, the non-unitary terms are e+ 3¢% and for
this writing e, + 3c,?, and for ¢, ¢, substituting their above values for 6=-—10, we

reproduce the original value e— 4bd + 3¢

37. It is at once seen that a seminvariant is reduced to zero by the operation
A, =0, + 200, + 3¢dg+ ..., or say that A is an annihilator of a seminvariant; in fact,
if in any function of b, ¢, d, ... we write for these the suffixed letters b, ¢, d,, ...
then the coefficient of 6 herein is at once found by operating on the function of
(b, ¢, d, ...) with A, and therefore in the case of a seminvariant the result of this
operation must be =0. And conversely, every function of (b, ¢, d, ...) which is
reduced to zero by the operation A is a seminvariant.

38. For a given weight, the number of seminvariants is equal to the excess of
the number of terms of that weight above the number of terms of the next
preceding weight, or what is the same thing, it is equal to the number of power-
enders of the given weight. More definitely, considering the terms of a semin-
variant as arranged in A0, we have seminvariants the finals whereof are the several
power-enders of the given weight: and we arrange the seminvariants wnfer se by
taking these power-enders in AQ: thus for the weight 6, we have seminvariants
[d?], [¢*], [b%?], [6°] ending in these terms respectively. We may, if we please, consider
all these seminvariants as beginning with g, or say the forms may be taken to be

C. XIIIL 37
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g(ao)d?, g(ao)c? g(ao)b, g(ao)l’. Such forms are, in fact, furnished by the Mac-
Mahon equation: viz. up to the weight 6, we thus have for the present purpose

+2 : +8 + 24 +120
I ¢ I D 1 R (PR 8y DS o
lc|—2 i O G e 1% 9 g SN S S 9
2 | +1 Sunbelt|natig 46d | -2 | +4 5 be | -5 | +5
] [ s | 6.0® ] L]l 105 od |' 1o 44
12 b% = 20 d | +2| -5
[ 24 b“ +1 30 b2 |—-1| -5
60 &% +5
[¢] [¥] 190 & | il
(6] [&7]
+ 720
[ (e DOl G,

1§ cg —2|+3|+6|— 6

6 . b |20 = Bl GG

107 liea , 4|49 L S5 Sl ey 6

Ut e WA G ol i, S Dl e

30 b% +3 | +2|— o

60 bed -3 | +4|—12

90t s O B D

120 b%d -2 6

180 &% +1 9

360 bl — 6

720 &° + 1

(@] [] [ [¥]
read for instance
[d*] = — 29 + 12bf — 30ce + 20d?,
[¢]] = 3g — 18bf — 45ce + 60d* + 90b% — 180bed + 90¢?,
&e.
I say that [d?], [¢*], [b%*], [b°] are “specific” when they are regarded as standing
for these tabulated functions; but in general I take them to be “indefinite,” that is,

I regard them as denoting (as above) any seminvariants ending in d2 ¢, b%? b°
respectively.
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39. The seminvariant [d?] is of the form (g o d?), including those terms which
are in CO not superior to g and in AO not inferior to d*: by a combination of
[d*] and [¢*], we obtain a seminvariant (ceo c*®) containing terms which are in CO
not superior to ce and in A0 not inferior to ¢*: similarly, from [d*], [¢*], [b%*] we
obtain a seminvariant (d?o b%?); and from the four forms a seminvariant (c®oo 0%):
these four seminvariants

g| + 1

| — 6

ce | +15 +1

| -10 -1 + 1

b% -1
bed + 2 -6

@ &} R T
b’d + 4
bc? -3 -3
be + 3
b . Ay

(g d?) (cew ) (Ao b*) (¢ 0 bF)

are said to be “sharp” seminvariants: viz. considering the final as given, a sharp
seminvariant is one having an initial which is in CO as low as possible; or
considering the initial as given, it is one having a final which is in 40 as high as
possible. A seminvariant which is not sharp is said to be “blunt.”

40. The sharp seminvariants are in general designated as above, (g d?), &ec.:
but it is sometimes convenient to give the numerical coefficients of the initial and
final terms respectively: as to this, it is to be mnoticed that the coefficient of the
initial term is in most cases, but not always, =1,—we might of course take it to
be always =1, but we should then in the excepted cases have fractional coefficients,
and it is better to avoid this by giving a proper value to the numerical coefficient
of the initial term; the numerical coefficient of the final term is in general different
from +1, and it is not in general a multiple of the numerical coefficient of the
initial term. As an instance take dh o b%’ the more complete expression of which
is 4dh o —35b%>. The sharp seminvariants up to the weight 12 are designated in
this more complete form in the table post No. 62.

41. . In the calculation of the sharp seminvariants by elimination as above, it
will be noticed how unitary terms disappear: thus in combining [d?] and [¢*] so as
to get rid of g, the term &f disappears of itself, and we have as above the form

37—2
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(ce o c®) beginning with the non-unitary term ce. We may, in fact, write b=0; we
thus have

[d*] = — 29 — 30ce + 2042,
[¢*]] = 8g—45ce + 60d? + 90¢?,

giving 3[d*]+ 2[¢*]=—180(ce —d*—¢*), and then ce —d?—c? putting therein for ¢, d, e
the values ¢—b?, d—38bc+ 20, e—4bd + 6b%c — 3b%, gives the complete value ut supra,
ce — d* —b% + 2bcd — ¢*, and we thus see & priort that this contains no term bf, but
in fact begins with ce. And in carrying out this process for any higher given
weight, it is proper also to arrange the non-unitary terms not in 40 but in CO,
and then in each case beginning with the terms highest in (O and eliminating as
many as possible of these terms we obtain the sharp seminvariant. Consider for
instance the weight 12: taking the finals in A0, we have here

(m o g?), (m o cf?), (mxe), (mwobf?), ...

the initials in CO are m, ck, dj, e, ... and it might at first sight appear that the
foregoing process of elimination would lead to the forms (m o g?), (ck o cf?), (dj o ¢*),
(et 0 b%f?), ...; we in fact have the form (m o0 g?); and if from (m o g?) and (m o cf?)
we eliminate m, we obtain the form (ck o c¢f?); but we cannot have a form (dj o ¢’
(for a form beginning with dj is of necessity of the degree 4 at least); what
happens is that when from (m o ¢®), (mooc¢f?) and (m we®) we eliminate m and ck,
the next term dj disappears of itself, and (the following term e: not disappearing)
the resulting form is (eicé’): to obtain a form begirning with dj we must use
the fourth form (m o b*f?), and we thence obtain (dj o bf?). Arranging the initials
in CO and the finals in A0, we thus have :

ny

ck

g
of ?

dj e

ei>/\b2f2
that is, we have the sharp seminvariants m g% ckoocf? eiwe’, dj ob*? ...; these

are the results given by the MacMahon linkage as will be explained further on, but
I will first approach the question from a different side.

42. It has been seen that we have A, =0, + 200, + 3¢d;+ ..., as the annihilator
of a seminvariant. Considering in the first place the entire set of terms, say for
the weight 6, g(ao)d’, we assume for a seminvariant the sum of these each
multiplied by an arbitrary coefficient; the number of coefficients is equal to the
number of terms of g(ao)d%. Operating with A, we obtain a function of the next
inferior weight 5, containing all the terms of Dg(ao)d% that is, of f(ao0)bd’ each
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term multiplied by a linear function (with mere numerical factors) of the arbitrary
coefficients: the expression thus obtained must be identically =0; and we thus find
between the arbitrary coefficients a number of linear relations equal to the number
of terms f(ao)d®: these relations are independent; for it is only on the supposition
that they are so, that the number of coefficients which remain arbitrary will be
11-7, =4, agreeing with the number of the seminvariants [d?], [¢*], [b%*], [b];
whereas if the relations were not independent, there would be a larger number of
seminvariants.

But if, instead of the whole set ¢(ao)b%, we consider a set (god?) or say
(ce 0 ¢®) and assume for a seminvariant the sum of these terms each multiplied by
an arbitrary coefficient, then operating as before with A we obtain between the
arbitrary coefficients a number of relations equal to that of the terms D (ce coc?),
and if this be less by unity than the number of the terms of ceowoc?, say if we
have (1—D)(ce» c¢®)=1, then there will be a single seminvariant cew c¢®. We, in fact,
find (1-D): (god?), (cewoc?), (d*wob¥?), (cFxod®), each =1, and thus establish the
existence of the foregoing seminvariants good? cewc?, d?*wb%? b’ And similarly
if in any case we have (1—D)(l ©F)=2 or any larger number, then we have 2
or more seminvariants 7 co F.

43. It will be convenient to write down at once the system of square diagrams
for the several weights 2 to 16; each of these may theoretically be obtained by a
direct process of calculation such as I exhibit for the weight 10, but the labour
would be very great indeed, and I have in fact formed the squares for the weights
11 to 16, not in this manner but by the MacMahon linkage.

w=2 w=3 w=4 w=>5
c' i dl_l—‘ e! 1 f’ 1
" e el pem
@ b b b
w=6 =]
y. 1 ! i
ce: 1 eof 1 |}
@ | 1 de & 1
@ | 1| od g 1
® P BE bl b B
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c’e 1

e? ocdP b g MR R R v b®

cde 1

a 1

cd 1
be? d®  bed® B be* b PPt B
w=10

k|

ci \i\ P

dn b

eg 1 §

cg 2 i

e i

cdf A 2

ce? 1 b

d2e \i\

e .

c2a? \1\.‘

o : l
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The subsequent squares w =11 to 16 are, for convenience, given at the end of
the present memoir (pp. 331 et seq.).

44. It is to be observed that in each square the outside left-hand terms are
the non-unitaries in CO and the outside bottom terms are the power-enders in A4O0.
I have inside each square written down only the significant numbers, but we might
fill up the whole square. For instance, when w =7, the filled-up square would be

Rl 2 3 4

P R TN T R g

de -1 0 1 2

(oAt D, 0 0 1

(/T SRR T

where in the first column the numbers relate to the sets % oo bd? c¢f w bd? de oo bd?
and c¢*d o bd? (this last set ¢*d oo bd® is non-existent since c¢*d is in AO inferior to
bd?, ie. as well for the set as for the diminished set, number of terms is =0, and
we have for the compartment 0—0, =0). And similarly for the remaining three
columns. The process of thus filling up the whole square is a direct and non-
tentative one, and the conclusions to which the numbers lead are as follows: col. 1,
the final being bd? the initial cannot be c*d, .de or c¢f, but taking it to be h, we
have the seminvariant %o bd. Col. 2, the final being bc* the initial cannot be cd
or de, but taking it to be c¢f we have the seminvariant ¢fwbc*: it may be added
that the top number 2 shows that there are two seminvariants & oo bc®, these are of
course the foregoing ones howbd® and ¢fowbe’. Similarly, col. 3, the final being b,
the initial cannot be c¢®d, but taking it to be de, we have the seminvariant de o bc?
- and col. 4, we have the seminvariant ¢d o b

For the several weights up to 9, we have simply units in the dexter diagonal
of each square, viz. the non-unitaries in CO correspond to the power-enders in A0,
or the sharp seminvariants are coo?? dowob?, &c See post, Table of Reductions,
No. 62, which exhibits these correspondences.

45. For the weight 10, we have deviations: the figures 1 and 2 denote as follows:
1-D kof? =1
R S |
ah ., 0% 1
gl b el
ARGk |
¢lg 1 bread 2
(0 ik
cdf , bid? ,, 2
d’ ,, bc* 1
Pet bt
cfl® ot il
(it o |

-
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and they indicate the sharp seminvariants k oo f? ctoce’, &c.: where observe that
the power-enders being in AO as before, the non-unitaries are not in CO, but we
have inversions (c%g, f*) and (cdf, ce?).

In particular, (1 —D)(f*®c*d?)=1 indicates the seminvariant f* oo ¢*d?;
(1 —D) (c*g » b*cd?) =2,

means in the first instance that there are 2 seminvariants c’g o b%d? but here the
set g o b%cd® includes as part of itself the set f2owc?d?; so that, if c*goob%d? is
used to denote any particular form, then the general form is ¢%g o b%d? plus an arbitrary
multiple of f?wc*d?, and we have thus .virtually a single form c¢%oob%d?. And
similarly, the set cdfoob‘d® includes as part of itself the set ce?ooc¢®; and thus the
general form cdfw b'd®* is = particular form plus an arbitrary multiple of ce*o ¢’ or
we have virtually a single form cdf o b'd™

I remark that it would be allowable to take as a standard form of ¢% oo b%cd?,
a form not containing any term in f2, and similarly for the standard form of
cdf o b*d* a form not containing any term in ce*; but this is not done in the tables.

46. The diagram for weight 10 is constructed by the following -calculation;
viz. in col. 1 we calculate (1—D)(kowf?) and for this purpose write down the
terms of ko f? and D(kowyf?) in CO: in col. 2 we calculate (1—.D)(ci o ce?), and
for this purpose write down the terms of kowce? and D(kwoce?) in CO, the terms
of ciwce’ and D (ci w0 ce®) being thence found by rejecting the terms %, b and the
term j at the head of the two halves of the column. So in col. 3 we calculate
(1 —D)(dh o b%?*), and for this purpose write down tue terms of (& o b%*) and
Dk ob*?) in CO, and for dhob% and D(dh—0b%) reject the terms &, bj, ci, b%
and j, bi at the head of the two halves of the column. And so for the remaining
columns. It is to be remarked that there is in each successive column a continually
increasing number of terms to be rejected; by a properly devised variation of the
algorithm it would have been possible to avoid writing down these terms at all, but
for greater clearness I have inserted them.
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1 2 8 4 5 6 7 8 9 10 11 12
Jlk Jjlk Jlk Jjlk jik Jjlk Jk Jlk |k jlk Jlk
uooviy | viy vi bilh bi'!bj bibj bilbj bilbj bibj bilbj bily 1
ci  chlei chici chci chici ch;ci ch|ei chjci chjci chjci chjci chici ¢
dh  dg|b% b%h b’;’ b2h|b%i b""h b2 bzh{bzi b2h|b% b2h|b% b2h|b% b2h|b% b2h(b% b2h|b% b
eg ef|dh dgidh  dg|ldh | dgldh  dgdh dg|dh dg|dh dg|dh dg|dh dg|dh dg|dh d
ik beh  beglbeh  beg|beh | beglbeh bcg!bch beg|beh beg|beh beg|beh beg|beh beg|beh beglbeh  be
eg ef |3h  U3g|b3h | b3g|bh D3¢ b3h b3g|b%h b3g|b%h b3g|b3h beg|b3h big|b%h b3g|b%h b2
bdg  bdf |eg ef eg— efleg —efeg efleg efleg efleg efleg efleg efleg !

%9 c|bdg baflbdg bdfjbdg | bAfbdg | bdflbdg  bdflbdg | vaflbdg  bdflbdg  bdfibdg  bdfbdg  be

£2oveeg ol ey | ey oYy ey | ey ey afely ey o
bef  cdelb’cg b2cf |[b%cg b%cf by Ibch bleg  bqf|bPcg | Dkflbeg | Vleflbieg  bif|beg  bflb’eg  bicflbieg b

cdf S2obelft S betlbyg  baflbY Biflbyg | biflbyy  blby bfblg bAfbdy b
ce? bef cdelbef cdebef cde!f? be?| f* be?| f2 be?| 2 be?| 2 be2|f? be?| f2 be
cdf bidelcdf b%decdf b2de|bef cde|bef cde|bef cde|bef cde|bef cde|bef cdelbef  cd
vAf  d\vdf belelb*df beleledf — bidejcdf | Videlcdf  bideledf | bidelcdf  bideledf  bdeledf 1d
ce? berf  d@locdf  aPVPdf  beelb?df | bePelbPdf  be%e|bdf | bele|b2df | vcte|UPdf  bePe|brdf  be?
e ce*  bedlce?  bed?be’f  Vocelbef | bcelbef  bdce|bef | bdce|be®f | bicelbcf  bice|bef bde
b2e? b2e? b2%e?  c¥d|bcf as|b3ef a*|bef boe|b3cf boe'bdcf boe|bief Welbdef b
d’ d2e ce?  bed¥ce®  bed|bPf avif a|v°f as|b’f a\vsf d
bede bede 0%? V(0% bPd2|ce? bed?|ce? bed?|ce? bedz?|ce? bed?|ce?  bed
bd? cde d%e c’d|d%e c3d|b2e? bid?|h%e? b3ad2|b*e? bPd2|b%e? b3d?|h%2  bid
bad® bede  b2c%d|bede  b%c%d|d2e c3d|d?e cd|d% c3d|d2e cd|d2e 3
c2d? bde bide bedlbede  b%c%d|bede  bcd|bede | b%c2d|bede | b2c*d|bede b2
cle c3e bide  bled|b2de  bied|bPde | bied|bdde | bied|bide bic
[b%%e b2c2e cPe bed|ese bed|cte bhd|cle bed|c3e b
ba? bd? b2c%e b22%  b3c3|b%c2e be b2%c2e bed{b2ce [ be
}chZ c2d? bice bice bice  B3c3bice | b3cP|bice | b3
b2ed? b2ed? bd? bd? bbe b°c2 bbe b%c?(16e be
beld (i c2d2 bd3 bd? be|bd? b7
os b2cd? b2cd? 2d2 0232 2d2 b
via? bid? bed? b2ed? bed?
betd " - bedd 2 bid2 bid2
b bic%d bedd bedd bedd
s b%c2d b3c2d bPe2d
b2c4 bded boed bPed
® vld v7d
b2ct b P
bic b2t bt
4B bic?
becg 1)802
bée
I
6-5=|11-10=[14-13=[14-13=[12~11=| 19-17=| 12-11=! 19-17=| 14-13=| 14-13=| 11-10= 6-5=
| —
1 } 3 1 1 4 2 1 2 I 1 1 )
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47. As to the first of the foregoing inversions c%, f2 it is proper to remark,
that filling up two compartments of the square we have

c%g 1 ‘ 2
by gl il 1
cd?  bPed?

where the meaning of the numbers (i1, 1) has to be considered: the first (1) seems
to indicate a seminvariant c%g oo cd?, but there is in fact no such form, what it really
indicates is a form Oc%g +f? o0 c2d?, that is, f?wc*d?; and similarly, the second (1)
seems to indicate a seminvariant f2 oo b%cd?, but there is in fact no such form, what
it really indicates is f?o c®d?+0b%d?, that is, f?wcd. The explanation is correct,
but to make it perfectly clear some further developments would be required. The
like remarks apply to the inversion cdf, ce®

The MacMahon Linkage. Art. Nos. 48 to 52.

48. We require the two theorems:

The first is: if a seminvariant S has ¢ for its highest letter, then 9,5 is also
a seminvariant.

The second has presented itself for unitariants (ante No. 31); for seminvariants
the form is less simple, viz. If in any seminvariant, attending only to the terms of
the highest degree, we therein change b, ¢, d, e, ... into b, 2¢, 6d, 24e, ... and then
diminish the letters (that is, replace each letter by the next preceding letter) and

¢, 5id q'ie
b Q, 6, ﬂ, “ee
seminvariant. For instance g — 6bf+ 15ce—10d? in the terms of degree 2, making
the numerical change we have —720bf + 720ce — 360d?, and then diminishing the letters

bd c? i
. 360E , that is,

in the result so obtained change b, ¢, d, e, ... into b we obtain a

and making the numerical change, we obtain — 720 % + 720

— 30 (e — 4bd + 3¢?),

a seminvariant.

For the proof, observe that the equation AS =0, attending therein only to the
terms of the highest degree, gives (209,+ 8¢ds+ ...)8’ =0, if 8’ denote the terms of
the highest degree: making the numerical change, this is (b9, + cdz+...)S”, if 8” is
what S’ becomes thereby; diminishing the letters, this is (9 + b9, +...)S” =0, if S”
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is the diminished value of S”, and finally making the numerical change, if 7' be
c d
) §: é:

(@ + 260, +...) T =0,

what S”’ becomes on writing therein b ... for b, o, d, ..., this gives

viz. T' is a seminvariant.

49. Assume that, for the weights up to a certain weight w, the forms of the
sharp seminvariants are known: and for the weight w consider a seminvariant 7 (ca)F':
here if I be given, the first theorem establishes a limit #’ such that F is in A0
not higher than F’. For instance, when w =12, if 7 =dj, the coefficient of j as being
a seminvariant can only be d o ?? and thus the seminvariant contains a term 0%, or
the final term F must be in A0 not higher than 8% ; the degree is thus =4 at least.

Similarly, if F be given, then the second theorem determines a limit 7’ such
that 7 is in CO not lower than /’. Thus when w =12, as before, if F = b‘cd? then
diminishing the letters we have bc? a term belonging to foobe*; the diminished form
has thus terms a(a®f, b¢®), so that augmenting these the seminvariant has terms
b* (b%g, cd?) and thus the initial term 7 is in CO not lower than b%.

50. A limit for 7 or F, when the other is given, can also in some cases be
found as follows: Considering a seminvariant of the weight w as before, and denoting
its extent and degree by o and & respectively, then we have ¢8 — 2w =0 or positive;

that is, o8 =2w at least; here given I, we have o, and then 8=gg} at least; and

given F' we have ¢, and then o-=%l~v at least.

3

51. We may now explain the MacMahon linkage; for a given weight, we write
down in two columns the initials or non-unitaries in CO, and the finals or power-
enders in AO: by what precedes, it appears that we cannot combine the terms of
the one column each with the term opposite to it in the other column; what we
do is: beginning with the top of the column of initials, we combine successively
each term with, the highest admissible term in the column of finals: or beginning
‘with the bottom of the column of finals, we combine successively each term with
the lowest admissible term in the column of initials.

38—2
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52. For the weight 12, the linkage is

read downwards.

b b not in 40
shown
v higher than

m a bl & ol £

(¢ o8 )k bk ck of? b’k b
@ , ®)j dj Ren i ALY bdi  ch ,, &
(G o )?/ e 6%>\b2‘f‘2 bff Loy 6
(@ » 8 )i b4 c%></bdeﬂ bdh g ,, cd?

(kb2 )k be*h Sh b /0262 bregae st fo b
(ed s B )R b°h cdk\ d* i il R
(9 o5l Nip g 7 bce? b* R bdE
(ce 5, & Vg ¢ ceg /50d3 bdg  ¢of ,, bc
(i, i) g b’ d’g- c’d? bef  de,, b
(G e A b c’g b'e® b giinat
(chi Slbedyir be*f of 3 b*d? Gdfitinice: i
3,2 3.2 b’cd? dg2 2 2¢2

(de’ ;s bl Dich def bt a2l wbie
cld o0 b 74 c’d) ¢ (oo ShE BT AR

\ )
(62 » )e o 63/640d2 bsg f » be?
(% 5 b%°)e D% c"’e?)<b%5 bde cd , ¥
(cd? ,, b e b’ cde bSd? bf € 4 0
(.04 tE) b8 )8 bl 046><b464 b°d? e 3] b
(PR Bsetyid b%c*d d* bSe® boe d e 0
(¢d,, & )d b’d d? b8e? bd gty b2
(¢, b )c AU Py b2

lower than Wil %

not in CO

read upwards.

Thus, beginning at the top of the column of initials, m is to be linked
that is, we have (mwg?; ck with ¢f? that is, we have (ckoocf?); dj cannot be
linked with ¢, for the final must be in AQ not higher than 8%, but it is linked
with the highest term 2f2 for which this condition is satisfied, that is, we have
(dj 0 bf?); ei is then linked with the highest admissible term °, that is, we have
(et 0€*); and so on.

[932
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Or beginning at the bottom of the column of finals, 52 is linked with ¢ that
is, we have (c®®0®), b with c*d?, that is, we have (c*d?ob%?); b%® cannot be
linked with d¢ for the initial must be in CO not lower than &%, but it is linked
with the lowest term c¢'¢ for which this condition is satisfied, that is, we have
(c*e 0 b%®); and so on.

The Umbral Notation. Strok’s Theory. Art. Nos. 58 to 56.

53. Employing the umbre a, B, v, §, ..., which are such that
= RB= i =ib et = B8 = NI = g gl = RT e e
and so on, then for instance

(a—By=a—22B+p, =c—2W+o =2(c—b),

a seminvariant ;
(2= B) (a—v) =0 — 22’8 + af8* — o’y + 208y — B,
=d — 2bc + bc — be + 20° ~ be, =d — 3bc + 203,

a seminvariant: and so in general any rational and integral function of the differences
of the umbre developed and interpreted is a seminvariant. - For the seminvariants of
a given weight, e.g. w=6, Dr Stroh* considers the function

O = (ax+ By + vz + dw + et + Lu)’,

where @, y, z, w, t, u are numbers the sum of which is =0, or we may if we
please have more than 6 such numbers: the expression is obviously a function of
the differences of the umbre and it is thus a seminvariant. To develop its value,
observe that after expansion of the sixth power we have sets of similar terms, for
instance a’z®+ B%°+... which putting therein a®=pB°=+5 ... =g become =g.Sz% and
generally each set becomes equal to a literal term multiplied by a symmetric function
of the #, y, z, w, ...; introducing capital letters to denote the elementary symmetric
functions of these quantities, and recollecting that their sum is assumed to be =0,
say we have
1+02+Df+Est+...=1—28.1—ys.1—25...,

(that is, 0= 8z, +C=8zy, — D= _Szyz, &c.) then by aid of the Table VI (b) writing
therein 0, C, D, E, F, G for b, ¢, d, e, f, g, we find

08 =(az + By + vz ...)" = a’Sz® + 6°BSz°y + &e.,

* See the paper ¢ Ueber die Symbolische Darstellung der Grundsyzyganten einer bindren Form sechster
Ordnung und eine Erweiterung der Symbolik von Clebsch,” Math. Ann. t. xxxvi. (1890), pp. 262—303, in
particular § 10, Das Formensystem einer Form unbegrenzt hoher Ordnung.
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as shown in the following table:

(Do Sl 08 ) G

1.l S =|—-2|+3|+6|— 6
+ 6 of | Sy =[+2|-3|—-6|+ 6
+1116  iee i Saty? 1 =1 =2 B L OB 6
£90 adR SR Dl e RIS B Eg s
+11:30 5% Satyzil = R BRI
+ 60 bed | Sty = s SN MR | RS 1)
+ 90 ¢ | Sarr = I P ) N
+ 120 &% | SePyzw = -2+ 6
+ 180 &% | Sayew = S i e
+ 360 b | SePyrwt = ST
19790 b8 Suyzwtu = iy |

(@] [] [¢%7] [¥]

the numbers whereof are, it will be observed, identical with those of the foregoing
table No. 33, relating to the MacMahon equation.

This is to be read
Q8 = C*[d?] + D?[¢*] + CE [b*] + G [b%],

viz. Q° is a linear function of (% D? CE and @, the coefficients of these, being
given functions of (b, ¢, d, e, f, g), which given functions are the specific blunt
seminvariants which have been already called [d?], [¢®], [b%*] and [0°]. And so in
general, the developed value of QW affords a complete definition of these specific blunt
seminvariants of the weight w. Observe that a, B, ¢, 6, ... are umbre in nowise
connected with the roots a, B, v, &, ... before made use of, and that B, C, D, ...
are actual quantities in nowise connected with the symbolic capitals B, C, D, ... before
made use of.

54. The capital and small letter symbols are conjugate to each other. It will
be convenient to give here, in reference to subsequent investigations, a table of these
conjugate forms up to the degree 6 and weight 15.
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Table of Conjugates.

5 6 1 8 9 10 1T 12 13 14 15

CD bet | C? a| C*D bva*| c* e|lcp v | oo 2. ClD bf2 | C¢ g9* | C¢°D bg? | C7 h% | C°D bh?

F v | D? | DE b3 | CD* ca? | D? @] D% c | CD®  de? | C3D2 of?2 | C°D*  df? | C4D? cg? | C°D3 dg?

ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS.

932]

CE 22| CF %2 | C2E %A | CDE bea? | C3E 122 | C2DE bee | D* et | C°DE  bef? | CD4 i Brek e

G 16 £ ¢l cF vaz| DE  bvas | DE2  ead | C*E  w2f:| D'E be? | C°F b2 | CDE  beg?

DF b3 | EF bet | CE2 22 | C2F W32 | CD2E  bde® | CDE?® cde® | C?°D2E  bdf | CD3E  bef?

CG b'e®| DG V3 | CDF b%a® | D2F b%a® | C°E*  c%2 | C'F  b3f2 ¢ C3E® . c*f%| C?DE? cdf?
L ¢ | CEF be%ad? | E? a* | CD*F b%de® | D2E? ce® | prs ded

C*G  bv*@® | CDG Wcd? | C*DF b%e? | C(EF  bc%? | CE? d’¢* | C°F b3g?

EG V' | FG b’ | DEF beds | E*F  bat | C°DF  b%f? | C2D°F bdf?
CF? 3@z | DF? ¢ | D3F 0% | C3EF  bef?

3G b2 | C°DG  bce? | CDEF bede® | D2EF  beed
DG va3 | DEG  b2edd | C2F? c%® | CE2F  bd2e?
CEG b22q2 | CFG bc3a® | EF? cd* | CDF?  c%de?
(el e

Ha vife | s &

DG Ve | DG Bef?
C2EG  b2c%? | D3G be®
EG 0% | CDEG bede?
DFG  be®d® | C2FG  bede?
c@ | EFG cat
DG: S
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55. We can, by means of the umbral notation, write down for the blunt sem-
invariants of a given weight (indefinite forms, not the above-mentioned specific forms)
expressions far more simple than those which are given by the foregoing theories:
we can, in fact, find without difficulty monomial umbral expressions; and in many
cases obtain also the sharp forms. To illustrate this, I consider the weight 10: I
write down for convenience the symbols of the sharp forms (though the knowledge
of these is in nowise required) and I form a table as follows :

Sharp forms,
finals in 40.

Eowoft |1 (@B

¢t ,, ce 2 (a=P)e(a—1y)*

b, be | 3 (a—P)(a—7y) (a-5)

eg 5 bd’ 4 (a-B)(a-7)(a—19)

S? ndd | 5 (a—PB)(a-7) (a3

gy Bed®| 6 (a—P)(a—7y)*(a—28) (a—¢)

08 y ¢ T (a=B)(e—y)(a—98(a—e’

odf » b'd® | 8 (a—P)(a=7) (a=29) (a—€)(a—9)

d’e ,, b%' | 9 (a—B)(a-7y)@-98(a—¢)(a—9

de , b | 10 (a—B)(a—v)(a—2) (a—¢)(a—0) (a—1n)

e, v [ 11 (a—B) (a—9) (a— ) (@~ ¢ (a— &) (@) (a0)

¢, b |12 (@—B)P(a—y) (a=9) (a—€) (a={) (a-n)(a—0) (a—1) (a—x)

It will be observed that all the differences used are a—f, a—r, ... containing each
of them an «; hence in all the forms we have o®, =Fk; in (a—B)° the lowest
term (in A0) is o8, =f7; in (a—B)(a—r)> the lowest term is a&‘B'.4% =ce*; and
80 on, viz. in each case the lowest term is the final term of the sharp form set
down in the same line. V

56. The form (a— B)" gives at once the sharp form ko f?; we thus develop it:

alO as 13 as Bz a7 Ba as ,6)4 as 35

/310 aBQ a?BS a367 a4B6
R R T T R T TR T T T T
F1 D00 Bl T T80 nad A0
=2(k —10bj +45¢i —120dh +210eg — 12672);

(e — B)* (a — y)* contains a term @, =% and thus gives a blunt form kaoce?; if instead
of it we employ the form (a— B)*(a—q)(B —r), then here as before the lowest term
is o'B'.9% =ce’, but there is no term a©: there is a term o', =0bj, but as this
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cannot appear, we must have terms of this form destroying each other. The simplest
mode of effecting the development is to write

(@=Br@a-y@B -y =(@-Br{aB—y@+p) +v}:

we may herein put at once y=b, 4*=¢, and thus the form is

(a—RB) @B =b(a+ B)+0};
I develop thus:

(a—B) 1, -8, +28, —56, +70, —56, +28, — 8, +1,
ad, = 8498 =H8 e G LB e
(a—BP(a+B)1, —17, +20, —28 +14, +14, —28, +20, —7, +1
1bj — 8ci + 28dh — 56eg + T0f*

+1 -8 428 ~—56

—b( 1 —7bz‘+20ch—28dg+l4ef)
+1 -7 +20 -—-28 +14

+c¢/ 15 —8bh + 28cy — 56df + T0¢
(+1 -8 +28 -56 )
+—14
k |
b 9. -8 | 0
al- 16 EX R W T
dh | + 56 i+ 56 | — 4
eg | — 112 [ ARFeF i
7+ 70 Lilirol=
b% + 14 # ab sy 2
beh iy R { e g T g
bdg + 56 + 56| — 4
bef — 28 |- 28| + 2
¢’y + 56 | + 56 | — 4
cdf —1121~112!+ 8
ce? RO 1oh 701— 5
+ 23,

which, in fact, exhibits the calculation of the sharp form ciwce”. The disappearance
of the term in bj will be noticed.
C. XIII _ 39
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Instead of (a—pB)*(a—v)(B —0) which contains a“, that is, k, we may take
_ (a=B)(y—98),
that is,
(¢ — 8bh + 28cg — 56df + 35¢?) (¢ — b?):

this is caob®?, a blunt form; by subtracting from it c¢¢ wce®, we could obtain the
next sharp form dh o b%?; but this in passing; it does not appear that there is any
monomial umbral expression for the last-mentioned form.

I do not stop to examine the next following forms, but pass on at once to the
last of them; instead of the expression given, we may take the expression

(a=B)y(y— 8y (e— &y (n—0y(c—x),

that is, (¢ — 8%, which is in fact the sharp form c¢® oo b%.

Semanvariants of @ giwen Degree: Generating Functions. Art. Nos. 57 to 59.

57. We may consider the seminvariants of a given degree, and arrange them
according to their weights: thus in each case writing down the series of finals, and
for a reason that will appear also the conjugates of these finals (see Table of
Conjugates, ante No. 54).

For degree 2, or quadric seminvariants, we have

DS 4 5 G
O, Br . = O i OF, g8

there is here for every even weight (beginning with 2) a single form, and for every
odd weight no form: the number of forms of the weight w is thus =coeff. of "
in 4*+(1—a%, or writing for shortness 2 to denote 1—a* (and similarly 3, 4, ... to
denote 1—a% 1—a# ...), say that for degree 2, Generating Function, G. F., is =a*-+2.

For degree 38, or cubic seminvariants, we have
3 4 5 6 7 BT
Dibe = GE by DBes 02D et

the counting is most easily effected by means of the conjugate forms; these contain
all of them the factor D, and omitting this factor we have all the combinations of
C, D which make up the weight w— 3, viz. for weight w, we have number of ways
in which w—3 can be made up with the parts 2, 3: that is,

for degree 3, G. F. is =2*+2.3.

Similarly for degree 4 or quartic seminvariants, we have terms each containing
E, and removing this factor, we have all the combinations of C, D, E which make
up the weight w—4, viz.

for degree 4, G.F. is =a*+2.3.4
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Thus for degrees
2, 3, 4, 5, 6,
the G.F.s are
=a2*+2, 2°+2.3, +/+2.3.4, 2°+2.3.4.5, 2°+2.3.4.5.6, ...

58. We may analyse these results by separating the finals into classes. I use
the expression b, ¢, d, ... are discrete letters, meaning thereby that they are distinct
letters, not of necessity consecutive but with any intervals between them. Thus
deg. 8, if (b, ¢) are discrete letters, then the finals are 2%, and bc*; deg. 4, if b, ¢, d
are discrete letters, then the finals are 0% bc?, b** and bed?*; and so on, the number
of classes being doubled at each step, as will presently appear for the weights 5 and
6 respectively.

I notice also a property of the conjugates of these classes; for b and bc?
themselves the conjugates are D and CD, and these occur as factors, D in the
conjugate of every form of the class b* (for, instance conjugates of ¢, d® are D2 D),
and OD in the conjugate of every form of the class be* (for instance, the conjugates of
bd, ce* are (D, C*D*); and the like in other cases, viz. for any class whatever the
conjugate of the first or representative form occurs as a factor in the conjugates of
the several other forms belonging to the same class. :

59. With these explanations, the expressions for the several G.F.s are obtained
without difficulty, and we have '
deg. 2, class C, b G F. =22,
deg. 3, 2 Dbt L=t a8,
» OD, bc? y =a*+2.3;
we ought here to have
2#+-2.8= ##+3+2°+2.3, viz. in verification

o = #.2=0—0
+ & + &’
=
deg. 4, class E, b G F.=a+4,
3 DE,: be® =0 =3.4,
L CE, bc? , =at+2.4,
, CDE, bcd? =t O 8 A

we ought here to have
‘2 +9.3.4= sr+-4+27+-83.4+2°+2.4+2°+2.3.4, viz. in verification

xt = 2.2.83=a*—a2—a"+2°
+a27.2 +a—a

+2°.3 + 2 e

+ a° : + 2°

=x«;7

39—2
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deg. 5, class F, b G.F. =2 =5,
EF, bet z° +4.5,
DF, bc? 8 +~3.5,
CF, b?c? 7 +2.5,
DEF, beds a+83.4.5,
CEF, bed? 21 +2.4.5,
CDF, bd? z°+-2.3.5,
CDEF, bede? 24+2.3.4.5;
and for the sum of the eight terms
GF.=x2+-2.3.4.5,
which may be verified as before. '
deg. 6, class @, bs G.F. =2 -6,
Fa, be? ' +5.6,
EG, bt z°+~4.6,
D@, béc? a® +3.6,
@, b z® +2.6,
EFG, bed* x°+-4.5.6,
DF@G, bexd? z¢+-3.5.6,
CFG@, bed? 2% +2.5.6,
DEG, bed? z% +3.4.6,
CEG, b2cd? z2+-2.4.6,
CD@, bed? ' +-2.3.6,
DEFG, bede? z%+-3.4.5.6,
CEFG, bed?e? a7 +2.4.5.6,
CDF@, berde? z%+2.3.5.6,
CDEG, bcde? z®+2.3.4.6,
CDEFG@, bedef* 2*+-2.3.4.5.6;

and for the sum of the sixteen terms

G.F.=2+2.3.4.5.6,

which may be verified as before.

Reducible Seminvariants—Perpetuants. Art. Nos. 60 to 64.

60. Seminvariants of the degrees 2 and 3 are irreducible—or say they are

perpetuants. Hence by what precedes, as regards perpetuants

for degree 2, G- F.=a*+2;

for degree 3, G.F.=*+2.3.
For the degree 4 (if as before b, ¢, d denote discrete letters), then the finals are
b be’, b%c* and bed’. For a final b* =02.0* or b*c*=0*.¢% we have evidently a product
of two quadric seminvariants ending in %* and %, or in & and ¢? with the same
final term as the quartic seminvariant; so that, considering the quartic seminvariants
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arranged with their finals in A0, and adding to such quartic seminvariant a proper
numerical multiple of the product in question, we obtain a quartic seminvariant the
final term whereof is in AO higher than the original final term &% or % and such
quartic seminvariant is thus said to be reducible; a quartic seminvariant not thus
reducible is a perpetuant. The quartic perpetuants are consequently those which end
i be® or bed®. The lowest form is that ending in bc?, of the weight 7. Taking the
sum of the G@.F’s for the forms bc® and bed® respectively, the G.F. for quartic
perpetuants is

2 +3.44+2°+2.3.4

viz. this is
7 (1—a?)+a*+2.3.4,

or finally
GF.=a+2.3.4

As an instance of a reduction, we have
(d? 0 b)) — (c 0 b?) (e w0 ¢*) = (ce w ¢?),
viz. this is
(d o0 b%c*) = (¢ — b°) (e — 4bd + 3¢*) — (ce — d* — b%e + 2bed — ¢°).

We have also
(d* o b%c*) = (d 0 b*)* + 4 (c o b2,
viz.

(d o b*c*) = (d — 3bc + 2b°)* + 4 (¢ — b*)?,

but this is not a reduction, there are on the right-hand side terms of the degree 6,
which is higher than the degree of the seminvariant d?wb*’ In general, we say
that a seminvariant of any given degree is reducible when we can, by adding to
it products of dts own degree of seminvariants of inferior degrees, reduce it to a
seminvariant the final of which is in A0 higher than the original final.

61. For the degree 5 (taking b, ¢, d, e to denote discrete letters), if the final
be 0% bet, b, b*c? be'd* or bed?, then the seminvariant will be reducible; a perpetuant -
must have therefore a final bed® or bede’. But it is not true that every quintic
seminvariant with either of these finals is a perpetuant. To explain this, observe that
the first mentioned six finals are some of them in one way only, some of them in
two ways, expressible as a product of power-enders, or say they are singly, or else
doubly, composite: viz. we have

p=02.0%; bot=ct.be?; bieP=02.¢%; bP=c.bP=0".bc;
be*d? = c*. b = d?.be?; - bed? = b*. cd>

For a doubly composite form, for instance &°c’, forming first the product of the quadric
and cubic seminvariants ending in ¢* b® respectively, and secondly the product of the
quadric and cubic seminvariants ending in b* and be* respectively, we have two products
each with the final b%? and forming a linear combination so as to eliminate this
term 0%? we have thus it may be a quintic seminvariant with a final such as bed?
or bede’, and the process then furnishes a reduction of such a quintic seminvariant.
Or on the other hand, it may be that the finals of the degree 5 all of them
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disappear, and we have a relation between products of the form in question (i.e. of
a quadric and a cubic seminvariant) and seminvariants of a degree inferior to 5, say
this is a quintic syzygy.

In particular, a non-composite final first presents itself for the weight 12, viz.
here the finals are b%e?, bed’, c¢*d?, the last of these is doubly composite, and it
furnishes a reduction of bed®. For the weight 13, the finals are 032 bde?, bee,
bdt, c¢*d® which are each of them singly or doubly composite: for the weight 14,
they are b%f2, b*? bede?, ¢®¢* and cd!, and here the doubly composite form furnishes
a reduction of bede’. For the weight 15, we have a final bce? which gives a quintic
perpetuant. I have, in fact, in. my paper “A Memoir on Seminvariants,” American
Journal of Mathematics, vol. viL. (1885), pp. 1—25, [828], worked out the theory of
quintic syzygies and perpetuants, and subsequently connecting this with the present
theory of finals, I succeeded in showing that, when the doubly composite final contains
a b, then there is not a reduction but a syzygy; we thus have

Q. F. for finals b3, b*d? ... =47 + 2,
i o by, e =01+ 2.4,
whence for the two forms
G.F. is ¥ +2+a"+2.4={a"(1—a*)+ 2"} + 2.4,
or say for S;, the number of quintic syzygies G.F. is =4’ +2.4.

I further satisfied myself that the finals for the quintic perpetuants are bcOe?,
and bcOef?, viz. the b, ¢, ¢, f being discrete letters, the interposed 0 denotes that
the ¢ and e are not consecutive letters. The conjugates of these forms contain the
factors D*EF and CDEF respectively, and it hence appears that the G.F.’s are
=4%+3.4.5 and #7+2.3.4.5; adding these, we find

for quintic perpetuants G.F. is =2 +2.3.4.5,

which expression was given in the memoir just referred to: the result was obtained
by investigating in the first instance an expression for S;, the number of quintic
syzygies of a given weight. The course of Stroh’s investigation to be presently
given is different; he determines directly the number of perpetuants, and we may
if we please use conversely this result to obtain the number of syzygies.

62. The foregoing theory of reduction is independent of the form of the
seminvariants, which may be blunt or sharp at pleasure: the actual formule will
of course be different, and they are very much more simple for the sharp semin-
variants, viz. here in many cases a seminvariant is found to be equal to a product
of seminvariants of inferior degrees. I subjoin the following table of the reduction
of the several sharp seminvariants up to the weight 12; the forms referred to are
the tabulated forms, and to mark that this is so I write down in each case the
numerical coefficients of the initial and final terms, viz. instead of cow ¥, doob?, &c.,
I write coo—0% doo20®, & As appears by the table, these are for shortness denoted
by C, D respectively, and so for weight 4, the forms are called E, Z,, for weight

5 F, F,, for weight 6, G, G,, G;, G, and so on, the unsuffixed letters having thus
an implied suffix, not 0 but 1. The table is
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Table of Reductions.

w= wWes
2| co-02 (o] 11 I o252 |L
%j ,, 35de? b
¥y as p  0bes | L.
4 e » 3¢? E eh ,, 20cd® Ly
2 i bt E2 = .02 16¢%h T — T70b%? L5 = -DI+L3+2L.|
o fo ., 160028 | Ly = | 8CJ,—L,
5| f o —6bc? F cef ,,-2bc2d? | L, = | —v%(FG-Ly)
cd ,, —2b° F, =| CD cdg ,, 4b3ed? Ly = | DI
af ,, 8bch L, = | ¥(FG,-L,)
’ ge = ‘1:)‘22 g 12¢3f ,,-200%d2 | Ly, = | —DI+3L,
o688 ! de* ,, 18+ | L, = | DE?
f: y _23262 gs 1 gf_ & cde ,, 20563 L, = | CDG,
i i) od® ,, 6b7c? L, = | ope,
7| h o 20bd H cid ,, 21 Ly,=|CD
ef 55 8bc® H, L9 GRS 4
% o i i Pl i e ,, 156 M,
8| i o 352 P 15d4j ,, 878v%f2 | M, = | 83CK-1M,
cg 5 2ed? T, 95fh ,,-175bde® | Mj
8df ,, 10022 |I; =|cCG-1I, 9%, 125¢% | M, 7't (25E1 - 2500, - 411,)
AR T P 8 e ceg ,, d M, = | 1h (G*— M)
. c%e ,, b33 I, =|CaG %, 5b%e? My = | CK,
cd? ,, 342 Iyi=10a, 5d% ,, 20bed® | My = | —3GGy+5EL,-2M,
¢, B RGeS of? ,, 20¢%a? My= | GG,- M,
k dcdh ,, 35b%?2 My, = | CK,
9| j o-700e |J 18def ,, SOB%d? My, = | £ (10CK, — 1600, — 32M, + 54M,,)
2¢h ,, —20d? Iy e, 86b%%2 | M= | 1(9CK,—9M,y— D,,)
dg ,, —4bcd® | J, eler o cd My=| G?
of ,, —200%d? | Jy = | }(2CH-J,-TJ)) ¢ty ,, 2b%cd? M= | C?I,
2% ,, —8bct | J; = | }(EF-J,) ed ,, 3b3cP M= | EI,- My,
cde ,, —20%3 | Jg =| DG, 3c2df ,, 100842 | My = | CK,
@& ,, —6boc? J;, =| DGy s, 9bdch Myg=| G?
cd ,, —2° Jg =| C°D cle ,, -8 | Myy=| C3G,
10} 0k o180 X éa? ,, 3b5c? My=| C*G
X A b2 My
¢t ,, —5ce? K, i
4dh ,, -350% | K; =| CI-K,
16eg ,, —80bd® | K,
f2 o, -82¢d | K; =| & (16EG-K,)
%9 ,, - 2%d? | K, = | CI,
ce? ,, —3cb K, =| EGy
Bedf ,, —100%2 | Ky = | CI,
e ,, -90%* | K, =| EG,
c’e ,; — b4 Ky =| CG,
a2 ,, -3V | Ky = | C?Gy
(o i K,=|Cs

‘Where no reduction

is

given, the form is irreducible, ie. it is a perpetuant.

www.rcin.org.pl



132 ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. [932

63. As to these reductions, it may be observed that in very many cases we
have the sharp seminvariant given as an actual product E,=(C? F,=CD, G,=C? &c.
We have next other reductions such as G,=CE—@,, where on the right-hand side
there is a -single product; this has a final the same as that of the seminvariant
which is to be reduced, so that, eliminating this term from the seminvariant and
product in question, we have an expression which must be a linear combination (with
numerical coefficients) of the preceding seminvariants of the same weight. To take
a less simple example, L;=— DI + L, + 2L,; here L;= — fg + 16¢*h ... — 70b%>, and
DI=(d—3bc+ 20%) (¢ ... +35¢*) has the final +700%> The verification is

— DI =-di ... — 70b%?
+L = di—2h+ fy
— 2L, = 2eh — 2fy

L5 ] s fg o701s] 2o 701)362.

The only case in which we have on the right-hand side two products is (d?y o bed?),
My=—-3GG,+ 5EL,—2M,; viz. here the final of M, is bed® which is incomposite
(viz. it is not the product of two power-enders), this is in fact the first instance of
a quintic seminvariant with an incomposite final and which is nevertheless reducible.
For observe, the next seminvariant M,, has the final ¢*d? which is a product in the
two ways c®.cd® and ¢®.d?; we have thus the two products (e c¢?)(cg 0 cd?) and
(ce 0 ¢®) (g o d?), that is, £I, and GG, with the same final ¢*d?, and combining them
so as to eliminate this term we have an expression having the final bed?, and
which is thus expressible in terms of M, and preceding seminvariants: the verification is

- 3G@G, = — 3ceg + Sd'zg <. + 60bcd? — 30¢%d?
+ BEI, =+ 5ceg = 40bed® + 30¢d2
—2M, =—2ceg + 2¢f* + 2d%

M, = 2¢f? + 5d?q ... + 20bcd?.

64. 1 annex to this a table (taken from the square diagrams) for the initials
and finals of the sharp seminvariants for the weights 13, 14, 15, and 16.
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w=
w=
w=
18| ‘n o bg? !
o dp N sl My e by 16
dk ,, bef? 2 em,, dg® P, i1 Q
g e A o 0, el i L
gt ™ S dm [ beg? | T
02;7 s b3f2 5 fk ”» befg : 7’ 2 . h22 ¢
gh o vae | 9. cdf 6 ATy :
ceh ,, be2e? o cej ,, de? y s b{ L.
ah bt ! A s 0 mt, ?
oy wod | . s A T S AL
cdi ,, bice® a ki, betf? 0 94 o
deg ) bed® | ¢fi ,, bee? . y o 0
df2 ,, bedd? o cgh ,, ba*e? e cs »b 0g2 n
3h 15e2 13 drh ,, c*de? & fik 9.2 12
e2f ) bia3 ae eh ,, & 12 oIl defz 13
ARG TR B cdk Vet | syl 0
cd*f ,, be® i dei ,, be? ' 821'2 ¥ c2f : 15
g ) Wed | 1 ceh ) bede? | 1 ot 16
cde? ,, b3c8 5 dg® ,, be®e? wt dgh ,, cd’e 17
cf ,, bld? s efg ,, bed? o o b; 5 18
de bt s cfg o c*d® 2 d2e]' » b dfz 19
cdde ,, b7c? 2 c?j [k i olel ,, Bt 20
Gl g 22 esh ,, bide® - efl ’; sy blce® u
sd , bis 23 ed?h ,, b%cie? = eg® 5 bidle? 22
” 2 cdeg ,, b3d* o ¢'fh y, be'de? | gy
T iy b c2d? x c’g® 4, bd 24
14 L1 1B 0 cdf? ,, bedd? “;2 f glq c;e; 25
cm cq® ce*f ,, Uice? 1 Ce’g 4, C°0
ek :: e_‘?.z 0 d’g ,, bed? 2 03’; ¢ b‘cf’ ::
da ,, b%? : def | BeSdd | BNy e 2
ﬁ 3 bdf2 . Csef ’ be? » cdeh R blede? 29
go cirs g il -y, et e odfy s, L% s
Ceti iy, 06.3 > C’d2f ” béds 5 a e‘z v Pedt 31
2 ) d%? % de? ,, bc*d? & c‘if betd? 32
2k tE) b“t}f2 & c2de? ” b3S » di;f'z gl 33
% ., bte 9 ¢y ,, Ved? 34 fiadj 2 D82 %
cf h 'Y bede? - cd®e ” bsed o 3h o bbdf!ﬂ 35
cg? ¢’ i Sf ,, Vd? - b it %
dfg , cdt 18 & e = BL wike o
ol i 13 cide ,, b3 £ dé’f ,, Ve 38
deh ,, b3de? i edd |, bic? = 2,8 A 39
629 55 Dicled 2% ¢S s iy C‘g # ¥ 40
c%g ,, b2%4 18 . A% blce? a
eof s 17 c’dty ,, Ved® @
cf? D otd? 18 cidef ,, bic’d? 3
%, bice? ¥ c;l“e’ i u
cd?q ,, bdcd® 2 cdgh " g o
v D vow | el 7 e
ced i ¢ i cde Al 47
dh , boe? » dse o 3005 48
asf . v * A Al 49
&0 bhedd? = o i 50
s noa | ol |
dtg ,, bbcd? 7 O blg 3 52
c2d% ,, bic® 2 s2 17 g 2
Adf 0 | A~
cdt ,, bbe 74 g ki i
Se ) b 2 ¥ T
a2, b1%:2 :
o 32 linie 34

It would be interestin | .
; to complet i ;
e weighta 2 fto 19, g plete this into a table of reductions as given for
G EXTER,
40
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The Strohian Theory Resumed: Application to Perpetuants. Art. Nos. 65 to T1.

65. We can by means hereof establish, in regard to the specific blunt semin-
variants, a general theory of reduction, or say a theory of the relations which exist
between the seminvariants of a given degree and the powers and products of semin-
variants of inferior degrees. To exhibit the form of these, it will be sufficient to
take Q a sum of two parts, =Q'+Q”, but the more general assumption is Q a
sum of any number of parts, = Q'+ Q"+ Q" +.... Taking then Q=0'+ Q" where
for the Q' and Q" separately the sum of the (#, y, 2 ...) is =0, suppose that to
the (0, C, D, E, ...) of Q there correspond (0, ¢’, D', E’, ...) for @ and (0, O,
D", E”, ...) for Q'. We have :

O =0+ 0

.D= D/+ DH,

E=EI+ E/I+ CIC/I’

F=F’+F// 4 CID/I+ O//D/,

G i GI + G/l + C/EI/+ Cl/El + DID/I’
the law of which is obvious.

66. We have, for instance,
Ot = (Q/ L Q")", i Q"‘ i 69’20"2 A Q”‘, (since Q/ A 0, Q;, o O),

that is,
(C"+C"yc =C"+ 60'b2. C"b*+ C"*c?

+(E'+E"+0CC") b+ E'D + E"b
where, and in what follows, c¢? b% 0* are for shortness written instead of [c¢*], [b4],

[6%] to denote the specific blunt seminvariants ending in ¢ b% b® respectively.

The terms in O, C”, E’, E” are identical on each side of the equation and
destroy each other: omitting these, we have only the terms in C’C” which must be
equivalent on the two sides of the equation, and comparing coefficients we find the

relation
22+ b'=6.0.03

which of course means 2 [c*] + [b*] = 6 [b%] [b*], viz. this is
2 (2e— 8bd + 6¢%) + (— 4e + 16bd + 12¢* — 48b% + 24b*) =6 (— 2¢ + 2b°)

In like manner, for Qf=(Q'+ Q") we have

(C +C"y . de
+ @D+ Dy ¢
+(C+C")(E' +E"+00")  .be

+ (G/ + GII + OIEII + CIIEI +D’DI/) 1 bG

www.rcin.org.pl



932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 315

equal to

C® .\ +15( Cne) C”.02+20D .05 D" +15C2. 02 ([ C™. ¢ +( O .d
T+D’2 ¢ {+E’.b4} {+E”.b‘} +D" ¢
1+ C'E b +C0"E" . b
+G@ b +G” b {

Here omitting the terms which destroy each other and comparing the coefficients
of the remaining terms, viz. C*C” + 0"C’, D’'D"” and C"E” + C"E’, we find the relations

3d? + b’ =15.¢2. 03
2¢* +0° =20.0°.0%
b+ b =15.04.07
which may be easily verified. There are on the right-hand side only products of

two parts, but this is on account of the special assumption Q =0'+ Q" a sum of two
parts.

67. I write now

Q,=az+ By 5 8. =0,
Qy=oax+ By + 2 : , Sz =0,
Q,=ox+ By + vz + dw , Si@=0,
Q,=az+ By +yz+ dw + et , Ssw=0,

Qy=oaz+ By + vz + dw + et +{u, Syz =0,

and I say that Q, and , cannot break up: but that Q, breaks up if it becomes
a sum of 2+ 2 terms (ie. a sum of two parts , for each of which S,z=0, and
so in other cases): that Q, breaks up if it becomes a sum of 2+ 8 terms, 0,
breaks up if it becomes a sum of 2+ 4 or 24 24 2 terms, or if it becomes a
sum of 8 + 3 terms: and similarly for any higher suffix.

The condition that Q, may break up is #+4+y=0, 24+2=0, or y+2z=0, or what
is the same thing it is II;(z+y)=0, where II,(#+y) is the product of the three
sums each containing #; this is a symmetric function, we in fact have

I (2 +y) =2+ 2*(y + 2 + w) + @ (Y2 + yw + 2w) + yzw, =zyz + xyw + wzw + yzw, =-— D.

The condition in order that Q, may break up is 2 +y=0, ..., or w+¢=0, say this
is I,y(z+y)=0, where II,;(z+y) denotes the product of the ten sums z+y, ..., w+1.
It will be shown that we have Il (z+y)=— D*E+ CDF — F*

The condition in order that Qs may break up is, z+y=0, ..., or t+u=0,
or again if #+y+2=0, ..., or 2+t+u=0, viz. it is I;;(z +y) I, (z+y+2) =0, where
I,;(z +y) is the product of the fifteen sums z+y, ..., t+u, and Il (z+y+2) is the
product of the ten sums z+y+z ..., z+i+u, each containing « : Il,;(z+ y) and

40—2
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Il (z+y+2) are symmetric functions, the expressions for which will be given further
on: the weights in the capital letters are 15 and 10 respectively. And similarly for
Q with any higher suffix, we have the condition that this may break up.

I introduce the factors Il,z = E, ;o =—F, Il,z =G, ... respectively and write for

0 M, =1l,2I1; (z+ y)=— DE as above,
Q, M,; = 21l (z + y) = — F'(— D*E + CDF — F?) as above,

Q, My = Ueallyy (2 + y) Iy, (2 +y + 2),

where observe that, for the even suffixes of Q, the last factors II;(z+y), I, (z+y +2), ...
denote the products of the sums z+y, #+y+2 ... which contain #, that is in each
case the products of only half the whole number of such linear factors. The suffixes
of M show the weights in the capital letters C, D, E, F, @, ... viz. these are
4+3 =17 5+10, =15, 6+15+10, =31, and so on; the law is obvious, and for
Q, the weight is =271 -1,

68. To explain the Strohian theory of perpetuants, I assume explicitly as presently
appears. For perpetuants of any given degree 8, we consider in Qs%(w=28 at least)
the terms containing seminvariants of the given degree: for instance when 8§=4, w =12,
these are

CiE b
+ CDE . bde?
+ C*E2 . c%¢?
+ E3 . dY

where the capital expressions all contain as factor the letter E of the weight 4.
By making Q to break up, it is assumed that we obtain all the reductions of the
seminvariants of the degree and weight in question; and every such seminvariant, if
it be reducible, will be reduced by means of the resulting formulwe. Now there are
seminvariants which are not reducible by these formule: in the example just
considered, the seminvariant bde? has the coefficient CD?E containing the factor
DE, = ayzw (z+y) (z + 2) (z+ w) which vanishes when €, breaks up; so that, supposing
Q, to break up, the seminvariant bde* disappears from the formule, and we have no
reduction of this seminvariant. And again it is assumed that every seminvariant
which does mot in this way disappear from the equation s reducible. The irreducible
seminvariants are thus the seminvariants which, when Q breaks up into a sum of
two or more parts, disappear from the formule; viz. the seminvariants which thus
disappear are the perpetuants.

69. In the case considered’of quartic seminvariants, it has just been seen that,
for the weight 12, bde* is a perpetuant; and so in general for the weight w, every
quartic seminvariant, multiplied into a product of capitals which contains the factor
DE, is a perpetuant: for the weight 7 the only term is DE.bc*, viz. the product
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of capitals is here =DE; and for any higher weight w we have products which
are equal to DE multiplied into products of the weight w—7 in C, D, E: and we
thus see that the G.F. for quartic perpetuants is = a7 + 2.3.4.

70. For quintic perpetuants, we consider in Q2 (w=>5 at least) the terms which
contain quintic perpetuants; for instance; when w =15, the terms are

(LYl o
+ C2D*F . bdf*
+ C*EF . be*f?
+ DEF . bee?
+ CE°F . bd*e?
+ CDF* . ¢*de?
+ F .d
where the functions of the capitals all contain the factor F; the finals b2
bdf?, ... are arranged in AO. Supposing ; to break up, we have an expression
M, = — D*EF + CDF* — F*%, which is =0, and using this value of M to eliminate the

term D?EF which belongs to the seminvariant bece’, the final whereof is highest in
AQO, viz. writing D*EF =— M + CDF* — F*, the expression is

C°F .b%9* that is C°F .b¢?

+ C:D°F . bdf* + C*D*F . b*df*
+ C*EF . be*f* + C*EF . be*f?
+ (= M + CDF* — F?) . bee? -M . bee
+ CE*F . bd*e + CE*F . bd?e
+ CDF* . ¢*de? + CDF* . (¢*de® + bee?)
T KGR + B (dP—bee?);

and here when , breaks up, we have M =0, that is, the seminvariant bce’ disappears
from the equation, and it is thus a perpetuant: but b*¢?, b*df? be*f* and the com-
binations c*de?+ bee?, and d° — bee® are severally reducible. 3

The degree 15 is evidently the lowest degree for which there is an irreducible
quintic seminvariant, and for any higher weight w the number of such seminvariants
is equal to the number of capital terms which have the factor DEF, viz. this is
equal to the number of terms weight w — 15 which can be made up with C, D, E, F;

and hence
for quintic perpetuants G.F.=2"+2.3.4.5.

71. For the degree 6, M =1lzll;(z+y) I, (2 +y +2) is a function of the capitals
of the weight 31, and we thence at once infer that

for sextic perpetuants G. F.=2"+2.3.4.5.6.
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But it is worth while to write down the expression for M: I do this, annexing to
each term the seminvariant (ie. final term) which belongs to it, arranging these
final terms in 40; the value thus arranged is

M= finals in 40
+1 DEFG beer?
-2 CDEF:*@ bdeha?
+1 CDF@ beg?
+2 DEFQ bef ¥
= 2 OG- bf*gh?
+1 G by
-1 DEG cdv’
+1 CDFG? cd*hi?
+1 CDEFG? cdegr®
—4 DEFG? cdfh?
-1 C:DF*G? ce*fi?
—1 D@2 ce’h?
+4 CDEFG* cefgh®
N O A GE of *h?
+ 4 EFG* fg’
-1 DG dPg
+4 DHEG? drel?.

It thus appears that the single sextic perpetuant of the weight 31 is beei®, and
generally that, for any higher weight, the sextic perpetuants are such that the
conjugate capital terms contain each of them the factor D'E*FG.

The like reasoning shows that

for perpetuants of degree n, G.F. is =2*""+2.3.4...n.

Investigation of the Values of the Foregoing Fumctions Tl (z+y), Tls(z+y) and
My(z+y+2). Art. Nos. 72 to T4

72. If @, w, z, w, t are the roots of a quintic equation, say
A=z A—y.A—z.A—w.A—t=(1, B, C, D, E, F{p, 1y=0,

we require the product Il (z+%y) of the sum of two roots in the particular case
B=0. But in order to the determination of the expression for Il (z+y+2), we
require the value of Il (#+y) in the general case, B any value whatever.
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Writing
v=—}(0+0),
=—1(0-0),
and therefore
0+az+y=0,

we have
(0+ ) — 2B (0 + ) + 40 (0 + ) — 8D (0 + w)* + 16E (0 + ) — 32F =0,
and the like equation with — for w. Hence writing w?=J, we have
(6°— 2B6* + 4C6° — 8D@* + 16 E6 — 32F) + M (106 — 12B6° + 1200 — 8D) + M? (50 — 2B) = 0,
(564 — 8B6*+ 1206 — 16 D0 + 16 E) + M (106> — 8B6 + 4C) + M*.1=0,

which are of the form 4 + BM+ OM*=0, A'+BM+C'M*=0, and give therefore by
elimination of M the equation

—(CA’—C'Ay + (BC'~ B'C) (AB — 4'B)=0;

the left-hand side is here a function of @ of the degree 10 vanishing when 6+ a2 +y =0,
and which must therefore be, save as to a numerical factor, the product TT,,(6+ =+ y).
And we thus find

I, (6 + 2+ y) :
_ (246°—48BO 4+ [ 560\ @+ (— 72D \ @+ ( 64E \ 0+ /— 32BE\)?
+ = + 32 + 32
- gl it o e ) B e
406° — 48B¢*+ [ 8C \O+( 8D \| |40¢" —112B6*+ / 1360\ 6 -
+16B° - + 80
+ ( 16B°> ( 8BO)} ' < Be)
i <—I2OD >e4+ 0F ¢+ / 320F \ 6+ /—256BF 128CF
—200BC +192BD —64ABE +128CE ( 128DE> ;
+ 1280 —526CD —128D°

which is
=10246" + ...+ 1024 (— F* + CDF + 2BEF — BC*F — D*E + BCDE),

and which therefore for B=0 gives
II, (2 +y)=— F*+ CDF — D°E.
73. Suppose now z, y, z, w, t, u are the roots of a sextic equation, say
A—z A=y A—z.A—w.A—t.A—u=(1, B, C, D, E, F, GU\, 1) =

Considering here the product II,(z+y+2) of the sums of 3 roots, if B=0, this
will be a perfect square (for each sum z+y+2z is equal to —a sum (w+ ¢+ u)) say
it is the square of Il (z#+y+2), where the z+y+2 refers to the ten sums each
containing #, and we wish to find this function II, (z+ y+ 2). Writing for the
equation whose roots are y, z, w, t, u,

A—yA—zA—w.A—t.A—u=(, B, ¢, D, E’, F"Zz)», 1)
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we have by what precedes IT,,(6 +y + 2)=a function (*J6, 1), viz. this is the above-
mentioned function with B, (', D', E’, F’ in place of the unaccented letters.
Introducing a new root # and for A writing as we may do 6, we have

0—2.0-y.0-2.0-w.0-¢t.0—u=(0-=).(1, B, C’, D, E', F'Y§0, 1y
- (1B, 0,D. 8, F G80 1r:

that is, we have

B=B — 6 or conversely, B =B+ 6,

C=0— B0 ¢'=C+Bo+ &

D=D—(% D =D+00+ B0+ 6

E=E-D6 E'=E+D0+Co +BEF+ 6,
F=F_FE8 F'=F 4+ E0+ D¢ + C6 + B&* + ¢, =_g.,
G= -Fo

where I have retained B, but the value hereof is in fact =0. In the foregoing
function (%46, 1)° with the accented letters, writing for these their values B'=6,
0'=C+6, D=D+ 00+ 6, &c., which belong to B=0, we find

102411, (6 + y + 2) = — (486° + 56C6° + 24D6* + 64E0 + 32F )
+(166° + 806 + D) {1440 + 26406° + 72D6* + 128 (C* + E) 6*+ 192F ¢ + 128CE6

+ 128 (CF — DE)},
which equation divides by 64. Writing herein 6 =, we have

1611, (z +y + 2) = — (62° + 7C02* + 3Da? + 8Ex + 4F )
+(22* + Oz + D) (184" + 33Cz° + 9Da* + 16 (C* + E) &* + 24Fa* + 16CEz + 16 (CF — DE)),
where af+ Ozt + Da® + Ex*+ Fz+ G is =0: the value ought, in virtue of this equation,

to reduce itself to a mere function of the coefficients, and we in fact find that the
equation is

1611, (2 +y + 2) = (16C*? - 64E) (a° + Cz* + Da® + Ez* + Fz) + 16CDF — 16 D*E — 167,
reducing itself to

—(160*—64E) G + 16CDF - 16D°E — 1617,
viz. dividing each side by 16, we have
I, (z+y+2)=4EG - C*G — F*+ CDF — D*E,
which is the required result. The equation (6?°—1)*=0, for which
z, v 2wt u=111 -1, -1, -1,

gives a numerical verification.

74. 1 find also, for the same vé,lue B=0, the function II;(z+y). Writing, as

before,

$=—%(9+w),
y=_%(0_w))
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and therefore
O+a+y=0,

we have

(0+ o) + 40 (0+ 0)*—8D (0 + w)’ + 16 E (6 + w)* — 32F (0 + w) + 64G =0,
and the like equation with — @ for . Hence writing w*= M, we have
(6° + 406 — 8D + 16 E6* — 32F0 + 64G) + M (156 + 2406° — 24D6 + 16E)

+ M2 (156% + 4C) + M*=0,
(66° +16C6* — 24D6" + 32E0 — 32F) + M (206* + 1600 — 8D) 4+ M*. 66 =0,

say these equations are aM?®+bM>+cM+d=0, pM*+ qM +r=0. Eliminating M, we
have

ator a=1,
—ab.qr b=156+ 40,
+ac (= 2pr* +¢*r) c =150+ 2406 — 24D0 + 16E,
+ b*. pr® d= 6+ 406‘— 8D + 16E6* — 32F6 + 64G,
+ ad (3pgr — ¢°)
+be (= pgr) p= 60,
+bd (— 2p*r + pg*) q =206°+ 1606 — 8D,
+c. pr r= 660°+1606¢ —24D0" + 32E0 — 32F,
—cd.pq
+d?. p*=0.

The equation, as far as I have calculated it, is
— 327686" — ... — 32768 (— D*G + F*— CDF*+ D’EF)=0;
the left-hand side is here = —82768Il, (2+vy); and we have therefore
II,; (z + y)= — DG + F* — CDF* + D*EF,

the required result. It may be remarked that, writing G=0 and throwing out a
factor — F, we have — F?+ CDF — D*E, which 1s the expression for Il (z+y) in the
quintic equation.

We have

eIl (2 + y) (2 + y +2)

=G (- DG +(F*—CDF + D’E) F} [(4£ — C*) G — F* + CDF — D*E},

the developed expression whereof is the foregoing value

M = D*E*FQ — 20D*EF*G + &c., ante No. T1.
G v X T E 41
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The Operators P —8b and @ —2wb. Art. Nos. 75 to 84.

75. The analogous theory for non-unitariants is established, ante Nos. 24 et seq.
For seminvariants, we have
P=0b0,+ cop +do.+...,
Q= cop + 2do, + ...,

or more definitely, if the seminvariant operated upon be of the degree 8, the weight
o and extent o, say its highest letter is a,, =p, then

P=0b0,+cop+ do,+ ...+ q0p,
= oy + 2d0; + ... + ooy,

P—38b, Q—2wb,

operators each of them of the deg. weight 1.1, viz. each of them operating upon a
seminvariant S of the deg. weight 8.w gives a seminvariant S’ of the deg. weight
8+1.w+1; moreover, a new letter ¢ is introduced, or say the extent is increased
from o to o+ 1. For the proof, it is only necessary to show that A (P —068)S and
A(Q —2bw) are each =0, but it is unnecessary to do this, as the like proof has
already been given for non-unitariants.

then we have

The two seminvariant operators were first considered in my paper “On a theorem
relating to seminvariants,” Quart. Math. Journ. t. XX. (1885), pp. 212, 213, [844].

76. We may, instead of P—8b and @ —2wb, consider the linear combination
Y =20 (P —8b)— 8 (Q — 20wb), that is, 20P —8@, which is of deg. weight 0.1, viz. it
leaves the degree unaltered, while increasing as before the weight, and also the extent,
each by unity. And again, the combination

Z=0a(P—b)—(Q —2wb),
P — Q— (08 —2w) b,

where observe that oP —@, = agbd, + (0 —1)coy+ ... + 1pd, does not contain the new
letter ¢; the operator Z is thus of the deg. weight 1.1 increasing the degree and also
the weight each by unity, but leaving the extent unaltered.

that is,

There is a special case which it is important to attend to, we may have
06—2w =0, viz. this is the case when the seminvariant operated upon is in regard
to the letters comprised therein an invariant. Here the two combinations ¥, Z are
equivalent to each other, each of them is =abd, + (0 —1)coy+... +1pd,, which is an
annihilator of the seminvariant (invariant) operated upon. Hence in this case we
cannot replace the original forms by the linear combinations, but must retain one
(no matter which) of the original forms P — &b, @ — 2wb.

77. We can, by means of the foregoing operators, starting from the quadric
seminvariants ¢ —b? &c., derive in order the seminvariants for the successive weights
- W T A
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Thus writing down the series of finals (in 40 as before),

b2, b?, e be?, @, bd?, e g

bt b ¢ be? cd?
b bt b

b b ct

bick

bic?

b,

I proceed as follows, observing, however, that when the function operated upon is an
invariant seminvariant we must instead of Z write P — &b.

b* emerges, b*=2b% c* emerges, bc*=2Zc, d? emerges, bd?=Zd?, ¢® emerges,
U8 — 20" A ek i be? =Zc? ed? = Fhd*
Bloi=— e b2 =2Zb¢ b= Zbd:

b = Zb° WA ¢t = Kbct
bct = Zbe?
bic* =Z bbc?

b= Z¥,

viz. whenever the seminvariant to be obtained has a final containing b, it is obtained
by means of the operator Z (or it may be P —8&b), but when there is no b then
by the operator Y.

The seminvariants operated upon may be blunt or sharp, but there is an advantage
in operating on the sharp forms as these are more simple, and we thereby obtain
for the next superior weight forms more nearly approximating to the sharp forms.
We do not however by thus operating on a sharp form obtain directly a sharp form;
to do this, the form obtained must be modified by adding thereto a numerical multiple
or multiples of a preceding sharp form: and thus the theory does not determine
beforehand the forms of the sharp seminvariants. But making at each step the
necessary modification (if any) we have thereby, when the sharp seminvariants of the
next preceding weight are known, a very convenient process for the calculation of
the sharp seminvariants of any given weight, in the AO arrangement of their final
terms. Thus for the weight 10; koo f? is taken to be known, the next two forms
ct o ce® and dh o b%* are calculated each from joobe?, the expression for which is

= j — 9bi + 20ch — 28dg + 14ef + 16b%h — 56bcg + 112bdf — T0be.

We have for jobe®, 6=3, w=9, 0=9: and therefore
%—Y= 600, + 5¢oy + 4do, + 3edg + 2fae G gaf — 10p, — 2.]3@ - 3]6'3]',

Z = 900, + 8¢0y + Td0. + 6€0q + 5f0, + 490y + 3h0, + 20y, + jo; — 9D.
41—2
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78. 1 exhibit the calculation as follows:

[932

1Y (j 0 be?)
1 2 3 4 5 6 7 Bil1 g e 0
Jif Py = 31 il g TR0
vl ol +18 g0t g
ci| + 45 - 45 -20 T 2 IR R
dh | -120 + 80 ST ST Ry | B
eg | +210 - 84 + 14 - 70 +630 | +560 | + 8
f2| -126 + 28 ROy o BT R
% - 54 -16 Ll ST =
beh +120 +160 +280 +280 | + 4
bdg - 168 —-224 +112 - 280 ~agpil =y
bef + 84 +336 —-280 +140 +140 | + 2
¢%g - 280 - 280 —ag80 | =4
cdf +560 +560 +560 | + 8
ce? - 350 - 350 -350 | - 5
d?%
bR
b2%eg
v2df
b2e?
+256 +93
Z (g  be)
1 2 3 4 5 6 Thy ENREE 10 +  =-18
k
u| + 18 -9 - 9 0 0
ci - 72 +40 - 32 + 32 0
dh +140 2 LR e by S D SRR T
eg -168 + 56 - 112 +2567] + 144 | - 8
i 5470 o 1700 = TR0 LSL 0005
v% | - 81 +32 + 81| + 82 - 82 0 0
beh | +180 +256 - 168 - 180 + 88 +1928 4216 | = 12
bdg | -252 - 392 +448 B0 S0 ¥ R TR | B D e R
bef | +126 +672 - 700 - 126| - 28 +64] 4+ 86| - .2
c%g ~ 448 — 448 -128 | - 576 | + 32
cdf +896 + 896 +256 | +1152 | — 64
cé? - 560 - 560 -160 | — 720 | + 40
d?e
b3h 144 {"="144 - 144 | + 8
b’y + 504 | + 504 + 504 | - 28
vidf -1008 | —1008 -1008 | + 56
b + 630 | + 630 4+ 630 | - 85

+149



932] ON SYMMETRIC FUNCTIONS AND SEMINVARIANTS. 325

The numbers (1, 2, ..., 9) and (1, 2, ..., 10) at the head of the columns refer
to the nine terms 600,, 5cdy, ... of 1Y, and the ten terms 9b0,, 8¢dp, ... of Z
respectively, these several operations being performed on (j be?) the value of which
i1s given above: the daggers + denote the additions which have to be made in order
to obtain the proper initial term, viz. for the first + the added term is +3 (ko f?)
and for the second t+ the added term is + 82 (ci wce?): the headings + 70 and +—18
explain themselves, and the columns headed with an asterisk * give the results, viz.
the first of these is (ci w0 ce?) and the second of them is (dh o b%?). As appears above,
the value of the first of these is used in the second + column for obtaining that
of the second of them.

79. We may operate with P—8b and @ —2wb on a product (deg. weight 8.w)
ST of two seminvariants S, 7, deg. weights &.e" and 8”.w” respectively, &=2¢+8",
o=+ 0". We have

(P—-8)ST=8.PT+T.PS—(&+8")bST, =S(P-8"b)T+T(P—8&b)S8,
where (P—3&b)S and (P—8"b) T’ are each of them a seminvariant. And similarly,
(R—-2wb)ST=8.QT+T.Q8S -2 (o' + &") bST =8 (Q — 20"d) T' + T' (Q — 20'b) S,
where (@ —20'b0)S and (Q—20"b)T are each of them a seminvariant. That is,
operating either with P —68b or @—2wb on a product, we have a sum of products;
and therefore also operating upon a sum of products (each product being of the
deg. weight ®.8) we have a sum of products, each product in such sum being of

the deg. weight w4+ 1.8+ 1, and moreover of the extent o +1. And instead of binary
products, we may, it is clear, consider ternary, quaternary, &c., products. i

The like theorem applies to the derived operators Y and Z, but as to YV there
is a specialty to be noticed. We have

Y .ST =20 (P — 8b) ST — 8 (Q — 2wb) ST,
=20 {S(P-8b)T+T(P—-8b)S}-38{S(Q—20"0) T+ T(Q - 2w'd) S},
=8 20(P—=8b)T-8(Q—20"b) T} + T {20 (P —8b) T -8 (Q —20'D) S},
where the whole of the right-hand side as being equal to Y.ST is of the degree
o, but except in the particular case ( g = g = 6;:) the separate products S{ } and
T { } which occur on the right-hand side are each of them of the degree & +1.

It is scarcely necessary, but it may be proper, to remark that we frequently
combine by addition a seminvariant S of the deg. weight 6. with a seminvariant
T deg. weight & —e.w of the same weight but of an inferior degree, but when this
is done we regard the 7' as standing for e<T, and as being thus of the same deg.

weight 6.w. We have
(P — &) a7 = a*PT + TPas— (e + §—e)baT, =a{P—-(0—e)b}T+T(P—eb)as,
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where (P —eb)ac=(e—e)b=0, and consequently (P —bd)aT ={P —(8—¢€)b}T; viz. for
the operation upon 7, we regard P —8b as standing for P—(8—¢€)b. As regards @,
we have (Q —2wb) T =(Q — 2wb) T'; viz. the degree of 7' does not here present itself.

80. We may write
(20P - 8Q)S =8/,

the new seminvariant S’ being of the weight w+1; hence also
{20 +2) P—8Q} . {20P — 8Q} S =87,
where S” is of the weight w+2; viz. we have an operator
(20+2) P - 8} . {20P - 5Q),

which, operating on a seminvariant of the deg. weight &.w, gives a seminvariant of
the deg. weight 8.w +2. This is

= (40° + 40) (P2 + P . P) — (20 + 2) 5 (PQ+ P . Q) — 208 (QP+ Q. P) + & (@ + Q. Q),

where P2, PQ, QP and @ are the mere algebraical squares and producfs, while P.Q
and @.P denote respectively P operating on @ and @ operating on P; and since

PO =0QP, this is
=40’ +40)(P2+P.P)— (40 +2) PR —2(0 +2)8P.Q —208Q . P + & (@ + Q. Q).
Recollecting that
P =100, +cop+do, + ..., Q=cop~+2d0o,+ ...,
P.P=co,+ dos+ €, '+ .,
P.Q= dop + 2¢0, + ...,
Q.P=c0y+2doy +3¢0; +...,=P.P+P.Q,
Q.Q= 1.2doy+2.3860,+...,

we have

and attending to the relation just obtained Q.P=P.P+P.Q, we find that the
operator may be written

(4* + 4dw) {P*—(8—1) P. P}
- (40 +2)8 {PQ—wP.P—-1(6-3)P.Q}
+&{@Q+Q.Q-31(40+2)P.Q};

in fact, here the terms in P2, P, (® are in the original form, while those in
LR, P.Q.Qv0 are

(40’ +40)(1=8) P. P + (40* + 20) 8P. P -} (40 +2) (8*—=38) P. Q + Q. Q
+3 (4o +2) & P.Q,

=40+ 40— 2w8) P. P — (40 + 2) 6P . Q + &Q. Q,

agreeing with the original form

(40*+40) P.P - (20+2)8P. Q— 208 (P.P+ P.Q) + 8Q. Q.

which are
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81. I find that each of the three parts is separately an operator, viz. that we
have

P—(6-1)P.P,
PQ—wP.P—-1(8-3)P.Q,
@+Q.Q—1o+2)P. ¢
each of them an operator which, operating on a seminvariant of deg. weight 8.,

gives a seminvariant of deg. weight 8.+ 2.

I verify this for the first of the three operators, say

Q=P—(8-1)P.P=P+P.P-36,
if for a moment
P.P, =co;+ doy+e0,+ ...
is put =0.

Here for a seminvariant S, we have
QS=(F*+P.P-380)S=P(PS)—3508.

Writing S =(aP—508)S, then S’ is a seminvariant, degree =8+1, and then if
S"=(aP—-b(3+1))8, 8” is a seminvariant, degree =8+2. We have PS=a"1(S"+ bdS),
and thence

Q8= Pa (8" + b8S) — 808, =—b(S +bdS)+ P (8’ + b8S) — 8OS.
Here
P(S"+b88)=PS"+ cdS+bdPS, =8"+b(8+1)8"+¢cdS+b8 (S’ + bdS),

-and hence

QS =8"+ 2b8S" + {¢d + b* (& — &)} S — 8OS.
This will be a seminvariant if A.QS e 0; we have
A.QS8=AS8"+2b8A8 + {c& + b*(8*—8)} AS-3(AB®+A.0)8
+ 288" +{206+2b (8 -9)} S,
or, omitting the terms in AS”, AS’, AS which respectively vanish, this is
=288" + 208°S — 3 (AB + A.©)S.

But since PS=.8’'+008S, and from AS=0 we deduce 0=(®A +0.A)S, the equation
becomes
A.QS8S=28PS-8(A.0-0.A)8,
and from
A= ady+ 200, + 3¢03+ ...,

®= caa'l' dab"' eac+...,
we have
A. O = 2bo, + 300 + 4do, + ...,

0.A= c0p + 2do. + ...,
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and thence
A.O—-0.A=2b0,+ 20y + 2d0, + ..., =2P,

and we have thus the required equation A.QS =0.

82. If instead of P, ®, we write B, C, so that
B= bo,+ cop+ do.+ ...,

C=B.B= cd, + dop+ €o;+ ...,

and put further
D=B.C= do,+ e+ fo.+...,

E=B.D= e+ foo+ 90+ ...,

then the foregoing operator is B*—(8—1)C, or reversing the sign, say it is (§—1) (' — B?,
which is the first of a series of operators

(¢-1)C - B,
(6—1)(8—2)D—3(8—2) BC + 2B,
(5=1)(8—2)(8—3) E—4(8 —2)(8—3) BD+6 (8 — 3) B*C — 3B,

which are of the deg. weights 0.2, 0.3, 0.4, &c., respectively, viz. operating upon a
seminvariant of deg. weight &.w they leave the degree unaltered, but increase the
weight by 2, 3, 4,... respectively.

It is to be observed that B>, BC, B° &c., denote the mere algebraical powers
and products of the symbols B, C, D, &ec., without any operation of one symbol on
another.

As a simple illustration, take (C'— B®) (ac—b%): here,
C(ac—b*)=¢—2bd + c*
— B*=—(2bdod: + ¢0") ( » )  — 2bd+ 2¢*
Value is é - 4bd + 3c";
and similarly for (C'— B*)(ae — 4bd + 3¢?), here :

C(ae—4bd + 3¢*) =g —4bf + (6 + 1)ce— 4d?
— B* = — (2bf0,0, + 2cedyda + d°0:?) ( & ) =% 4 8o~ G
Value is g —6bf + 15 ce — 10d2

. A Qirect: proof may of course be obtained for any one of the foregoing operators;
viz. o:a,llmg 1t €, it may be shown that AQS is =0. I have not considered the like
question of the derivation of series of operators from the other two forms

| PQ-wP.P-4(8-3)P.Q and @+Q.Q—-31(4w+2)P.Q
respectively.
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83. I do not wish in the present paper to go into the theory of covariants, but
it is nevertheless proper to point out the connexion which exists between the covariant
theory of derivation and the operators P and Q.

Consider a quantic (a, b, ¢, ..., @ = a,Qa, y)*; any covariant hereof is (4, B, C, Y, Y,
where A is a seminvariant say of degree 8 and weight, @ =4 (0’8 - u), or u=0'8 — 20,
reduced to zero by the operation A =ady+ 209, + ... + 09y : and if we write

¢ =0"b0,+ (o' — 1) oy + ... +a'0y,
then
B=¢y4, C=}¢yB, D=1ip,C,...
The derivative (f, F) is
= Ouf .0y F —0,f.0.F

= (@b, .. 0, y)T2 Bap—teiprs
=i(b,'0,"...0a, ¥ pday—i4 ...

(aB— ubA, ... [z, y)7 2,
that is, A being a seminvariant, we have aB — ubA a seminvariant, or say

(po— pu'b) A =sem. u' = '8 — 20;

and similarly ,
(po —pb) A =sem. u = a8 — 2w.
Hence

{pe = o —(u—p) b} 4, and {c'Ps— oy — ('/u—ap') b} A
are each of them a seminvariant: but

¢be = b0, + (0 —1)cop+ ...,
b =0"b0y+ (' —1)cop+ ...,
be— P =(c—3") (W0, +cOp+...)=(c—0)P, p—p' =(c—3')8;
the first form, omitting the factor o — o', is = (P —38b) 4 : similarly
' pe— 0y = (0 — 0’)(cOp + 2d0,+...)=(c — ') Q
and
dpu—op =(c—d)20,

and the second form is

=(Q—2wb) 4.

We thus see that the operators P—8b and @ —2wb upon a seminvariant A depend
on the derivation of f upon a covariant which has A for its leading coefficient: the
order of f is arbitrary, and we have thus two distinct forms.

84. As an illustration, consider the quantics

1, b,c d, e flz Yy
and

(1,0, ¢ d, e f, g4z y):
O, ¢ XIIT, 42
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each of these has a covariant the leading coefficient of which is

A =f — 5be + 2cd + 8b*d — 6bc?,
viz. these are

(@ o aghat g T 0] o Ve, P, jand (R + g il fais. G, ),
be — 5 | ce —-16 be — 5 |0f + 2
cd + 2 |d® + 6 cd + 2 |ce —19
d+ 8 | b - 9 bd+ 8| d® + 8
be> - 6 | bed + 38 be> — 6 | b% — 6
¢ —-24 bed + 44
¢ =30

+ 11 + 49

+ 11 + 55

and we find without difficulty
(9  d?) (ce o ¢) (d?* o b*?)

(f, Fy = =18 -10
(F i WY 5 s B - 16
(P~ Bbyds 1. i g
Q-10b)A= 5 —T4 -20

and thence

(P_ 3b)A= (fz: F2)”' (fl’ F)
(Q‘lOb)A’=5(fz; Fz)—6(f1, Fl)>

viz. we thus have P —38b, and @Q—10b upon fw bc* each given as a linear function of
the derivatives (f,, F\) and (f,, F,), where f,, f, are the quintic_and the sextic
function, and F,, F, are like covariants of these functions respectively.
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)
di
¢h
c%h
Jy
cdg
cef
a@f
o
de®
cde
cd?

932]

u?
524
¢%a
775q
2]
¢
P59
P29
sPa
5%
gP?
2299
P
2L

w=12

ck
dj
et
c%
fh
cdh
g2
ceg
d%g
c3g
ef®
def
cZdf
o8
c2e?
cd?e
cle
d4
c3d?
.

2

42

sl
3784
292
#75
P9
o4
P%q
o2
aPe%1
ePeq
751
aPg?
P29
59%4
5P
s9%0

s9Pq
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[The Tables for w =13, 14, 15, 16 are given on the accompanying lithographed sheet.]
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