908.

ON TWO INVARIANTS OF A QUADRIQUADRIC FUNCTION.

[From the Messenger of Mathematics, vol. xx. (1891), pp. 68, 69.]

The quadriquadric function

$$
\begin{array}{r}
z^{2}\left(a x^{2}+2 h x y+g^{\prime} y^{2}\right) \\
+2 z w\left(h^{\prime} x^{2}+2 b x y+f y^{2}\right) \\
+\quad w^{2}\left(g x^{2}+2 f^{\prime} x y+c y^{2}\right)
\end{array}
$$

considered successively as a function of (z, w) and of (x, y), has the discriminants U, V, equal to

$$
\begin{aligned}
& \left(a x^{2}+2 h x y+g^{\prime} y^{2}\right)\left(g x^{2}+2 f^{\prime} x y+c y^{2}\right)-\left(h^{\prime} x^{2}+2 b x y+f y^{2}\right)^{2}, \\
& \left(a z^{2}+2 h^{\prime} z w+g w^{2}\right)\left(g^{\prime} z^{2}+2 f z w+c w^{2}\right)-\left(h z^{2}+2 b z w+f^{\prime} w^{2}\right)^{2},
\end{aligned}
$$

respectively. As is well known, these quartic functions have each of them the same quadrinvariant and the same cubinvariant; these are the invariants in question of the quadriquadric function.

The quadrinvariant has been calculated in a different notation, but I am not aware that the cubinvariant has been before calculated; the two values are as follows:

Quadrinvariant is Cubinvariant is

$a^{2} c^{2}+3$	$a^{3} c^{3}-1$	$a^{2} c^{2} g g^{\prime}+33$	$a^{2} c f^{2} g-36$	$a c g^{2} g^{\prime 2}+33$	$a f^{2} f^{\prime} g h-36$	$g^{3} g^{\prime 3}-1$
$a b^{2} c-24$	$a^{2} b^{2} c^{2}+12$	$a b^{2}{ }^{2} g g^{\prime}-120$	$a^{2} c f^{\prime 2} g^{\prime}-36$	$a c f^{\prime} g g^{\prime} h$ - 60	$a f f^{\prime 2} g^{\prime} h^{\prime}-36$	$f g^{2} g^{\prime 2} h^{\prime}+6$
$b^{4}+48$	$a b^{4} c \quad-48$	$a^{2} c^{2} f h^{\prime}+6$	$a c^{2} g h^{2}-36$	acfgg' h^{\prime} - 60	$a f^{2} g^{2} g^{\prime}-36$	$f^{\prime} g^{2} g^{\prime 2} h+6$
acgg ${ }^{\prime}+42$	$b^{6} \quad+64$	$a^{2} c^{2} f^{\prime} h+6$	$a c^{2} g^{\prime} h^{\prime 2}-36$	$a c f^{2} h^{\prime 2}+24$	$a f^{\prime 2} g g^{\prime 2}-36$	$f^{2} g g^{\prime} h^{\prime 2}+24$
achf ${ }^{\prime}-12$		$a b^{2} c f h^{\prime}+24$	$a b^{2} f^{2} g-72$	$a c f^{\prime 2} h^{2}+24$	$a f^{3} g h^{\prime}+72$	$f^{\prime} 2 g g^{\prime} h^{2}+24$
$a c h ' f-12$	-49	$a b^{2} c f^{\prime} h+24$	$a b^{2} f^{\prime 2} g^{\prime}-72$	$a c f f^{\prime} h h^{\prime}+12$	$a f^{\prime \prime} g^{\prime} h+72$	$f f^{\prime} g g^{\prime} h h^{\prime}+12$
$a b f f^{\prime}+72$		$b^{4} f h^{\prime}-192$	$b^{2} c g h^{2}-72$	$a b f f^{\prime} g g^{\prime}+180$	$\operatorname{cfgh}^{2} h^{\prime}-36$	$f^{3} h^{\prime 3}-64$
$b c h h^{\prime}+72$		$b^{4} f^{\prime} h \quad-192$	$b^{2} c g^{\prime} h^{\prime 2}-72$	$a b f^{2} f^{\prime} h^{\prime}-144$	$c f^{\prime} g^{\prime} h h^{\prime 2}-36$	$f^{\prime 3} h^{3}-64$
$b^{2} g g^{\prime}-24$		$b^{4} g g^{\prime}-48$	$a b c f g h+180$	$a b f f^{\prime 2} h-144$	$c g^{2} g^{\prime} h^{2}-36$	$f^{2} g^{2} h^{2}+54$
$b^{2} f h^{\prime}-96$		$a^{2} b c f f^{\prime}-36$	$a b c f^{\prime} g^{\prime} h^{\prime}+180$	$b c g g^{\prime} h h^{\prime}+180$	$c g g^{\prime 2} h^{\prime 2}-36$	$f^{\prime 2} g^{\prime 2} h^{\prime 2}+54$
$b^{2} f^{\prime} h-96$		$a b c^{2} h h^{\prime}-36$	$b^{3} f g h+144$	$b c f h h^{\prime 2}-144$	$c f^{\prime} g h^{3}+72$	$f^{2} f^{\prime} h h^{\prime 2}+96$
$a f^{2} g-36$		$a b^{3} f f^{\prime}+144$	$b^{3} f^{\prime} g^{\prime} h^{\prime}+144$	$b c f^{\prime} h^{2} h^{\prime}-144$	$c g^{\prime} h^{\prime 3}+72$	$f f^{\prime 2} h^{2} h^{\prime}+96$
$a f^{\prime 2} g^{\prime}-36$		$b^{3} c h h^{\prime}+144$		$a^{2} f^{2} f^{\prime 2}+54$	bff' $g^{\prime} h^{\prime 2}-144$	
$b f g h+72$			$\begin{aligned} & +648 \\ & -432 \end{aligned}$	$c^{2} h^{2} h^{\prime 2}+54$	$b f^{\prime 2} g^{\prime} h h^{\prime}-144$	+ 372
$b f^{\prime} g^{\prime} h^{\prime}+72$		+381		$b^{2} f^{2} h^{\prime 2}+$	$b f^{2} g h h^{\prime}-144$	- 129
cgh ${ }^{2}-36$		-624		$b^{2} f^{2} h^{2}+$		± 2866
				$b^{2} f^{\prime 2} h^{2}+192$	$b f f^{\prime} g h^{2}-144$	
$c g^{\prime} h^{\prime 2}-36$				$b^{2} f f^{\prime} h h^{\prime}+96$	$b f g^{2} g^{\prime} h-36$	
$g^{2} g^{\prime 2}+3$				$b^{2} f g g^{\prime} h^{\prime}+24$	$b f^{\prime} g g^{\prime 2} h^{\prime}-36$	
$f^{2} h^{\prime 2}+48$				$b^{2} f^{\prime} g g^{\prime} h+24$		
$f^{\prime 2} h^{2}+48$				$b^{2} g^{2} g^{\prime 2}+12$	$\begin{aligned} & +288 \\ & -936 \end{aligned}$	
$g g^{\prime} h f^{\prime}-12$						
$g g^{\prime} h^{\prime} f-12$				$+1101$		
$f f^{\prime} h h^{\prime}-48$						

By writing herein $f^{\prime}, g^{\prime}, h^{\prime}=f, g, h$, we obtain of course the two invariants of the symmetrical quadriquadric function.

