901.

NOTE ON THE SUMS OF TWO SERIES.

[From the Messenger of Mathematics, vol. XIX. (1890), pp. 29-31.]

I CONSIDER the two series

$$S = \frac{1}{1 + e^{\pi \alpha}} + \frac{1}{3(1 + e^{3\pi \alpha})} + \frac{1}{5(1 + e^{5\pi \alpha})} + \dots,$$

$$S_1 = \frac{1}{2 + \pi \alpha} + \frac{1}{3(2 + 3\pi \alpha)} + \frac{1}{5(2 + 5\pi \alpha)} + \dots,$$

and

where α is real, positive, and indefinitely small; these would at first sight appear to be equal to each other, but this is not in fact the case.

Taking first the series S_1 , putting therein $\pi \alpha = 2x$, this is

$$2S_1 = \frac{1}{1+x} + \frac{1}{3(1+3x)} + \frac{1}{5(1+5x)} + \dots$$

Now we have, (Legendre, Théorie des Fonctions Elliptiques, t. II. p. 438),

$$\frac{y}{1+y} + \frac{y}{2(2+y)} + \frac{y}{3(3+y)} + \dots = C + \frac{d}{dy} \log \Gamma(y+1),$$

where C is Euler's constant, = 577...; and if y be real, positive, and very large, then

$$\Gamma(y+1) = \sqrt{(2\pi)} y^{y+\frac{1}{2}} e^{-y+\frac{1}{12y}+\dots};$$

whence, differentiating the logarithm and neglecting the terms which contain negative powers of y, then the value is $= C + \log y$; hence, writing $y = \frac{1}{x}$, we obtain

$$\frac{1}{1+x} + \frac{1}{2(1+2x)} + \frac{1}{3(1+3x)} + \dots = C - \log x.$$

C. XIII.

www.rcin.org.pl

7

NOTE ON THE SUMS OF TWO SERIES.

Writing herein 2x for x, and dividing by 2, we have

$$\frac{1}{2(1+2x)} + \frac{1}{4(1+4x)} + \dots = \frac{1}{2}C - \frac{1}{2}\log 2x, = \frac{1}{2}(C - \log 2) - \frac{1}{2}\log x;$$

or, subtracting,

$$\frac{1}{1+x} + \frac{1}{3(1+3x)} + \frac{1}{5(1+5x)} + \dots = \frac{1}{2}(C + \log 2) - \frac{1}{2}\log x.$$

Hence, writing for x its value, $=\frac{1}{2}\pi\alpha$, we have

$$S_1 = \frac{1}{4} \left(C + \log 2 \right) - \frac{1}{4} \log \frac{1}{2} \pi \alpha, \quad = \frac{1}{4} \left(C + 2 \log 2 - \log \pi \right) - \frac{1}{4} \log \alpha.$$

For the series S, we have (Fundamenta Nova, p. 103*) the formula

$$\frac{1}{4}\log\frac{2K}{\pi} = \frac{1}{1+q^{-1}} + \frac{1}{3(1+q^{-3})} + \frac{1}{5(1+q^{-5})} + \dots;$$

or, putting herein $\alpha = \frac{K'}{K}$, then $q = e^{-\frac{\pi K'}{K}} = e^{-\pi a}$, and thence

$$S = \frac{1}{1 + e^{\pi a}} + \frac{1}{2(1 + e^{2\pi a})} + \frac{1}{3(1 + e^{3\pi a})} + \dots, \quad = \frac{1}{4} \log \frac{2K}{\pi}.$$

We have $q = e^{-\pi \alpha}$, which is real, positive, and less than but indefinitely near to 1; hence also k is real, positive, and less than but indefinitely near to 1, say the value is $= 1 - \beta$; thence $k' = \sqrt{(2\beta)}$, and $K = \log \frac{4}{k'}$, $= \log \frac{2\sqrt{2}}{\sqrt{\beta}}$; also $K' = \frac{1}{2}\pi$, and therefore $\alpha = \frac{K'}{K} = \frac{1}{2}\pi \div \log \frac{2\sqrt{2}}{\sqrt{\beta}}$, whence $\log \frac{2\sqrt{2}}{\sqrt{\beta}} = \frac{\pi}{2\alpha}$, which is the relation between α and β ; and we thus have $\frac{2K}{\pi} = \frac{2}{\pi} \log \frac{2\sqrt{2}}{\sqrt{\beta}}$, $= \frac{1}{\alpha}$; and consequently $S = \frac{1}{4} \log \frac{2K}{\pi}$, $= -\frac{1}{4} \log \alpha$. The two values thus are

$$S = -\frac{1}{4} \log \alpha$$
, $S_1 = \frac{1}{4} (C + 2 \log 2 - \log \pi) - \frac{1}{4} \log \alpha$,

each depending on $\log \alpha$, and having for this term the same coefficient $-\frac{1}{4}$; but there is in S_1 a constant term $\frac{1}{4}(C+2\log 2-\log \pi)$, where C is the constant 577....

It is easy to see why the series S is not reducible to S_1 ; however small α may be in the general term $\frac{1}{n(1+e^{n\pi\alpha})}$, then taking n sufficiently large, not only $n\pi\alpha$ is not indefinitely small, but it in fact becomes indefinitely large; the general term of the first series thus approximates to $\frac{1}{ne^{n\pi\alpha}}$, or the terms diminish somewhat more rapidly than in a geometric series with the ratio $e^{-\pi\alpha}$ (a small positive value less than but very near to 1), whereas in the second series the general term approximates to $\frac{1}{n^2\pi\alpha}$, or the convergence is ultimately that of the series $\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots$

[* Jacobi's Gesammelte Werke, t. 1, p. 159.]

www.rcin.org.pl

50

[901