901.

NOTE ON THE SUMS OF TWO SERIES.

[From the Messenger of Mathematics, vol. xix. (1890), pp. 29-31.]
I CONSIDER the two series
and

$$
S=\frac{1}{1+e^{\pi \alpha}}+\frac{1}{3\left(1+e^{3 \pi \alpha}\right)}+\frac{1}{5\left(1+e^{5 \pi \alpha}\right)}+\ldots
$$

$$
S_{1}=\frac{1}{2+\pi \alpha}+\frac{1}{3(2+3 \pi \alpha)}+\frac{1}{5(2+5 \pi \alpha)}+\ldots
$$

where α is real, positive, and indefinitely small; these would at first sight appear to be equal to each other, but this is not in fact the case.

Taking first the series S_{1}, putting therein $\pi \alpha=2 x$, this is

$$
2 S_{1}=\frac{1}{1+x}+\frac{1}{3(1+3 x)}+\frac{1}{5(1+5 x)}+\ldots
$$

Now we have, (Legendre, Théorie des Fonctions Elliptiques, t. II. p. 438),

$$
\frac{y}{1+y}+\frac{y}{2(2+y)}+\frac{y}{3(3+y)}+\ldots=C+\frac{d}{d y} \log \Gamma(y+1)
$$

where C is Euler's constant, $=577 \ldots$; and if y be real, positive, and very large, then

$$
\Gamma(y+1)=\sqrt{ }(2 \pi) y^{y+\frac{1}{2}} e^{-y+\frac{1}{12 y}+\cdots}
$$

whence, differentiating the logarithm and neglecting the terms which contain negative powers of y, then the value is $=C+\log y$; hence, writing $y=\frac{1}{x}$, we obtain

$$
\frac{1}{1+x}+\frac{1}{2(1+2 x)}+\frac{1}{3(1+3 x)}+\ldots=C-\log x .
$$

C. XIII.

Writing herein $2 x$ for x, and dividing by 2 , we have

$$
\frac{1}{2(1+2 x)}+\frac{1}{4(1+4 x)}+\ldots=\frac{1}{2} C-\frac{1}{2} \log 2 x,=\frac{1}{2}(C-\log 2)-\frac{1}{2} \log x
$$

or, subtracting,

$$
\frac{1}{1+x}+\frac{1}{3(1+3 x)}+\frac{1}{5(1+5 x)}+\ldots=\frac{1}{2}(C+\log 2)-\frac{1}{2} \log x
$$

Hence, writing for x its value, $=\frac{1}{2} \pi \alpha$, we have

$$
S_{1}=\frac{1}{4}(C+\log 2)-\frac{1}{4} \log \frac{1}{2} \pi \alpha, \quad=\frac{1}{4}(C+2 \log 2-\log \pi)-\frac{1}{4} \log \alpha
$$

For the series S, we have (Fundamenta Nova, p. 103*) the formula

$$
\frac{1}{4} \log \frac{2 K}{\pi}=\frac{1}{1+q^{-1}}+\frac{1}{3\left(1+q^{-3}\right)}+\frac{1}{5\left(1+q^{-5}\right)}+\ldots
$$

or, putting herein $\alpha=\frac{K^{\prime}}{K}$, then $q=e^{-\frac{\pi K^{\prime}}{K}}=e^{-\pi \alpha}$, and thence

$$
S=\frac{1}{1+e^{\pi a}}+\frac{1}{2\left(1+e^{2 \pi a}\right)}+\frac{1}{3\left(1+e^{3 \pi a}\right)}+\ldots, \quad=\frac{1}{4} \log \frac{2 K}{\pi} .
$$

We have $q=e^{-\pi a}$, which is real, positive, and less than but indefinitely near to 1 ; hence also k is real, positive, and less than but indefinitely near to 1 , say the value is $=1-\beta$; thence $k^{\prime}=\sqrt{ }(2 \beta)$, and $K=\log \frac{4}{k^{\prime}},=\log \frac{2 \sqrt{ } 2}{\sqrt{ } \beta} ;$ also $K^{\prime}=\frac{1}{2} \pi$, and therefore $\alpha=\frac{K^{\prime}}{K}=\frac{1}{2} \pi \div \log \frac{2 \sqrt{ } 2}{\sqrt{ } \beta}$, whence $\log \frac{2 \sqrt{ } 2}{\sqrt{ } \beta}=\frac{\pi}{2 \alpha}$, which is the relation between α and β; and we thus have $\frac{2 K}{\pi}=\frac{2}{\pi} \log \frac{2 \sqrt{ } 2}{\sqrt{ } \beta},=\frac{1}{\alpha}$; and consequently $S=\frac{1}{4} \log \frac{2 K}{\pi},=-\frac{1}{4} \log \alpha$. The two values thus are

$$
S=-\frac{1}{4} \log \alpha, \quad S_{1}=\frac{1}{4}(C+2 \log 2-\log \pi)-\frac{1}{4} \log \alpha
$$

each depending on $\log \alpha$, and having for this term the same coefficient $-\frac{1}{4}$; but there is in S_{1} a constant term $\frac{1}{4}(C+2 \log 2-\log \pi)$, where C is the constant $577 \ldots$.

It is easy to see why the series S is not reducible to S_{1}; however small α may be in the general term $\frac{1}{n\left(1+e^{n \pi a}\right)}$, then taking n sufficiently large, not only $n \pi \alpha$ is not indefinitely small, but it in fact becomes indefinitely large; the general term of the first series thus approximates to $\frac{1}{n e^{n \pi a}}$, or the terms diminish somewhat more rapidly than in a geometric series with the ratio $e^{-\pi a}$ (a small positive value less than but very near to 1), whereas in the second series the general term approximates to $\frac{1}{n^{2} \pi \alpha}$, or the convergence is ultimately that of the series $\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots$.

[^0]
[^0]: [* Jacobi's Gesammelte Werke, t. 1, p. 159.]

