896.

A TRANSFORMATION IN ELLIPTIC FUNCTIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxiv. (1890), pp. 259-262.]

The formula in question is given in Klein's Memoir "Ueber hyperelliptische Sigmafunctionen," Math. Ann. t. xxviI. (1886), pp. 431-464, see p. 454, in the form

$$
u=\int_{y}^{x} \frac{(z d z)}{\sqrt{ }\{f(z)\}}, \quad \wp(u)=\frac{\sqrt{ }\{f(x)\} \sqrt{ }\{f(y)\}+F(x, y)}{2(x y)^{2}},
$$

(the discovery of it being ascribed to Weierstrass); and it is also given in Halphen's Traité des Fonctions Elliptiques, t. II. (1888), p. 357.

The algebraic foundation of the theorem is as follows: writing

$$
z=\frac{1}{2}\{\sqrt{ }(a e)+c\},
$$

and as usual I, J for the two invariants of the quartic function $\left(a, b, c, d, e_{\ell} x, y\right)^{4}$, we have identically, as is easily verified,

$$
4 z^{3}-I z-J=\{d \sqrt{ }(a)+b \sqrt{ }(e)\}^{2},
$$

or say

$$
\sqrt{ }\left(4 z^{3}-I z-J\right)=d \sqrt{ }(a)+b \sqrt{ }(e)
$$

Hence putting
and

$$
\begin{aligned}
& A=\left(a, b, c, d, e \gamma\left(x_{1}, x_{2}\right)^{4},\right. \\
& B=(a, \\
& \vdots \\
& E=(a,
\end{aligned}
$$

$$
\lambda=x_{1} y_{2}-x_{2} y_{1},
$$

so that

$$
\begin{aligned}
& \lambda^{4} I=A E-4 B D+3 C^{2} \\
& \lambda^{6} J=A C E-A D^{2}-B^{2} E+2 B C D-C^{3}
\end{aligned}
$$

then writing

$$
z=\frac{1}{2 \lambda^{2}}\{\sqrt{ }(A E)+C\}
$$

so that $\lambda^{2} z$ is a bipartite irrational quadric function of the variables $\left(x_{1}, x_{2}\right)$ and (y_{1}, y_{2}), we have

$$
\sqrt{ }\left(4 z^{3}-I z-J\right)=\frac{1}{\lambda^{3}}\{D \sqrt{ }(A)+B \sqrt{ }(E)\}
$$

and we thence infer the existence of a transformation

$$
\frac{d z}{\sqrt{ }\left(4 z^{3}-I z-J\right)}=M\left\{\frac{x_{1} d x_{2}-x_{2} d x_{1}}{\sqrt{ }(A)}+\frac{y_{1} d y_{2}-y_{2} d y_{1}}{\sqrt{ }(E)}\right\}
$$

But for the verification hereof and a direct determination of the value of M, observe that we have

$$
d z=\frac{1}{2 \lambda^{2}}\left\{\sqrt{ }(E) \frac{d A}{2 \sqrt{ }(A)}+d C-\{\sqrt{ }(A E)+C\} \frac{2}{\lambda} d \lambda\right\}
$$

where, attending only to the terms in $d x_{1}, d x_{2}$,

$$
\begin{aligned}
d A & =4\left\{\left(a, b, c, d \chi x_{1}, x_{2}\right)^{3} d x_{1}+\left(b, c, d, e \chi x_{1}, x_{2}\right)^{3} d x_{2}\right\}, \\
& =4\left(A_{1} d x_{1}+A_{2} d x_{2}\right), \text { suppose } \\
C & =\left(a, b, c \chi y_{1}, y_{2}\right)^{2} x_{1}^{2}+2\left(b, c, d \chi y_{1}, y_{2}\right)^{2} x_{1} m_{2}+\left(c, d, e \chi y_{1}, y_{2}\right)^{2} x_{2}^{2}, \\
& =E_{1} x_{1}^{2}+2 E_{2} x_{1} x_{2}+E_{3} x_{2}^{2}, \text { suppose }
\end{aligned}
$$

and therefore

$$
d C=2\left\{\left(E_{1} x_{1}+E_{2} x_{2}\right) d x_{1}+\left(E_{2} x_{1}+E_{3} x_{2}\right) d x_{2}\right\} .
$$

Hence

$$
\begin{aligned}
d z=\frac{1}{2 \lambda^{2}}\left\{\frac{1}{2}\right. & \frac{\sqrt{ }(E)}{\sqrt{ }(A)} 4\left(A_{1} d x_{1}+A_{2} d x_{2}\right)+2\left(E_{1} x_{1}+E_{2} x_{2}\right) d x_{1} \\
& \left.+2\left(E_{2} x_{1}+E_{3} x_{2}\right) d x_{2}-\{\sqrt{ }(A E)+C\} \frac{2}{\lambda}\left(y_{2} d x_{1}-y_{1} d x_{2}\right)\right\} .
\end{aligned}
$$

The whole coefficient herein of $d x_{1}$ is

$$
=\frac{1}{\lambda^{2}}\left\{\frac{\sqrt{ }(E)}{\sqrt{ }(A)} A_{1}+\left(E_{1} x_{1}+E_{2} x_{2}\right)-\frac{\sqrt{ }(A E)+C}{\lambda} y_{2}\right\}
$$

which is

$$
\begin{aligned}
& =\frac{1}{\lambda^{2} \sqrt{ }(A)}\left\{A_{1} \sqrt{ }(E)+\left(E_{1} x_{1}+E_{2} x_{2}\right) \sqrt{ }(A)-\frac{1}{\lambda}\{A \sqrt{ }(E)+C \sqrt{ }(A)\} y_{2}\right\} \\
& =\frac{1}{\lambda^{3} \sqrt{ }(A)}\left\{\left[-C y_{2}+\lambda\left(E_{1} x_{1}+E_{2} x_{2}\right)\right] \sqrt{ }(A)+\left[A_{1} \lambda-A y_{2}\right] \sqrt{ }(E)\right\},
\end{aligned}
$$

which is

$$
=\frac{1}{\lambda^{3} \sqrt{ }(A)}\left(-x_{2}\right)\{D \sqrt{ }(A)+B \sqrt{ }(E)\} ;
$$

and similarly the whole coefficient of $d x_{2}$ is

$$
=\frac{1}{\lambda^{3} \sqrt{ }(A)}\left(x_{1}\right)\{D \sqrt{ }(A)+B \sqrt{ }(E)\} .
$$

Hence the terms in $d x_{1}, d x_{2}$ are together

$$
=\frac{1}{\sqrt{ }(A)}\left(x_{1} d x_{2}-x_{2} d x_{1}\right) \frac{D \sqrt{ }(A)+B \sqrt{ }(E)}{\lambda^{3}} ;
$$

and since the terms in $d y_{1}, d y_{2}$ are of the like form, we have

$$
d z=\left\{\frac{1}{\sqrt{ }(A)}\left(x_{1} d x_{2}-x_{2} d x_{1}\right)+\frac{1}{\sqrt{ }(E)}\left(y_{1} d y_{2}-y_{2} d y_{1}\right)\right\} \times \frac{D \sqrt{ }(A)+E \sqrt{ }(B)}{\lambda^{3}},
$$

and combining herewith the foregoing value

$$
\sqrt{ }\left(4 z^{3}-I z-J\right)=\frac{D \sqrt{ }(A)+E \sqrt{ }(B)}{\lambda^{3}}
$$

we have the required formula

$$
\frac{d z}{\sqrt{ }\left(4 z^{3}-I z-J\right)}=\left\{\frac{x_{1} d x_{2}-x_{2} d x_{1}}{\sqrt{ }(A)}+\frac{y_{1} d y_{2}-y_{2} d y_{1}}{\sqrt{ }(B)}\right\}
$$

As a very simple verification, suppose $a=1, b=c=d=e=0$; then

$$
(A, B, C, D, E)=\left(x_{1}^{4}, x_{1}^{3} y_{1}, x_{1}^{2} y_{1}^{2}, x_{1} y_{1}^{3}, y_{1}^{4}\right)
$$

and if $\lambda=x_{1} y_{2}-x_{2} y_{1}$ as before, then

$$
z=\frac{x_{1}^{2} y_{1}^{2}}{\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}}=\theta^{2},
$$

where

$$
\theta=\frac{-x_{1} y_{1}}{x_{1} y_{2}-x_{2} y_{1}}, \quad \text { or } \quad \frac{1}{\theta}=\frac{x_{2}}{x_{1}}-\frac{y_{2}}{y_{1}}
$$

Also $I=0, J=0$, and consequently

$$
\frac{d z}{\sqrt{\left(4 z^{3}-I z-J\right)}}=\frac{d z}{2 \sqrt{ }\left(z^{3}\right)}=\frac{d \theta}{\theta^{2}}=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{x_{1}{ }^{2}}-\frac{y_{1} d y_{2}-y_{2} d y_{1}}{y_{1}{ }^{2}},
$$

which, in virtue of the foregoing values of A, E, is

$$
=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{\sqrt{ }(A)}-\frac{y_{1} d y_{2}-y_{2} d y_{1}}{\sqrt{ }(E)} .
$$

I remark that an even more simple transformation from the general quartic radical to the Weierstrassian cubic radical was obtained by Hermite; this is alluded
to in my "Note sur les Covariants, \&c.," Crelle, t. L. (1855), pp. 285-287, [135], and is given with a demonstration in my paper "Sur quelques formules pour la transformation des intégrales elliptiques," Crelle, t. Lv. (1858), pp. 15-24, [235], see No. IV.; viz. from the identical relation $J U^{3}-I U^{2} H+4 H^{3}=-\Phi^{2}$, which connects the covariants of a quartic function, it at once follows that if

$$
U=\left(a, b, c, d, e \chi(x, 1)^{4},\right.
$$

and H is the Hessian hereof,

$$
H=\left(a c-b^{2}, \quad(a d-b c), \quad a e+2 b d-3 c^{2}, \quad 2(b e-c d), \quad c e-d^{2} \gamma x, 1\right)^{4} ;
$$

then writing

$$
z=\frac{H}{U}
$$

we have

$$
\frac{d z}{\sqrt{\left(-4 z^{3}+z I-J\right)}}=\frac{2 d x}{\sqrt{\left\{(a, b, c, d, e \chi x, 1)^{4}\right\}}}
$$

which is the transformation in question.

