156 [508

508.

ON GEODESIC LINES, IN PARTICULAR THOSE OF A QUADRIC
SURFACE.

[From the Proceedings of the London Mathematical Society, vol. 1v. (1871—1873),
pp- 191—211. Read December 12, 1872.]

THE present Memoir contains an investigation of the differential equation (of the
second order) of the geodesic lines on a surface, the coordinates of a point on the
surface being regarded as given functions of two parameters p, ¢, and researches in
connection therewith; a deduction of Jacobi’s differential equation of the first order
in the case of a quadric surface, the parameters p, ¢ being those which determine
the two sets of curves of curfature; formule where the parameters are those which
determine the two right lines through the surface; and a discussion of the forms of
the geodesic lines in the two cases of an ellipsoid and a skew hyperboloid respectively.

Preliminary Formulce.

1. I call to mind the fundamental formule in the Memoir by Gauss, “Disquisitiones
generales circa superficies curvas,” Comm. Gott. recent. t. VI, 1827, (reprinted as an
Appendix in Liouville’s edition of Monge,) together with some that I have added to
them. The coordinates @, 7, z of a point on a surface are regarded as given functions
of two parameters p, ¢, these expressions of z, y, z in effect determining the equation
of the surface, and we have

de + §d’z = adp + a'dg + % (a dp* + 24 dp dg + a” dg?),

dy+ §dy="bdp +V'dg + % (Bdp*+ 2B'dp dq + B"dg*),

dz + 3d?z =cdp + c'dq + } (ydp® + 2vy'dp dq + v"dg*),
A, B, C=bc —=0be, ca’ —ca, abl' —a'b;
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508] ON GEODESIC LINES, &c. 157

whence differential equation of surface is

Adz + Bdy + Cdz = 0.

Also
E F, G=a+b+c, ad +bb +cc, a?+0b"?+c"

so that element of length on the surface is given by

da? + dy? + d2* = Edp* + 2Fdp dq + Gdg*;
or, as 1 write it, :

= (&, F, Gudp, dgy;
Vi=A*+ B +(C*=EG - P

and moreover

The equation (&, F, GQdp, dq)*=0 determines at each point on the surface two
directions (necessarily imaginary) which are called the “circular” directions. Passing on
the surface from point to point along the circular directions, we obtain two series of curves
(always imaginary) which are the “circular” curves; the equation (E, F, G{dp, dg)*=0
is the differential equation of these curves; and if we have =0, G=0, then this
becomes dpdg=0; viz. we have in this case p=const. and ¢=const. as the equations
of the two sets of circular curves respectively. It is clear a priori, and will be shown
analytically in the sequel, that the circular curves are geodesic lines.

I write also
E', FI, G,=.A.a+BB+ C’Y: AQI+BB,+0’YI, Aa//+BB//+ G'Y”,

or, what is the same thing, Z’, F’, G’ represent the determinants

o5 byyiie e b i b gy ul el W -beR, o 00 respectively,
| P &
a/’ b/, c/ a/’ bl, cl ! a’, b/ ! c, |
’ ’ 7 | ” 7 7
a, B, v LW 8 a’, B o

(these last symbols do not occur in Gauss). [They are the D, D', D” of Gauss.]

2. The radius of curvature of normal section corresponding to direction dp : dg is
given by
p_(E F Gydp, dg
V (&, F, @Jdp, dg)*’

whence it appears that the directions of the inflexional or chief tangents (the Haupt-
tangenten) are determined by the equation

(&, F', G'Ydp, dg)*=0.

The directions in question are imaginary on a surface such as the ellipsoid where
the curvatures are in the same direction, but on a concavo-convex surface they are
real; and in particular on the hyperboloid they coincide with the directions of the
generating lines. We may on any surface pass from point to point along the chief
directions ; we have thus on the surface two sets of curves which are the chief curves;
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158 ON GEODESIC LINES, (508

the differential equation of these is (&', F’, G'Udp, dg)*=0; and in particular if
E =0, @ =0, then this becomes dpdg=0, or we have p=const.,, g=const. for the
equations of the two sets of chief curves respectively. On the hyperboloid the chief
curves are the two sets of generating lines. The chief curves are mnot in general
geodesic lines, but on the hyperboloid, qua straight lines, they are, it is clear, geodesic

lines.

3. The directions of the curves of curvature, or the principal tangents, and the
corresponding values of the radius of curvature are determined by

p_Edp+Fdg _Fdp+Gdg .

V™ Edp+ Fdq Fdp+Gdg’

or, what is the same thing, these directions are determined by the equation

de®>, —dqdp, dp* |=0.
& 5 Dl sl
i et W -

The same equations may be written

ot s ol = gl = FEL
G b= Sl = oy

that is the principal radii of curvature are determined by the equation

P (B'G — F) - pV (EG + E'G—2FF") + V* (EG - F¥)=0,

(Jast term is = V¢ but it is better to retain the original form): and then, p being
either root, the last preceding equations give the direction of the curve of curvature
corresponding to the given value of the radius of curvature.

If p=-const., g=const. are the equations of the two systems of curves of curvature

respectively, then the quadric equation in (dp, dg) must become dpdg=0; this will be
so if F=0, F'=0; and we thus have these equations, viz. written at full length

they are
dpzdz + dyy dgy + dyzdyz =0,
dpw , dpy , dpz |=0,
de , dy , dgz
dydgr, dydgy, dydez

as the conditions in order that p = const., ¢ =const. may be the two systems of curves

of curvature. The former of these equations merely expresses that the two sets of
curves always intersect at right angles.
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508] IN PARTICULAR THOSE OF A QUADRIC SURFACE. 159

General Theory of the Geodesic Lines on a Surface.

4. I now proceed to investigate the theory of geodesic lines on a surface, the
surface being determined as above by means of given expressions of the coordinates
%, y, z in terms of the parameters p, ¢.

The differential equation obtained by Gauss for the geodesic lines is in a form
not symmetrical in regard to the two variables; viz. his equation is

dE

2 da Edp + Fdq
dq ds i

dF
dp*+2 i dpdq+@dp2—2dsd

where, as above,

ds*=(E, F, GQdp, dq).
If we herein consider p, ¢ as functions of a parameter 6, and write for shortness

dep, deq, de*p, &ec.=p', ¢, p”, &c,
also
Q =(E: F, GIP’i ql)ﬁ’
and
dyE=E, d,E=E, &c.
then the equation is

(B, Fi, G, ¢ —2/Q (@L@!) A
We have

where N is the part containing p”, ¢”, which I will first calculate; viz. we have
N=Q (Ep”+Fq')— (Ep' + Fq') 3,
- Q (Epll_l_ Fq”) _(Ept + Fq/) {(Ep/ + Fq/) pl/ + (Fp/ + Gq/) qr/}’
=p" (EQ—(Ep' + Fg')P} + ¢" (FQ — (Ep' + Fq') (Fp' + Gq')} ;
or substituting for Q its value, this is

=p"(EG—F*)q"—q" (EG—-Fpq, =—q EG-F)(pq -p"?):

wherefore

E,+F,/ 1 ’ 1 9 Pl "o’
( pm q) =gva Y -9 EG-F) (@ -}

and the equation becomes
Q (Eyp"+2F,p'q + Ghg®) — 2M + 2¢' (EG — F*) (p'q" —p"q) = 0;

whence we foresee that the whole equation must divide by ¢

www.rcin.org.pl



160 ON GEODESIC LINES, [508
5. We have
M= (pdE+qdF)Q— (Ep + F¢) 3p"dE+ p'ddF + 3q*d@),
= dE{pQ—3p* (Ep + Fq)}
+dF {qQ - p'q (Ep’ + Fq)}
+dG{ —3q*(Ep' +Fq)}

or say
2M= dE[ p*(PE+qF)+2pd W'F+¢G)]
+dF | 20 (P'F + ¢ @)]
+dG [-q*(P'E +qF) )
= (Bp +Eq)[ p*(Ep+Fq)+2pq (Fp'+ Gq)]
+Fp' +F.q)[ 29" (Fp' + Gq)]
+(Gip'+ G q) [- " (Ep' + Fq) ]

The term in p* is EE,p* which is also the term in p* of Q(E,p”+2Fp'q +G:g*);
whence Q (E,p”+ 2F,p'q' + Gig®) — 2M divides by ¢.

Proceeding to the reduction :
Term in %, is
E,.p* Q —p*(Ep’ + Fq) - 2p% (Fp' + G¢), = Eyr. - p*¢' (Fp'+ Gq):
term in F) is
F,.2p'qQ - 2p'q* (Fp' + Gq)), = F,.2p"¢ (Ep"+ Fy);
term in @, is
G- ¢"Q +p'q* (Bp’ + FY), =G, (204" (Ep' + F¢) + ¢* (Fp' + Gq))}.
6. The remaining terms in %,, F,, G, require no reduction, and the result is
E, (—p*(Fp' + G} — B, { p* (Ep' + F¢) + 2p'q (Fp’" + G¢)}
+ B, {2 p® (Bp' + FOO} — F. (2¢° (Fp' + Gq)}
+ Gy (2p'q (Bp + Fq) +q* (Fp' + Gq)} — G {—q* (B’ + Fq)}
+2(EG—F*) (p'{" —p"7) =0,
or, what is the same thing,
(Ep’ + Fq') ((2F,— E) p® +2G.p'q + Gug"}
— (Fp' +Gq) (Ep”+ 2E.p'q +(2F,— G,) ¢}
+2(EG—-F)(pq"-p"¢)=0,

which is the required differential equation of the second order: the independent
variable has been taken to be the arbitrary quantity €; but taking €=p, or ¢, say
0=p, we have p'=1, p”=0, and the equation then contains (besides p and ¢) only
q" and ¢/, that is, d,’¢ and d,g, and is therefore a differential relation between p and ¢.
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7. Instead of starting, as above, from the equation given by Gauss, we may use
the geometrical property that at each point of a geodesic line the osculating plane
passes through the normal of the surface.

Considering, as above, p, ¢ as functions of a variable 6, then, § becoming 6 + d6»
the new values of p, ¢ are

p+pdo + 3p"de, g+ q'df+1q"de?;
and that of z is

© + a (p'dd +3p"de*) + o’ (¢'d0 + 3¢"d0°) + } (ap* + 24p'q + '¢*) dO*;

or calling this z+2'd0 + $2”d6?, we have

ml s apl + alql’ wl' e apll + alq” + ap/2 + 2a/})1q/ + al/q’2’
and so

yl pen bpl + bl /, yll____ bp” + blqll + Bpl2 + 2BI])IqI + B”q’2,

o cp/ vl c/q/, ol cpu o c/q// 45 'YP'2 213 2’)’/}),q, it ’Y”q,2'
The condition in question is expressed by the equation :

4. B 0OR | =0,

wl A yl ; zl
‘ w/l, yll, z//
that is
A, B C

ap/ + a/q/ X bpl + bl¢ p cpl + clq/
ap/l + alq//’ bp// + bl //, c‘Z)II + c/qll
+ 4, B, C =0,
ap’ +a'q, bp'+0b¢q, ep' +c'q
ap’2 + 2a,‘p/q/ + a/lqlz’ Bp’z + 2BI‘Z)IqI + Bl/q/z’ ’Yp12 + ry/‘p’ql + 'y//qlg
8. The first determinaut is the sum of three terms such as A (b¢'—b'c) (p'g” — p'q);
viz. this is A% (p'q” —p"¢’), or the determinant is

A2+ B+ C)(pq" - p'q), =(EG - F)(p'y" - p'q).
The second determinant is the sum of three terms such as
(' 24p'g + 2" ¢*) [B (e + ') = OOy + V),
where the factor in [ ] is

p'le(ca’ —ca)=b(ab’ —a'b)]+ ¢ [¢’ (ca’ — ¢'a) = (ab’ — a'b)],
C. VIIL 21
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162 ON GEODESIC LINES, [508

which is =p' (@K —akF)+¢ (¢ F—aG). We have thus the second determinant, and
the equation becomes
(EG—-F*)(p'¢"—p"7)

+(ap® +2ap'q +a'q*) (p' (E —aF) + ¢ (a'F —aG)}

+(Bp* +2B87'¢ +B°¢*) {p' OE —bF) + ¢ (VF —bG)]

+(yp" + 29P'q +v'¢*) (P (CE - oF ) + ¢ (¢F — @)} =0,
an equation of the same form as that previously obtained, and which can be without
difficulty identified therewith.

The Circular Curves are Geodesics.

9. I proceed to show that the circular curves are geodesics; viz. that an integral
of the geodesic equation is

(E, F, Gyp, ¢)=0.
Starting from this equation, we have
2{(EBp' + Fq)p"+ (Fp' + @) ¢'} +(Eip’ + B )p* + 2(Fip' + P ) p'q +(Gip’ + Gog) " =0.

Now the equation, writing therein Ep’+ Fg' =\g, gives Fp' + Gq'=—\p': these equations

may be written
Ep'+(F—-N)q =0,

F+Np+ @ q=0,
the value of A being therefore —\*=EG — F2. The result just obtained thus becomes
2v(p"Y ~P9)
+[(Bp' + E9)p'+(Fp’ + Fog ) ¢]. - % (Fp' + Gq)

F(BY +Fa)p +(Gpl + ) ). 5 By +FY),
that is
2(EG—-F)(p'q"-p"7)
—(Fp' + Gq) [Ep® + (B, + F)) p'q + F.q*]
+(Bp' + Fq' ) [Fip*+ (F. + G) p'q + Gog*]=0;

or what is the same thing, adding hereto the zero value
A(E, F, Gy, ¢, =P +Gg)Ag + (Hp' + Fq) Ap,
where A is arbitrary, the equation is

2(EG—F*) (p'{" - ")
+(Ep + Fq) [Fp” + (B, + Go) p'q + Gog™ + Ap']
s (FP/ + qu) [Elpl._g + (JLVJ + val‘) p/ql + ]112(1/2 - Aq/] o O;
viz. taking A =(F,— K, p'+(G,—F,) ¢, this agrees with the geodesic equation.
The foregoing integral, (£, F, GQp’, ¢)=0,is, I believe, a particular, not a singular,
solution of the geodesic equation.
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The Chief Lines are not in general Geodesics.

10. That the chief lines are not in general geodesics appears most readily as

follows :

To find the condition in order that p=-const. may be a geodesic, we write in the
geodesic equation p’=0, p”=0: the equation thus becomes

Fq.Gq"—Qq (2F,—- Gy) ¢*=0;

that is we have

FG@,-2F,G+ GG, =0
as the condition in order that p =const. may be a geodesic: the condition that it
may be a chief curve is G’ =0, which is a different condition.
We have of course, in like manner,
2EF,— E\F - EE,=0
as the condition in order that ¢=const. may be a geodesic; and E'=0 as the

condition that this may be a chief curve. If p=const., g=const. are each of them
at once a geodesic and a chief curve, then the four equations must all be satisfied,

viz. we must have

F@,—2F,G+GG,=0, 2EF,—EF—EE,=0,
¢ =0, E w0,

Special Form of the Geodesic Equation.

11. In the case where the curves p =const, ¢=const. intersect at right angles
(and in particular when these are the curves of curvature), we have F'=0; whence
also ¥, =0, F,=0; and the geodesic equation assumes the more simple form,

Ly (— Ep*+2G,p¢ + Gg*)
- Gq ( Ep*+2Ep7q - G")
' +2EG (p'¢" —p"¢)=0.
[11¢. In the case of a surface of revolution we have
Z=pcosq, y=psing, z=p;
E is of the form 1+ P? P’ =d,P, where P is a function of p only, and we have
ds*=(1+ P7) dp® + pdg’,

that is
E=1+P, E =2PP', E,=0,
F=0,
G=p » Gh=2p , @=0;

21—2
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164 ON GEODESIC LINES, [508

hence the differential equation is
A+P%) (P (9" —p"¢) + 2pp°¢} — PP PP’ +p’q" = 0;

this has an integral
A+Pypt 1 _1

p4q'2 pz Cz ?
(22 = p4q'2

or say

where
Chind 00 i o s o

Writing here p, 4 for p, ¢, where p is the distance of the point from the axis,
and yr is the longitude reckoned from an arbitrary meridian, then the equation is

Cds = p*dv,

which is the equation given by Legendre, Théorie des fonctions elliptiques, t. 1. p. 361.
This may also be written

g—cosv
P

if ¢ be the inclination of the geodesic line to the parallel of latitude.]

Geodesics on a Quadric Surface.

d

2 2
12 In the case of a quadric surface %+7)-+

2? o
© =1, writing for shortness
¢

@, B, y=b—c, c—a, a—b, we may express the coordinates #, y, z in terms of two

parameters p, g as follows: E
—Byat=a(a+p)(a+q)

—yay*=b(+p)b+9:
—aBz2=c (¢ +p)(c +9q),

where, in fact, p=const., ¢ =const. are the equations of the two sets of curves of
curvature respectively. Writing moreover

Pa p - Q= q L
(a+p)(b+p)(c+p)’ (a+q)(b+9)(c+9)

ds*=1(p—q) (Pdp* — Qdg’),
E, F, G=}(p-9P, 0, }(q-p)Q;
and the geodesic equation becomes
Pp (Pp*—2Qp'¢ +(@+q—p @)%
+ Q¢ (P+p—qP)p*—2Ppq + Q¢
- 2(p-9PRYY -p"¢)=0,

we have

that is
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where P, @ stand for d,P and d,Q respectively; viz. this is
p’s. R 2
+p% . —PR+(p—9q) PQ
+7'¢*.—PQ+(q-p) PQ
o q’s Qz
—2(p- 9 PR(PY —p"¢)=0.
13. This has a first integral,

oy () /()=

where 0 is the constant of integration; or say this is

6 (p"P — ¢*Q) + p*qgP - ¢"*pQ=0;

viz. differentiating logarithmically, this gives

2pp"P — 2¢q'Q + p*F — ¢*Q _ 2pp"qP — 29'¢"pQ + p* (qp'P +q'P) — ¢* (pg @ +» Q)
PP —q"Q P — q*pQ

which, multiplying out the denominators, is in fact the foregoing geodesic equation.
To verify, consider first the part involving p”, ¢”: this is

@p'p"P—2¢9"Q) (p"qP — q"pQ) — (2p'p"qP — 2¢'¢"pQ) (p*P — ¢*Q),

which 1s

=2p"P.q"Q(q—p) - 2¢q"Q. p"P (g —p),
that is

=2(q —p) PRY'Y (P"9 —p'7")
or say

=2(p- 9 PY W7 - "¢
We have next the part
(P°P - ¢*Q) (P°gP — q*pQ) — (p* (@0'P'+ ¢'P) + ¢* (p7'@ +p"Q)} (p°P — ¢*Q),
which is readily found to be
=—pq (PP +p*d (- PQ+p —qP'Q +pq* (- PQ+q—pPQ) +¢*¢}
and the equation is thus verified.

14. We have consequently

O/ (R N e S
p\/ @+p)C+p) C+p@+p) """ <(a+q)(b+q)(6+q)(0+q)
involving the arbitrary constant @ as the differential equation of the first order of

AL Lg? Aoy : ;
the geodesic lines on the quadric surface %+ '% + E=1: the geodesic lines in question
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all touch the curve of curvature determined by the parameter 6, that is the curve
which is the intersection of the surface by the confocal surface

as PR ' UISAL 5N
o sk y g bl
15. In the particular case 6= o, the equation becomes
Pdp* — Qdg*=0,
that is

pdp* qdq®
(@+p)b+p)(c+p) (@+b+q) (c+q)

which is the differential equation of the circular curves on the surface.

16. The signification of the case =0 is not at first sight so obvious. Supposing
that 6 is first indefinitely small, and writing the equation in the form

_+yb +——1 0( +b2+ >+&c.=0,

we have the series of geodesics touching the '(imaginary) curve of curvature, the

intersection of the surface by the imaginary cone '1—:2+ + <, —O These are, in fact,

bn
the right lines on the surface: I apprehend that the 1ntersect~1on in question is not
a proper envelope, but is the locus of mnodes of the geodesics, viz. each geodesic is
to be considered as a pair of lines belonging to the two sets: I do not, however,

quite understand this.

17. 1 say that the geodesics in question are- the right lines on the surface;
viz. writing in the differential equation §=0, it is to be shown that the differential
equation of the right lines is

dp " .. 48
Va+p)b+p)c+p) Yat G+ c+q)

or what is the same thing, that the mteglal of this equation represents the right
lines on the surface.

Writing the equation of the surface in the form

x‘z y‘l 2
P b L

we have at once

f+:;2=a<l+vic>,
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(o an arbitrary parameter) as the equations of a right line on the surface; viz.
considering «, y, z as denoting the foregoing functions of p and ¢, these two equations
are forms of a single relation between p, ¢, o, which relation expresses that the point
(p, q) is situate on the right line determined by the parameter . We may from
this integral equation deduce without difficulty the foregoing differential equation; viz.
we have

dw tdy dz

ek e
de _idy _1de
Wit~ b= & -Laafe’
or multiplying these equations,
dat , dy  ds_
a b c

and substituting herein for da, dy, dz their values in terms of dp and dg, we find
the required equation
dp* dg?
@+pC+p)c+p) @+pG+ple+g

18. I return to the integral equation involving o: we have to rationalise this
equation, that is, obtain from it an equation containing a° #? 2z and then substituting
for these their values in terms of p, ¢, we have the required relation between p, ¢, o
We at once obtain

=)= (+1) 1+ -s(- L)% 0;

or if for greater convenience we introduce in place of ¢ a new parameter ¢, deter-

mined by the equation o-*+c%= %, the equation is

i 2!
{"(E*‘Lb) ¢(1+ )} 4=y Z=0.
Writing for shortness p+¢= X, pg=7Y, we have
_57f=as+ax+y, ~ ¥ Lo 4bX+7, ﬁaB§§=c“+cX+Y;

and substituting these values, the equation becomes
BO+bX+Y)—a(@+aX+Y)—¢y(@B—c—cX - VpE+4daB (=) (*+ceX +Y)=

or, what is the same thing, 3

[Bb* —aa? — ¢y (aB - ) + X (Bb—aa + pye) + Y (B—a+ &)+ daB (¢* — ) (2 +cX + V)=0.

19. This is an equation, quadric as regards p, and also as regards ¢, viz. it is

of the form
(a + 2hp + gp*)

+ 2q (h + 2bp + fp*)
+ ¢ g+ 2p+cp?)=0,
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and it leads to a differential equation
dp | dq
— —_— = 0’
VP VQ
where
P = (h + 2bp + fp*) — (a + 2hp + gp°) (8 + 2fp + cp),
@ = (h + 2bg + f¢°7 — (a + 2hg + 8¢°) (g + 2fq + c¢)

and upon effecting the calculation, it is found that we have

P =—8a® (¢2 S 72) (a, +b—2¢c— ¢) (a' +p) (b +p) (¢ +P)>
Q =_8a252(¢.2—ry2)(a+b—20—¢)(a+9)(b+9)(0+9)»
viz. P, @ are the same multiples of (a+p)(b+p)(c+p), (a+ 9 (b+g)(c+q) respec-

tively; so that, omitting the common factor, or taking P, @ to represent the last-
mentioned functions respectively, we have

dp

and since the parameter ¢ has disappeared, we see that the original equation involving
¢ is the general integral of this differential equation; viz. that the differential
equation belongs to the right lines on the surface.

20. The form of the integral equation may be simplified by introducing instead
of ¢ a new parameter K, connected with it by the equation

K=§!’:M9 _(B-—a)K—Bb+aa

Blang o 9 =F '
viz. we thence deduce -
B—oa+¢=—2a8 (=),
Bb —aa + ¢c = —2aBK ),
B —aa?* — p (a8 —¢*) = 2aB(ac+bc—ab+ 2cK) (=),
¢p+y= 2B(K-0b) (+)
¢—y=—2a(K-a) (),

where the sign (+) is used to signify that the functions preceding it have to be
divided by a denominator which in fact is =¢— K. The equation thus becomes

(ac+bc—ab—2cK—KX-Y)y—4(K —a)(K-b)(¢*+cX +Y)=0;

and if we moreover write
v, py, M=abe, be+ca+ ab, a+ b+ c,
and instead of K introduce the parameter (, =\ — K, the equation becomes

(=p—2¢+2C-A=C)KX = YP+Ob+c—-C)(c+a-0)(c+cX+Y)=0;
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or expanding and reducing, this is
{(Y+(\-0) X
+ YV (= 2u + 400 — 4C)
+ X (2u\ — 4v —2u()

+ p* —4vC =0,
or say
et —4wC

+ (2pA — 4w —2uC) (p + q)
+ (— 2u + 40NC — 4C°) pq
+(A=Cyr(p*+¢+2pqg)
+2(A=-C)pg(p+9)

+ g =0,
viz. this, containing the constant C, is the general integral of the differential equation
dp . 94
SE sy
VP @

where
P=(@+p)b+p)(c+p) =v+mup+r\p*+p

RQ=@+q)O+q)(c+q, =v+pug+rg+g

21. The constant C' is connected with the parameter o, which originally served
to determine the right line, by the equation

1_2B-a)A-C)—Bb+aa
o v c—(A=0C) ?

o+

or, what is the same thing,

1 2 2—a*-0—C(2c—a-10)
Vi Bah v 0=ab :

Reverting to the equation between p, ¢, ¢, I remark that if ¢ be therein con-
sidered as variable, we have the differential equation

NQdp + VP dg+ VP dp=0,
where P,  have the foregoing values
P=—8aB (# =) (a+b—c—$) (@ +p)b+p)(c+p), @=&o;
and where, if the integral equation be written in the form
L+2M¢ + N¢g*=0,
then we have ® = M2*— NL, viz. we thus find

® =162 (a+p)b+p)(c+p)(@+q) b +q) (c+q).
C. VIII 29
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22. Changing the notation, and writing
P=(a+p)®+p)(c+p),

Q=(@@+q)b+q)(c+q),

D= (¢*— ") (a+b—2c—¢),
the equation is
dpi ve qRdS.
VB ¥ QT ageT B

or if, instead of ¢, we introduce the original parameter o, then, observing that

we at once find

where
S=y(1+0')—2(a+b—2c)e?

or, what is the same thing,
S=a(a*=12=b(a*+1)+c.40?;

viz. passing from a point (p, ¢) on the line o to a consecutive point (p+dp, ¢+ dqg)
on the line o+ do, the above is the relation between the variations dp, dg, de. If =
be the parameter of the other line through the same point, then we have in like

manner, say
dp _dq  Adr
vP vQ T NT
(viz. one of the radicals 4/P, /@ must present itself with a reversed sign): and we
thus have dp, dg each expressed in terms of do, dr; viz. we have the increments
dp, dg when a point passes from (o, 7) to (¢ +do, T+dr). These results will be
presently obtained in a more simple manner.

0,

Formulw where the position of a Point on the Surface is determined by means of the
two Lines through the Point.

23. We may determine the position of a point by means of the parameters o, T
of the two lines through the point. The equations of these are

f;ﬁ%”(”@’ jiz*%”(“f&)'

o T T L S AL R
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and from these equations we deduce

z or+l 'i_y_a"r—l g\ p=a

Na t4+c’ Vb T4ad’ N T+’

We have thence

%=(T=—1)da+(o2—1)dr (+),
‘;%')1 =+ 1)do +(a* + 1) dr (<),
:ZTZC = —27do+ 2adr (<),

where denom. = (7 +o)*: regarding o, v as the parameters in place of p, ¢, these show
the values of the first differential coefficients a, a’; b, b'; ¢, ¢. We deduce

A=-2iVbc(or+1) +, B=—2iVea(or—1) =+, C=—-2iVba(r-0) =+,

where denom. = (7 + ¢)>. We have, moreover,

f% =—2("—=1)do*+ 2 (o7 + 1) 2dodr — 2 (¢ — 1) d7* (=),
2d?y

b =—2(r?+1)da*+ 2 (o1 — 1) 2dodr — 2 (a* + 1) dr* (=),
‘372: =+ drdo*+2( 7—0)2dodr + dodr? (=),

where denom.=(r+¢c)*: giving «, &, a’; B, B, B”; v, o, . We deduce as the
numerators of E'(= Aa+ BB+ Cy) and G (= Aa” + BB" + Cy"),

4ivabe {(or +1) (72 = 1) = (T = 1) (r* + 1) = 27 (1 — o)}, =0,
and
44 NV abe {(er+1)(0*=1)—(e7=1)(0*+ 1)+ 20 (T - o)}, =0;
that is, E’=0 and G'=0; or the differential equation of the chief lines is dodr =0,
which is right. The value of F’'(=A4a + BB + Cy') is hardly required, but it is readily
found to ni:
= 4iVabe [— (o + 13+ (o7 =13 — (1= )} + (1 + 0)5,

or since the term in { } is = —(7+0)%, we have
,_—4iVabe
(t+a) "’
24. The values of E, F, G (ds*= Edc*+ 2Fdodr + Gdr*) are
B =a ("~ L) —b(r* +1) +c.47 (=),
F=a(@=-1)(*-1)=b( +1)(a*+1)—c.410 (%),
G=a(c*—1) —b(a2+ 1) +c.40® (%),

where denom. = (1+ o)*

22—2
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We have, it i3 clear, (By=d,E, E,=d. E, &c.)

4 4

Hence the condition FG,—2F,G+ GG, =0, in order that o=const. may be a geodesic,

reduces itself to

4
—0'-4——‘1'F_2F2+G1=0

and similarly, the condition —2EF,+ E,F+ EE,=0, in order that t=const. may be a
geodesic, reduces itself to
L F-2R+E,=0
We have at once
E,=4a(r* —-1)(ra+1) —4b(r+1)(r0 —1) +4¢.21 (66— 7) (%),
Gi=4a(c*—1)(ta+1) —4b(at+1) (10 —1) —4¢.20(c— T) (%),
F,=2a(*=1)(r0— 0>+ 2)—2b(1* +1)(t0 — 0> —2)—2¢. 27 (7 —=30) (%),
F,=2a(c*—1)(t0 —7+2)=2b(a*+ 1) (re — 7 —2) - 2¢. 20 (6 —37) (%),
where denom. = (o + 7)°; and substituting these values, the conditions are verified: we

thus again see & posteriori that the right lines o = const. and 7 = const. are geodesics.

25. The last-mentioned values of K, G are E=T-+(1+0), @=3+(r+0)*; and
writing for a moment
A=a(r*—1)(a*-1)—=b(m+ 1) (e +1)—c. 40T,
we have F:=A4 + (7 + o), the value of ds* is thus

=Tdo* + 24dodr + Zd7*+ (1T + 7)’,
which should be

d 2
=1(»-9) (p y ol (3 )
P, Q=(a+p) b+p)(c+p) (a+9 b+ (c+g),
respectively. We have already found

where, as before,

dp dq 4do
=0,
vPryQtys
dp dq  4dr
i =0;
, , VPTYQT VT
or, what is the same thing,
@ _ s (dxf + df)
VP V2 ' NT/?
dg do dr\.
vo=—2(y5 =)
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and we ought therefore to have identically

do dr )2—9 (do- dr

(P—9) {p (5%+ 77 )2}=Tda*+2Adad-r+2d-r”+(-r+a)‘;

"
that is
(p—q)= TS +(7+0a),
P—q =ANTS = (v +0);
or, what is the same thing,
(p-gf= TIZ+(r+0),
2 s 4 +(r+0),
which are easily verified.
26. In fact, the equation
w? + y? 22 i
avu b+utoru

gives for u a quadric equation, the roots of which are wu=p, uw=¢q; that is, we have
Pptg= Z+y+22—a-b—c,
pg =—(0+c)a*—(c+a)y*—(a+b)z*+bc+ ca+ ab;

and substituting herein for a? #? 2* their values in terms of o, 7, we find
ptrg=a(@®=1)(*=1)=b(c*+ 1) (r*+ 1) —4cte <+ (1+0),
pg =be(or+1yP—ca(or =13 +ab(ac—7) +(t+0),

the first of which is, in fact, p+¢=4 +(7+0)> And from the two equations, forming
the combination (p + ¢)*—4pq, we at once obtain the other equation

(p—qr=3T+(t+ o)

27. The most ready way of obtaining the relations between the differentials of
p, q, o, T, is from the foregoing expressions of p+g¢, pg. Writing for a moment
p+q=A4+(c+7), pg=B+(c+7) we have p*(c + 1) — Ap+B=0, ¢*(c +7)— Aq+B=0;
viz. the first of these equations is

pe+rr—pla(s*=1)(1*=1)=b(c*+ 1) (7 + 1) — 4coT]
+bc(or+ 12 —ca(or =1y +ab (e —7)=0,

which is quadric in p, o, 7. The negative discriminants in regard to these variables
respectively are ST, 4PT, 4P3 respectively, and we have thus the equation

dp o taT LS
vp+2 (G +gr) =0
and the like equation for dg.

28. In the first integral of the geodesic lines, introducing o, 7 instead of p, g,

the equation becomes
(1 - 2 - o
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or, what is the same thing,

do . dr ‘
P(Q’i’e)(vz \/T) q( +0)(l\/2 5/T>— 5
that is,
2 d
(p—q)ﬂ(d% d:)+2[2pq+9(p+q)]‘f/a—7—0

or substituting herein for p—gq, pg, p+gq the values ¥ET, B, 4, each divided by
(o +7)?, this is

0 (Tdo*+ Zdr?)+ 2 (2B + 0A4) dodr =0,
or say

0 (Tdo*+ 24dodr + Zd7*) + 4Bdodr =0

viz. writing herein 6=0, the equation is dodr=0, giving the right lines on the
surface; and writing 6 = o, it is Tdo*+2A4dodr + Zdr* =0, giving the circular lines.

29. The equation ds*=Tdo*+ 24dodr +2dr*+ (1 + o)* shows that the right lines
o, o +do, 7, T+dr form on the surface an indefinitely small parallelogram, the sides
whereof are /T do+(7+ o) and &/2dr+ (7 + 0)%, viz. the ratio of the coefficients of
do, dr is of the form fuunction o= function 7; and it thus appears that it is possible
to draw on the surface the two sets of right lines, the lines of each set being at
such intervals that the surface is divided into parallelograms, the sides of which have
to each other any given ratio (the angles being variable); viz. if this ratio be as
m : 1, then, to determine the relation between ¢, 7, we must have y/Tdo=+m«2dr,

or what is the same thing, 32—+mj,; In particular, if m =1, the parallelograms
will be rhombs; and we must then have
do’ TN dr -

— VT,
viz. this being in terms of o, 7, the differential equation of the curves of curvature,
it appears that the two sets of lines may be taken so as to divide the surface into

indefinitely small rhombs, such that, drawing the diagonals of these, we have , the two
sets of curves of curvature.

The Ellipsoid and the Skew Hyperboloid.

30. I have thus far considered a quadric surface in general, the various theorems
being applicable as well to the ellipsoid and the hyperboloid of two sheets as to the
skew hyperboloid, the right lines being of course imaginary for the first-mentioned
surfaces; but I will now consider the ellipsoid and the skew hyperboloid separately.

31. First the ellipsoid. We have here a, b, ¢ all positive, and I assume as

2
usual @>b>c. The principal sections are all ellipses, viz J22+y—=1 is the major-

b
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2 2

. " 2 y ; s
mean, or say the minor section, ?l/)—+ c_=1 the minor-mean, or say the major section,

2
and %24-%:1 the mean, or umbilicar section. The elliptic coordinates p, ¢ enter into

the equations symmetrically, but we distinguish them by taking p to extend from —¢
to —b, and ¢ to extend from —b to —a. Thus p=const. denotes the curves of

c
T, ) g
A B A
U" w
o
curvature of the one kind; viz. p=—c¢ denotes the major-mean section é+%-= i
p=—> the portions UU" and U”U" of the umbilicar section; and ¢=const. denotes
the curves of curvature of the other kind, viz. ¢=—0b the remaining portions U'U”
2 2
and U”U of the umbilicar section, ¢ =—« the minor-mean section %+% =1; say

p=-const. the major-mean curves, and ¢ = const. the minor-mean curves,

32. Hence, in order that the equation

- \/ ((a +p) (b + pf)(c +p) (6 +p)> ot \/ ((a +q)(b+ q)q(ﬁi)"(ﬁ’i"é)) =2

of the geodesic lines may be real {observing that we have a+p, b+p=+, c+p,

p=—, and a+qg=+, b+gq, c+¢q, ¢=—, consequently p=+(a+p)(d+p)(c+p)=+, but
g+(@+q@ b+ (c+qg)=—}, we must have 8+p, 0+¢q of opposite signs, that is
0+p=+ and 6+ ¢g=—; or @ included between the limits @, c¢. Or, what is the

same thing, — @ is included between the limits —¢, —b, say —6 has a p-value; or
else between the limits —b, —a, say —@ has a g-value. This is conveniently shown

o A B Q 4

in the annexed diagram of the values of —p, —¢, —6. Hence on the ellipsoid we
have two kinds of geodesic lines, each of them touching a real curve of curvature;
viz. those which touch a major-mean curve and those which touch a minor-mean
curve: the transition case, answering to the value 6 =0, is that of the geodesic lines
which pass through an umbilicus. I have considered the theory more in detail in my
memoir “On the Geodesic Lines of an Ellipsoid,” Mem. R. Ast. Soc., t. XXX., pp. 31—53,
1872, [478].
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33. Next, for the skew hyperboloid, we have a and b=+, ¢c=—, and I assume
for convenience a@>b. Attending to the signs, we still have therefore a >b>c. The

principal sections are one of them an ellipse, and the other two hyperbolas, viz. the
2
minor section is the ellipse %2+l

2 2
b =1, the major section is the hyperbola l+i—=1,

b
2
and the mean section is the hyperbola §+% =1: there are no umbilici. The elliptic

coordinates enter symmetrically; but, as before, we distinguish them, viz. we take p to
extend from —c (a positive value) to infinity, and ¢ from —b to —a. Thus p =-const.

2
denotes the curves of curvature of the one kind, viz. p=—c¢ the ellipse %2+%= )
and every other value of p an oval curve surrounding the hyperboloid; and ¢ = const.

2 2
the curves of curvature of the other kind, viz. ¢ =—c¢ the major hyperbola %+%=1,

2
g=—0 the mean hyperbola %2+ZE= 1, and each intermediate value gives a curve of

curvature of a hyperbolic form: we may say that p=const. determines the oval curves
of curvature, and ¢ = const. the hyperbolic curves of curvature.

34. In the equation of the geodesic lines we have a+p, b+p, c+p, p all

positive; but e +g=+, b+¢q, c+¢q, ¢ each =—; hence p+ (a+p)(b+p)(c+p)=+, but
g+(@+q)(b+q)(c+q)=—; therefore 6+p and 6+ ¢ must be of opposite signs, or
we must have 6+p=+ and €+ ¢=—; or what is the same thing, § may have any

value from —p to —g¢, or say — 6 any value from p to ¢; that is, the value of —@
may be positive and greater than —c, positive and less than — ¢, negative and less
than —b, negative and between —b and —a; viz. in the first case — 6 has a p-value,

bitie 0 HEY e s (A

and in the fourth case it has a ¢-value, but in the second and third cases it has
neither a p- nor a ¢-value. This is better seen from the diagram. It follows that
we have, on the hyperboloid, geodesic lines of four different kinds: those which touch
a real curve of curvature, oval or hyperbolic, and those which touch no real curve
of curvature, but for which — 6@ has a positive value from 0 to —¢, or a negative
value from 0 to —b. And there are- the transitional cases —@0=—¢, where the

2 2
geodesic touches the ellipse ‘%+%=1; 0 =0, where the geodesic becomes a right

line; and — §=—b, where the geodesic touches the mean hyperbola %2+z_:= 3

35. To explain this more in detail, consider the geodesics which start from a
point M of the hyperboloid. To fix the ideas, consider the axis,K of z as vertical, and
take the point M in the positive octant of the hyperboloid; and let M1 represent
the direction of the oval curve of curvature, M9 that of the hyperbolic curve of
curvature, M5 that of one of the right lines.
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The geodesic of initial direction M1 touches at M the oval curve of curvature
M1, and lies wholly above this curve; it makes an infinity of convolutions round the
upper part of the hyperboloid, cutting all the oval curves of curvature for which p
has a (positive) value greater than p, (if p, is the value of p corresponding to the
oval curve through M), and ascending to infinity: or considering the curve as described
in the opposite sense, it descends from infinity to touch the oval curve through M,
after which it again ascends to infinity.

Next, if the initial direction is M2, we have a geodesic of the same kind, only
descending below M to touch a certain oval curve having for its parameter p, (p, >—c < py).

We come next to a critical direction M3, for which the geodesic descends below

2
M to touch the oval curve of parameter p;=—c, that is, the ellipse §+%—=1. But

it is to be observed that, whatever the initial point M may be, the geodesic makes
below M an infinity of convolutions round the hyperboloid, so that it does not in
fact ever actually touch the ellipse, but has this ellipse for an asymptote. That this
is so appears from the consideration that the ellipse, qud plane curve of curvature, is
a geodesic; so that, starting from a point of the ellipse in the direction of the ellipse,
the geodesic coincides with the ellipse, or, besides the ellipse itself, there is not any
geodesic which touches the ellipse.

Next, if the initial direction be M4, the geodesic does not here touch any oval
2 2
curve; it descends through M below the ellipse %+%=1, lying in the upper and

lower portions of the hyperboloid, and making round it an infinity of convolutions.

36. We come, then, to the initial direction M5, which is that of the right line;
the geodesic here coincides with the right line.

In the cases which follow, the geodesic lies in the upper and lower portions of
the hyperboloid, cutting all the oval curves of curvature.

Initial direction M6: the geodesic does not touch any hyperbolic curve of curvature,
but makes round the hyperboloid an infinity of convolutions.
C. VIIL 23

www.rcin.org.pl



178 ON GEODESIC LINES, &C. [508

Initial direction M7: the geodesic touches at opposite infinities the mean hyper-

bola §+%2= 1, it lies wholly in front of the plane y =0 of this hyperbola.

Initial direction M8: the geodesic touches a hyperbolic curve of curvature parameter
¢s where ¢ (negative) is between —b and ¢, the parameter of the hyperbolic curve
of curvature through M; viz. it cuts all the hyperbolic curves the parameters of which
are between —b and ¢s, but does not cut the remaining curves the parameters of
which extend from ¢z to —a.

Lastly, initial direction is M9, that of the hyperbolic curve of curvature through M;
the geodesic touches this curve, cutting all the hyperbolic curves the parameters of
which are between —b and ¢,, but not any of those the parameters of which are
between ¢, and —a.

37. If in the differential equation of the geodesic line we consider p, ¢ as the
elliptic coordinates of a given point M of the curve, the equation for a given value
of @ determines the direction of the curve; or conversely, if the direction be given,
the equation determines the value of the parameter 6. Writing

dp Np P ks -
V(a+p)®+p)(c+p) Via+q) (b+q)(c+9q)

then P, @ are proportional to the rectangular coordinates of a consecutive point M,
measured from M in the directions of the hyperbolic and oval curves of curvature
respectively ; and the differential equation of the geodesic lines gives

P Q
Np+8 Ng+8
viz. if ¢ be the inclination of the geodesic to the hyperbolic curve of curvature, then
1 tan® ¢ ; % :
= Lt Lo —q = —tan®¢); h
Q=P tan ¢, or we have oy Yydera that is, ptan®*¢ — ¢ =0 (1 —tan*¢); hence, if for

p (tan® ¢ — tan®:)

1-tantd viz.

the right line ¢=2A, then ptan’A—g=0; and therefore 6=
¢=0, 0=—¢q, =o, §=—p, as it should be.





