500.

ON A THEOREM RELATING TO EIGHT POINTS ON A CONIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871), pp. 344-346.]

The following is a known theorem:
" In any octagon inscribed in a cunic, the two sets of alternate sides intersect in the 8 points of the octagon and in 8 other points lying in a conic."

In fact the two sets of sides are each of them a quartic curve, hence any quartic curve through 13 of the $8+8$ points passes through the remaining 3 points: but the original conic together with a conic through 5 of the 8 new points form together such a quartic curve; and hence the remaining -3 of the new points (inasmuch as obviously they are not situate on the original conic) must be situate on the conic through the 5 new points, that is the 8 new points must lie on a conic.

We may without loss of generality take $\left(\alpha_{1}{ }^{2}, \alpha_{1}, 1\right),\left(\alpha_{2}{ }^{2}, \alpha_{2}, 1\right), \ldots\left(\alpha_{8}{ }^{2}, \alpha_{8}, 1\right)$, as the coordinates (x, y, z) of the 8 points of the octagon; and obtain hereby an \dot{a} posteriori verification of the theorem, by finding the equation of the conic through the 8 new points: the result contains cyclical expressions of an interesting form.

Calling the points of the octagon $1,2,3,4,5,6,7,8$, the 8 new points are

$$
12.45, \quad 23.56, \quad 34.67, \quad 45.78, \quad \check{5} 6.81, \quad 67.12, \quad 78.23, \quad 81.34,
$$

viz. 12.45 is the intersection of the lines 1.2 and 45 ; and so on. The 8 points lie on a conic, the equation of which is to be found.

The equation of the line 12 is

$$
x-\left(\alpha_{1}+\alpha_{2}\right) y+\alpha_{1} \alpha_{2} z=0
$$

or as it is convenient to write it

$$
x-(1+2) y+12 \cdot z=0
$$

viz. 1, 2, \&c., are for shortness written in place of $\alpha_{1}, \alpha_{2}, \& c$. respectively.

The coordinates of the 12.45 are consequently proportional to the terms of

$$
\begin{aligned}
& 1,-(1+2), 12, \\
& 1,-(4+5), 45,
\end{aligned}
$$

or say they are as

$$
12(4+5)-45(1+2): 12-45: 1+2-(4+5)
$$

The equation of the line $(12.45)(23.56)$ which joins the points 12.45 and 23.56 thus is

$$
\left|\begin{array}{ccc}
x & y, & z \\
12(4+5)-45(1+2), & 12+45, & (1+2)-(4+5) \\
23(5+6)-56(2+3), & 23-56, & (2+3)-(5+6)
\end{array}\right|=0
$$

where the determinant vanishes identically if $2-\check{\jmath}=0\left(\alpha_{2}-\alpha_{5}=0\right)$; it in fact thereby becomes

$$
\left|\begin{array}{ccc}
x & y, & z \\
2^{2}(1-4), & 2(1-4), & (1-4) \\
2^{2}(3-6), & 3(3-6), & (3-6)
\end{array}\right|
$$

which is $=0$; the determinant divides therefore by $2-5$; the coefficient of x is easily found to be

$$
=(2-5)(12-23+34-45+56-61),
$$

and so for the other terms; and omitting the factor $2-5$ the equation is

$$
\begin{aligned}
& x\{12-23+34-45+56-61\} \\
- & y\{12(4+5)-23(5+6)+34(6+1)-45(1+2)+56(2+3)-61(3+4)\} \\
+ & z\{1234-2345+3456-4561+5612-6123\}=0 .
\end{aligned}
$$

There is now not much difficulty in forming the equation of the required conic; viz. this is

$$
\begin{aligned}
& \quad(2-8)\{x-(6+7) y+67 z\} \times \\
& \left\{\begin{array}{l}
x[12-23+34-45+56-61] \\
-y[12(4+5)-23(5+6)+34(6+1)-45(1+2)+56(2+3)-61(3+4)] \\
+ \\
z[1234-2345+3456-4561+5612-6123]
\end{array}\right\} \\
& +(6-8)\{x-(1+2) y+12 z\} \times \\
& \left\{\begin{array}{r}
x[23-34+45-56+67-72] \\
-y[23(5+6)-34(6+7)+45(7+2)-56(2+3)+67(3+4)-72(4+5)] \\
+ \\
+z[2345-3456+4567-5672+6723-7234] \\
=
\end{array}\right\} .
\end{aligned}
$$

In fact this equation written with an indeterminate coefficient λ, say, for shortness, thus

$$
67[(12.45)(23.56)]=\lambda 12 .[(23.56)(34.67)]=0,
$$

is the general equation of the conic through the 4 points $12.67,34.67,12.45$, and 23.56 ; and by making the conic pass through 1 of the remaining 4 of the 8 points, I succeeded in finding the value $\lambda=\frac{6-8}{2-8}$, so that the conic in question passes through 5 of the 8 points, and is therefore by the theorem the conic through the 8 points. But as thus written down the equation contains the extraneous factor $2-6$, as appears at once by the observation that the left-hand side on writing therein $6=2\left(\alpha_{6}=\alpha_{2}\right)$ becomes identically $=0$; the value in fact is

$$
\begin{aligned}
& -(2-8)[x-(2+7) y+27 z](23-34+45-52)[x-(1+2) y+12 z] \\
& +(2-8)[x-(1+2) y+12 z](23-34+45-52)[x-(2+7) y+27 z]
\end{aligned}
$$

which is $=0$; there is consequently the factor $2-6$ to be rejected, and throwing this out the equation assumes a symmetrical form in regard to the 8 symbols $1,2,3,4,5,6,7,8$. The coefficient of x^{2} is very easily found to be

$$
=(2-6)(12-23+34-45+56-67+78-81),
$$

and similarly that of z^{2} to be

$$
=(2-6)\{123456-234567+345678-456781+567812-678123+781234-812345\}:
$$

those of the other terms are somewhat more difficult to calculate; but the final result, throwing out the factor $(2-6)$, and introducing an abbreviated notation

$$
\Sigma 12=(12-23+34-45+56-67+78-81),
$$

and the like in other cases, is found to be

$$
\begin{aligned}
& x^{2} \cdot \Sigma 12 \\
+ & y^{2} \cdot\left[\Sigma 12(4+5)(6+7)-\frac{1}{2} \Sigma 1256\right] \\
+ & z^{2} \cdot \Sigma 123456 \\
- & y z \cdot \Sigma 16(234+235+245+345) \\
+ & z x \cdot[\Sigma 1234 \\
- & \left.x y \cdot \Sigma 12(4+5+6+7)+\frac{1}{2} \Sigma 1256\right] \\
& =0
\end{aligned}
$$

where it is to be observed that $\Sigma 1256$ consists of 4 distinct terms each twice repeated: $\frac{1}{2} \Sigma 1256$ consists therefore of these 4 terms; and in the coefficient of y^{2} they destroy 4 of the 32 terms of $\Sigma 12(4+5)(6+7)$ so that the coefficient of y^{2} contains $32-4,=28$ terms. In the coefficient of $z x$ there is no destruction, and this contains therefore $12+4,=16$ terms.

