397.

SPECIMEN TABLE $M \equiv a^{a}b^{\beta}$ (MOD. N) FOR ANY PRIME OR COMPOSITE MODULUS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. IX. (1868), pp. 95-96 and plate.]

IF N be a prime number, and a one of its primitive roots, then any number M prime to N, or what is the same thing, any number in the series 1, 2, ... N-1, may be exhibited in the form $M \equiv a^{\alpha} (Mod. N)$; where α is said to be the index of M in regard to the particular root a. Jacobi's Canon Arithmeticus (Berlin, 1839), contains a series of tables, giving the indices of the numbers 1, 2, $3 \dots N-1$ for every prime number N less than 1000, and giving conversely for each such prime number the numbers M which correspond to the indices $\alpha = 1, 2, ... (N-1)$ (Tabulæ Numerorum ad Indices datos pertinentium et Indicum Numero dato correspondentium). A similar theory applies, it is well known, to the composite numbers; the only difference is, that in order to exhibit for a given composite number N the different numbers less than Nand prime to it, we require not a single root a, but two or more roots a, b,... and that in terms of these we have $M = a^a b^\beta \dots (M \text{ od. } N)$. For each root a there is an index A (or say the Indicator of the root), such that $a^A \equiv 1 \pmod{N}$, A being the least index for which this equation is satisfied; and the indices a, b, \ldots extend from 1 to A, B, ... respectively; the number of different combinations or the product AB..., being precisely equal to $\phi(N)$, the number of integers less than N and prime to it. The least common multiple of A, B..., is termed the Maximum Indicator, and representing it by I, then for any number M not prime to N, we have $M^{I} \equiv 1 \pmod{N}$, a theorem made use of by Cauchy for the solution of indeterminate equations of the first order. Thus N = 20, the roots may be taken to be 3, 11; the corresponding exponents are 4, 2 (viz. $3^4 \equiv 1 \pmod{20}$ $11^2 \equiv 1 \pmod{20}$), and the product of these is 8, the number of integers less than 20 and prime to it; the series [go to p. 86] 11 - 2

www.rcin.org.pl

SPECIMEN TABLE $M \equiv a^{\alpha}b^{\beta} \pmod{N}$ for any

s.	1	2	3	4	5	6 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
TS	197	1	2	3	2	5 3	3, 5	2	3	2	5,7	6	3	2, 11	3, 7	10	5	10	3, 11	2,13	7	10	5,7,13	2	7	2	3, 13	10	7, 11
D.	0	1	2	2	4	2 6	2, 2	6	4	10	2,2	12	6	4,2	4, 2	16	6	18	4, 2	6,2	10	22	2, 2, 2	20	12	18	6,2	28	4, 2
I.		1	2	2	4	2 6	2	6	4	10	2	12	6	4	4	16	6	18	4	6	10	22	2	20	12	18	6	28	4
,	0	1	2	2	4	2 6	4	6	4	10	4	12	6	8	8	16	6	18	8	12	10	22	8	20	12	18	12	28	8
	1	0	0	0		0 0			0	0	0,0	0	0	0,0	0,0	0	0	0	0,0	0,0	0	0	0, 0, 0	0	0	0	0,0	0	0,0
	1	2	1	1	1	2		1	1	1 8		5 8	1	1,0	1,0	10 11	015	17 5	1,0	1,0	4	8 20		17	8	1	1,0	11 27	
		1	3	4	3 2	4		2	1	2		10	1	2,0	1,0	4		16	1,0	2,0	4	16		2	0	2	1,0	22	
					5 1	$\frac{1}{5}$ $\frac{5}{3}$ $\frac{3}{7}$	0,1	5		4	1,0	9	5	10 5	1,1	7	1	2		1,1	2	15	1,0,0		3	5	2,1	18	
					10	$\frac{5}{7}$	1,1	4	3	9 7	0,1	1 7		1,1	0, 1	5 9	2	4 12	3,0		1	6 21	0, 1, 0	85	1	16		10 20	1,0
						-	8		0	3	0, 1	3		3,0	0, 1	9	2	15	5,0	3,0	1	21	0, 1, 0	3	1	3	U.S.	5	1,0
								3 9	2	6		4	2		2, 0	6	10	10	2,0		8	18	Suon	14	4		2,0	26	
								!	10	$\frac{5}{11}$	1, 1	$\frac{2}{11}$	4	0,1	3,0	$\frac{1}{13}$	5	$\frac{1}{6}$	0,1	$\frac{2,1}{5,0}$		1	1, 1, 0	16	5	6 13	1,1	$\frac{1}{23}$	0,1
											$\frac{1, 1}{12}$	6	4	0,1	5,0	15	9	3	0,1	5,0		5 14	1, 1, 0	10		10	1,1	20	0, 1
											5.15	13	3	3, 1	3, 1	12	4	13	1,1	0,1	3	12	0,0,1	19	MI	8	0,1	2	3,0
													14	$\frac{2,1}{15}$	2,1	3 2	-	11 7	han	1- Mil	6	7	1200	6	11	14	3,1	3 17	
														10	16	8		14		4,0		$\frac{10}{10}$		4		4	0,1	16	
																17	3	8	3,1	5,1	7	17	1, 0, 1	13	10	15	4,1	7	1,1
																	18	<u>9</u> 19	2,1	4,1	9	45	0, 1, 1	15 8	7	12	5,0	9 15	
																		10	20	3,1		9	0, 1, 1	0	11	7	0,0	12	2,0
																			1.70	21	5	19		12	94		3.44	19	
																					22	11	1,1,1	17 11	2	14 11	5,1	6 24	3,1
																						20	24	10	ad		Te	4	0,1
																								25	6 26	10	4,0	8	
																									26	9 27	3,0	13 25	
																											28	14	
																											DIE	29	$\frac{2,1}{30}$
																			-290										30
																												191	1

order to exhibit for a given composite number N the different numbers less than N and prime to it, we require not a single root a but two or more roots a h, and that in terms of these we have $M = a^{2}N$... (Mod. N). For each root a there is a index A (or say the Indicator of the root) such that $a^{2} \equiv 1$ (Mod. N) A being the least index for which this equation is artistised; and the indices a h, ... cated toot being precisely equal to $\phi(N)$ the number of different combinistions or the product AB... being precisely equal to $\phi(N)$ the number of different combinistions or the product AB... The jeast common multiple of A, B... is termed the Maximum Indicator and representing it by I, then for any number M not prime to N, we have $M^{2} \equiv 1$ (Mod. N) a secting it by I, then for any number M not prime to N, we have $M^{2} \equiv 1$ (Mod. N) a first order. Thus N = 20 the roots may be taken to be 3. II: the corresponding inst order. Thus N = 20 the roots may be taken to be 3. II: the corresponding is some or integers less than 20 and prime to it, the series [go to p 80] or products are 4. 2 (wa $3^{2} \equiv 1$ (Mod. 20) II: $\equiv 1$ (Mod. 20), and the product of the is 8, the number of integers less than 20 and prime to it; the series [go to p 80]

www.rcin.org.pl

[397

397]

PRIME OR COMPLEX MODULUS.

31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
17	3, 15	2, 10	3	2,6	5, 19	5	3	2,14	3,11,21	6	5, 13	28	3, 21	2, 26	5	10	5,7,17	3	3	III
30	8,2	10, 2	16	12, 2	6,2	36	18	12, 2	4, 2, 2	40	6, 2	42	10, 2	12, 2	22	46	4, 2, 2	42	20	
30	8	10	16	12	6	36	18	12	4	40	6	42	10	12	22	46	4	42	20	
30	16	20	16	24	12	36	18	24	16	40	12	42	20	24	22	46	16	42	20	103
0	0,0	0,0	0	0,0	0,0	0	0	0,0	0,0,0	0	0,0	0	0,0	0,0	0	0	0, 0, 0	0	0	1
12 13	1,0	1,0	1	1,0 11,0	N).	11	1	1,0	100	26	bbe.	39 17	10	1,0	16	30	odt	26	1.0	2
15 24	1,0	2,0	1	2,0	891	34 22	tadi	2,0	1,0,0	15. 12	o de	36	1,0	2,0	10	18 14	ne ind	1 10	1	3
20	7,1	9,1	5	2,0	1,0	1	4	9,0	to zah	22	1,0	5	8,0	2,0	1	17	1, 0, 0	29	17	5
25	witte	rest	19	0,1		9	1	atom	ade	1	ne	14		and a	0	2	no prove	27		6
4	2, 1	2,1	11	- minin	2,1	28	6	11, 1	3,0,1	39		7	9,1	1,1	19	38	0, 1, 0	-	15	7
6		3,0		3,0		33	10	3,0	L. L. L. L.	38	6ne	33	1	3,0		44	ALL CONTRACTOR	36	313	8
26	2,0	0.1	2	10,0	Art 3	32	2	10.0	2, 0, 0	30	og Bi	34	2,0	LODE.	10	36	CLAISO	2	2	9
$\frac{2}{29}$	7,0	0,1	7	8,0	5,1	$\frac{12}{6}$	12	$\frac{10,0}{7,0}$	0,1,0	8	5,1	$\frac{2}{6}$		4,1		$\frac{1}{27}$	3, 1, 0	$\frac{13}{40}$	8	1
7	1,0			1,1	0,1	20	12		0, 1, 0	27	0,1	11		4,1	9	32	5, 1, 0	11	0	1
23	1,1	6,1	4	3,1	4,0	13	17	10amil	1, 1, 1	31	0,1	40	2,1	11, 1	14	3	3, 0, 1	33	17	1
16	mood	3,1	De	03	npear	3	ou i	0,1	there	25	1 10	4	puign	2,1	10	22	1 8000	Q .i	edoo	1
3	0, 1	10.151	6	163/01	18 1 61	35	5	11.960	Table	37	-881	22	9,0	ritos	17	35	200	30	riter	1
18		4,0	0.00	4,0		8	10	4,0	LEV BAY	24		30	1 Bel	4,0	17 6	28	bee	20	mito	1
1 8	4,0	9,0		5,1 11,0	3,0	5	16	2,1		33	5,0	16 31	8,1	9,0	7	42	0, 0, 1	25	19	
22	5,0	8,1	14	10,1	0,1	7 25	i met	5,1	2,1,0	16 9	4,1	29	1,1	6,0	15	20 29	1, 1, 1	28 35	14	1
14	0,0	1,1		10,1	0,1	23		11,0	2, 1, 0	34	т, 1	41	1,1	0,0	10	31	1, 1, 1	39	14	2
17	3,1		12	1000		26	7		0,0,1	14		24	0,1		13	10			16	2
11	the	cound	mai	9,0	1. 15	17		8,0		29	47	3		5,1		11		24		2
21	6,1	5,1	15	7,0	1,1	21	14	10,1	1,0,1	36	1,1	20	5,0	11,0	1 200	39	0, 1, 1	38	13	2
19	0	0.0	10	2,1		31	0			13		8		2012		16		37		2
$\frac{10}{5}$	6,0	$\frac{8,0}{7,1}$	10	4,1	2,0	$\frac{2}{24}$	8	6,0		$\frac{4}{17}$	2,0	$\frac{10}{37}$	6,0	0.1	2	34	2, 0, 0	16	-	2
9	3,0	1,1	3	9,1	VTI.	30	3	ph.	3,0,0	5	(37.8	9	3,0	0,1	4	33	Dar a	17	3	22
28	0,0	4,1		0,-	white	14		1,1	0,0,0	11	omet	1	0,0	3,1	Sec.	6	hich	3	0	2
27	5,1	7,0	13	6,0	5,0	15	11	4,1	2,0,1	7	3,1	25	4,1	10,1	18	43	3,0,0	18	6	2
15	in harry		-			10				23	2	19		-		19	a min	14	1 m	3
31	4,1	6,0	9	8,1	4,1	27	15	9,1	0,1,1	28	2,1	32	7,0	8,0	6	5	2, 1, 0	7	4	3
	32	$\frac{5,0}{33}$	8	5,0	2	19	13	5,0		10 18	1.81	27 23		5,0		12	1.2.1	4		3
		00	34	7,1 6,1	Ha .	4	10	3,1	1,1,0	19	E Breid	13	12,523,	10,0	3	45 26		41 9	9	3
		ve th		35	31	29	10	8,1	0.00	21		12	7,1	10,0	20	9	1, 1, 0	9		3
					36	18			-	2	· ·	28				4		12	5.5	3
					8.84	37	9	7,1	3,1,1	32	4,0	35	4,0	9,1	21	24	1, 0, 1	32	7	3
						1942	38	6,1		35	0041	26	n da	7,0	-	13	ER ;	19	n.en	3
								39	2,1,1	6	100	15	3,1	18 310	8	21	29 19	34	18	3
									40	$\frac{20}{41}$	20	38	01	0.1	10	15	0.0.1	23	-	4
										1 41	$\frac{3,0}{42}$	18 21	6,1	8,1	12	25 40	2, 0, 1	15	12	4
												43	5,1	7,1	5	37	3, 1, 1	6	5	4
													44	6,1		41	, _, _	8		4
														45	11	7	at started	31		4
															46			22		4
																47	2, 1, 1	5	11	4
																	48	21		4
																		49	10	4

85

[from p. 83] of these is in fact 1, 3, 7, 9, 11, 13, 17, 19, each of which is expressible in the required form, viz. $1 \equiv 3^{\circ}$. 11°, $3 \equiv 3^{1}$. 11°, $7 = 3^{\circ}$. 11°, &c. (Mod. 20): the maximum indicator is 4; viz. $1^{4} \equiv 1$, $3^{4} \equiv 1$, $7^{4} \equiv 1$, &c. (Mod. 20).

The table pp. 84, 85 gives the Indices for the numbers less than N and prime to it, for all values of N from 1 to 50; the arrangement may be seen at a glance; of the five lines which form a heading, the first contains the numbers N; the second the root or roots belonging to each number N, the third the indicators of these roots, the fourth the maximum indicator, the fifth the number $\phi(N)$. The remaining lines contain the index or indices of each of the ϕN numbers M less than N and prime to it, the number corresponding to such index or indices, being placed outside in the same horizontal line. For example, 30 has the roots 7, 11, indices 4, 2 respectively; the Maximum Indicator is 4, and the number of integers less than 30 and prime to it is 8; taking any such number, say 17, the indices are 1, 1, that is, we have $17 = 7^1 \cdot 11^1$ (Mod. 30).

The foregoing corresponds to the Tabulæ Indicum Numero dato correspondentium of Jacobi; on account of multiplicity of roots there does not appear to be any mode of forming a single table corresponding to the Tabulæ Numerorum ad Indices datos pertinentium; and there would be no adequate advantage in forming for each number N a separate table in some such form as

N=2	20.
-----	-----

Ro	ots	Nos.
3	11	
0	0	1
0	1	11
1	0	3
	1	13
2	$\begin{vmatrix} 1\\ 0 \end{vmatrix}$	9
2	1	19
$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 3 \end{array} $	0	7
3	1	17

which I have written down in the form of a table of single entry; for although (whenever, as in the present case, the number of roots is only two) it might have been better exhibited as a table of double entry, when the number of roots is three or more it could not of course be exhibited as a table of corresponding multiple entry.

86

www.rcin.org.pl