397.

SPECIMEN TABLE $M \equiv \alpha^{\alpha} b^{\beta}$ (MOD. N) FOR ANY PRIME OR COMPOSITE MODULUS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. Ix. (1868), pp. 95̌-96 and plate.]

If N be a prime number, and a one of its primitive roots, then any number M prime to N, or what is the same thing, any number in the series $1,2, \ldots N-1$, may be exhibited in the form $M \equiv a^{\alpha}(\operatorname{Mod} . N)$; where α is said to be the index of M in regard to the particular root a. Jacobi's Canon Arithmeticus (Berlin, 1839), contains a series of tables, giving the indices of the numbers 1, 2, 3 $\ldots N-1$ for every prime number N less than 1000, and giving conversely for each such prime number the numbers M which correspond to the indices $\alpha=1,2, \ldots(N-1)$ (Tabulce Numerorum ad Indices datos pertinentium et Indicum Numero dato correspondentium). A similar theory applies, it is well known, to the composite numbers; the only difference is, that in order to exhibit for a given composite number N the different numbers less than N and prime to it, we require not a single root a, but two or more roots a, b, \ldots and that in terms of these we have $M=a^{\alpha} b^{\beta} \ldots(\operatorname{Mod} . N)$. For each root a there is an index A (or say the Indicator of the root), such that $a^{A} \equiv 1(\operatorname{Mod} . N), A$ being the least index for which this equation is satisfied; and the indices a, b, \ldots extend from 1 to A, B, \ldots respectively; the number of different combinations or the product $A B \ldots$, being precisely equal to $\phi(N)$, the number of integers less than N and prime to it. The least common multiple of $A, B \ldots$, is termed the Maximum Indicator, and representing it by I, then for any number M not prime to N, we have $M^{I} \equiv 1(\operatorname{Mod} . N)$, a theorem made use of by Cauchy for the solution of indeterminate equations of the first order. Thus $N=20$, the roots may be taken to be 3,11 ; the corresponding exponents are $4,2\left(\right.$ viz. $\left.3^{4} \equiv 1(\operatorname{Mod} .20) 11^{2} \equiv 1(\operatorname{Mod} .20)\right)$, and the product of these is 8 , the number of integers less than 20 and prime to it; the series [go to p. 86]

31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
17	3,15	2, 10	3	2,6	5,19	5	3	2,14	3,11,21	6	5,13	28	3, 21	2, 26	5	10	5, 7, 17	3	3	
30	8, 2	10,2	16	12,2	6,2	36	18	12, 2	4,2,2	40	6, 2	42	10,2	12,2	22	46	4, 2, 2	42	20	
30	8	10	16	12	6	36	18	12	4	40	6	42	10	12	22	46	4	42	20	
30	16	20	16	24	12	36	18	24	16	40	12	42	20	24	22	46	16	42	20	
0	0, 0	0,0	0	0,0	0,0	0	0	0, 0	0, 0,0	0	0,0	0	0, 0	0,0	0	0	0, 0, 0	0	0	1
12		1,0		1,0		11		1,0		26		39		1,0		30		26		2
13	1,0		1	11, 0		34	1		1, 0,0	15.		17	1,0		16	18		1	1	3
24		2,0		2,0		22		2,0		12		36		2,0		14		10		4
20	7,1	9,1	5		1,0	1	4	9,0		22	1,0	5	8,0		1	17	1, 0, 0	29		5
25				0,1		9				1		14				2		27		6
4	2, 1	2, 1	11		2,1	28	6	11, 1	$3,0,1$	39		7	9, 1	1,1	19	38	0, 1, 0		15	7
6		3, 0		3,0		33		3, 0		38		33		3, 0		44		36		8
26	2,0		2	10,0		32	2	,	2,0,0	30		34	2,0		10	36		2	2	9
2		0,1	-			12		10,0		8		2				1		13		10
29	7,0		7	8, 0	5,1	6	12	7,0	0, 1, 0	3	5,1	6		4,1	9	27	3, 1, 0	40	8	11
7				1,1		20				27		11				32		11		12
23	1,1	6,1	4	3,1	4,0	13	17		1, 1, 1	31	0,1	40	2,1	11, 1	14	3	$3,0,1$	33	17	13
16		3,1				3		0,1		25		4		2,1		22				14
3	0,1		6			35	5			37		22	9,0		17	35		30		15
18		4, 0		4,0		8		4,0		24		30		4,0		28		20		16
1	4,0	9, 0		5,1	3,0	5	16	2,1		33	5,0	16	8,1	9, 0	7	42	$0,0,1$	25	19	17
8				11, 0		7				16		31				20		28		18
22	5,0	8,1	14	10, 1	0,1	25		5,1	2, 1, 0	9	4, 1	29	1,1	6,0	15	29	1,1,1	35	14	19
14		1,1				23		11, 0		34		41				31		39		20
17	3,1		12			26	7		0,0,1	14		24	0,1		13	10			16	21
11				9,0		17		8,0		29		3		5, 1		11		24		22
21	6,1	5,1	15	7,0	1,1	21	14	10,1	1, 0,1	36	1,1	20	5, 0	11, 0		39	$0,1,1$	38	13	23
19				2,1		31				13		8				16		37		24
10	6, 0	8,0	10		2,0	2	8	6,0		4	2,0	10	6, 0		2	34	2,0,0	16		25
5		7,1		4,1		24				17		37		0,1		33		17		26
9	3,0		3	9,1		30	3		$3,0,0$	5		9	3, 0		4	8		3	3	27
28		4,1				14		1,1		11		1		3,1		6				28
27	5,1	7, 0	13	6,0	5,0	15	11	4,1	2,0,1	7	3,1	25	4,1	10, 1	18	43	$3,0,0$	18	6	29
15						10				23		19				19		14		30
31	4,1	6,0	9	8,1	4,1	27	15	9,1	0,1,1	28	2,1	32	7, 0	8,0	6	5	2, 1, 0	7	4	31
	32	5,0		5,0		19		5, 0		10		27		5, 0		12		4		32
		33	8	7,1		4	13		1,1,0	18		23			3	45		41	9	33
			34	6,1		16		3,1		19		13		10, 0		26		9		34
				35	31	29	10	8,1		21		12	7,1		20	9	1,1, 0			35
					36	18				2		28				4		12		36
						37	9	7,1	3,1,1	32	4,0	35	4, 0	9,1	21	24	1, 0, 1	32	7	37
							38	6,1		35		26		7,0		13		19		38
								39	2,1,1	6		15	3,1		8	21		34	18	39
									40	20		38				15		23		40
										41	3,0	18	6,1	8,1	12	25	2, 0, 1	15	12	41
											42	21				40				42
												43	5,1	7, 1	5	37	3, 1, 1	6	5	43
													44	6,1		41		8		44
														45	11	7		31		45
															46			22		46
																47	2,1,1	5	11	47
																	48	21		48
																		49	10	49
																			50	50

[from p. 83] of these is in fact $1,3,7,9,11,13,17,19$, each of which is expressible in the required form, viz. $1 \equiv 3^{\circ} .11^{\circ}, 3 \equiv 3^{1} .11^{\circ}, 7=3^{3} .11^{0}, \& c$. (Mod. 20): the maximum indicator is 4 ; viz. $1^{4} \equiv 1,3^{4} \equiv 1,7^{4} \equiv 1$, \&c. (Mod. 20).

The table pp. 84, 85 gives the Indices for the numbers less than N and prime to it, for all values of N from 1 to 50 ; the arrangement may be seen at a glance; of the five lines which form a heading, the first contains the numbers N; the second the root or roots belonging to each number N, the third the indicators of these roots, the fourth the maximum indicator, tha fifth the number $\phi(N)$. The remaining lines contain the index or indices of each of the ϕN numbers M less than N and prime to it, the number corresponding to such index or indices, being placed outside in the same horizontal line. For example, 30 has the roots 7, 11, indices 4, 2 respectively; the Maximum Indicator is 4 , and the number of integers less than 30 and prime to it is 8 ; taking any such number, say 17 , the indices are 1,1 , that is, we have $17=7^{1} .11^{1}$ (Mod. 30).

The foregoing corresponds to the Tabulce Indicum Numero dato correspondentium of Jacobi; on account of multiplicity of roots there does not appear to be any mode of forming a single table corresponding to the Tabulco Numerorum ad Indices datos pertinentium; and there would be no adequate advantage in forming for each number N a separate table in some such form as

$N=20$		
Roots		Nos.
3	11	
0	0	1
0	1	11
1	0	3
1	1	13
2	0	9
2	1	19
3	0	7
3	1	17

which I have written down in the form of a table of single entry; for although (whenever, as in the present case, the number of roots is only two) it might have been better exhibited as a table of double entry, when the number of roots is three or more it could not of course be exhibited as a table of corresponding multiple entry.

