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CORRESPONDENCE[Note Book 39.]
[To Professor Powell*]

Observatory, Dublin, 
Oct. 24<Λ, 1835.

My dear SirI received your letter a few days ago, & had even previously been intending to write to you on the subject of dispersion. My opinion of the value of your researches on that subject has not undergone any change, & I continue to consider you successful, and believe you to be the first who has been so, in the arduous & important enterprise of practically establishing the existence of a near agreement between the facts of dispersion & a formula suggested by theory.But it occurred to me some time ago, and I have been intending to mention it to you, that this formula does not (in my judgment) follow as a rigorous, though it does as an approximate, consequence from Cauchy’s mathematical investigations. In short, I think that you are not strictly warranted in omitting a certain sign of summation, although the final result is only slightly affected by that omission.To simplify the question, let us conceive a plane wave perpendicular to the axis of x, with vibrations parallel to the axis of y. Then the displacements ξ and ζ will vanish, & we shall have the formula (1)by Cauchy’s theory, or by your equations (12) in the Phil. Mag. for Jan. last; η being the value at the time t of the varying displacement of the molecule m which has x, y, z for its rectangular coordinates of equilibrium; & η + ^η being the displacement, at the same moment t, of ■ another molecule m, which has for its rectangular coordinates of equilibrium x + ∆rr, y + ∆y,
z + Δζ; while r is the distance √∆τ≡ + + ∆z≡ between these two molecules in their positionsof equilibrium, & β is the angle between this distance & the axis of y', & finally f(r) and∕(r) are functions of r, of which the former (if positive) expresses the law of attraction, or (if nega­tive) the law of repulsion, and the latter is derived from it by the rule
and )δ^is a sign of summation, relative to the actions (attractive or repulsive) of all the molecules m.If now we supposeη□, ηι, iθ & λ, μ being (Constants, we shall have (2)

(3)
* [Baden Powell, 1796-1860. Savilian Professor of Geometry, Oxford, 1827-60. Published researches on Optics 

and Radiation.]
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584 XXIII. CORRESPONDENCEand (4)so that, the part of ∆τ^ disappearing in the summation, the differential equation of vibration(1) is satisfied, if we establish the following relation between the constants λ, p,, (5)Such is, I think, the law of the velocity — of propagation of a wave, considered as depending on 
P'the periodical time λ of the vibrations of the molecules, & deduced from the principles of Cauchy. If we put for abridgment (θ)(7)and(although this quantity is not necessarily nor always positive), the law becomes (8)in which it appears necessary, for rigour, to retain the sign of summation. To omit that sign would come to considering the action of only two near molecules; and even to apply the sign to only, without treating θ as variable, would come to considering only the action of two near layers of molecules, for which is the same: whereas it is likely that the number of such near layers, within the extent of sensible action, is on the contrary very great. Yet, after all, the law of their total action is almost the same in kind as the law of the action of those two. For if we suppose, as it seems to be permitted to do, that θ (which is the semidifference of phases of two near molecules) is small, though not insensible, within the extent of sensible action; we may then develope, according to the ascending powers of this small arc, the square of the ratio of its sine to itself.

and thus the law (8) will become
(9)

(10)
(11)(12)
(13)

And if this series converge rapidly enough, it will give, nearlij,

and finally
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X XIII.  C O R R E S P O N D E N C E  5 8 5

if w e  p ut  f o r a b ri d g m e nt

a n d

( 1 4)

( 1 5)

B ut  if w e  d e v el o p e  0  j a c c o r di n g  t o t h e p o w e r s  of j b y  t h e a p p r o xi m at e  f o r m ul a ( 1 3),  w e  g et

( 1 6)

w h e r e a s  if w e  d e v el o p e  it b y  t h e m o r e  a c c u r at e  f o r m ul a ( 1 0), w e  fi n d
∕ι ∖ Λ ι∕ ∖ o z >i∕ r τ Λ A θ ∖ ∕ ∖λ∕λ ∕-*∕  τ τ n i k λ ∖ i r r v / τ τ ο  a

( 1 7)

a n d  it s e e m s  p o s si bl e  e n o u g h  t h at t h e diff e r e n c e  of  t h e t hi r d t e r m s m a y  b e  s e n si bl e. — H a d  w e  

t a k e n a s  o u r  a p p r o xi m at e  f o r m ul a

i n w hi c h

a n d

( 1 8)

( 1 9)

( 2 0)

( 2 1)

w e  s h o ul d  h a v e  h a d  t h e a p p r o xi m at e  d e v el o p m e nt

w hi c h  w o ul d  r e s e m bl e m o r e  t h e o ri gi n al  d e v el o p m e nt  ( 1 0), b ut  still mi g ht  diff e r  s e n si bl y  f r o m 

it, b e c a u s e  t h e t w o e x p r e s si o n s.

a r e n ot  i n g e n e r al  c oi n ci d e nt. — I c o n cl u d e t h e r ef o r e t h at y o u r si m plifi c ati o n of  C a u c h y ’s  

r e s ult s, o bt ai n e d  b y  o mitti n g  t h e si g n of  s u m m ati o n,  o r  b y  att e n di n g  o nl y  t o t h e a cti o n  of  o n e  

p ai r  of  p oi nt s,  o r  at  m o st  o n e  p ai r  of  l a y e r s, m a y  b e  att e n d e d  wit h  s o m e l o s s of  a c c u r a c y,  &  

i n d e e d i s li k el y t o b e  s o if t h e t hi r d t e r m ̂ o r  t h e t e r m p r o p o rti o n al  t o j i n t h e d e v el o p m e nt  of  - 

h e  s e nsi bl e. A n d  p e r h a p s  s o m e of  t h e diff e r e n c e s  w hi c h  y o u  h a v e  m et,  b et w e e n  t h e o b s e r v e d  

a n d  c al c ul at e d i n di c e s, m a y  h a v e  t h ei r s o u r c e  i n t h e i n s uffi ci e nt e x p r e s si o n  of  t hi s t hi r d t e r m. 

Y o u  will  j u d g e w h et h e r  att e nti o n  t o t hi s s u g g e sti o n mi g ht  n ot  i n c r e a s e t h e v al u e  of  y o u r  

al r e a d y  v al u a bl e  r e s e a r c h e s.—

F o r  m y  o  w n  p a rt,' w h e n  m y  att e nti o n  h a d  b e e n a w a k e n e d  b y  y o u r  s u c c e s s  i n r e c o n cili n g s o  

f a r a s  y o u  h a v e  d o n e  t h e f a ct s wit h  t h e t h e o r y of  di s p e r si o n,  &  w h e n  I c a m e  t o p e r c ei v e  t h at t hi s 

t h e o r y r e q ui r e d i n ri g o m*  t h e r et ai ni n g of  t h e si g n of  s u m m ati o n, ( w hi c h I di d  o nl y  a b o ut  a  

m o nt h  a g o,  h a vi n g  b e e n  o c c u pi e d  till t h e n b y  ot h e r  t hi n g s, e s p e ci all y  b y  H all e y ’s C o m et,)  I 

i n stit ut e d s e v e r al n u m e ri c al  c al c ul ati o n s,  s o m e a c c o u nt  of  w hi c h  y o u  m a y  li k e t o h a v e.  T h e

H M PII  7 4
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586 XXIII. CORRESPONDENCEimmediate result of theory appears, for the reasons that I have given, to be a law which may be expressed by a series of the form (22)the general term being
(23)in which we may, if we choose, change Δλ; to r cos α. And it seems likely that in all useful applications of the law this series will converge; and also that the terms will be alternately positive and negative, or at least that the first term Aθ will be positive and the second term negative. Moreover it may be expected that the resultant development of μ itself, according to the ascending integer powers of , will also be convergent; namely the series (24)of which the coefficients may be determined by equating to zero the coefficients of the several powers of λ~2 in the following identical development, deduced from (22) by substitution of the value (24) for u, namely
(25)For the first three of the new coefficients, we have thus the three equations.

which give
(26)
(27)

If we may confine ourselves to these three, the law of dispersion becomes simply (28)in which αθ & at least may be expected to be positive, while all the three coefficients αθ, «1, «2 ar® constant for any single medium, but vary in passing from one such medium to another. Consider now the four rays B, D, F, H. We shall have, for these four rays, and for any single medium, the system of the four equations
(29)

between which it is possible to eliminate the three medium-constants αθ, a^, a^, and so to deduce a general relation, valid for all media, between the 4 indices μj^, μ^, μ^ and the four periodical times λβ, , λy, .
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XXII1. CORRESPONDENCE 587A slight consideration shows that this relation can only involve the two ratios of the three differences of the four indices, & the two ratios of the three differences of the four reciprocals of the squares of the periodical times; so that if we put for abridgment
and

(30)
(31)the result of the ehmination will be a relation between the four quantities only, andwill not involve the four other quantities μj5, ∕Xh , Ab > , if we previously substitute for μ,j,, μ,y, λp2, their expressions deduced from (30) & (31), namely (32)(33)andThis result of ehmination wiU ∙.∙ be the same as if we supposed, in the equations (29),
(34)

that is, the same as if we ehminated any two new quantities b&c between the three new equations(35)This last elimination is easy, & gives, as the relation sought, the following: (36)As a verification, we may expand this relation, by substituting the values (30) & (31), so as to put it under the form
(37)for it will then be found to be satisfied, independently of the three medium-constants Uq , , «2»by the expressions (29) for the four indices Po> Pι∙> Pη∙Having found from theory that this relation (36) or (37) was likely to hold good for all media, I proceeded to try it on the ten media observed by Fraunhofer. Adopting first his values of λ, which are for these four raysλ^ = 0,2541; λρ = 0,2175; λ^ = 0,1794; λ^ = 0,1464; (38)(the unit of time being here the time which fight takes to traverse, in what is called a vacuum, the ten thousandth part of a Paris inch* ;) I perceived that within the limits of the errors of these determinations, &, indeed to a very great accuracy, the square of the period is the harmonic mean between the squares of the extreme periods & λ^; so that (39)

* [The metre superseded the French foot as the legal unit of length in France on Nov. 2"'*,  1801. The Paris 
inch equals 0’0254 of a metre.]

74-2
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588 XXIII. CORRESPONDENCEor in the notation (31), i^=⅜. (40)Availing myself of this circumstance, I put the relation (36) or (37) under the simpler form(41)142)or«2) and bj) being coefficients independent of the medium, which serve to calculate the index μ,j) when the indices μβ> P'f> Pη have been observed, & which have for their expressions, as func­tions of tp, or of λβ,λj), λ∩, the following: (43)
(44)supposing, as already mentioned, that the observed relation (39) or (40) is accurate. Employing also the observed values (38) of λ„, λ∏, λ∏, I found (45)For Flint Glass of the kind which he called Ν’" 13, Fraunhofer had found by observation:

and hence, by (42) and (45), I calculated (46)
(47)(48)The value observed by Fraunhofer wasThe difference between calculation and observation is in this case very small. A similar calculation for each of the ten media, the data being taken to four decimal places from your paper in the Transactions, & the logarithms being taken to five places, (even fewer might here have sufficed,) gave, very easily, results which may thus be collected:

Medium CalcuV' Obs^Flint Glass N^ 13 1,63492 1,6350'Flint Glass N" 23 1,63350 1,6337Flint Glass Ν’· 30 1,63051 1,6306Flint Glass N^ 3 1,60825 1,6085Crown Glass M 1,55901 1,5591 (49)Crown Glass N^ 13 1,52788 1,5280Crown Glass Ν’· 9 1,52945 1,5296Oil of turpentine 1,47444 1,4744Solution of potash 1,40270 1,4028Water 1,33346 1,3336. JThe agreement between the ten observed & the ten calculated values of is close enough; yet it is worth remarking that in almost every case the calculated value is a little less than the observed. This circumstance led me to think that by altering a little the multipliers , bj^
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X XI Π.  C O R R E S P O N D E N C E  5 8 9

i n t h e f o r m ul a ( 4 2), t h e a g r e e m e nt  mi g ht  b e  i m p r o v e d s o f a r a s  t h e i n di c es a r e c o n c e r n e d. 

B ut  i n o r d e r  t o j u stif y a n  alt e r ati o n  of  t h e s e m ulti pli e r s,  it i s n e c e s s a r y  t o s u p p o s e t h at t h e 

v al u e s  of  λ  m a y  b e  a  littl e alt e r e d,  o r  i n ot h e r  w o r d s  t h at t h e p e ri o di c al  ti m es of  vi b r ati o n  f o r 

t h e f o u r r a y s h a v e  n ot  b e e n  d et e r mi n e d  s o v e r y  a c c u r at el y  t h at t h e e r r o r s of  t h ei r d et e r ­

mi n ati o n s  m a y  n ot  h a v e  s o m e s e n si bl e eff e ct  i n t h e c al c ul ati o n of  t h e i n di c e s; b e c a u s e  t h e 

m ulti pli e r s  aj ^ , δ p  m a y  b e  e x p r e s s e d  i n g e n e r al  a s  t h e f oll o wi n g f u n cti o n s of  t h o s e p e ri o di c al  

ti m e s.

o r  t h u s m o r e  f ull y.

a n d

( 5 0)

( 5 1)

( 5 2)

a s  a p p e a r s  f r o m t h e c o m p a ri s o n of  t h e f o r m ul a ( 4 2) wit h  t h e r el ati o n ( 3 6) o r  ( 3 7). H o w e v e r  

it s e e m e d  t o m e  w o rt h  w hil e  t o t r y t h e eff e ct  of  s u p p o si n g  t h e v al u e s  of  λ  t o b e  q uit e  u n k n o w n,  

&  of  d et e r mi ni n g  t h e m ulti pli e r s  ¾ , f r o m o b s e r v ati o n s  o n  t h e i n di c e s al o n e.  T h e  f o r m ul a 

( 4 2), ( w hi c h i s n ot  d e p e n d e nt  o n  t h e p a rti c ul a r  s u p p o siti o n ( 3 9) o r  ( 4 0), p r o vi d e d  t h at w e  c o n ­

c ei v e  αj 5,  bj)  t o r e p r e s e nt t h e g e n e r al  &  a s  y et  u n k n o w n  v al u e s  ( 5 1) &  ( 5 2),) gi v e s  f o r a n y  t w o 

diff e r e nt  m e di a  t h e t w o e q u ati o n s:

( 5 3)

t h e a c c e nt e d  i n di c e s b el o n gi n g  t o t h e s e c o n d  m e di u m:  &  h e n c e  w e  h a v e,  b y  eli mi n ati o n.

( 5 4)

T o  a p pl y  t h e s e e x p r e s si o n s  I c h o s e  t h e t w o m e di a  W at e r  &  Fli nt  Gl a s s,  a n d  a m o n g  t h e v a ri o u s  

s p e ci m e n s  of  t h e l att e r, e x a mi n e d  b y  F r a u n h of e r,  I c h o s e hi s  N'  2 3,  ( s p e cifi c g r a vit y  =  3, 7 2 4,)  

b e c a u s e  it a p p e a r s  f r o m hi s  T a bl e  of  i n di c e s, e xt r a ct e d  b y  H e r s c h el  i n a rti cl e  4 3 7  of  t h e T r e ati s e  

o n  Li g ht,  t h at h e  h a s  o b s e r v e d  a n d  r e c o r d e d  t h e p h e n o m e n a  of  e a c h  of  t h e s e t w o m e di a,  a s  t h e y 

p r e s e nt e d  t h e m s el v e s i n t w o di sti n ct  e x p e ri m e nt s....

[ N u m e ri c al d et ail s  a r e  h e r e  o mitt e d  a n d  t h e r e s ulti n g t a bl e si m plifi e d.]
∖

... a n d s u b stit uti n g  t h e s e v al u e s  i n t h e e x p r e s si o n s  ( 5 4), I f o u n d

0 p = - 0, 1 5 4 7 7 8 8; - 0, 4 7 3 2 8 5 2;  « ^ =- 0, 6 2 8 0 6 4 0;  ( 6 1)

o r l o g(- δ p) = T,1 8 9 7 1 1 5; l o g ( δ p- ¾) = 1, 6 7 5 1 2 3 0;  l o g(- αJ = T, 7 9 8 0 0 3 9. ( 6 2)

U si n g  t h e s e t w o n e w  m ulti pli e r s  aj)- b ∩ a n d  e m pl o yi n g  e q u ati o n s  of  t h e f o r m ( 5 3) &  t h e
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590 XXΠI. CORRESPONDENCEobserved values of μ^, as stated in that Table of Fraunhofer to which I just now referred, I found as follows:
Med∕^ μp-μjyCdlc  ̂ μp-μj^Ohs^ Calc^-Ohs^F.G. 13 0,0132368 0,0132240 +0,0000128 'F.G. 23 0,0131015 0,0131015 0,0000000Γ.G. 30 0,0129154 0,0128810 +0,0000344F.G. 3 0,0116659 0,0115480 +0,0001179C.G. M 0,0076340 0,0076660 -0,0000320C.G. 13 0,0063462 0,0063550 -0,0000088 'C.G. 9 0,0064643 0,0064650 - 0,0000007OilofT. 0,0071984 0,0073020 -0,0001036Sol" of P, 0,0052832 0,0052770 +0,0000062Water 0,0042260 0,0042260 0,0000000.Hence Sum of positive differences = + 0,0001713,Sum of negative differences = — 0,0001451,Sum of all differences = + 0,0000262,Mean of all differences =+0,0000026.,This mean difference may be regarded as insensible; which cannot so well be said of the mean of the differences (49); & therefore the new multipliers «p — ftp & ftp θ-rθ probably not far from the truth, & may be thought to be somewhat more exact than the multipliers (45).To see now what relations they suppose between the periodical times of vibration, we are to resolve the equations (51) & (52), or more simply the two equations (50), so as to deduce the values of t∩ and tp, or of the equivalent expressions

The equations (50) give, when cleared of their divisors. (65)and therefore, by addition. (66)Substituting this expression for ip in the second equation (65), we find (67)that is, we have to resolve the following quadratic for tp,

Hence, by the numeric values (61) or (62), we find (68)
(69)(70)that is.and '.∙, attending only to the positive root. (71)(72)from which we derive, by (66),
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XXΠI. CORRESPONDENCE 591The values of these two ratios deduced from the observed values of λ, (38), by the formula (31),+0,4999527, (73)and +0,1813010. (74)Yet perhaps when the great difference of the methods is considered, the agreement of results, such as it is, may be thought to give some support to the theory. However, the fairest way to judge of the degree to which the results of these two methods approach to or diverge from each other is to compare the values of the periods λp and λj,,, which were deduced by Fraunhofer from a spectrum of interference, formed by a fine grating, (&, if I remember rightly, without any use of the knowledge of the refractive indices,) with the values of the same two mean periods λp and , calculated from Fraunhofer’s similarly deduced values of the two extreme periods and λ^, by employing the theoretical law of dispersion (28) and the 8 refractive indices , p∙p, μ-p > Pη> P^'b > P''d ’ P''f ’ p'm for water and for a specimen of flint glass, which were determined by the same optician for the same four definite rays, through a process which did not suppose any knowledge of the periods of vibration. Calculating *.'  the two mean periods 
λj) and λp, by the method above explained, that is by the formulae (33), (71), (72), from the two extreme periods , λjj considered as known by observation of the diffraction-spectrum, namely λ^ = 0,2541, λ^ = 0,1464 in (38), and from the 4 water and 4 flint glass indices, in equa­tions (59) & (60), considered as known by observation of two prismatic spectra, I AndAj, = 0,21221; λ^, = 0,17561: (75)values which do not differ very greatly from those which Fraunhofer found from the diffrac- tion-spectam, namely, ^, = 0,2175; λ,=0.17M= (38)since the differences, namely —0,00529 and —0,00379, (76)correspond each, in space, to less than the millionth part of an inch <fe, as compared with the corresponding period or undulation itself, to less than the fortieth part of such period. I even think that by pursuing, with greater accuracy & to greater extent than I have done, this train of investigation, it will be possible to deduce, from the phenomena of dispersion alone, those relations between the several periods or undulations which answer to my fractions tjj, &c., namely the ratios of the differences of the inverse squares of those periods, more exactly than from the phenomena of interference. And perhaps I may be tempted hereafter to resume this particular inquiry: since I see that many improvements might be made in the plan of the foregoing calculations.Meanwhile, as I have been, I am likely to continue to be, diverted for some time from this inquiry, I shall lay before you a few other results of past calculations, which look a little promising. I have hitherto mentioned only combinations of the four rays B, D, F, H. But by combining in exactly the same way the four rays B, F, G, H, I arrived at analogous conclusions. Thus, adopting Fraunhofer’s observed value of ,λg = 0,1587, (77)(in which the unit is still the ten thousandth part of a Paris inch, or the time light takes to traverse it in a space void of ponderable matter,) & retaining his values of , λ^, I found(78)
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592 XXΠI. CORRESPONDENCEand hence, approximately, in the formula (79)which IS analogous to (42), I found, by supposing (40)
(80)(81)

these numerical expressions for the multipliers , ,
or
Adopting, next, the approximate values of μB> P'f> Pη> stated, from Fraunhofer’s observa­tions, in your paper, & collected in table (49) of this letter, for the ten media mentioned in that paper or in that table, I found for those media, in their order, results which may be thus collected:

Medium CalcuV^ μ,Q Ohs^ CalcuV^ — ()bs'^Γ.G. 13 1,66066 1,6603 +0,00036 'F.G. 23 1,65910 1,6588 +0,00030F.G. 30 1,65569 1,6554 +0,00029F.G. 3 1,63101 1,6308 +0,00021C.G. M 1,5735 +0,00018C.G. 13 1,54001 1,5399 +0,00011C.G. 9 1,54182 1,5416 +0,00022OilofT. 1,48833 1,4882 +0,00013Sol" of P. 1,41272 1,4126 +0,00012Water 1,34140 1,3413 +0,00010.Here Sum of differences =+0,00202; )Mean of differences = + 0,000202. jThis mean is not insensible; nor does it seem likely that it would be made so, by redressing the little errors of these comparatively rough calculations: for instance I happened to employ the value 1,74344 for loga^ instead of 1,74345; but if the latter more accurate logarithm of 0,55392 had been employed it would have tended to increase (though very slightly) the excess of the calculated over the observed I proceeded ·.’ to calculate the multipliers ⅝ -& b^, in the formulaby employing the expressions (84)
(85)

which are analogous to (54), & in which the four indices μg, μ∩ are those determinedfor water, and μ^, μ^, μg, μ'jj are those determined for flint glass (Ν’· 23), by the means of the two experiments of Fraunhofer on each of those two media. Those mean values of μβ,μρ, Ρή
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XXIII. CORRESPONDENCE 593for water, &, of μ'β, μ'p, μ'∩ for that specimen of flint glass, have been already stated in equa­tions (59) & (60) of this letter; with respect to &, they were taken out in the same way, from Fraunhofer’s table extracted by Herschel, which gave
In this manner I found, by (85), (86)

(87)(88)With these new multipliers & the observed values of μ^-μ^, μ^-μ^,, as stated in table (63) of this letter for each of the ten media, I found for those media the following values of μ^ — μ^, calculated by the formula (84), & the following differences between calculation & observation:
Medium μ^ — μ^ΟαΙο^ μ^ — μ^Οόβ^ Calc^-Ohs^F.G. 13 0,0120606 0,0120250 +0,0000356 *F.G. 23 0,0120799 0,0120805 -0,0000006F.G. 30 0,0119152 0,0119400 -0,0000248F.G. 3 0,0107262 0,0107300 -0,0000038C.G. Μ 0,0067819 0,0067940 -0,0000121C.G. 13 0,0055411 0,0055710 -0,0000299 ’ 'C.G. 9 0,0056337 0,0056050 + 0,0000287OilofT. 0,0064507 0,0064620 -0,0000113SoFofP. 0,0044777 0,0044970 -0,0000193Water 0,0034739 0,0034740 -0,0000001.^Here Sum of positive differences = +0,0000643;!Sum of negative differences = — 0,0001019; ∣Sum of all the differences = — 0,0000376; jMean of all the differences = —0,0000038;]so that the separate differences are small, much smaller than those in table (82), and the mean of all is quite insensible & is less than the fiftieth part of the mean in (83). There is reason to consider the new values of the multipliers (87) as more exact than the old ones (80), from which however they do not very greatly differ. And substituting the new values of and inthe equations analogous to (50), namely in the following:

or in these others, derived from them,
andI found first this quadratic equation for tp,

(91)
(92)(93)
(94)(95)
75
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594 XXIII. CORRESPONDENCEor, confining ourselves to the root which lies between 0 and 1,= 0,5426557; (96)and then, Iq = 0,7970463. (97)These values, deduced solely from the indices of four rays observed in two prismatic spectra, differ sensibly from the values +0,4999527 (73)and Iq= +0,7769594, √78)which were deduced solely from the spectrum of diffraction; but it may be considered as some­what confirming the theory that they do not differ still more. And if we employ the prismatic values (96), (97) of ip, t^ to calculate the two mean periods or undulations λp, from the two extreme periods considered as known by observations on diffraction, we find, by themethod already explained, λp = 0,17568; λβ = 0,15746, (98)values which differ from those deduced from the observations on diffraction alone, namely from the following(38) λp = 0,1794 and λe = 0,1587, (77)only by the little differences -0,00372 and -0,00124, (99)of which each is much less that the millionth part of an inch, if expressed in space, & of which the former is about the fiftieth part, & the latter less than the hundredth part of the whole corresponding period or undulation λ. But what appears to me the most remarkable and encouraging result of these calculations, is the near agreement of the two prismatic results, (71) & (96), which give respectively
(100)

the first having been obtained by combining the rays B, D, F, H & the second by combining the rays B, F, G, H, as observed in two different spectra pioduced by prismatic dispersion. So close is this agreement, that, if Fraunhofer’s values be taken for λg and , the two resulting values of λp, namely(75) λp = 0,17561 & λp= 0,17568, (98)when reduced to what they represent in space, do not differ by so much as the hundred- miUionth part of an inch in the length of the concluded undulation. If methods more refined had been employed,—^for example, the method of least squares in combining more media than two,—& if greater care had been given to the numerical part of the calculation, it seems reason­able to think that the agreement might have been found closer still. But I have reason to think that, for highly dispersive media, even the fourth term (= of the series (24) for the index/X is sensible; and that it must be allowed for, if we would obtain a sufficiently exact expression for the dependence of that index on the period or undulation λ.
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XXIII. CORRESPONDENCE 595If you should not adopt these views; or if, adopting them, you should still choose to con­tinue the use of the formula __ . . (101)(in which θ varies inversely as λ, and H is a constant quantity,) as giving a good approxima­tion to the truth; you may possibly find it convenient to employ occasionally this simple rule, which will give quickly a near approach to the value of : (102)The value of θ„ thus found is expressed in minutes. For example, in the case of Flint Glass N^ 13,
This value = 15° 56' is very nearly correct, as a solution of the equations (103)and having the values 0,2541 & 0,1464, & μ∩ having those stated above. A process of correction, with which I shall not trouble you at present, gave me as a next approximation 
θ^ = 15° 57' 53"4; on calculating θg from which, by the second equation (103), and then calcu­lating from it by the first of those two equations (103), I was brought back almost exactly to what I set out with, as the second approximation, for I found = 15° 57' 53''5. But this exactness appears to be useless here. My formula for the first approximation is

(104)
I forget whether that which I gave you extempore in the section room*  was exactly the same as this.I became greatly interested lately in the Dynamics of Light, & thought that I could in some things improve the theory of Cauchy; especially by bringing the results to agree more closely with those of Fresnel, respecting the laws of double refraction & polarisation; though I was obliged to let some differences remain, such as that striking one concerning the relation of the direction of vibration to the plane of polarisation, & a few others, no one of which seemed capable of being soon decided by experiment. It is likely that I shall resume the whole subject, after the end of my next course of lectures on Astronomy, which always distract me from study. But before that time I hope to see Professor Lloyd, who has not yet (I believe) returned from a continental excursion; and I shall give him your message about the arragonite.—This letter has swelled to an Essay, but I expect to send it in an official frank. Accept my thanks for the new indices in your last letter, & believe me to remain, my dear Sir,Very truly yours, 

William R. Hamilton. Prof. Powell.
* [British Association Meeting at Dublin, 1835.]

75-2
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596 XXΠI. CORRESPONDENCE[To Professor Powell.}
Observatory, Dublin, 

Dec∖ 1835.
My dear SirYour letter reached me yesterday or the day before, & I have great pleasure in trying to remove any obscurity into which I may have fallen, in my former long epistle. I ought perhaps to have justified my assumption of the formula (2)or at all events I am bound to prevent any mistake of the meaning which I attach to that assump­tion. For, you will observe that I did not pretend to prove that no other formula would satisfy the differential equation (1)I only showed that this particular formula (2) was one solution of that differential equation, provided that λ & μ are supposed to be connected by the relation (5)& thence concluded that periodical vibrations of the particular kind expressed by the formula (2) MAY be propagated (on Cauchy’s principles) through a system of attracting d; repelling points, PROVIDED that the slowness μ of propagation is connected with dr varies with the periodical time λ of vibration by the law or relation (5); and even that this law or relation is a necessary condition for the propagation of such vibrations: without pretending to decide whether vibrations of some 

other sort may or may not be propagated according to other laws of velocity. I confined myself to the study of vibrations of that particular sort which I thought that induction from phenomena had led mathematicians to consider; & did not presume to say that I had followed out deductively all possible mathematical consequences from the differential equation of vibration. Yet, as I have hitherto studied much less the physics than the mathematics of light, I am anxious to have your opinion as to the correctness of my assumption (2), considered as suggested by in­
duction ; & to know whether it really appears to you to contain anything new or unusual, when I explain fully my meanings for the symbols.To represent the phenomena of interference, it is supposed, in the wave-theory of fight, that certain points, or molecules of ether, vibrate periodically in space and time·, in such a manner that if we consider the propagation of an indefinite series of plane waves parallel to the plane of yz, all the vibrating points, which at any one moment t have any one common x, have also ∕7i z7 ∕7Zequal and parallel displacements ξ, η, ζ, and velocities ττ> 37» of vibration; the same dis- (JbZ∕ Cbb (thplacements & velocities recurring periodically, in time after all the multiples lλ, 2λ, 3λ, &c. of some one fixed time-period λ, & in space after all the multiples lλ', 2λ', 3λ', &c. of some one fixed space-period λ': so that we may put
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XXIII. CORRESPONDENCE 597the functions φ, χ, ψ being such as to satisfy these conditions of periodicity
Besides, by the conception of the velocity {v} of propagation of a wave, it is equal to the ratio 
-γ of the period λ' in spa^,e to the period λ in time; & accordingly it is thus that the periods in Λtime, at least for the planetary spaces, have been inductively concluded from the periods in space observed in what we call a void (through the phenomenon of interference), and then divided by the common velocity of propagation considered as also known from astronomical observation: and more generally, the conception of a uniform velocity of propagation conducts to these formulae of displacement, ∙
in which v = , & ∆f = 0, ∆η = 0, ∆ζ = 0, if Δ — t j = any multiple of λ. Again, theo∕ refraction, as explained by the theory of waves, conduct to the conclusion that the velocity v 
of propagation of light, of any one colour, in any transparent terrestrial substance, is less than in the planetary spaces & less in the ratio of 1 to μ, μ, being the index of refraction: we must suppose that either the period in space is diminished, or the period in time increased, or at least that the period in space becomes less as compared with the period in time, on entering a transparent terrestrial substance, than it had been in the planetary spaces. And the phenomena 
of dispersion show that this diminution of the ratio j greater for violet than for

red light, because they show that the index of refraction is greater. Besides it was concluded by Newton, though with some diffidence, & it has (1 believe} been confirmed by subsequent obser­vation of the phenomena of thin plates; (but I beg you to set me right if I am mistaken on this point of the induction;) that whatever the colour of the light & whatever the transparent medium may be, the length of a fit,*  or (as we would say) the length of an undulation, that is the period in space, which I have here called λ', is inversely proportional to the index of refraction, so that the product μλ' is constant for any one colour, & does not vary with the medium, though it varies with the colour, and is less for violet than for red light. And hence I gather, what indeed is very natural & seems to be almost necessary a priori in the theory of waves, and what I thought was generally supposed by undulationists, though I do not remember seeing it expressly stated in any book, and beg of you to set me right if you know of any facts which militate against the conclusion: namely that the periodical time of vibration, which I have called λ, in this letter and in the last, is constant for any one colour and does not vary with the 
medium. For if we fake as the unit of velocity the velocity of propagation of light in the 1 h'

* [This is Newton’s phrase. See Newton's Opticks, Book Two, Part πι, Prop, xπ, new edition, Bell (1931), p. 281.]

planetary spaces, we shall have in general v = -; & since we have also v = -γ, we may conclude p, Athat λ = aλ' = a quantity depending on colour only. Again to represent the phenomena of plane
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598 XXIII. CORRESPONDENCE
or rectilinear polarisation, and the interference of polarised rays, we suppose the displacements of the vibrating molecules to be either exactly or nearly parallel to or contained upon the plane 
surface of the wave, & to have a line of direction independent of the time, I therefore, who am not now considering circular polarisation, nor indeed extraordinary media, but who may suppose if I choose that the light is rectilinearly polarised, am at liberty to suppose that while the wave is parallel to the plane of yz the vibration is parallel to the axis of y, & *.'  to take for my formulae of displacement the following: in which the function χ must satisfy the condition ∆7=∆χ(μaj-i) = 0, if ^(μx-t) = a,ny multiple of λ. The simplest way of satisfying this condition, & the one which seemed to me to 
cbgree best with the received way of representing phenomena in the theory of waves, was to take 
or, which comes to the same thing. (2)
Iq being entirely arbitrary & > ''7ι being arbitrary but small. The constant ηθ is introducedfor greater generahty; I have some reasons for thinking it equal to -ηχ, so that the absolute 
displacement would vary as the versed sine of the phase·, but in the present investigation, it is sufficient if we can rightly represent the laws of relative displacement, which are not affected by the introduction of an arbitrary common term; so that if you do not like my you may for the present expunge it. Having thus shown, perhaps at too great length, my reasons from 
induction for assuming the formula (2) as a probable law of vibration and one which I thought diff ered httle (if at aU) from the assumptions of other undulationists, I may refer to my former letter for the process, taken from Cauchy, or (at the least) suggested by him, by which I com­
pared that assumed law of vibration with his differential equations of motion & showed that it was at least a particular solution of those equations and '.' dynamically possible, if μ be supposed 
to depend onλby the relation (5).After all, if you choose rather to consider μ as depending on the period in space, which is different for different media, as well as for different colours, & which I shall still call λ', you have only to change λ to μλ' in that relation (5), & it then becomes 
that is, as in formula (8), 
in which is still the (not necessarily positive) quantity
and θ is still the semi-difference of phases of 2 near molecules, represented now by the expression 
θ = , which perfectly resembles Cauchy’s. My essential objection is to the omitting of the
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XXIII. CORRESPONDENCE 599
sign of summation 8 and not to the considering of periods in space, though I think periods in 
time moΙ'e convenient, because they do not seem to change in passing from one medium to another. On this last point of physics, I repeat my request that you will set me right if you think me wrong; & as to the mathematics connected with the sign of summation, I shall gladly write again, if you think there is the least occasion for it. My Lectures are just over; but, as I guessed, I feel more anxious at this moment to pursue my general view of dynamics & to expand the principles, connected therewith, of my Calculus of Principal Functions than to resume for some time my suspended optical researches. Believe me to remain very truly yoursW. R. Hamilton.[The remainder of the correspondence with Professor Powell is of no scientific interest.]

To Sir John Herschd,*
Observatory, Dublin, 

Feb. 8*'⅛,  1839.
My dear SirWhen we parted last Summer on the banks of Ullswater, you were pleased to encourage me to pursue my researches respecting the dynamics of light; & I think, from what you said on the occasion, that you are not likely to consider it as an intrusion, if I sometimes endeavour to take advantage of your greater knowledge of what has been done in mathematics abroad, so as to learn whether my results have been anticipated; & whether, even where this may not have been done, the researches and results of others are sufficiently analogous to my own to deserve and demand my attention.It is only since the beginning of the present year that I have resumed my speculations upon light; and the problem which I have been recently considering is the propagation of vibration, properly so called, as distinguished from the mere preservation of a mode of vibration already established. Most of my own former calculations, & nearly all of those which I had seen in the . writings of others, at least all those which had appeared to me to be sufficiently exact, were directed to the examination of the conditions under which a mode of vibration, thus once established, might thus be preserved for ever, through an indefinite extent of space and time; they related to the discovery of particular integrals of the general differential equations, giving periodical expressions for the disturbances as functions of x, y, z, t, which were not discontinuous 

functions, at least within the range of any single medium. The whole of each such medium was supposed to be agitated at once; & the question was, what mode of agitation could be per­
manent, the acting forces being taken into account. It was not shown, at least not to my own satisfaction, how the vibration could spread, according to the generally admitted laws, from one part of a medium to another part of the same, leaving alΓbeyond and all behind it at rest. Much had been done,' perhaps, in the dynamics of light; little, I thought, in the dynamics of 
darkness.To give a very simple example of the difficulty that appeared to me to exist, & at the same

* [Sir John Frederick William Herschel, 1792-1871. For a general account of Hamilton’s correspondence 
with Herschel, see Graves, Life of Hamilton.']
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600 XXIII. CORRESPONDENCEtime of the questions that I have resolved, let us consider the case of a single row of equal particles, arranged at equal & finite distances on one indefinite straight line,-3 -2 -1 0 +1 +2 +3so that their abscissae x may be considered as integer numbers, positive, negative or null, & that their ordinates ∙y at first all vanish. Under these conditions, equilibrium subsists and motion will never arise. But if we now remove some or all of these particles.
indefinitely little on either side from their natural positions on the axis of x, in directions per­pendicular to that axis; so as to give to each particle an indefinitely small ordinate (positive or negative or null,) without changing its abscissa x; the equilibrium will in general be broken, and motion will commence, whether we do or do not give any initial velocities to the particles. And if for greater simplicity we suppose that the force mf(r) which any one of these particles exerts on any other is attractive at the distance r = 1, & insensible at the distance r = 2 and at all greater distances; we shall have this general differential equation, as regulating the motion of any particle ,
or more concisely (1)α2 = wf(l) being the attraction at the unit of distance, that is, the attraction exerted by any particle on either of the two immediately adjacent. A particular integral of this equation is(=const. + const. × sin {2,xv — '2atsin v + const.),and a still more particular one is therefore (2)
η and V being any arbitrary constants. This last expression represents therefore a mode of vibration of which the permanence is possible', and which would continue for ever, if it were 
once established for all values of x. If even we suppose that, at the origin of t, the values of y^ ( & of its differential coefficient y'χj=D(y^ ( agree with this expression, or in other words that the initial displacements & initial velocities are all such as to agree with this law; so that we have, for all values of x, the conditions (3)then the expression (2) foi y^^, or the mode of vibration which it represents, will hold good for all values of t and of x, that is, at every moment & for every particle. And this is a fair specimen, I think, of the sort of results which I had obtained myself, & of the most satisfactory among those which I had seen as obtained by others, respecting the dynamics of light as distinguished from the dynamics of darkness, or the preservation rather than the propagation of vibrations. It gives, for example, in this particular vibratory motion, the expression
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XXIII. CORRESPONDENCE 601for the rapidity with which a given phcbse travels', and this is the simplest (though not the most accurate) form of Cauchy’s Law of Dispersion. It is in fact the form which Mr Powell at first supposed to foUow from Cauchy’s investigations on that subject.But let us now suppose that the initial conditions (3) are satisfied only for a finite range of x, or in other words that only a finite number of the particles have their initial displacements & velocities such as to agree with the law (2). To fix our conceptions, let the length of a wave be an exact multiple n of the molecular interval, so that v = and let a large but finite number i of nsuch wave-lengths, immediately behind the origin of x, be the extent of initial disturbance; so that the particles mθ, , w_2, ... , have their initial displacements & initial velocitiesdetermined by the conditions (3); the other particles , Wg, m3, ... Wo□, and , ,, (and also, by (3), the particles Wq, w_2„, ... having their initial dis­placements & initial velocities null. In other words, let the conditions (3) be satisfied for all values of x which are not greater than 0, and not less than — in', but let y^ 0 y'χ^o vanish for all other values of x, and even, by the conditions (3) themselves, for
These things being supposed, it is clear that the law (2) cannot hold good for all values of x & i; but the astronomical phenomena of the actual transfer of luminiferous vibration from one part of space to another, & the terrestrial phenomena of Sound, &c., together with the calculations already made respecting these phenomena, appear to make it probable that we shall find, with some reasonable degree of approximation, that the law (2) still holds for those particular values of X and t which are connected by the relations (2)'In fact, if this were rigorously true, it would imply that the vibration travelled onwards, with a constant velocity = , and a constant amplitude = 2η, occupying always i wave-lengths, oragitating always a row of in particles, but leaving all which are beyond and all which are behind these undisturbed. I thought it therefore important to inquire, how nearly these conclusions follow from these assumptions; or, in other words, how nearly the differential equation (1), combined with the initial conditions (3) for all values of x from 0 to — in, and with the con­ditions
for all other values of x, conduct to the law (2), combined with the restrictions (2)'. And I have found that from these premises results do follow, which have a certain resemblance to the results thus expected or guessed at, but which also differ from them sensibly.After long circuits of analysis, I obtained this form for the general & rigorous integral of the equation in mixed differences (1):

HHFII

(1)'76
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602 XXIII. CORRESPONDENCEwhich I afterwards developed into this other form

‰,o y'x,Q being two quite arbitrary functions, representing the arbitrary initial displacements and velocities. Either of these two forms, (1)' or (1)", may easily be shown a posteriori to repre­sent generally and rigorously the integral of the equation (1); & the latter of them may receive this elegant symbohc transformation: (irwhich might have been directly obtained, by a simple process, from the proposed equation (1). Introducing now the initial conditions, or determining the arbitrary functions so as to havebut (3)'
(3)"
(2)"I find this other expression, also rigorous, but adapted to this particular question.

which may be shown a posteriori to be correct, especially if we observe that
according as the integer k is >0, = 0, or < 0.It remains therefore to discuss the rigorous integral (2)", & to examine how nearly it repro­duces the law of vibration (2) with the restrictions (2)'.The expression (2)" may be separated into two parts, of which one changes sign with a or t, while the other remains unaltered when the sign of α or Z is changed; the latter of these two parts expresses the effect ι of the initial displacements, and the former expresses the effect Z^. of the initial velocities; we have, therefore.Effect of initial displacements (2)'"

(2)iv
and Effect of initial velocities
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XXIII. CORRESPONDENCE 603But if it be true that the vibration spreads in one determined direction, that direction must depend on the initial velocities, & must change when a changes sign; so that while Yg,ι->rZ^j is the displacement, whether = 0 or > 0, of the particle at the time t, x & t being supposed for simplicity to be each > 0, & the vibration being supposed to spread from mθ towards Wα,, it seems that we ought to have a displacement either exactly or sensibly null, Yg. f—Z^^ = Q, when, by changing the sign of a, we suppose the vibration to spread the contrary way towards m_oo. We are therefore to inquire whether, for positive values of x and t, the functions Y^ ι & 
f are exactly, or even nearly equal; that is, whether the effects of the initial displacements & velocities are exactly or nearly the same.Now, these two functions cannot be exactly eqvxil for all positive values of x & i; because one of them, Yg∙j, is an even function, & the other, Z^^, is an odd function ofi. Yet I have found that these two functions approach to a numerical equality, as t or x or either tends to + ∞; although one changes sign with t and the other does not.This result is of the same character as the theorem: 

according as α is > 0, or = 0, or <0; and indeed I make a frequent use of this last cited theorem in the general discussion of the foregoing integrals.It is instructive to consider first the case of i = ∞, that is, the case when all the particles behind wθ are supposed to be agitated according to the law (2), at the origin of t. This case is simpler in itself than the case of i finite, & the latter can be reduced to the former. The effect of a finite number of initial waves may be considered as the difference of the effects of two systems of such waves, each infinite in number but terminating differently.Making i = co,l find that the integrals become

As n, though large, is finite, it is permitted to suppose that at is a good deal greater than n^;

I shall suppose it to be a large multiple of

76-2 
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604 XXΠI. CORRESPONDENCEin which s is a positive number so large that we have, sensibly,
Then, for all values of x between the limits
I find that we have, nearly, (& more and more exactly as t or r increases without limit,) 

and therefore 
so that these two functions are in fact nearly equal, if n be large, that is, if the wave-length con­tain many molecular intervals, & if at the same time we take t sufficiently large and confine x within the hmits just assigned. On the same suppositions, the displacement becomes*  

* [See Appendix, Note 12, pp. 640, 641.]

it differs therefore from that expressed by the law (2), only by a small and constant quantity. But the limits found for x differ sensibly from those anticipated in (2)', & conduct to a sensibly 7Γdifferent law of the velocity of propagation. In fact, on taking aj = αicos-, I find 
the coefficient of the cosine of the phase being reduced to half its former amoimt; and this coefficient becomes insensible on taking 
which assumption gives

This value of the displacement remains sensibly constant, till we pass to x = at — ∣s' {cvt}^, 
s' being another positive number so large as to give sensibly
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XXIII. CORRESPONDENCE 605But while x increases from to at + ^s' the displacement y^ ( decreases fromθ’ when a; is =at; & when x is greater than αi + ∣5'(αi)^,the displacement is insensible. Now, by the suppositions which we have made, the limit conjectured in (2)', namely
is greater than at cos ~ ÷ ∣ than at — ⅜s' {at)^; we may even consider its excessover the one, & its defect below the other, as increasing nearly proportionally to t. The velocity of propagation therefore cannot be considered as = α ; but must rather be represented by

In short, if we were to consider a as the velocity of propagation, we should be obliged to consider as the front of the wave, or rather of the wave-system, a particle which is not properly vibrating at all but is only displaced by an amount =η commonto a great and increasing number of particles beyond and behind it. But when we consider 
a cos V as the velocity, we get for the front of the wave-system a particle which is not merely displaced but vibrating, with a phase determined by the law (2), though the amplitude of its excursions is only half the amplitude which that law would assign. It is situated in the middle of an interval which does indeed continually increase, but bears continually a less and less ratio to the time the particles beyond which interval have no amplitude of excursion, while the particles behind it have the full amphtude required by the law (2). And whatever particle we take, throughout this interval, the ratio of its abscissa x to the time t tends ultimately to the limit 
and not to the limit

I think then that a distinction is completely estabhshed, at least in this particular question, between the rapidity of progress of a given phase, in a space already occupied by an indefinite system of waves, & the velocity of propagation of vibration, by which a bounded system comes to 
occupy new parts of spcLce. The two velocities differ little, it is true, if the number of molecular intervals contained in one wave-length be great; but the difference is finite and follows a simple law, namely that of the difference between the cosine of a small arc and the ratio of the sine of the same arc to that arc jtself; the latter being the old, & the former being the new result—at least, the result is entirely new to me; I am anxious to learn whether you know of its having been obtained before. Of course I am aware that it would be precarious and premature to speculate on any physical consequences of it, until it shall have been made a nearer approach to nature, by our considering, as no doubt we ought to do, the action on any one particle as being the resultant of the actions not of two but of many others.
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606 XXIII. CORRESPONDENCEIt is remarkable that the same reasonings conduct us to consider still a third different velocity, namely that with which the disturbance (as distinguished from the vibration} is pro­pagated. This velocity of propagation of disturbance is simply = a; it is therefore independent of the length of the wave, & is equal to the square root of the attraction exerted by any one particle on that adjacent, the distance between these two adjacent particles being taken as the unit of length.
Disturbance is also propagated backu)ard with the same velocity a; in such a manner that (when t is large and positive as before) all negative values of x which are algebraically 

givethe value x = — at gives 
and values algebraically » give sensibly
that is, they reproduce the law (2) without any sensible error, the effect of the discontinuity of the initial state of the medium not having yet had time to show itself.It seems unnecessary to trouble you at present with any further details; except to mention generally that when I return to supposing the number i of the wave-lengths primitively agitated to be not infinite but only very large, I find results entirely analogous. Disturbance is pro­pagated forward from the front and backward from the rere of the initial multiple wave with a velocity which may still be considered as =a; there is also a forward (but not a backward) propagation of vibration, & its velocity is still =acos-; the amplitude of the excursion is for a long time undiminished throughout the much larger part of the travelling multiple wave, of which the extent may long be considered as retaining its initial value -in∖ but however great the value of i vaa,y be, that is, however many simple waves we suppose to be in vibration at the origin of t, if only this number be finite, the progress cf time will at last cause the terminal 
diffusion to encroach more and. more upon the advancing ⅜-fold wave, till its vibratory motion will have spent itself to all sense on the particles before and behind it, according to a law which I have been able to assign, and which gives, ultimately for the central particle, whose abscissa is — ψ + αicos^j, an amplitude of excursion which varies inversely as the square-root of the time.—The formulae allow us also to trace the motion backwards*in  time, so as to say what must have been the disturbances at any earlier epoch, in order to produce the assumed state at the moment t = 0.Feb.It would be unreasonable to ask you to examine at present into the correctness of the fore­going results; which may indeed be affected by some mistake of transcription; but perhaps 
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XXIII. CORRESPONDENCE 607with little trouble you could give me an opinion with regard to their novelty, which might prevent me from claiming as my own what had been already discovered by others; or, in the contrary case, might encourage me to pursue the subject farther—I shall perhaps say some­thing on the matter to the R.I.A. on }) next; in which event, it will be expected that I should allow some notice of it to be printed in the “Proceedings” or Monthly Notices.Now, any communication from you which should reach me in about a week from this date might be of use in the construction of such a notice; & that without mentioning your name unless you expressly desired or allowed it.—Received Diploma & Letter for Miss H.*W. R. H.
* [Miss Caroline Herschel. See Graves, Life of Sir W. R. Hamilton, π, pp. 290, 291, for Herschel’s reply to 

this letter.]
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