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XX.

PROPAGATION OF MOTION IN ELASTIC MEDIUM—
DISCRETE MOLECULES*

[1839.]
[Note Book 53.]
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[Statement of problem.]
(Jan. 9th, 1839.)
Let there be proposed the equation in mixed differences:
d2
g2 Mot = (zg1,e= 20,0 Mo1,0)5 (1)
in which a is constant, real & positive. One integral of this equation is
27 (x
T (2,
A, a, being constants, and @ being connected with A, @, by the relation
2 -2
Sl fain. o )
i)

* [For a synopsis of this paper see pp. 576, 577 and also Letter to Herschel, p. 599.]
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because the equation (2) gives
d? _[2m\? 27 (x ;
dtz Ne,t = A Ccos A (a' ycd )

2m 27 (%
Na+1,6 = 2t + Ng1,1= 2VOI8 3= CO8 |- | = =1 .

’ ’

and

So that we may suppose

m™ pa o™ ’
g =Sy (3)

’

and a and a, are nearly equal, if )%:—z be small.

We may put r=taV'2;
(so that if =~ now represent the time, the total attraction is equal to the distance from the
position of equilibrium); & then the original equation (1) becomes

a> h
(d—_’,2+l)nz,r=%(nx+l,r+7’z—1,1); (1)
while the particular integral (2) becomes
—vers{2——”(£-— ! )} ‘ 2)
. A\a, aV2. }
the relation (3) or (3)’ still holding good. We may also put, for abridgment,
217 _"\/é=\/vers,u,; (3)/1

»= /\7, 3 G = ey,
& then the particular integral (2)" becomes
g, = VIS (4 — 7). (2)"
That is, (1)" has (2)" for a particular integral, if the relation (3)” hold good.
The particular integral (2)'" gives by differentiation

’ d 2 nr
My = -y = — D (0 —7); (2)
d \2
Neyr= (E') e, =M? COS (& —mT); By
also
3 (Maz41,7+ Mgy, ;) = 1 — CO8 (& — M) COS =17, , + Vers p cos (ux —mr); (2)
& accordingly these give, by (3)",
77::,7'*"’7:,1: % (7]2+1,1-+"7:c—1,-r)' (1)”

Now let it be supposed that when 7= 0 the values of 9, , & %— 7g,» Vanish for x=0 & for all

positive values of #, & are consistent with the equations (2)"” (2)"”’ for all negative values of z;
so that we have
Nz0=0, 770=0, ifz«0, (4),
but
Ng,0=VeISu&, 7z o= —msinpx, ifx*0; (4),
and let it be required to determine generally the function 7, ,,  being at present restricted to
integer values.
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XX. MOTION IN ELASTIC MEDIUM 529

This question corresponds to the propagation of vibration in an elastic medium, & must
illustrate the spreading of such vibration from one part of the medium to another, while the said
vibration remains, or may remain, (approximately) confined between 2 parallel and indefinite
planes which move (& why move? Sept. 30t2/57) with one common velocity. It ought to turn

out that if the velocity of propagation % is positive (= here being taken to represent the time),
so that 7, , is positive for small negative values of z, then 7, . will take sensibly the value (2)"

as soon as 7%- is sensibly greater than x; but that if % be supposed negative, then 7, . will

sensibly vanish when vy, {8 sensibly > —, the value of 7, , being in this case negative for

v
small negative values of . And the physical explanation is doubtless of this kind: p being in

both cases supposed for simplicity to be such that 277 is a large positive integer number,
“w
v= %:, = '\—Z—’ , we have in both cases positive displacements »,, , for all the values 2= — 1, 2= -2,

e = — (4v— 1); the greatest being that which corresponds to 2= — 2v= —T. but in the first

case, in which m is > 0, the displacements corresponding to x= —1, = — 2": e =—(2v-1)
are all increasing, while in the 27 case,in which m < 0, the same displacements are all decreasing,
at the same original moment = 0; it is clear then that in the first case the system is departing
more and more from equilibrium, while in the 2" case it is approaching more and more to
equilibrium, at the moment 7=0, & within the extent included between the limits x=0 and

2= —2v=—_; and that therefore the originally quiescent part on the positive side of the limit

x=0 must be much more disturbed in the first case than in the second. But it is interesting
to investigate the law & quantity of this inequality of disturbance, by resolving, at least
approximately, the algebraic problem proposed in the preceding page.

Perhaps the theorem of Fourier* might help to resolve this problem ; but I prefer at present
to proceed in a way of my own, as follows.

Let Y—,7 =", — VOIS (& —m7); (5)
* [Hamilton appends the following note. *Fourier’s theorem is that

1 [ 0 , :
1@=5 [ ([, con oa-a2)s ) ) a,
or, as it may be better stated,

f(x)=2lw A /Oo (-/w e cos (o —ox’) da)f(x’) da’.
h=0 )= =
In fact, as I have remarked in an old book (Oct. 1835), we have AR
/fw € cos (ax—ax’) da= \/;::e_ "’4: ;
-+ multiplying this by f (\x' ) dz’ and changing «’ to 2+ 2t Vh, we have

-— 0

/w (/wwe"‘“’ cos (ax—ox’) da)f(x’) daz:’=2\/;feo et f (x+2tV'h) dt,
o - 00
of which the limit relatively to =0 is 2xf (z).”]

HMPII: 67
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530 XX. MOTION IN ELASTIC MEDIUM

& let us introduce, instead of the old system of functions v_, ., 7,_; . (» being >0), a new
system, ¥, ., M,_1,,, of which each vanishes, as also does its 15t differential coefficient relatively
to 7, at the moment »=0. We shall then have

?/'-'-x,r + Yzyr = %y—a:—l.-r - %y—:c+1,r; (l)”
Ynit,rHYni1,r =3 Ynio,r+ Yn, o) (Y
Y1, +Y,r =3 Ysr+n0,,—Versmr); (1)
No,r  +Nor =¥ (M.t Y.+ Versptmr); (1)
"):L,-r + Mr = % ("7n+1,'r - 3 "]n—l,f); (l),:
n being, in each of these 4 last formulae, an integer > 0. Also

0=Y1,0=Yn,0="n-1,0="n-1,0; 7 being still >0. (4)

We have also vers (pu+mr) = 1 — cos p cos mr + sin p sin mr
=1—(1—m?) cos mr+mV2—m?sinmr; (3)"

so that m may be considered as the only arbitrary constant of the problem & may be supposed
to be small and positive: attending only at first to the case of forward propagation.

[Properties of operator V..]

Let the notation V.fr=d, (6)
imply that b+ b=t (6)
& that $y=0, Vi =0, (6)”, (6)”
Then if we put {1 - (1-m?) cosmr}=u,, (7)
we shall have tversmr=V _a; (7)
& putting also ImV2 —misinmr=B,, (7"
we have the equations A 4

Yn+1,0= Vs Ynso,7 +Yn,7)5 (8)
Y0 =1V (s, +70,.) — Vias; (8)s
No,r  =3Ve (M2 +Ys,2) + Vo (a4 B,); (8)s
N 5 iV, ("770+1, 7+ Mn-, ) (8)a
n being still an integer > 0. Make
Mo,5 = Vo, =H,; 9)
then Yn+1,7=3Vr Ynsg,r +Yn,2)s Mnit,r= Ve Mnsa,r +n,2)5 (91, (95
Yir =3V, We +H. =V, 2,); m,, =4V, (n,+H,+V,a); (9)2, (9)g
H, =1V,(,,+%,.+2B.); . (9)s
& these would give*
H. =0, O et/ VOPR (
{n;,,=v,af/:-' A } if B, were =0. (10)

* [If the term B, is absent, H,, ¥;,+1,7> Ya,r+72,7» --- TOpPresent the transverse displacements of points
Py, Py, Py, ... of a stretched string having equal masses at P;, Py, Py, ... and P, P, =P, Py=etc. If P, is always
fixed and if the others are initially at rest in the equilibrium position, then there are no solutions except

H,=0, y1,,+m,-=0, ete.]
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XX. MOTION iN ELASTIC MEDIUM 531

It results from the investigations of Oct. 1835, that the same supposition (B8, =0) would
give generally*
8 Lo ([n + 2% — l]k—l V:L+2k+1“1

—'yn,'r:"ln,v-:ﬁ (k)0h| [k]k 22k ) (10),

the square brackets denoting factorials; so that, more fully,

n(n+3
“Yn, 2 =M= 2™ {V:-H-l“'r"' n 2‘2V;'+3a,+ (1 -+2- ) 2—4V¢+5“'r
n(n+4)(n+5) . iy n(n+5)(n+6)(n+7) & is I
e iy vl BN 1.2.3.4 SN Tt 0 o ()
& in particular (developing as far as V1%« inclusive)
e yl,-r= 7]1,1'= %Vga-r"'%via'r'i' Tl’e'vg‘x'r T %Vga‘r s E%VP“T'*‘ &0.; (10)’{
—Y5,7=,,=1V50 +§V30, +FH Vi, + 15V, + &o.; (10);
oy ?/3,-r="ls,f=%vi°‘-r+ '§3_2'Vg-“'r+ 'l—gﬁvga-r = T%ﬁvlo“'r o &c'; (10);
—Ya,r="4,= 16 Vadr + 16 V7% + 155 V7% + &C.; (10);
“ys,-rz"ls,-r:'slfv—‘}“‘r*"fg‘s‘vgar'*'%vio%'l'&c-; (10),5’
—!/e,r=’76,1=e—14VZ°‘-r+T%§V3°‘1+&0-; (IO)Z
_y7,1=777,7=ﬁﬁvg-“1+?%§v}-0°{‘7+&c'; (10):;
—Ys,r="7s,- =755V 1% + &C.; (10)g
——ys,,,=1]9’,,=5—{—2—Vl°oc.,+&c. (10);;
In fact these developments verify, to the same degree of accuracy, the conditions
flr %VT"]ZT: %Vid._r; Ne,+— %V'r (1]1,1'+ 1]3,1') =0; Ng,»™ %V-r (772,1' H "74,1-) =0; &ec.
And, taking the whole series (10)’, we have ,
—1\72k-+4
[2A]4-1 V2, _ [2k+ 151 Vietda, :
771.7 i 2(?})0 W—z%kﬁl— %Vgaf'*'z(?})o [k]k 52)”.2 ’ (10)1
A k \2k+5
o [2k+ 1]4-1 Vi, [2k+ 3]¢ VEHoa, 10).
Najyts 5% 22(k:)o W— D §2k+2 il iVia,+2%o []G+ 1]k+1 22k+3 4 ( )2
o . [204 2]F-1 VEHy, : (10);
e = 3o pm  amm ; ’
2]6 +n b Ay V2k+n+2af
N, r= (0 +1) Gy [‘-Tk—]‘;;—‘ ‘é’zﬁ;{ﬁ
[2k L 2]k V2k+"+4oc,,.. 2
=21'L+1 V2+2“1.+('n+ 1)2&)0 [k+ 1]k+1 52k+n+3 ) (10)n+1
“ [2k+n+ l]k—l V2k+n+3y A e
Nnsz,r=(n+2) Ziyo TR T —oRTATE (10)n+2
~Lynn [2k+n+ 1] Voo toa, (10)n

Mr “gn V7 %+ By B+ 1] 2imia s

and since ) i
n[2k+n+ 175+ (n+2) [2k+n+ 1157 (b + 1)={n(k+n+2)+n+2)(k+1)}[2k+n+ %
‘ =(n+1)(n+2k+2)[2k+n+1F1=(n+1)[2k+n+ 1%
we have, as we ought,
N7 = V. prtMntr,2)s M= IV, (V2 +1s,,)-

* [See top of page 532.] s
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- 532 XX. MOTION IN ELASTIC MEDIUM
[Here follow some investigations concerning finite expressions for series like (10)’. In some
pencilled notes added later Hamilton points out that (10)’ is equal to (1—-V/1 R i i gl T
It is easy to see that this expression satisfies (8), and, when n=0, is equal to V_«_.. Moreover
from the definition of the operator V,, since (10)" contains only positive powers of V_, 7,, , and
7, - &€ Zero when 7=0.]
(Jan. 10t 1839.)

In the next place let us consider the system of equations

a,=0, Yn,e="Mn,»= iV, (771;+1,1' Y nn—l,f): (n> 0)’1 )
(11)
i 7’0,1=V‘r771,1'+ V'rﬁ-r' J
...[Here 7,, . is obtained by ordinary methods. Its value however could be inferred from
(10)']....
Hence
Tn, = 27"V o [0+ 2k1* [0]F (V)% B,
Hence the equations (8) give, when both «, and j, are retained, the expressions
G 0 L
2.4.6...2k

N opi1so [P+ 2k—17%1 2k
77n.1=gv-r+1 Z@o SR I VL (ﬂﬁ‘“r"'gﬁf); (12),

Y gang | (12),

No,r= V-ra'r B z(012)0

n+ 2k —1]¢-1 2k
o= g VP B i QU (Bt 3 ). (12),

The expression for 7, ., may be concisely represented thus:
Mo,r =Vttt Vo (1=V)H B =V, + (V72 1)HB,. (13)

Vo= ()}
et () e
(V2-1i= (g;)_l {2+ (%)2}—2 f ;{2+ (%)s}-}d‘r. i

2) -
"70.r=%versm7+%z 1—%m2f1{1+-1-(i) } sin mrdr
0

But

We have
2 \dr
T —_ 11k 9k % -
=§versmf+%\/l—1}m’fo E(“,';)o[—?k]if— (%) sinmrdr

oritlae i A ¥ il 2\ k
=§versmr+7—;—b\/l—‘}m3f02(",';)o[v%ki(—-"-;—) sinmrdr

=} versmr+ g (1-3m2t(1- «}m’)“*J‘Tsin mrdr=versmr. (15)
0
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XX. MOTION IN ELASTIC MEDIUM 533

We seem then to be conducted to the equation
7o, = VeIs mr (15),
as the exact sum of the series (12),. On the other hand we should have had exactly
No,»= 0, (15),
if we had changed the sign of the radical V2 —m?2in 8,.

Perhaps also we should be able to prove by some similar reasoning that the part depending
on B, should be considered as negative for negative values of 7, & *. that for such values 7, ,
vanishes, the radical V2 —m? or the ratio m/u, which expresses the velocity of propagation,
being still taken with the positive sign.

On the whole it is perhaps possible to prove by the foregoing investigation or by some one
very similar that 7, , may become exactly =versmr for all positive values of = after having
been exactly =0 for all negative values thereof. And 7y , is the mean of the two values 0 and
m?. Can we apply a similar process to the expression for ,, .?

l:VT and (—% not commutative.:l

The part depending on g, in 7, , is

pve za)o%ﬂ (3V,)% B,.
Here
2k+ 1 2k+1
[2Icgr 17 =(2k+1) 2k (2k—1) ... (k+2)=ﬁk+—l
_26(2k+1)(2k—1)...3.1 2% (_1)k+1[_ LkH1
i k+1 g kE+1 ;

"." the part depending on 8, in 7, , is

—17%
Siho s (~ VIR B, ={~ L+ (1= V3B,

which accordingly agrees with the equation (11),

7’0,1‘ o V'r (7)1,1' 5 B-r)!
., being supposed to vanish. This equation gives also

i/ v e St B‘r+"73,‘r+7]0,7’
in which 7, . is to be made only } vers mr, because we have supposed «, to vanish; thus

1 1-—m? 1—cos pcosmr,

” Sinp.sinm‘r_
o,z +70,,=5— 5 — COBMT = > ; =

& —B'r=_ 9 ’

i v = ; :
it seems °.* that n; ,= Es(—gnf_“) , 80 far as it depends on B, alone. Yet this value of 7, , does

not vanish with =, though it ought to contain V_ as a factor. Perhaps the development of », ,
diverges when 7 <pu/m. But we must observe that the equation g .+ 7o, . =17, .+ B, requires
that g o should vanish, which the foregoing formulae do not make it do.
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534 XX. MOTION IN ELASTIC MEDIUM

We can certainly conceive that 7, ., 7,, , are functions such that n¢ ¢=7,,0="710,0="7n,0=0,
and that
70,7+ 7No,r —M1,» = P =} sin psinmr,
Mzt Mn,r =3 (g, 7+ n-1,0)s  (MP=vers p, n>0);
but will these functions 7, ., 7, . be convergently expressed by the series
[2k]*
No,2= V2 (o W (3V)*B,,
n k
T =iy Tipa L (1,8,
And when we have found thus that
Mo, M0.,=(1=V2) 2B,
can we effect this operation (1— VE)‘*?

We just now made V, (1-V2)# ¢, =(V;2— 1) ¢, & transformed this to

T d\2)# 1 y C. dr
e[ = O dram —= | et
fo{ *(dr)} Y Jl T4\
)

but it is an obvious objection to this transformation that the % of the last expression does

not in gemeral vanish with . However this objection does not apply in the case where
C,= B, = }sin usin mr, because C§#+V=0; but on the other hand we ought to have

T

1 d\? C.dr
1—V2_%01=—{1+(——)} —-——T——'—.—,
Grde O ALl - 1E)

0 +§ dr
d B. Y
& the ——Of—-—__—-=—§ does not vanish with 7.

" Js(E)

The transformation therefore is erroneous, and although its elegance appears to point to
some true process, intimately connected with it,* yet I belicve it may be better to employ for
the present a different method & one more analogous to that of my old investigations.

Let us then admit that, (8, being still = 4 sin usinmr,)
Mo, = V.B.+ %Vzﬁ‘r"'%vf-ﬁ'r'*' &e.
and endeavour to calculate finite trigonometrical expressions for at least some of the terms

of this development. For this purpose we are to calculate if possible a general expression for
VEgsin mr or at least expressions for this function, for several moderate values of £.

.........................................................

* [The error arises from the fact that the operations d% and V, are not commutative. Correct results are arrived

T
at later because / dr and V, are commutative.]
0 .
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XX. MOTION IN ELASTIC MEDIUM 535

If we were to stop at this degree of approximation, [the first three terms of the last
expression for 7, ,,] we should have

sinmr—msinT

V,sinmr= T—m? p
. _sinmf—msinr_m(sinq-—frcosﬂ_m{(3—1-3)sin1-—31-cos-r}
FVpsinmrs St £(1—m2)? 16 (1—m?) ;
- gy . iy e
%V5sinm-r=3(smmT msmr)_3m(smr 7-0087)_3m{(3 72) sin 7 — 37 cos 7}
T 8 (1—m2)p 16 (1—m2)s 64 (1—m?)?
m{(156— 67%)sinT— (15—72) 7 cos 7}
128 (1—m?)?
_m{(105—457*+7*)sinT— (105——1012)70087'}*
1024 (1 —m?)

which 3 expressions indeed are rigorous: & the sum of these three expressions, multiplied by
imV2—m?, will give an accurate expression for (V,+3iV3+3V%) B., & °.° (probably) an
approximate expression for that part of n, . which depends on ., & which is to be added
to 4 versmr.

[Neglecting powers of m above the square, Hamilton works out numerically the value of

this expression for
T 37

T=5 T 5 2m, 4, 5;
17 5169 1
e.g. for =5 he finds that 9, 5= -~ 17,6776 vers 5m = (1 11 0) vers 5m approximately.]

[Vt il
(Jan. 12th, 1839.)
We found that o, =V,0,+(V;2=1)FB,,
in which V,a,=4%versmr and B,—%m\/2—m“’sinmr.
Now the operation (V;2— 1)"* may be transformed in the following way, which occurred to me

e ue &)~ o)
() ) o

For example

s ™
V1-7‘=-é- 125+ &c.=r—sint; V., 1= 5__271-'- &c.=versr;
) 75 S L
A AN e it o 2 72\
e 0505 8.7.0.5.4.000% 2("05* 1+2),
\75 e 79 Y -
Vet o5 10540 08,054 &c'—6(8m1—7-+g),

* [The law of formation is obvious, e.g.

4
(105 — 4572 +74) sin 7 — (105 — 107%) 7 cos 7 =17 (};} sin 7.]
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536 XX. MOTION IN ELASTIC MEDIUM

& generally
V —————-——2k+2 g & 2k 12k (1 wlohad (——rz)k 4 i
T —(2k+2)(2k+1) [2k+4]4+ C.—[ ] (_ ) ( —§+2—4‘—'...+W—COST),
il (<A
v 72k+l—[2k+l]2k+1(—l)k( % 190" +[2k+—1]'”‘+1—sm7);

V_sinmr = in )+m3‘ M oRFL L WO S, " T V3 W
LSinmr=m (r—sinr ™38 r ™38 1130 T )

VL mB37r3 4 mP7d e _sinmr—msinT,
T T s (1—m?) " 120 (1—m?) i i 2

m
i

cosSmT —COST

2 2 4
V,cosmr=1—cost+m? 1-T —cosr | +mt (1= 4+ —cos7)+ &o.=
2 1—m?

2 24
Hence
R sl s el e )
(V2 - 1) Eri = [i]E 3@ o [ — §1% [0]F 2% [0]~2k+2+0) p2k+2+4 ;

~[i]f ( f ;df)m 0 ([0])2 (— T;)k =...

= z [2]¢ (f;dr)“zfjdﬂ cos (V2 cos 0)

and we may change the order of the signs of integration.
The expression which I deduced (in pencil, late last night,) from a result in Poisson’s
Memoir on Waves was

(Vi2=1)tr= % (f;dr)af:da (1—a2)t {(8 — 2a%*r?) cos (@rV'2)—TarV/2sin (arV'2)}

Hence

it 2
" 3

Here also I deduced
(V72— 1)‘51-= Py ;—Jlda (1 -—a”)* {(1+ 2a27%)sin (ar\/é) —arV?2cos (afr\/§)}

(f;d-r)s [EdOSm 04{(8 — 272 cos 6%) cos (rV/2cos f) — 7V 2 cos Bsin (V2 cos b)}.
Jo

2 V32 3
i dx(l—;_—;) {(1+«?)sin x — x cos x} dz.

- 317‘ 0 xs
This gives approximately, when 7 is large,
V2 2
-2 _ 1)y — 2 e S
(V2-1)tr= f xs{(l+x)smz xcosx}= \/5
because
sina ® 8inx —x cos & m
fo '—x— de= § a.nd g _——'xs dx—z .
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XX. MOTION IN ELASTIC MEDIUM 537
[Extract from pencil note.] (Poisson has shown in his Memoir on Waves, pages 168, 169, that

8 1 : 8P 1 2 3
Bl —a?)t Bl KW, PSVY, p i b
3ﬂf0(1 afoos (2aVp)da= o =qs—5 o+ aap a5 1z ap T &
Hence
8 d p2 ps
(dp) (PP =1-p+G on- s apt &

In this change p to }7%, & perform the operation f 1'd-r three times; and we shall have my
0
(V;2-1)ts)

To use now the function given at the middle of the previous page, it is necessary to have

an expression for (fmdx)r cos z. This
0

T r [ (___xZ)k
=(J, o) 2
3w i l)" x2k+r 3 (___ l)" x2k+r
i 0 T2k] [2k+1rF  ~®° [2k + r]Be+
ence
z o x4 (— 22y
(fodx) COo8 & = (—1)’(cosx PR 3733, 4+ - W)
and
:cd 2r+1 1y 8 x5 ( A xZ)r—l x
(fo x) cosx=(—1) (smx a:+2 3 ~33.4.5 ----W)-
Hence
7 ¥y A 1
dr | cosnr=—sinnr; d—r cosnr= ——; (cosnr—1);
0 n n?
T 3
(fodq-) cos T = ———(smn-r —nr); &ec.
. Hence

(Vo2—1)#qi= % [4]¢ ( f :dfr)iffdo sec f2vers (tV'2cos 0).

This relation gives

o
(V;2—~1)’§1-= z fzdesecGa{rﬁcose—sin(r\/ﬁcosﬁ)};
7V2Jo
which ought to turn out to be nearly =i/—§, when 7 is large.
Hence we ought to find
ok 1 V2a—sin(rV2a) =
i 2'&"‘ =1
1.1:1?0 oda(l a) 73a3 2’
that is,
PRI i 2?\dz—sinz [®z—sinz
__P:?o 0 dx(l—gf.z) x® _.[o s w
HMPII 68

www.rcin.org.pl



538 XX. MOTION IN ELASTIC MEDIUM

This will require (because we found f s ’Z’) that we should find
0
© vers x ™
[, a5,
And reciprocally, if we can establish this last proposition, we shall be able to infer the former.

«* o

z—sinx ® ——r—8Inx

f de=lim| e ¥ dx
0 x y=woJ0 xs

-]

=limy—2| e* g&;nyzdz =lim v ez 2vers (yz)dz

Y= 0 z y=wn<YJo
@
= Q hm e—"z-l sin (yz) dz = hm «}J. e Va-lsinwda
_%f smxdx T
Hence, going back, we ought to have
‘r‘/f 2 é —_al
T x x—sinz
~=}1=n; 0 dx(l—p) x?
LY A 4 7V2a—sin (rV2a)
=Eg Oda(l—az) i S

A 4 Edesec 031-\/2c080—sm (rV/2cos 0)

bapegaes] s 272
T 1
th V-2 1)
Y 9o 0BT
2
*.* this last limit . , as before. Thus the difference (V2 1) tr— ”__ becomes an in-

2v2 2v2

definitely small fraction of 72, when = becomes indefinitely great. It is however conceivable
that this difference may itself be constant or even may increase indefinitely. I think indeed
that this will not be found to be the case: but it requires to be examined.

[Expression for m,, ,.]
(Jan. 18th, 1839.)

It seems probable that the part (V-2—1)~% B, of the expression on page 535 for 7, ,, bears
ultimately the ratio of equality to the other part V, «, of the same expression, when 7 increases
without limit; & °." that ¢

i vers mr — (V-2 1)_§ sinmr
mV2-m? 7
(—m2e2)kr 72 o (—Mmi)er

% 2\ k/
V3IZg)o[—$1% [0]* ( p? 71) Z&, )0 (2%, F oA (Vor-1)EEg, [+ 12 (ultimately);
(V72—1)% 724

[2k 1]
in which we know that the 15t member

%43 (g =
41 g(J‘Td-,-) f2dﬂcos (1-_\/2 cos ).
0 0 !

o

(ultimately);

.* (ultimately) =VIZE o[ — 3]0 [0]% (§)kr [0]-2Gk—kr+D r2G—kertD);
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XX. MOTION IN ELASTIC MEDIUM 539

For example, makmg k=0, we have, as before,

9 e
d)fd@cs V2eosf)=—,
z ( f T 0s (7V 2cos 0) o
7 tending to co; & if the same law hold for £= 1, we shall have ultimately
2

d ) f dBcos (V208 0) =——=—
U iy TR 24\/‘ 8v2
Changing = to tV/2, we ought *." to have, ultimately, as ¢ tends to infinity,

2 (1t 803 12 1\*
;(f dt)f decos(2tcosﬂ)=—, (—1_6) ;

2 bt 3\
w(f dt)fd@cos(%cose) B33 (+%)

ad 2 e _%m . _1 g a 2
{(Ef.?n—r) +1}(V, -1) Esmmr—;fodesecf)sm(-rﬁcos@),'r

(Jan. 19t 1839.)

™ Vg m
o S 1 §d08ect‘)sin('r\/2cosﬂ) V2., 2...d8
(VTZ—].) 7_sm'm~r=— p) —Esmm-r ——m
: # 1—— cos 62 1-
0 m?2 0 m?
_m 2msm(1\/—cos0) \/2008031nm-r mz\/—J‘zmsmn—r nsmm—rde
—2cos 60%) cos f 2—n2)mn
2 T
Lt ‘/_2 f U 2—_°°s"’2 cosdeO)dr, (i n=VZcos6),
-/ V3
2 i
_m cosnr—cosmr  dn doe A making£=p, e
T m?—n? J n2 m
y R
0 0 2
V2

_EJ‘W(J‘Wcospv—cosv dp )dv
7)o \Jo 1-p2 V11— imp?

* [The figures in round brackets are added in pencil in the manuscript (see page 551). Hamilton later on
arrived at a complete form for the values of these integrals when ¢ is large. He seemed to have known it about
1840 but after much numerical testing did not publish it until Nov. 1857, Phil. Mag. X1v, pp. 375-382. He gives
the result as follows:

m

If f(t)=72;/idwcos(2t005w),

g (J @) s0-(=[a)' s C S 344 [ 4] (0] (O] -3 -2,

the summation to extend to all positive integral values of m such that n—2m—12>0. The asymptotic expressions
can be derived by integration of the asymptotic expression for J, (r V'2).]

1‘[{ — +1} (V_z-—l)_}\—/—2 smm—{<ﬁg}>z+1} AT —1)-*‘;’% w)o([g_k":;z“r:_]):m

=\?‘{(ﬁ%}>z + 1} Zao (—1)F marts <f - f A cos (V2 cos 0)=- -/og sec 0 sin (v V2 cos 6) d0.]
68-2

www.rcin.org.pl



- 540 XX. MOTION IN ELASTIC MEDIUM

Hence, rigorously,

V3
i 1 Wcospv—cost/ 1—}m? Ly ool
no,,—%versv+;f0 (fo g 1—1}m2p2dp dv, if v=mr.

As m tends to 0, v=mr remaining given, this expression tends to the limit

; 1 v/ *cospv—cosv ;
no,f—%versv+;fo(fo B s g dp)dv,

v -] sl

I therefore think it probable that the integral f (f cms_qw___pc;:m;
o\Jo —

If we take m =its extreme value, namely V2, then the integral vanishes & the expression

for 7, reduces itself exactly to } versv=}vers(rv2). In this case p=m=vers-m?; & the
equations (4), become

dp) dvis rigorously = gvers v.

Ngo=Verswx, n,,=—V2sinmz,

x being here any integer *0; . 5, 0=0; & 7, =0 or =2, according as —z is even or odd.
In this case we have initial displacements of the form

ARG e

-

but no initial velocities; & the origin 0 receives only half the disturbance which it would do for
the other extreme value of m, namely 0, corresponding to an infinitely long wave.* In fact, if
we conceive a great but finite succession of initial displacements (without initial velocities)
of the kind corresponding to the short wave lately mentioned, there is no reason why they
should propagate themselves in one direction rather than in the opposite; they will there-
fore divide themselves between both.

(Jan. 26th, 1839.)

1 ©  ginpv—psine =«
Is the inte, ralJ. dp ———=—— =—versv?
S e gt Tl

In the 1t place we may consider it as = some finite quantity, and may treat this as a
function of v; but when we add to this function its own 2nd differential coefficient we get

d)2 f“’sinpv-—psinv J“”sinpv m m
{5 Fad enin sl Tl i A, 0 B0 ——dp=—= or 0 or —,
{ (dv } R T A | e R 2

according as vis <0 or =0 or > 0; therefore we have rigorously
®gin pv— psinv
o pQ1-p%

the upper or lower sign being taken according as » is > or < 0.

dp= i%versv,

* [The wave-length is 27/u; mr=v, m®=vers u.]
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XX. MOTION IN ELASTIC MEDIUM 541

. 1 [®sinpv—psinv
Hence the function* versv+—J. szt 5 AMBI o o bl
3 b nJo p(1-p?

18 rigorously =0 when v 18 < 0 and = vers v when v> 0. And this particular case of discontinusty
appears to me to be of great tmportance in the dynamics of light and darkness.

The rigorous equation (V2 — 1) d =[] (J‘ ) ¥.» (page 537), in which
3 . (1 o
=7—17J dfsec 62 vers (rV'2cos 0) =}1/T§_f J‘ dfsec 0sin (r V2 cos 0)
0 0Jo

=f ¥, dr, in which y’,=\—?f df sec 0 sin (V2 cos 0),
0 0

combined with the general development

B, =Bo+ 7o+ [0 7%6; + &e.
gives, generally,

T ' 2
(V2= 148, = By + By [ drva+ ([ () 7ot .
45 d k C ¢ k oo d k 4 k+1 "
=§g&o(—) B (fo d“') ')’r=§(=l%o (%) B"’Uo d") Yr

de Bevi o (G- ge) = 1E =B

g

but, suppressing for the present the condition z = 0 the partial differential equation of the 1st

order
doil @
(d‘T dx) Pz =Fo,e

gives (D””'=J F,_. .dr+funct(z+7),
» 0 ’ # -

+, being treated as a constant in effecting the 15t integration, but being afterwards made equal
v

to x+7; if then @, (=0 for all values of z, we have @, . = J F._ _. .dr, & the same expression
i)

holds for the case x=0, except that then 7, is to be made equal to = after the integration;
hence, generally, T

* [The results can be verified by taking the integrals

eﬂ!v_eiv eiPY — pev
dv and /p(l_P;,) dp, (p>0)

over suitable contours.]
1 [Changing the nota.tlon, we have to show that

V-1 = [ L dupuis B=2 S g0,
ntl
Then making use of f i (r—u)" yodu=n! < / du> vus we verify the required form. It may be noticed that
0 0

‘Zr’; o (n/z)]
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542 XX. MOTION IN ELASTIC MEDIUM

(V2—1)4p, = f def.

T,=T

\/2f drf dGSecﬁsm(f\/_cOBO)B,_,,

T,=T

f J.”‘Z&\;in”;nzﬁf’ -

T,=T

[The operator I,.*]

Can we find any analogous expressions for 7, ,, 7, ., &c., in so far as they depend on B,?
For if so, we can easily get afterwards expressions for the parts which depend on ..

Already we have found the law of the developments, according to ascending powers of V,_;
but it will be useful to investigate developments proceeding according to ascending powers

T

of (‘f dv-)2 instead. For this purpose it is convenient to employ, instead of the equations (11)
of page 532, the following;
No,2= 17 (Br+M1,7=0,7); M,z =317 (10, — 21,7+ 7s,.);  &e.;

in which I =f: dr. We may for the present omit the 7’s & write simply

No=T*(B+n1—m0); m=3I%(no— 21 +7,); &e.

And it may be useful to investigate first from the equations
N =31%(ng—2my+79), Ma=3I? (1 — 2y +75), &e.,

which are all similar to each other, developments of the forms

N =Z&0€n, k2" ny;
or, more fully, m=eyol%ny+ ey, 11"+ &e., 1,,.= €900+ &e., &c.

ero=3% e1te,0=0; e +e =1, &e.

es0=1%€1,0; €p1+e =126y ,; &e.; &e.
In general

Cpkten k1= % (en—l, ktens, k—a) 5

negative indices being considered to make the resulting coefficient vanish, & the only value
of e, ; which does not vanish being e, o= 1.

Now make e, ;. =f, % we shall have
Fnate ket a1 =¥ (Fosto—r, kS nit—,2-2)»

fm+1,k= % (fm,k_ 2fm,k—l +fm,k—2)'

* [This is Heaviside’s operator. Cf.Jeffreys, Operational Methods in Mathematical Physics (1927); Poole, Theory
of Linear Differential Equations (1936), Chap. 11.]

so that
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XX. MOTION IN ELASTIC MEDIUM 543

Hence
_(1+12-«/1+212)n _( e )n )
el I o ST AV Y o
28
a'nd S St
K 75 ey

As a verification, these last expressions give

Moii— D+ Mney 1+ 2=V14+2I2 14+ 124V1+212 2
Nn 9 12 12

12
=3 (1= 210+ Mn1);

also (14 I2)ny— I, =V 14+ 2129, = I2B.
I2
If we now make TR N
3 | 2
& g Wigosd L5 o Y ﬂiy—:(v-ﬁ-l)*,

ey 0 e T2

we shall have

0=(V2=1)#p, and 7,={V-— (V21 (V214

If, by a further symbolic transformation, we were to make V =sin 28, we should have the
expression ;

N, = (tand)”.tan 28 . B.

[tan 3,.¢, as an integral.]

We have found that the operation here called tan 28, or more fully tan 28_, is such that

o N
tan 23, . B,=\%§f d-rf dfsec Osin (rV'2cos) B, _,.
o Jo

T,=T

Can we find any analogous expression for the effect of the operation tan 8?, or even tang,?
tand, =V 1— (V72— 1)} =V-1{1-v/1-V2}

1+ I2—V1+272
= SR [0l 2 I

! 1.3.5.7...(2k+1)
— Yo [ _31k[]-(k+2) ok J2h+2 _T®  (_ 1)k
Zipol — 1 [0 2L b~V 53 15...69) (fo

Let this operation be performed on 7%, and because

Td 2k-+2 v 1-2k+2+i
(fo ’) T T 2k 2 o

T ) 2k+2
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o XX. MOTION IN ELASTIC MEDIUM

we have
e il 3. (2k+1) R[]
tan87.7’=(f d‘f) ZGo(— 1) 2.3...(k+2) [2k+ 2]2k+2

=[¢]¥ f d.,.) 0= 1)% 2—(+1) [0]—(k+1)[0]—(k+2).,.2k+n
A7 () o

1
){ __J (;Fcos(«/z_tcoso)do)dt}
)
¥

(
(],
(]
—[z]’(fod-ri{l————f d(?tsecOsm(-r\/_cost?)+—~—J~ d08w0’vem(rfcose)}
(
-(],

+1
=[¢]¢ f dr . f d0 {2 cos 0 sin (rV'2 cos 0)
0
— 72008 (V2 cos 0) cos 02 — vers (1 V2 cos 0)} sec 62

i+1 4 g =
J ?—@f drf df+2sin (V2 cos ) cos 0.
w® Jo 0

Il
sy
-,
sl

-
S
g
v

Mg
'Y J' d62c0s fsin (V2 cos ),
0 0

and generally

v ) T g A
tand_.¢,=| dr, _,4—\/2 dr| dB7%cosfsin(r V2 cos b)
Y 0 LA TN

T,=7

T —g
=%f d/”t"""‘f d0 {2 cos O sin (r V2 cos 0)
0 3 fidio

T=7,

sec 62

— 72008 02 cos (V2 cos 8) — vers (V2 cos 0)}

¥ )
% %J‘o d‘r¢-r,-¢"'_sfo dn {nrsinnr — 14 (1 —4n??)cosnr}n=2(1- ,},na)—}.

T, =T

[7s,: expressed by means of operator D,.]
(Jan. 22nd)) :

It will be interesting to consider the simplest forms to which the repetition of this opera-
tion, & its combination with the operation tan 23_, conduct; but at present I prefer to resume
the problem in another way, as follows.

www.rcin.org.pl



XX. MOTION IN ELASTIC MEDIUM 545

d
We have the system of equations, (in which D=D, = E-) )

m=—B+(1+D¥ny; ny=2(1+D¥)my—ng; M=2(1+D}my—my; &c.;
so that the series
No+MmT+ne2?+ ... + 9, 2" +
being multiplied by 1— 2 (1+ D?)z + 22 must reduce itself to the 2 terms
Mo+ {n1—2 (1+ D¥) no} & =mo—{B+(1+ D*) o} ;
if then we develope the fraction

no—{B+ (1+ D) no}x
(1—z)2—2D%

according to ascending powers of z, the coefficient of 2™ in this development will be the
function 7, .

; ) 1 ;

The coefficient of 2" in the development of m)% is

coefft of z” in (1 —x)~2+ 2D2 x coefft of 2"~ in (1 —x)~*
+ (2D?) x coefft of "2 in (1 —z)~% + &e.

o [0+ 2] [0+ 3°
Hence pehiat i [3]° [6]°

+(2D2)? +&e.

2D [n+1P(2D2)? [n+ 2P (2D%)°
L 1 e R o R L
(B2t 1E s + L apmes. ).

Now, in so far as 7, depends on B alone, we have

= (Vo= LB _ianss. g “arp
7o '\/1+2I 'r—'r'}’-r’

Te =1'
V3 [
. 4 ) 2 [ I =
in which Vo= TJ dfsec Osin (rV'2cos 6).
0
T T
Hence Dno=Byy, + f T Br—avzs Ding=Poyi+Bov; +f0 drB; vy &e.
T,=7 T,=T

Let us suppose, which we shall find to be permitted in the present investigation, that j, is

a linear function of =, & *.* that B, B, &c. vanish; *.* also D?B, DB, &c. vanish. [We finally
obtain]

: o [or 2 (T gy, [0+ 1P (D32 [n-+2P (2D2) \
ﬂn,f—(ﬁon+Bo) {7’ ([1]1 2D2+ B3 D) - 5P 3 +&c')7-r_n7'} ’
in which A 1 3

y;=f0 y, dr= —7_5]0 df sec 63 {rV/2 cos § —sin (r V2 cos 0)}.

HMPII - 69
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546 XX. MOTION IN ELASTIC MEDIUM

The properties asserted of this set of functions #,, , are: 18¢, that they vanish, and that their
1st differential coefficients relatively to = vanish, when 7=0; & 219, that they satisfy the system
of differential equations

(1+ 'DE) No,r ="M+t Bo i /3(’)7’ & (1+ DE) M, s = % (nn+l,-r+ nn—l,f)’ if n>0.
Reciprocally, we shall have proved the justice of the expression for 7, , if we prove that it
possesses these properties. It is therefore important to make this verification. [The verifica-
tion follows and incidentally involves the identity

% et [n + ket

—k sy
Zio e (O =1

Suppose now that, when n > 0, N, r = "—n,»= transversal vibration or displacement of the
ntt particle before or behind the particle corresponding to n = 0; but that this last mentioned
particle has its displacement represented by 5, . — B, —7B;; then to the expressions lately given
we are to add those which would correspond to the introduction of the terms —}B,— }8; in
the expressions for D2, , and D29_, ,; & this again comes to changing, in the integrals, 7, ,
10 09,7 —="1,75 1,7 10 Ny, - — % (Mo, +73,,), &c.; or finally to replacing the displacements at the
time 7 by the negatives of the 2ud differential coefficients, relatively to =, of the expressions
lately given: so that these displacements are

Yo,r=Y0,0¥r+Y,075 &c.;
or, more generally,

1 178 (2.D2%)2 27 (2D2%)3 y
Y2 = o,0 D7+ Y5, o){1+ (Eﬁl 2D2 + [“’[“;]3] ( 5 ) +[”[J5’]5] ( - ) +)}'y

in which, as before, A
V22 !
il dfsec Osin (1V/2 cos 0),

and ¥, o, ¥o,0 are the initial displacements & velocities of the particle 0.

* [We have
1)k ([0]7%)2 [n+4-k]*+2 (—1)* [2k]%* [n+Ek]k+1 [§]e+1 2%+ [n+k]F+2
k+l 2k+1 [k]e[k+11e+1 [2k+ 1] ] o+t [2k+1]2k+1"
Hence
e —1)% ([01*)2 n+k 2k+1 &l k41 2xk+1 1 n4k
e ( )k-i-[l] PL 2k-31 = coefficient of x in Z(,,},[ﬁ_*_l]kﬂ ( _’::I)c
o e g DR 4 (14) b0
b » » 3 99 32 (14-2)" lz(k)O'[k+1]k+1 { 22 ,t
- & v 2 2 322 (142)n2 {1+4(l+x)}
by B 7 39 33 9 ix(l_*_x)ﬂ-l (Z+2
=1.]
T [y —d;"_';"’. n is also replaced by #. The transformation gives the solution of a new problem as described
hcre.]
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XX. MOTION IN ELASTIC MEDIUM 547

For example, the displacement of this very particle at the time 7 is, rigorously,

: X 7 L
I’/o,-r=yo.o§f df cos (V2 cos 0) +y(',,0?f dfsec O sin (V2 cos 6).
0 0

As 7 increases without limit this displacement tends to become =4/} Yo,0;* it bears therefore
a constant ratio 4/} to the initial velocity Yo,0- This is a very curious result. The ratio V%
depends no doubt upon the assumed unit of time, & on the energy of attraction between
2 adjacent particles.

The expression for y, . ought to satisfy generally the equation in mixed differences
Ya,r = Yor1,0 = W r + Yo1,0)-

It ought also to give y, y=0and g, o =0, when 2 > or < 0; but =y, , and y, , respectively, when
2=0. And so it does.

(Jan. 234, 1839.)
The last expression for y, . may be thus written:

_ L[y 18t . 1a2(@i—1)(2D,)
yz,f—(yo,oDﬁyo.o){1+§T2Df+§ 1.2.3 2

1 22 (22—1) (22— 4) (2D2%) }\/5 2 i ‘
i 0 o N 3 T 7f0d0sec0sm(r\/§cos6),

and from it we may deduce the more general one:

ST Al A, (x—1)2(2D?)  (x—1)%{(x—1)>—1} (2D2)?
yz,f_w—\/éz(i)—w(yi,OD‘r"'yi,o){2+ 1 1 i 1.2.3 5

(—i)2{(x—1)2— 1} {(x —1)2— 4} (2D2)®
1.2.3.4.5 g i

5
% }f dfsec Osin (+V/2 cos 0);
0

in which D, = %, and the function y, , is obliged to satisfy generally the differential equation

D 3:’/.1:.1- FY,r= % (yz+1,r t Yz, 1'))
and also to become y; , when 7=0, & to give D,y, .=y, when 7=0.
1

Restoring *.* taV'2 for 7, and . putting —72_D, for D, ; changing also y; o to 7, o and y; ,
.
to ——=m; 4, we get the expression
a\/é"h,o g P
) i (x—1)2 D} (x—1)2{(x—12)2—1} D¢
et = e 2= (a0 Dit mi0) {2+ Tt 1{.(2.3) }27;71

1.2.3.4.5 3at

) +(x—i)2{(x——z')2— L {(—1)'—4} Bg.;. ,,,}fgdﬂsec 0'sin (2at cos 0),
0

* [The first integral is J, (V/'2). The asymptotic form for the second can be obtained by considering the integral
¢i#(1—2)~}¢-1 dt over a suitable contour.]

69-2
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548 XX. MOTION IN ELASTIC MEDIUM

as the complete integral of the equation (1) of page 527,
Nt =0 (42,6~ 2Nzt + Mz-1,0)-
The expression may be written more concisely thus:*

¥ e J woe [E—i+E]%4L  DFets 2dﬂsm(2atcose)
’7x,t=§(;;2a)-w("h‘,th‘*"h,o){2+(x—@)z(k)o [2h+ 1% (b 1)a2k+2}f0 )

In it 5; o and 5; o may be considered as the 2 arbitrary functions, and if we denote them by F,
and f; we may write

[x—1+ K]kt D2k+2 2 sin (2at cos 6) d0
"l:c,t'-—‘ z('i)—ao (FiDt +ft) {1 i Z(k)o [2k+ 1]2k+1 (k+ 1)a2k+2 0 cos @

[72,: expressed as an integral.]
(Jan. 25th, 1839.)

Employing the very simple expressionf
et
1.2.3.4

a?’ att®
+tf,+ 33 fz-1+1—2—3—;—5 Al foat...

Ny=Fy + A2F_,,_1+ A g0

for the integral of the equation in mixed differences

Dl Nzt = Azzt"h—-l,b
F, and f, being the initial values of 7,, and of Dy, ; or still more simply employing the
expression

Ne,t= Ty +1 5 A2Fx_1 -+ ALF, o+..

1234

£ 2 i 4
ot T g el t Ty g g gt et

as the integral of the equation D}7, ,= A2y, , ; let us suppose that f, is =0 for all values of z,
& that F, also vanishes except for negative and odd values, ‘or which we shall suppose it to be
constantly =1; and let us seek the corresponding form of the function 7, ,, with a view to show
that it reduces itself to the form } (sin#)2.

We are °." to have, for all values of L

#“

Ay Fy o+ &c.,

* [Hamilton verifies this expression and in the verification the following results appear

4 2+1.qy, [2i+k+1]2kH 2k+2
3 (sin at)*=25), {1 += zmo[ [?1;4_-;-]:1“ (]H_Dl) ask+a} I 0 (—a) ([017)%
2
i oot B e,

1 [This expression was arrived at in the course of the verification referred to in the previous note.]
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in which AiF, ,=F_,—2F,+F,,
AyF, ,=F ,—4F_+6F,—4F,+ F,, &c.,
& Fo=0, F1=0, Fg=0, ...; also F_3=0, F_;=0,...; but F_;=F ;= &o.=1.
So that we ought to have the equations (because 4 sin 2=} (1 —cos 2¢)),
+1=—-A}Fy,=F_,, —4=A}F, ,=—4F_,,

6.5
+L2=MFo =F 47T,
8:.7:6
—43=A(8)F0_4= —SF_3—m F-—l’ &C,

which are true. In general, we ought to have
[41+2]2 [41+2]*
AU N\BHRAF o s=1+ 2] + ] +.eey
[41+4] [4]+4]
STl o T
& accordingly these series are the quarters of the developments of (1 + 1)%#+2, (14 1)%+4,

//.\//.\//.\\? Wttt

Had we supposed that F,= 1 for all odd values of z, (positive as well as negative), being still
=0 for all even values of z, & f, being still =0 for all values of that variable, we should have
just doubled the last found expression for 7, ,, & thereby found 7, ;=sin#.

4= (—1YAFHF g o=

(Jan. 26t 1839.)

I think that we ought to have found 7, ;= cos %, if we had supposed f, = 0 for all values of z,
& F,=0 for all odd but =1 for all even values, the value 0 included.

In general, one integral of the equation in mixed differences is

Ne =" VOIS (p,x—— 2tsin’12L) :

1 & u being arbitrary constants. In fact this expression gives

A2np1,=7 {2 cos (p.x— 2tsing) —cos (;Lx+y.—- 2tsin%) —cos (p.x—y— 2tsing)}

= 27 cos (p.x— 2tsin%) versu=Djin, ;.

We ought *.* to have », ,=the above cited expression for all values of ¢, if it be so for two
values infinitely near each other; *.* if, for all values of z, we have

\ F,=nvers px, fx=—2qsinpxsin%.

These conditions give
F . ;=n—7CO08 ux cos ui + 7 sin pa sin pi,

Jers= —2nsin g sin px cos ut — 27 sin ’—; COS p sin pt ;
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550 XX. MOTION IN ELASTIC MEDIUM
A2 F, 3= —7c08 ux {cos p.— 2 cos 0+ cos (— )} +78in pz {sin . — 2sin 0 +sin (— p)}

2
=47 cos ux (smg) i
ALF, 3= —nc0s ux {cos 2u— 4 cos u+ 6 — 4 cos (—p) +cos (— 2u)}
= —7 008 pa (YT — dehV 1 4 6 — ge~nV T e~V )

bvi -gv3 g v
=—ncosux(e? —e ? )4=—241;cos;w(sm§),

2r
A?[Fz_,=(—l)'+122'ncos;.cx(sin%) s (r>0);

: 2r+1
AY frop=(=1)+1 2241 gin pa (sin %) t

o 2r
F, ,= —mncospx(— l)"(2tsm ) [0]7%,- {r>0),

1.2.3... @)%
L i . —1){ 2tsi ’i’y 0]—@r+1.
12,3 @+ 1) A¥f, .= —nysinpx( )( sm2) [0] ;
*.* summing these 2 last expressions from r=0 to =00, then adding them to each other &
to the additional term 7 (corresponding to A} F',), we get

Ng,t =17 Vers (;m:—2tsin%),
as I expected.

Resuming now the original problem of this book, let the expressions on the preceding page
for F, and f, hold only for megative values of z, & for the value x=0; the functions F, & f,
vanishing for =0 or >0. And let me try to calculate the function 7, , by calculating the

differences _
AYF, ,, A¥f,... (We may suppose for simplicity n=1.)

” 2 2 2
AYF,. . =F_, [[lf]]1 P [[2r]]2 AL
SO . o L i R S} L
(1 [2]2 GG [r]'

By— By—g

LBy 2r
=—1}(e2 g™ 1)5*'=(—1)'+12zf—1(|sin’§") 305
& the part of 7, , corresponding to F (that is to the initial displacements) is simply

}vers(Ztsing).

The question then which remains to be solved is this: How nearly will the initial velocities
of the particles behind the origin produce the remaining half of this versed sine in the complete
expression of the displacement n, ,?

(=1y-2[2rr-

L sin (rp - p.)+ +Wsiny).

(1

A= sin% (sin T —
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XX. MOTION IN ELASTIC MEDIUM 551

If we seek only the limit to Whlch A2 fo—r tends, as u tends to 0, we have, for this limit,
the expression

(2]

Bl i1

of which the values are

[27} b0 il ) i L
R T
l1; 2—4=-2; 3—-6.2+15= +6;
4—-8.3+28.2—-56=—20; 5—10.4+45.3—120.2+4210= +70;
& the general expression seems to be
4r-1 [— ﬂr—l [0]—(1-—1) =(—-1)-1 [2r— 2]r—1 [0]-(1'—-1).

[A proof by induction of this expression is given.]

(r—1)+

We have °." at present, by neglecting u*,
AF four=pt (=12 [2r — 211 (O],
which is to be multiplied by ¢+1[0]-®+) and summed from r=1to r=co; & thus we get,
by changing r to r+ 1 & summing from 0 to oo,

W (f:dt)azf:so (=) ([01)%

. 1 t2 t 3
that is, hm 27)0 o -+ (fodt) T3, (— 2y ([0])2,
2

a result which agrees With former investigations in this book, & in which the part added to t—
i Gt

tends to become = 728t increases indefinitely; or rather, perhaps, tends to become = ST i

Without neglecting any power of p

e 2r 42
A%’“fo-<r+n=2smg{sm(m+#) [E;‘] sinrp+ .. }

=2sin {sin 7y + ) — (1201 [01 + 2)sim rp+ (21 [0]2 + 2 [2r]* 0] + 1) s (e — )

— ([2r]* [0]-® + 2[2r]2 [0]-2 + [2r]! [0]-Y) sin (rp — 2) + ...
+ (= 1) ([2r] 2 [0V + 2[2r] -2 [0] - 4 [2¢]—2 [0]~ *~¥) 8in 2u
+ (= 1) ([2T [0 + 2 [2r]r 2 [0]-¢~D 4 [26 ]2 [0]~~2) sin u}

=2(=1)[2r][0]"sinp sin® 5_ (2 sin ) {sinrp — [2r]* [0]1sin (rp— )
+[2r]2 [0] 2 sin (rpe — 2u) — ... + (= 1)1 [2r]r-1 [0]-0~Dsin s}
(2 sin® ) AZfo_,+2(=1) [2°F [0]"sin smg

2r
If then we consider AZ'f, . as a function of 7, & denote it by R, (2 sin g) 5
Rypa+ By=cos” (= 1y (2 (0] (2sin )

ria+ Ro=cost (= 1y 207 [0] (2sin )

* [See p. 539.]
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552 XX. MOTION IN ELASTIC MEDIUM

which is an ordinary equation in differences of the 15t order and 15t degree, with constant
coefficients, but with a variable term. It gives
—2(r-1)
—(R.+R,_,)= cosg (=1)y[2r—2]-1[0]- D (2 sin g) i
& also Ry=0,
N, WO, Y
AT+, = (2 sin 5) cos s (—1) {[2r]' (0] {2r< 21 [0)-¥-0 (2 sin 5)

+[2r — 4] -2 0]~ ( 2sin ’—2f)4 + e+ [2A[0] (2 sin ’5‘)”_2 + ( 2sin_-g)2'} 4

Multiplying this by ¢2+3[0]-®+3) & summing relatively to » from 0 to co, & then adding the
result to -

4 vers (2tsin %) §

we get

7o,1= % vers (2t sin g)

+cos'g(2 sin g)z (J: dt)a {1 e (2 sin g)z (f:dt)2+ (2 sin ’—21-')4 (J‘:dt)‘— } Z50 (=) ([0])%

a result agreeing with those obtained at an earlier stage of these investigations.*

(Jan. 315t 1839.)
[Hamilton identifies this result with]
]

7 _1(msinpv—psinv | 1—m? dp
ﬂo,v/msfz"%vers'”"ﬂ,fo 1—p? 1—Im?p? p’
v=mt\/§,m=\/§sin%.

The 2nd member of this equation is rigorously an expression for the part of 7,, which
depends on the initial velocities; & it may be still more simply written thus:

vz
because we have, exactly,

1[msinpy [ 1—4m? dp,
n)o 1—p*N 1—im?p® p’
v

= Tn— dp l = %mz Y . .
0= J. \ TTP T [Cauchy’s Principal Value.]

At the same time we see that we may write

1(®°sinpy dw
no,,—%versv—;jo p 1ot

if o 2(1-im?)=p—2—im2 or p2=im?+(1-im?) w2,
that is, p=w{l-im2(1-o?)}
* [See p. 540.]
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XX. MOTION IN ELLASTIC MEDIUM 553

Or we may write

i (sinpv_sin qv) do

%vertsv—l
"ot T P q )1-o%

0

in which
p=w{l—m?(1- o)}t ¢= o 1{1—im?(1—o2)} 3

If v=mtV2=2¢ sin% be large and if m be <42, we need only retain those parts of the

integral which have small divisors; but p increases from 0 to 1, & ¢ decreases from 1/77? to 1; also

when @ is nearly 0, we have nearly @=V'1—}m?p; and when @ is nearly 1, we have nearly
p=1-(1-}m¥)(1-w), g=1+(1—}m?)(l—m);

sinpv singv

o

*.', v being large, we have nearly

7’0,1- %Vers'v=l {'\/1 - %’msz Mdp_cosvfw
™ 07 P 0
if p"=(1-4m?) (1-w); ".’ finally, we have the following approximate expression for the part
of n,,, which depends on the initial velocities:
No,1— 3 versv=3{V1—Im?— cosv};
w

in which v=mr=2¢sin i large positive number.

also

=sinpv —singv= — 2 cos vsin {v (1 — im?) (1 — w)} nearly;

sin p vdp’},

’

The whole expression for the displacement of the particle 0 at the time ¢ is therefore

A AN inf) = in®) _ (sin®)’
’70,:-(003 4) cos (2tsm 2)_v§rs (2tsm 2) (sm 4) 5

if tsin'g be large. -

[By a lengthy process of summation the following result is arrived at.]
The expression

Ne,t =% Vers (y.x— 2tsin%)

3

2
cos® cos 240 sin (2¢sin ) — cos 0 sin 220 cos (2¢sin 6)
+ vers u 2 )
T 8in 0 (cos 20 — cos p)

0

contains, for all values of x and t, the rigorous solution of the problem proposed at the com-
mencement of this manuscript; namely to find a function 7,, , such that it shall satisfy generally
the equation in mixed differences |
Dingi=A3me 1,05
and also the initial conditions
Nzo=Vversux or =0,

HMPII 70
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| 554 XX. MOTION IN ELASTIC MEDIUM

according as % 0 or >0, and
Dyny o= — 2singsiny.a: or =0,
according as 3 0 or > 0.

For a complete a posteriori proof of the correctness of the solution, it is sufficient to

prove that*

18t:

s
vers,;,J‘z cos 0 sin 2x6d6 + 3 versuz, acoarding 8 & is 50;

m Josinf(cos20—cosp)

ond. = + }sinpx, according as z is 2 0;

kul
sinp (2 cos2x0d6
m Jo cos 20 —cosp

3rd: the latter integral, like the former, vanishes with x.

And whatever « may be, we have, when ¢ is large and positive,
“ —otsin®) — (sin®)":
N, = Vers | ux — 2¢sin 3 sin i

2
but when ¢ is large and negative, Nar,t = (sin '7:) g
[ Discussion of asymptotic value of this integral.]
(Feb. 5th,)
The expression for 7, , on the previous page can be written
[L) _versp | sin (2260 — 2¢sin 6) 20

Ne,t= 5 vers (p,x—2ts1n§ o . o 5
sin 0 cosB—cosE

0

or this more elegant one (in which v= ’—2‘1) ¢

sin vZJ”’ sin (220 — 2¢sin 0)

L TP BOREATS o !
4= "SI0 (2v —tsin v) 27 Jo sin @ (cos 8 — cos v)

This is a rigorous form for that particular integral of the equation

A2
gL SRl A
(Dt 1 +Aa:) Na,t O’
which gives 5, o= 2 (sinav)?or =0, and Dy, o= — 2sin vsin 2xv or =0, accordingasz * Oor > 0.

* [The verification here suggested is similar to that on pages 469-472.]
1 [The integral may be written

id (cos g— cos 0) cos 2z0 sin (2¢ sin §) d

2
,/o sin9(cos20-fcos,1)

b (sin ’i)'

Vers p
about the contour (sin}u, 0), (—sindp, 0), (sindp, i), (—sindu, io )

ks
2 0os 0 sin (2t sin §— 220) dO
o  sin 6 (cos 260 —cos p)

The value of the first part when ¢ — o is , the asymptotic value of the second can be obtained by
elitu—2izsin—1u g,
u (u*—sin® )
with indentations at u=sin }yu, 0, —sin }u.]

taking the complex inbegral/
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XX. MOTION IN ELASTIC MEDIUM 555

We shall suppose that vis >0 but < 1—27 ; and that ¢ and « are large positive numbers, z being

also integer. And on these suppositions we shall seek the approximate value of the definite
integral in 7, ,.

Because x and ¢ are large, the arc 220 — 2¢sin 6 will in general vary much & rapidly while 6
varies from 0 to 7; & *.* the sine of this arc will fluctuate often & rapidly between the finite
limits + 1, while 0 varies so. Hence we need only consider those particular values of 6 for which
this sine varies less rapidly than usual, or is divided by an unusually small quantity. But the
rate of variation of the arc is expressed by 2 (# —¢ cos 0); if then we at first suppose that zis > ¢,
(corresponding to the case of darkness,) we may omit the consideration of the case of slow
variation, & may confine ourselves to the cases of § =nearly 0 or v or =.

1 2
When 6 is nearly 0, z being >, we get — ::;I; ing 1 (1+cosv) as the corresponding part
: : siny? ’
of the integral. When 0 is nearly =, we get the part W R g —% (1 —cosv); so that

the sum of those two parts, corresponding to the divisor sin8, is —}. When 0 is nearly v,
the arc 2zv — 2¢sin v+ 2 (6 — v) — 2¢ (sin § — sin v) =nearly

2zv—2tsinv+ 2 (x —tcos v) (0 —v);

also the small divisor cos 6 —cosv=nearly —sin v (§ —v); & the corresponding part of the
integral is 4 cos (2zv — 2¢sin v). Thus the whole integral is nearly

= — % vers (2zv — 2¢sin v) = —sin (xv—¢sin v)?;
and 7, ,=0, if  be large and positive, & > .

Next let 2 < ¢, but let ¢ be large and positive, & let 2 be also > 0. The parts corresponding to
O=nearly 0 & = are now }(+ 1+cosv), & their sum is }cosv. The part corresponding to
0 =nearly v is, if zStcosv, F }cos(2zv— 2¢tsinv). What is the part corresponding to cos =

nearly %? It is insensible.

(Feb. 6th,)

But it is important to observe that the foregoing calculations suppose that = differs from ¢
& from ¢ cos v by large quantities, positive or negative. When « is nearly equal to ¢ or to tcos v,
we must employ some new considerations.

If =t cos v, then rigorously

) .o Sinv? f7gin 2¢ (6 cos v —sin 6)
Nar,t =Mt cos ¢ = SN ¢ (vcOs v —sin v)? — :

27 Jo sinf(cos@—cosv)
& when 0 is nearly = v, we have
sin v

fcosv—sinf=vcosv—sinv+ (0 —v)? 3

nearly;

70-2
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2t (0 cos v —sin 0) = 2¢ (v cos v —sin v) +¢sin v (§ — v)? nearly;

0—v=~/ i nearly, if ¢ =2¢(vcosv—sinv) and ¢+ 8¢ =2¢(0cosv—sind); also

tsin v
ddp
2Vtsin vd¢’

cosf—cosv= — J smtquS nearly, and df=

i [ gl ic
cosf—cosv  2sinvd¢’

but to a given positive value of 8¢ correspond two opposite values of §—v; ' the corre-
sponding part of 7, .o, 18 0; whereas the corresponding part of 7, ,is F $cos 2 (zv—tsinv), if 2
be considerably less or considerably more than ¢ cos v. And if we take in the connected periodic
part outside the integral sign, we have

—cos (2zxv— 2tsinv), —}cos(2tvcosv—2¢sinv), orO,
according as z is sensibly less than, or exactly equal to, or sensibly greater than ¢cos v.

It seems then that we may regard the velocity of propagation as being =cosv, and not as
being =2
 Sairvromp)

This distinction between the velocity of propagation of a wave, and the ratio of the space-
period to the time-period of its vibrations, appears to me to be entirely new; and to be one of the
most curious results hitherto obtained, by introducing the consideration of finite intervals.

Let v=£, n being an integer number, expressing the number of molecular intervals con-

tained in the length of the wave. And let only ¢ such lengths behind the origin of 2 be disturbed
at the origin of ¢{. We meet these suppositions by changing x in the recent 7, ,to +1in, &
subtracting the new expression from the old. We therefore obtain

dae;

1/ . =\% [7sinnB cos (220 + ind — 2¢sin 0)
Yme=_|sin_ "
B cos 6 —cos ™
n

as the rigorous expression for a function which satisfies the equation in mixzed differences

A
D}———= ) =0,
( t 1+A, Yzt

2z
Yz, 0= Vers Tt e ol 0,

and also the wnitial conditions

o 7. X
and Doy,_.,o=-—2sm%sm—:—ﬂ, or. =0,

according as x does or does not satisfy the conditions

30, x € —in.
[Here follows a verification. ]
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XX. MOTION IN ELASTIC MEDIUM 557
Let us consider the cases which correspond to « and ¢ being both large and positive, &
inquire, for these cases, the approximate values of y, ;.
In this research it is useful to remember that we may write, rigorously,
PPOED g o i v
4 ,=—1~(sin f) rsm(%tﬂ- 2¢nf — 2tsin ) oy 1 (amf) J sin (220 — 2t sin 6) 6.

g " sin 0 (cos 0 —cos E) ”

- 4 sinﬂ(coaﬂ«-cos%)

It is *.* sufficient to study the latter of these 2 integrals; which was indeed considered in
part before, (see pages 554, 555,) but shall now be considered anew. For simplicity we shall
write the above equation in the form

Yo, t = 2avint — %art

Now, because z and ¢ are large, sin (226 — 2¢sin 6) fluctuates often and rapidly between the
finite limits + 1, while 8 varies from 0 to m; & these rapid & repeated fluctuations destroy
sensibly all those parts of the integral z,, which are not rendered sensible by having small
divisors. We need therefore attend only, in the calculation of z,, ,, to those values of 6 which are

nearly O or 7 or g. And the chief theorem for all these values is that

f:sin;bda{;=321_-.

When 6 is nearly 0, we have
sin 6 1
2¢0—2tsinf 2(z—1) .
this relation becomes more and more exact as « and ¢ increase, while the denominator of the
fraction remains constant; because, under these conditions, § diminishes more and more &
tends to 0. At the same time

nearly;

T e gl 1
cos f— cos tends to vers 5 and dy tends to S@—1)
Thus the corresponding part of the element of z, , tends to this limit:
1 '\ sinydyp
E-r (1 +cos ;t) T )

at least if z —¢ be considerably > or <0.

, if =220—2tsin6.

It must also be observed that while 8 increases from 0 to+, that is to a small positive
quantity, i is to be considered as increasing or diminishing from 0 to a very large positive or
negative quantity, according as x —¢is > or <0; x —¢ being supposed to be always large.

In the first of these 2 last mentioned cases, we get *., for the corresponding part of the
integral z, ;,

1 T
+-Z(l+cos£), (x>1);
and, in the 2 cage, —i (l +cos E); (x<t);
which may be explained by saying that while %—" is in both cases positive, the factor siny is in

the first case positive, but in the second case negative.
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558 XX. MOTION IN ELASTIC MEDIUM
If  were exactly =¢, we should have, rigorously,

1 ( )” ™ gin 2¢ (0 —sin 6) df
2y == (sin—
e n I

L sin 0 (cos 0—008;")
&, nearly, for the part which corresponds to 6 nearly =0

3
«/t=2t(0——sin0)=%, i = 162d6, _dﬁ_ o _di,

inf 6 3y’
and the part would be — (1 +cos — ) Such are the parts which correspond to values of 6 a
little greater than 0.

Supposing next that 6 is only a little less than =; we have, nearly,

2x (m— 0) + 2t sin (7 — 6)

gin (7= 0) kL
& this relation becomes more and more exact as x + ¢ increases, the arc

=22 (r—0) + 2¢sin (7 —0)

remaining constant because under these conditions the arc 7 — 6 tends indefinitely to 0
+1 +1

e = 1

Also — d J tends to be S@tl)’ , being rigorously =

——————— th
S@—toost) ; therefore, since x +1 is
large & > 0, the part of 2, , which is now under consideration is + (l cos )

Thus the sum of these 2 first parts of the integral z_ , is
+4, if x be much >¢;

—gcos%, if z be much <¢;
and

1 AT
6(2—-0087—1‘), if z be =¢;
t and x being both large & positive

Supposing finally that 6 is nearly = ) putting

Y200 2sin0—4, $="2"_3

¢=2(0—-g) (x—tcosn)+tsm (9___)2

and if x — ¢ cos n be large, we may neglect the 274 term

we have nearly

In this manner we get, for the 3™ part of z, ,,
cosd [ singdy T 008 . 2 ) Z)
hoas L 5 = F}cos 2 2tsmn 4

. . ks
according as  is much > or much < tcos—. If z tcos— then

9_’I=ri/_i/‘_; e, 4 $= 2t( cos——sm )
n s § ‘n‘ 2|/J n
sm;'; 60—

n
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to each value of ¢ + ¢y = 226 — 2¢sin f correspond now two values of 0 —% which are nearly equal
and opposite; “." the corresponding part of z, , is insensible.*
If then cos:—; be sensibly less than 1, so that tcos% may be regarded as considerably less

than ¢, when ¢ is large and positive; if z be also large and positive; we have the following
approximate values for the integral z, ;:

2 f y
2= —%cosz+1}cos(——x—”—-2tsmz), if 2 be much <#cos—;
g n n n n
—%cosz, ifx=tcosz;
n n
2 . i
—%cos’—r—%cos(ﬂ—-%smz), if # be much >#cos— but <t;
n n n n

2z .
 — %(cos—) -1 08(7—215 nn), Hore=:
%—%cos(2—x1—r—2tsinz), if x be much >¢;
n n
and consequently, under the same 5 different suppositions, the function

2w el
N 4= %VGI'S (T oz 2tsmﬁ) —Zz,‘
takes the 5 following values:

m\2 2 . [ 2zxm iihar .om\?
cos—) —cos| ——2¢{sin— |=vers| — —2{sin— | —|sin— | ;
2n n n n n 2n
w \2 2z . ) w \? 7 \2
(COS %) -%GOS (T—- 2tsm7—b), (COS %) ’ ‘&(COS %) Al ) ¥

What would happen if z — tcosg were of the same order as ##? Let 2 —#cos % =£/1; then, by
the last page,
NONY T AT R _z)”.
=2t (e n)+smn.t(0 uE

*. if £ be positive and a good deal larger than A/ 1 sing, we shall have, nearly,

i Y N
#(0-3)-%(1-dpn3)
or, more accurately,

ol ran® afoa™)!
¢ x/:smn-f-f {§+smn.t (0 n)} ;

t*(@—%)sin%=§{—l+ '/Jsm }

* [See p. 555.]
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that is, . T
tt/:sm;b
t{0-")sin"=(z—tcos”){—1+ 1+ 7t}
n n n T
x—1cos—
n
T 1 T )2 .o
0——=——{—|x—tcos— |+ [|x—tcos—| +isin—.4
n . n n n
tsmﬁ

= (by hypothesis) a quantity of the same order as %;

we may °." neglect its square in the denominator of the element of z, ; & thus we have to
calculate
[ sin(¢+¢)d.t*(0—z—)

2 ti(ﬁ——z)
v_o n

: cos (¢ +6'2sin %) sin 2£60" d6"

’

i sin (qS + 2¢0° +sin%0‘2) ae 1
ey 5 b )
J-» 0

which tends to — E;—qs, when £, being positive, tends to become infinitely greater than sin%.
Thus by taking §=cos7-r+£, in which ¢ is a large positive constant number, we shall
n

Vi

have with a given, and great, degree of accuracy :

T 2xm Pk
2, 1= —+C08 ——}cos | — — 2¢sin —
= — Yoo T~ yoos (27 _2tsin’7),

m\2
Mot COS’;-L )

so that we are justified in considering cos;z as the velocity of propagation.

If £ were much less than 3 J sin z , or more precisely if §*2 sm;z increased much more rapidly

than (2£8')2, so that the ratio }¢-%sin :-: =s"'s"? is large, s being a number such that faﬁ‘l sin 6d0
0

is nearly = g; then, for the integral

g J‘ © cos (¢ + 528" 2) sin J'dyf’
m)o f !/l‘ ’

in which ¢ = 2£6", we cannot correctly substitute

1 (scosésiny’ , .  cos¢
I S
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XX. MOTION IN ELASTIC MEDIUM 561
but are rather to substitute, as the opposite limit,
1. %8 i i
_;fo cos(<;b+8—2¢v )da/: :

in which we are to remember that s's—2is now large. It is remarkable that this last limit, if it do
not vanish, must be proportional to s (s')~*; for it may be written thus:

1 £ “
—= | cos(b+g")dy;
7Vs'Jo
in which "= \/T; J'. Also \% =-i§-, which we have supposed to be small; it is
N ! :
n

2(x—tcosz)
n

A/tsin"—r
n

Cauchy gives in his Memoir on Definite and Singular Integrals (Mém. Sav. Etr., Tome 1)
© © 1 +
[ costmap= [ “sinwmas-3(3)"
0 0
ks
x—tcos—

. o m™
~—————gin —2¢sin :
Lo n n 4
7t 8In —
n

There is something here analogous to a change of phase.*

Eize 5
=T bt 2 —
We have then — 7 fo 008 (6 + %) dip

(Feb. 7th,) 7
Admitting that f " cos (y2) dip = f “sin () dp=3 /7,
' 0 0
we have, as Cauchy remarks,
% J ;—T = -;—f_: cos (Y?) dp = ifjw cos (Y + @) dif + %J‘io cos (§ — @) dif
= if . {cos (Y + w? + 2wy) + cos (Y2 + w? — 2wh)} difs

=%f® cos (Y2 + @) cos (2myp) dis =f: cos (2 + w?) cos (2myp) dif;
& for the same reason % J ;E =f: sin (Y% + w?) cos (2amif) difs;
[ con ) cos o) ap="Teos (027 );
[ sim (9#)cos (2 ap="Y7 o8 (22+5)-

* [Cf. Kelvin, Proc. Roy. Soc. Vol. xruix (1887), p. 80.]
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562

Hence I deduce, by integration relatively to =,
® cos (%) sin (2a3) ., o ... ]
— = tdyp=Vn A cos | w*—7 dw;

.[o ¥
f: M,;—n@)d‘/’=‘/;f:cos (m’+£) dw.
\}_;J’: cos (¢+¢2)sin(2w¢)dx/v=f:cos (¢+Z—w2)dm;

¥
); but, when @ is very large & positive,

m

Hence
4

which, when @ is very small, is nearly =wcos (¢+

is nearly g3
1 /= kg . ™

=3/ o (¢5) #an (3 45) = 4oy

& these two extreme values agree with those lately obtained.

\2) sin lﬁ‘d{/l‘

To calculate °.*
1
!/’\

mJo

J“” cos (¢ +8's~ %)

we may put, as on the last page,
8 l/l“ plae 2 o lﬁ“,

¢‘=V§T

Py = —{/L;f:‘%cos (4; +7ZT-— wz) dw

& we get

1 (> \o—2,/\2
_J‘ cos(¢+a‘3 s )sin
m™J)o l/l

z—tcos

n
1 tsin” :

A/ "cos(ga—”—r—2ts1n%+£—w’)dw.

o Rt o

We may even extend this expression to all values of z, t being large and positive; for as soon as
@ —tcos - is of the same order as t, whether positive or negative, it becomes sensibly

il

X . .
co8 (—w— 2t sin E+"—"'—w”) dw=F %cos({— 2t smz).*
* [It is to be observed that the fundamental integral, z,, ;, written as a usual integral, is (putting o=
} de

&

sin (22— 2¢ sin §) _ sin (2xo— 2¢ sin o)
sin o cos §—cos a*

1 m
2 (atnic)s
gy e /., { sin 0

For values of 6 nearly equal to « this becomes
cos (2za— 2t sin o) (7 sin {x (6 —a)—1£ (sin § —sin o)} d6 ]
: sin § (0—a) :
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XX. MOTION IN ELASTIC MEDIUM 563

[Airy’s integral.]

Can we find any analogous general expression for the part of the same integral [z, ],
which corresponds to values of 8 nearly =0?

For such values, ¢=220— 2tsin =2 (x— t)9+ 8’+ terms which may be neglected in

comparison with these, even J.f T- be small; because @ is to be at largest of the same order as

j;f-’ in which s is a large but constant number, independent of ¢, & such that .[83:¢d¢ is

0

sufficiently near to g for the purposes of our approximation. For the same reason, we may treat

the denominator sin 6 (cos 0 —cos g) as being =0 vers g; & .’ shall have, for the corresponding

part of z, ,, the expression

%(1+00& )J‘o sin (2¢, 99+§6‘)d6

’

z=t
7 7k
If £, be very large, positive or negative, this expression is evidently = 4(1 +cos — )

in which 6‘,=8‘f/§, and &=

If on the other hand ¢, be very small, the expression becomes 112 (1 +cos— ) But according
to what law does its value vary for moderate values of ¢, ?

We have, accurately,
f.i @
[l AR, [ ae, [0, c0n 26,0, +40);
0 0
. so that it is desirable to try whether we can obtain a finite expression for this last integral,
f cos (240 + 30%)d0.*
0

Can we calculate J.me—“’ ©+860) gf, when « is real, orf e~**% cos rada, which bears a strong
0 0

affinity to the integral discussed by Laplace, Cale. Prob., page 97, J.e*“"" cosrwdx?

[The calculation is reduced to the solution of a Riccati equation but is not carried further.]

[ Detailed description of wave motion.]
(Feb. 8th,) i
Waiving for the present the discussion begun on this page, let me resume the former
discussion of z,,.
* [Airy’s integral. Cf. Watson, Theory of Bessel Functions, pp. 188-190.]

71-2
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564 XX. MOTION IN ELASTIC MEDIUM
It follows from that discussion that the function

m

1 (. @\*| sin(2x0—2¢sin0)do
z,l_2_(s

" sin0(cos€—cos 7—7)
n

0
Wi v
involves a first part corresponding to 6 nearly 0, which is + % ( 1 +cos:—:) , according as z—{,

being large, is positive or negative; but is = 15 (1 +cos %), according as ¢, being large, is
positive or negative, if z=t%.
The same function or integral z,, involves a 2"¢ part, corresponding to 6 nearly=;

which 2%¢ part is +- (1 —cos %: ) , according as x+¢, being large, is positive or negative; but

4
Bis=ilE il~2(l —cos z) , according as ¢, being large, is positive or negative, if = —¢.
The function z,, involves finally a 3" part, corresponding to 6 nearly =£; which 3rd

part vanishes when x = cos % ,if t be large, positive or negative; butis = F  cos (% — 2¢sin :—:) }

-

according as x —¢cos 7—1:, being large, is positive or negative.
More precisely, by saying that x—tcos;—r is large, we mean that it is numerically equal to

or numerically greater than s / +¢sin 2 , 8 being a positive number so great that
yg o gap gr

i Y2\ sin
) o (eels)
is sensibly equal to cos ¢. Perhaps the number s = 1000 may sufficiently satisfy this condition.
At all events, whatever degree of accuracy may be required, this number s is independent of ¢

& of x.
By saying that x —¢ is large, we mean that it is numericaily equal to or greater than }s'}, s’

353) s is sensibly =1. Perhaﬁs 8’ may be

¢

gl 21944
being a positive number so great that ;J sin (:,b +
0
taken = 200.

Finally, by saying that » + ¢ is large, we mean that it is numerically equal to, or numerically
greater than, the same quantity s'¢}, s’ being the same positive number.

Now let the number in be considerably greater than SE J + tsing, & also than % vV £t.
(What are the relations between these 2 limits ?)

And first, let ¢ be infinite; that is, let us return to the original problem of this manuscript;
in which it is supposed that, at the origin of time, all particles behind the origin are disturbed
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XX. MOTION IN ELASTIC MEDIUM 565

according to the law of the versed sine, & all beyond it are at rest. The number n of molecular
intervals in one wave-length is not obliged to be large. We shall suppose that 1 —cos E is sensibly
different from 0. ;

We have now, (compare p. 554,)

2z o
Mgt = 5 Vers (_n__ 2tsin ;a) — 2y =versd—z,,.
The law of z, , is sufficiently stated on the preceding page; and we are to deduce the corre-
sponding law of 7, ;.
I. Let t be large and positive.*
(1.) Ifzbe = or >t+ }s'th, then
1 R my 1 2w e e ) 2z o7
2= 1(1 +cos ﬁ).'-Z(l —CO8 ;&)—écos(-—n— —2tsin E)_Evers (T_ 2{sin ﬁ) -

and 7, ,=0; the disturbance is insensible at a distance beyond the origin so great as ¢ + 1s'sh,

1 2 aF
(2.) If x be =t, then Mot =73 eos%a) ; there is then a certain constant and positive

displacement, which travels with a velocity = 1 = the square root of the attractive (accelerative)
force exerted by any one particle on its next neighbour, and therefore with a velocity inde-
pendent of the wave-length.

2

(3.) If z be = or <t—}s't}, but > or =tcoa;}:+ 1s tsing, then 7, ,= (cos;—n) =a certain
other constant & positive displacement, three times as great as that last mentioned. This new
displacement is sensibly constant, within an extent = tversg —3s /tsin E— %s’t*; whereas
for a range =s't} next following, there is a variable displacement, which vanishes (sensibly) at
the end of that range, & is, at the middle, reduced to one third of what it was at the beginning,

(4.) If x be =tcos g, then 7, ;=4 vers ¢ + } cos g =a periodical displacement, which travels

with a constant velocity( =cos g: a function of the wa.ve-length), & of which the amplitude is
= 1 =half the amplitude that corresponds to the most complete effect of the initial disturbance.

2n
periodical displacement, which has a constant amplitude =2, & of which the period, for any

2
(5.) Ifzbe = or <tcos£—1}s,~/tsing,but>or= —t+§s’£*,thenqz,‘=vers¢—(sin—"w) =8

‘given value of z, is « cosec E [wave-length =n]. This part of space corresponds very well to the

phenomena of light. Tts extent is ¢ ( 1+cos E) —1s tsing —1s'th.

TN g N
(6.) If x be = —t, then qz,,=vem¢—§(sm%) g

* [See Appendix, Note 12, p. 640.]

www.rcin.org.pl



566 XX. MOTION IN ELASTIC MEDIUM

(7.) Ifx be = or < —t— s't}, then N, 1= Vs ¢.

Thus the law of the versed sine may be considered as holding good, without sensible error,
for all those particles which are at least as far behind the origin as the position z= —¢— }s'#};
but during the range = s't} next following in the positive direction, that is, between the bounds

3 o e s
x= —tF }s't}, a negative term is added to vers ¢, which negative term is sensibly = — 3 (sm —;7‘)

2
at the middle of this interval, & = — (sin —2% ) at the end thereof. It then remains sensibly

constant, as also does the law vers ¢ remain unchanged, during a large range

=2 (cos —) —3s tsing— 1s'th,
that is, till z=¢ cos-:—:— 48 /[tsin 1—7:; but in the interval=s A/@:» n.ext following, the displace-
ment changes from ( cos %& )2— cos ¢ to (cos %)2, the coefficient of —cos ¢ decreasing from 1

to 0 & being = } at the middle of this interval, that is, when «=¢cos z In another range
=2f (sm —-—) —3s tsin:—:— 3s'tt,

2n
; : ’ : : . : 1 4
interval = st} next following, this term is reduced to an insensible quantity, being = 3 (cos -21—;; )

at the middle of the interval, that is, for =¢. Finally, for x>+ }s't}, the disturbance or
displacement is insensible.

2
that is, till x=t—%@’t§, the constant term (cosj—r—) remains sensibly the same; but in the

I1. Let t be large and negative.

That is, let us trace back what must have been the state of the disturbances before the origin
of ¢.

(LY JE o =r00 > -—t——%s’t*; Ng,4=0.
’ ]- o w 2
(2.) I z="—1; nz,,=§(sm Eﬁ) :

2
(8.) Ifz= or < —t+}s't}, but > or =tcos1—r+§sA/ tsin” w 77,,—( ini) .

2n
(4.) Ifx=tcos— ,%,—(sm ) —4cosd.

. . T a \2
(6.) Ifz=or <tcos7—z—1}aA/—tsm;L, but > or =t—4}s't}; nz,,=vers¢—(cos%) 4

6) tz—rt. —versd;—-l Y
(6.) Ifz=t; 9= 3 cos%) :

(7.) Ifz= or <t+3s't}; n, ,=versg.
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XX. MOTION IN ELASTIC MEDIUM

[ Bxtension of original problem.]
(June 14th 1839.)

If we have the equation

"7;,! - a% (’7z+l,! ) 2772;,! + "7.1:—1,!) o+ a’% ("Tz+2,l i 2’7:,! + Mgz, 0)s
we may satisfy it, generally & rigorously, by the expression

w
2

Nt = % b - S n,,,,j df cos (210 — 2x0) cos (2t@y)
0

g
+}T . L4 f d8 cos (210 — 2x0) sin (210,) OF 1,
0

in which ©y="Va2sin 62+ a3sin 202; « and ! being integers.
Let the initial conditions be

(2l-n')
n_go=mvers{—| or =0,
; n
A
and N_10=2nsin (ﬁr) ®, or =0,
: P

according as —1 is or is not included between 0 and in; then

3
Ne,i= 2—: i, {vers (—2%1 ) f d6 cos (210 + 220) cos (2t@y)
0

567

+ Oxsin —2%71] d8 cos (210 + 2x:0) sin (2t@g) O 1} -
" 0

We have

olr sin 0 A% 1
i —_— -_——— )’ 1 —_—
I, vers — cos (210 + 2a6) = —— g ©08 (220 + in0) ( sin )

28

sin inf 1

a ko
cosf —cos— cos B+ cos—
n n

=9 {
Zin, sin —sz cos (210 + 2x0) = - 3 sin (220 + inf) sin £ -

2 [ in wnb Y

'q“=7l(sinz)f dOSu.lm co’S(2“)_,_”“9)cos(2t®(9)
v n) Jo gin 6 T
cosB—cos;L

sin ¢nf sin (2260 + inb)

ks w
cosf—cos— cosf+cos—
n n

N T4 dp
+‘n'928m’nfod @9

In general )

4sinacoshcosc= sin (b+c+a)—sin (b+c—a)+sin(b—c+a)—sin(b—c—a),
4sinasinbsinc= — sin (b+c+a)+sin (b+c—a)+sin (b —c+a)—sin (b—c—a);

=4 —B+C-D,
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568 XX. MOTION IN ELASTIC MEDIUM

in which g
n o w5 O\ sin (200 + 2000+ 205)
A=Esm‘f o [y e L
e . cos f —cos—
n
N e A TN
B=lsinzf 20 n g |sin (226 +2¢ 0)’
47 nJo sin 0 @9 ko
cos 0 —cos —
n
SiIlz @g 2 5
Nl n | sin (220 + 2in0 — 2t04)
C=—"sin—| do| =—=+—=" !
47 nJjo sinf = @y T
cos 0§ —cos —
n
WA
sin— Or\ .
W, LA Nl " | sin (2260 — 210y)
D“msmnﬁ,da smd T 0, '

ku
cos 0 —cos —
n

[Two-dimensional waves. |
(June 14th, 1839.)

If we consider the vibrations of an indefinite square system of points & suppose that each
attracts only the 4 nearest to itself, the distance between any 2 nearest points being =1 in the
state of equilibrium, & the attraction being sensibly =a2+ b2 (r — 1) for any distance r differing
little from 1, but being sensibly =0 for any much greater distance such as even v/2; we shall
then have the 2 indefinite equations in mixed differences

2 2A 2 2A 2
O={—(d) + aAy + bAz }fz,y,ly

dt) " 1+A, 1+A,
s d\®* a?A}  bAY {
0-{ (@) 1A T e
of which the complete and general integrals may be thus written:

s o in (240
o= 5 Sam 2522 f do f 4008 (200 — 26) cos (2y— 2mg) {g,,mcos (2t0) +ﬁ,m%} :

4 D B ,  sin(2t0
o= Zam- -5 [ 20 [ 008 (200 — 2m8) 008 (20~ 209) 0008 (210) 7 iy

if

® =V a?sin ¢2+ b2sin 62.

- Suppose now that for every integer value of ! between 0 & —in, and for every integer
value of m between —m, & +m,, (the extremes being included,) we have

Rl# - 5 ., 2l
ﬂ,,m,o=17vers-;—, m,mo=—2ansm;bsm—n—;
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XX. MOTION IN ELASTIC MEDIUM 569

but for all other values of ! or m we have 7, ¢="0, 1}, 0= 0, & for all values of I & m, & ;n,0=0,
&,mo0=0.Then £, , ,=0and

™ m

Y 2
Nz, pt = g E{:{)_m/ s fo do ,[o dé cos (2y60 — 2m0) cos (2z¢ + 2I¢)

T |
asin—
2lm ey
x  vers— —cos (2t®) + 5 sin (7) sin (2t0) 1.
But
" cos 2yfsin (2m,0+0)
Zz;)_m’ cos (2y0 — 2mb) = ) :
it 2y . @\2 (2 [ cos2yfsin(2m, 0+ 0)sining
© TentT 7 (sm ﬁ) fo il fo i sin 6 sin ¢
. ] co8 (22¢ + ind) c0s (240) +asgl¢ sin (226 + tng) sin (260) |

kK o
cosqS—cos;b cosqS—cosﬁ

As m, increases without limit, this expression tends to become independent of y,* namely

(. 7\ (", sining cos (2 +ing — 2atsin ¢)
nw,u,l—ﬂ_(mnn) fo dé sin ¢ s

cO8 ¢ — cos %
agreeing with the value found before. The same resﬁlt is obtained if y be large, but m, much
larger.
If on the contrary y be much larger than m,, then the relation
2 cos 2yfsin (2m, 6 + 0) =sin (2yf + 2m, § + 0) —sin (2y0 — 2m, 0 — 6)

causes 7y, y,¢ 0 be sensibly =0; & we have thus an example of the possibility of representing in
dynamical calculation the sensible rectilinearity of the propagation of light.

Diffraction corresponds to the case of y nearly =m, .

[Three-dimensional waves in dispersive medium. ]
(June 18t 1839.)

In general, the equations of infinitely small vibrations of a system of attracting or repelling
particles, :
d*z

g = 2188z (r)+ Az’ (1) 81}, &e.,

* [This means, of course, that in the integrand, with the exception of the factor sin (2m, 8+ 6)/sin 6, 6 is made
zero so that ® =a sin ¢.]
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570 XX. MOTION IN ELASTIC MEDIUM

may have their integrals expressed, as Cauchy* has shown, by equations of the form

(8w),=fw on J‘w {d, cos (ux + vy + wz) + g,sin (ux + vy + wz)} dudvdw,

(8y),= {e : Iy } >
(62),= {f t oy } s

d,, ... 1 being 6 real functions of ¢ and of u, v, w, depending on the nature of the system.

The initial values & rates of increase of these 6 functions may be deduced from those of
dz, 8y, 6z by the 12 formulae

3 [fw @ )
dy= (517—7) f_w f_w f_w (8z)q cos (ux + vy +wz) dedydz,

......

3 [fw @ ©®
R (-2-17—7) f J f (824 6in (s + vy +302) dsdy de,
in which (8x), (8y)o, (82)g, (82)y, (8Y)g, (82), are 6 known real functions of z, ¥, 2.
The differential relations between d,, ¢,, f, are of the forms :
t=—(Ld,+ Re,+Qf), e¢;=—(Me,+ Pfi+Rdy), [i=—(Nf+Qd+ Pe),
in which L, M, N, P, @, R are 6 real and known functions of u, v, w, depénding on the nature
of the system; this system being supposed to have a certain symmetry of arrangement & to

have the same arrangement throughout; & the same equations hold good when d, e, f are
changed to g, &, 1.

The expressions for these 6 functions L, ... R are

2
L=Z.(A7x d;'(r)+¢(r))vers(qu+vAy+wAz), M= SN = 4

P=Z.(éxrAy¢’(r)) vers (u Az +vAy +wAz), Q= Ve
The integrals of the differential relations between d,, ¢,, f, are of the forms
t

A,di+ Byeg+ Oy fy=(A1dy+ Byeg+ Oy fo) cos syt + (A, di + Byeg + le(;)fo cos 8, tdt,

Ay, ... U3 being 9 real cosines, namely of the inclinations of 3 rectangular lines to the 3 rect-
angular axes of coordinates, these 3 lines being the axes of a certain surface of the 224 order, &
depending only on u, v, w; but s, 8,, 8; being (perhaps) not necessarily real.

The equations which determine them all are

BR+0Q _ OP+AR_ .  AQ+BP
R e LoD N

s2=L+

* [Cauchy, uvres, 1° Série, Tome 1v, pp. 237-298. It is to be noted that 74(7) is the law of force between two
points.]
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XX. MOTION IN ELASTIC MEDIUM 571

(June 19th,)
Let only half the medium be originally agitated; & in particular let the initial conditions be
(8x)g=0, (8y)o=versu'w, (82)y=0, (dx);=0, (8y)o=s"sin(u'z), (82)y=0,
for all negative values of x, these 6 functions all vanishing for positive values of z.

Then _
d0=0: f0=0’ go=0, ‘.0:0’ d(,)=0: f(,)=0’ g(,)=0’ i(')=0’
and

€= @ )sf_wdxf dy dzversu 2 cos (ux + vy +wz),
S U Wj_wdxf_mdyj_wdzvemu xsin (ux + vy +wz),

: i 1 0 o @ ) <

eh=8 Wj_wdxf_wdyf_wdz81nu x cos (ux + vy + wz),

0 © ©
h6=8‘(—2’117—)3f dxf dyf dzsin w'zsin (ux + vy + wz).

[Hamilton then calculates from integrals in which the integrands above have a factor
e @+v'+2) Ingerting these values in the equations

sin s, ¢ sin 82 sin syt

BZ + B2
1 3

)e{,, &c.

and making 4 =0 in the triple integral for (8y),, we get finally the followmg equation]*

¢,= (B2 cos s, t+ B cos syt + B2 cos s,t) ey + (B%

\

o (s Wit & s i
(By), =% vers (w'x+s8't)+ % fo b (?1: sin ux cos 8yt + . COS % sin slt) :

This expression for (8y), is rigorous in the present question; & accordingly it gives
(By)o=versu'z or =0, and (3y)y=s'sinu'z or =0,
according as # is <0 or > 0; because, in these 2 respective cases, we have

2f°°sinux.udu IJ‘“’ (smux sin ux

—® u+u -

———— = du = Fwcosu'x;
R Ve A B )

® cos uUx . du ; ® ginux . du
2u'| —————= twsinu'z; 2u'? — = + 7 Vversu'z.
0o u—u'? o u(u?—u'?)

Thus, rigorously,

\ \

i TV o L w 8\ . TR T y
(Oy),= % vers (u x+st)+%J0 . u2{(a—+8—1)sm(ux+slt)+(;—g)sm(ux—slt)}, l

:zls‘t being large, is > or <0. The
velocity of propagation of vibration, or rather in this case the velocity of extinction, is expressed

& its periodic part is 0 or —cos (1'% + 8't), according as x +

* [See Sommerfeld, Diss., Konigsberg, 1891 and Carslaw, Fourier’s Series and Integrals, p. 293.]
: 72-2
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>572 XX. MOTION IN ELASTIC MEDIUM

not by the ratio of the coefficients of time and space, but by the ratio of their differentials; & I
feel almost sure that this is the general law of the propagation of vibratory motion.*

Velocity of propagation g%:l
(June 20%.)

Suppose that only half the medium is originally agitated, namely that half which is on the
negative side (relatively to x) of the plane u'z+ 'y +w'2=0, in such a way that, if .

i 'y +‘w‘z,
u
we have 2
(dx)g=A"cos (u'z+v'y +w'2), (8y)y=B"cos( )i i {02)p =0 con ( i
(bx)y=A's'sin( ), (By)=B's'sin( ), (h=C''sin( )
/ i : . V'Y +w'z
but (82)o= (8y)o= (82)o = (3a)y = (3y)y = (82)y =0, if z> — L7,

’

How are we now to effect the triple integrations for d,, ... 7y?

We may conceive 3 new rectangular coordinates z', y*, ', of which z' is the perpendicular

w'r+v'y+w'z

Vai ot w?

S0y = :;—‘1‘/_213):?:2 = perpendicular distance from that plane which passes through [the axes
.ok 40

of ] and ' ; & the plane of z'y" is of the form

distance from the plane w'z + 'y + w'2=0; (%' may for simplicity be supposed

\

u

SN \ ) AR BN T
z+A'(V'y+w'2)=0, A P

(024w r—u' (v'y+w'z)
\/v‘2+w‘2\/u‘2+v‘2+w‘2 }

2

Accordingly these expressions give z'2+y'2+2'2 =22+ y2 +22. They may be written thus:
Making u'=k"cos 8, v'=Fk'sin0'cos¢', w' =k'sin ' sin¢', we have
' =xcos '+ (ycos¢' +2s8ing')sind*; y' =ysing' —zcos¢';

z'=wsinf'— (ycos¢' +zsing') cos 6';
and they give reciprocally

x=x"cosf'+2'sinf'; y=(a'sinf'—2'cosf')cos¢' +y'sing';

z=(2'sinf'—2z'cos0')sing' —y' cos ¢".
Hence
ux + vy +wz=2x"{ucos 0" + (vcos$' +wsin¢')sin 6'}

+y' (vsing' —wcos$')+2' {usinf' — (vcos ¢' +wsing') cos 0'};

* [This is obtained by considering the contribution of the values of u in the neighbourhood of u=u' to the
value of the integral. It is to be observed that ¢ is the same function of u' as s, is of .]
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XX. MOTION iN ELASTIC MEDIUM 573

and we are to multiply both the cosine and sine of this expression by the cosine & sine of
k'x', & integrate relatively to 2' from —oo to 0 but relatively to y' and z' from — oo to co.

3
The results, multiplied by (%T) & by A', B', C', A's*, B's', C's’, will give d,, ... 1,.
We find, in this Wdy,
0 @ @©
f da' f dy' dz'cos k' cos (ux + vy +wz)

=f dx' cosk'x' cos [z {ucos 0" + (veos ' +wsing')sin 6'}]
0

xf dy'dz" cos [y (vsing' —wcos¢')+2' {usin ' — (vcos ¢’ +wsin¢*) cos 6'}]

-0 J —
§ ( _(b=R\ (kRN _(E—k*
=Zh_3{e ( M) 4o \ )}e an* )’

if &, =ucos6 +(vcos¢' +wsing')sing', and k=Vul+o®+u? as k' =Vu'2+0 24w In
like manner

0 " % g k/-—k‘)' (TN k‘—k,')
f dx‘j dy‘f dz'sink'x" sin (ux+vy+wz)=a"—3{e Wat agikisidil go\
0 @ © \ - k’—‘{c—”
f dx‘f dy‘f dz'sin k'z' cos (ux+vy+wz)=%k2]i—k\2e g );
k’_kl‘
k _( 4n* )

jiwdx‘ J‘jwdy‘f:odz‘ cos k'’ sin (ux + vy + wz) = —}%me ;
in which it is to be remembered that '
k?—k?=(vsing' —wcos¢')?+{usinf' — (vcos¢' +wsin$') cos 6'}2.
Let wu,=k,, v,=vsing'—wecos¢', w,=using'—(vcos¢'+wsing')cosf';
then B-2=v*+uw?, wu=wu,cos86 +w,sind", »
v=(u,sin6'—w,cos0')cos¢' +v,sin¢', w=(u,sinf'—w,cosf")sing'—v,cosd";
dudvdw=du,dv,dw, ;

ur+oy+wz=u,x' +v,y +w,2'; ud+l+wi=ul+o?+uwl=i2

Hence ﬂ=&=ﬁ=l(__l_)3e_wyf” {e_ u’z_hk‘)‘_i_e‘(w;z” '}.
4 B O 4\2V= :
A T =1( 1 )e—m'”—: b }
A's' Bs' (s 4\2nV7 i

ity L g
A8 BS Cs 2r\2hVa @k
Jo _hy _ % _ 1( 1 )ae-”";;:f" Lt L

AT T AR T T ’
u2 — 2

A"B 0O om\2Vaw

www.rcin.org.pl



574 XX. MOTION IN ELASTIC MEDIUM

these are to be multiplied by :i(;f (w,2'+v,y" +w,2")du,dv,dw, , & also by some known functions

ofu,,v,, w,, & integrated relatively to %, , v,, w, from — o0 to co.

This integration may be simplified, by 15t suppressing

_vltws?

e 1 \2 3
dv d Lrind 4h k
f-wf-m PRy (2}»\/;) .

& then changing u,, v,, w, to k, 0, 0; which latter change is equivalent to making

u=Ikcosf', v==Fksinf'cos¢', w=*~ksinf'sing".
We are °." to multiply

_1_(6-("—;;? PO v o Wl b il ¢_1__)
8hVmr 4] * 4w \k—k T k+E)
by some known functions of £ & ¢, & to perform the operations J.w cc;sl kex' dk.
m (ke u
But lim dk(2hVm)le N 7 f(k)=f(+k");
h=0 J —o

the sign of integration is ‘' affixed only (after all reductions) to terms of the form

cos

i Lo
% F (k,t). This latter function F (k,t) involves :ﬁf st; & here also the velocity of propaga-
tion is -~

dk*’
Thus the parts of the 2 respective sets of integrals

fw du Jw dv fw dw d, cos (ux + vy + wz), on dqu dv % dw g,sin (u + vy + wz),
: ‘ v é ) i 5 r Iy s
i ) # )
which are respectively even and odd functions of ¢, are
A cosk'x' coss't, 31A‘sink'x'sins't,
B 5 aiBl :
o BoaT € 3
& *.* by adding these we obtain
34" cos (k'x* —8't), 4B‘cos(k'x'—s't), 3C"'cos(k'z'—s't),
as the parts of the final expressions for (8z),, (8y),, (8z), which do not (after all reductions)
involve the sign of integration. :
The other parts will be less simple. The parts of f f f d,cos (ux + vy +wz), &c., which are
odd functions of ¢, are the sums of the three values of
s'k J“” dk cos ka* sin st

O e s(BP—F)

A(AA'+ BB +CC"), &e.,
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XX. MOTION IN ELASTIC MEDIUM 575
corresponding to the three systems of values of 4, B, C and s; and the parts of

fff g;8in (ux + vy +wz), &e.,

which are even functions of ¢, are the sums of the 3 values of

Icsmka: cos st
——J dk — % i A

Thus the whole remaining parts of (Sx),, (3y);, (82), are the sums of the 3 values of

———A4 (44" + BB' + CC"), &ec.

J‘“’dksk cos kz' sin st — sk sin ka COSStA(AA‘+BB‘+O’C‘), e

78 (k2 — k%)
which sums consequently are
= —14"cos (k'z' —s't) + (8z);, &ec.

And thus we express rigorously the effect at the time t, corresponding to an initial system of
velocities and displacements extending only to half the medium. And we confirm the theorem that

the velocity of propagation of vibration is gal

FAu for we find that the vibration does not sensibly

attain a place x* till <tg%.
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