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[Statement of the theory for a single differential equation of the first order.]

(Feb. 18, 1836.)
[1.] Let the following be any proposed or original ordinary differential equation of the
first order:

(1) O f(®, @), Ryy vosp By B34 Bgy wiey B

in which
’ _dxl ’ _dxz ’ _dxn

(2) xl—dx, .’Ez—d_x, coey xn—-%
If n =1, the equation is simply

(3) 0=f(z, ,, 2),
and then it has always an integral of the form

(4) O=F(a’ al’ x; xl):

a, being the value of z; which corresponds to the value a of . But if > 1, the one original
differential equation (1) is not in general sufficient to determine the forms of the two or more
functions 2y, ..., ,,; however it will still conduct in general to what I call the principal integral
relation between those functions and their initial values, of the form

(5) Ot T (@, @iy Lot s By WUy, sy By
provided that we combine it with the following n—1 principal supplementary differential
equations of the second order:

8 dof 8 d &
©) dxy dwda] _ o, dada,
T s =g,

8y Sa,
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1] XIV. CALCULUS OF PRINCIPAL RELATIONS 359

assigned by the Calculus of Variations. Since these supplementary equations enable us to
choose A so that

o L 2 A

dx, dxz\ ox ox, dx\ &z

we see that if we multiply by A, thus chosen, the variation of the original differential equation (1),
namely

(8) I 8x+ of 8a:1+ R .. A dx, + f,8x1+ .+ Sf, Oy s
" oz dz,, day dx
in which
8f o Ba of of .
) O=8at 5a Ttk it g St Tt e tiggr On
we shall get
(10) 0 ( Sf) (82, — x18x)+...+()\ if,) (8x,, —x, o)

f(8x1 278x)+ ... +A f(S —x; dx),
de; d

in which 8z} =3 g d_a:ax" - x;;—sz, and therefore

(11) 8x2-—x’,’8x=%(8xr—x§8x) = (8a; —x;dx)’. °
Hence

(12) O—A{ Sf' (B2, — xISx)+ +A f (Sx x,',Sx)};
that is,

(13) O Ay {Sf’ 82y — 2y f"‘ (Sx -z Sx)}

{Sf" (8ay —ay f“ (Sa —a Sa)}

if we denote by A, and f, the final, and by A, and f, the initial values of A and £

Comparing the equation (13), which is the integral of the variation of the original differential
equation (1), with the variation of the principal integral relation (5), namely
oF oF OF oF oF

(14) O—E&z+8a 8a1+ +8a da +$Sx+%—181‘1+...+878

n
and observing that the coefficients of the one must be proportional to those of the other, we
find the » final equations

¥ sz wa SFsz
e CHRRE o) s

................................................

5f, EAN N
ik ~ 3 (”18'+ TS )+$ax;;

Ly, 5

(15)
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360 XIV. CALCULUS OF PRINCIPAL RELATIONS [1, 2

[ttt

the n initial equations

%5l 8a.) " b 8a)’
(1)  ron ovvnbi bt ol R L LN L

_OF ( ,3f, fa) , OF of,,
l ‘8_( W "aa)+$$;;

and this other equation

(g a » Ofa) OF s » s\ 8F
(17) O—Aa(alﬂ'f'...‘i' nSq ) 8 +)\ (x1—8—~,+ o+ & ”Sx_,’, Ba.
The n differential coefficients or derived functions 27, ..., , can in general be eliminated be-

tween the 7+ 1 equations (1) and (15), and the result will be a partial differential equation of
the first order and of the form

3F 3F
tel® iw
(18) 0= .8_7_’ ...,8——1’.,—,%, Lyy eees Ty |
ox ox
which the principal integral relation (5) must satisfy. In like manner, by eliminating a;, ..., @,
between the n equations (16) and the initial form of (1), namely
(19) ‘ Ol @ et a@ . o ), ;
we obtain this other parfial differential equation to be satisfied also by (5),
3F 3F
8 | i
(20) 0=Y g—z, ceny @—, Ay Qpy ooy Oy |,
da da

¥ being the same function as in (18).

When the form of F is known, as well as that of f, and when both these forms are substituted
in the equations (16), those n equations along with the principal integral relation (5) reduce
themselves to only 7 distinct equations, which however are in general sufficient to determine
the forms of the n functions z, ..., #,,. These n functions involve the independent variable
and the 2n arbitrary constants a,, ..., a,, a1, ..., a,, which are not however all independent,
being connected by the relation (19) when a is given or assumed. Thus the system of n+ 1
equations (5) and (16) is equivalent to a system of only » distinct equations and is a form for the
complete integral, with 2n— 1 arbitrary constants, of the system of » equations (1) and (6).

[Eatension to a number of differential equations of any order.]

[2.] More generally, iet there be a proposed differential equation:
(21) O2ef (@, 0y 5 vy BFOD, Byl vsrs BEIy wiine, By B SRS
and let it be combined with the following supplementary dlfferentla,l equations:

0= Agl dix(A 8f)+ +(—1)wz(—5)"" (Aaj‘(’;l))
@) i s s e O

-3, )+ + -0 (z) ()

n

www.rcin.org.pl



2] XIV. CALCULUS OF PRINCIPAL RELATIONS 361
We shall then have
(23) 0=A(3f—f'dz)= /\{S'f 8y — 21 02) + .. + f (Sx(‘”x)—xl“”x“)Sx)l»

+A{ ¥ e Larmbyrocs Sj{, ¥ (Safon) — x(wn+1)8x)}

= f(le—zISx)+( 8f) 82y — 21 8) + .. +A8 (fw)(sx(w,)_xl(wlu)sx)

d ,
+(—1)entt (A S—x{—"’x_)) (82, — 1 6)

+A£;f: (8x{,—x§',8x)+( Sf) (8, —,, 0x) + ..

+ Sx({»o (ko) — afiont D) 4 (— 1)ont? (A gf&) “" (5, — 2 80);
in which ‘ ’

(24) Sa ) — 2t D8 = (8, — ) 5a)(@).
Also in general

(25)  y2@d 4 (— 1)@itly@d z = fyp@i-D — o' 2@i-2) 4 y"2@i=8) — | | (— 1)@itly@-D 2},

Therefore

(26) 0=A(3f—f'82)

- [hak-0) +-rcmrr )™ ot |

+ i{xg y (A g) bt (= 1)ont (A ijw)@,._n} (ax,,-x,;sx)]'

+[pZ (02 ¢t (-1 (2N ) ey |

'y
o oiins
- Sf Sf e 8f (wp—2) : 9 ’
(AP A TR
+ &ec.
A= (82 — 23 dz)en—D '+ 13 )\__S_f_(gx — /. 8z)@n—D 1
ax(w) X 1 see 83;(’:01;) n n >
uupix 46
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362 XIV. CALCULUS OF PRINCIPAL RELATIONS [2
so that, by integration,
(27) 0= f N(Sf " 52) d

_A[{ ( S——xl) bt (= D)ot (AS—S{@)«"‘_D} (82, -, 52)
+{/\ Sf,,—( Sf) Font(— )“’1‘2( 89;8{"1)) }(le—x{&'z:)’

S oz

5
PRI sl 071~

+ &ec. :
+{A88—f,— (A Si{,) PR 1)%—1( g%{;)(w"_l)} (8, — @, %)
A 5 x({* 5 (an —x, Sx)(“’n—l)] )

The general term is
3 ,

A [( l)a ( Sx(‘ﬁcl)) (Sxm 7 xmsx)(ﬂ_a)] s

where « may have any value % 8 and B may have any value < w,,, m having any value > 0 but

% n. Thus

~1 5 o, Y® e
(28) 0= Zf) G5 Ty {( 1)« (’\zgng) (3, — @, 3)® )}

35k n o Sfa g ’ o
-3 a)oz(?)-oxz(m)l{(_l) (’\aW) (82, — a}, 5a)® a>},

More generally still, let

[O=f1 (8, 2y s & aves BP; gy Bl iind SN wlivildy x,’,, veny Ti02,0),
(29) 1O == s B MGy ooy B, I i 9, 0 N L x‘wa w),
0=F (@, @1, T}, ..., BOmD, Xy, Xy, o.v, TEMD, oos, By, T,y ooy LiOm)

be any m original differential equations between any n functions ,, ..., «, of an independent

variable #; and let them be combined with the n following supplemental differential equations

between the same functions and m multipliers A, , ..., A,;:
- 3 8f Sfl i 3f1 (wy,4)
0= A 52, (Al le) +ent(=1) ( Sakon,
o LA
i (A ons (B YD
+A’"551—()‘"'8x1) + ek (= 1)@ma (’\"’Mwmﬂ) ;
(30) R LR
e of1 of1 \’ W 8fy \‘nn
0= h gl (ugl) +o (-1 ()
& dhd
Sf m Sf m ; w, 3fm @m, )
P~ () o e ()
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2] XIV. CALCULUS OF PRINCIPAL RELATIONS 363

Then

(31) AL (8fy = f182) + oo + Xy (8f o — frn )
is an exact derived function, or total differential coefficient, namely the differential coefficient
of the expression XL, ; ;, in which

Sf. \@+D .
(32 =N g Ol —afp 18 + (= 1) (g ) B —zioe),
and
i (s 41) als o e} ,
(63 Ly Ngen®l —at00) .ot (— 1 (hy) o)

and hence, by integration,*

4) 0=3f F@wr-lym sn ne (. e\ 50 rsae-a
(3 ) @0 “@o (w11 (_ ) M,EW ( L, — T, x)
fy.a

) ’
e l)a ( wa g (ﬁ+1)) (Sav Xl av8a)(ﬁ‘“)} e
(Feb. 19t%,)

So far the Calculus of Variations conducts. But, proceeding to the Calculus of Principal
Relations, it may be shown that the auxiliary or supplementary system of differential equations
(30) conducts to a principal integral of the original system (29) of the formf

e [0 By M oers SD o, 20, s DD, .., @, xn, siey DY
(83) DA (a, U Ll ST R T e AP K T a(wn—l)
w, being the greatest exponent of the series w, ;, wy ;, ..., @, 1, Or more precisely an exponent
of that series not less than any other exponent of the same series; w, being an exponent similarly
selected from the series w, 5, Wy 9, +.., Wy, 5, and so on. Hence, taking the variation of the prin-
cipal integral (35), we find
3F oF oF 3F 3F
= it w;—1) n—1)
(86) 0= = ‘o‘ac+81 @y + .. +8x< T s i o +8 8z, + .. +8x<wn 5 0aen
BF 3F oF 3F SF
Hy 8a+8a day + .. -+ SatwD (w~1>5“( g, -H3a 8ay+ e +5 0 o 390k

and the fundamental theorem of the Calculus of Principal Relations, for the integration of total
differential equations, is that the coefficients of this last variation are proportional to the
coefficients of the formula (34), or that

Sf"' - i ’ (B—a)
1 ( 1) p. x Sx(B.H) (va -z, Sx)

ok el
- (A#» N 5&7(;_:1)) (ba,—a, Sa)(ﬁ—“)} .

wy p—1 n
(37) 8F= Azgoong» T Zo

\

We have also, by the Calculus of Variations

(38) (82, — ;) S B~ = §aff—) — BtV §g;,

e e Ju o Sd AL 00 f“’a are the final and initial values of 2 5 A |
t.See subsequent investigations of these pages, respecting the general existence of this relation.
46-2
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364 XIV. CALCULUS OF PRINCIPAL RELATIONS 2,3

and
(39) (32, — a; 5a) B~ = 30~ — af~o+D §g;

so that the fundamental theorem of the Calculus of Principal Relations may be thus written:

Wy, y— f’ o) \ A
8.F AE( )OZB(O) 12 F,)lz(v)l( ) {( Fzsx{;-f'l)) (Sx(vﬁ_ )—xgﬁ +1)8x)

(40)

ua
- (/\“, d 872?15) (8af~ — gf-otD) Sa)} d

[T'he case of one total differential equation of the first order resumed.)
[3.] As an example of the application of this fundamental formula of the Calculus of

Principal Relations, let m=1, w;;=w; y=...=w; ,=1. Then wy,,=1, f=0,2=0, u=1, and
the formula (40) becomes
(41) SF= Az(,)l{)\”sglf(sx —88) AL, fl"'(Sa L Sa)}

and resolves itself into the 2n + 2 separate equations followmg:
3F Ofiz)  OF 81,2 8F 812
(42) 52 = " MueZon (9? 8:1:;)’ E—Ml,zm: “ees E—Mmm,
and

5F e o e G g ok S
(43) —_,\Alazm( Sa,)’ o Ve e g =W L.

In this example there is only one original differential equation of the form
(44) O=f1(x» xl:xi, xz’xéi'”:xn:x;z):fl,z,
and the n supplementary differential equations are of the form
(45) 0=)\l,z(";{1’z (/\1 z8f1,,) ey 0=2y, $38f1 % (Al,,,ifx ) :
they may also be thus written,
iz _ (Sfl,x)’ e (Sfl.z)’ e _ (Sfl,m)'
ALz 0%y S Sy S _ oz, \dx,

46 & S R
(46) e e i

oy Sy dx,,
and they give in general n— 1 supplementary differential equations of the second order between
the » functions z, , . . If we join to these the equation

(47) 0=fi,2»
which is the differential coefficient of the original equation, we shall have n equations of the
second order between the n functions z, , ..., #, , which can thus in general be found in terms of
the final and initial values of the variable z and of the 2 initial data or constants a,, a}, a,, a},
. @y, @, . But these initial constants are not all arbitrary and independent, being connected
by the given integral relation

(48) 0 =f1,a .
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3] XIV. CALCULUS OF PRINCIPAL RELATIONS 365

We may therefore in general conceive the n constants ay, a3, ..., @, eliminated by this relation
(48) between the n expressions of ,, ,, ..., %, , and thus a relation obtained of the form

(49) 0= I (2@ Tgy dsey Bpis By By s By s 5005 Gt

which is in this example the principal integral relation between the n functions 2, ..., «,, or
the principal integral of the original differential equation (44).

The n + 1 equations (42) give, by elimination of A, ., the n equations following:

OF ofy,4 L OF ofy,o sz
i Rt F + o1 (‘” Sx‘,)’ v O +8_2<“’1( V5, )
and if between the n equations (50) and the original differential equation (44) we eliminate
2y, ..., %, , we obtain a partial differential equation of the first order, of the form
3F &F 3F
(51) 0= ‘I"(sx le .,E,x,xl,...,xn),

which the function F' must satisfy. In like manner, the » + 1 equations (43) give, by elimination
of A\, 4,

8Flsfla. 8fla. ___SFSfl,a /Sfl.a .
(52) V= Sa + Z(v)1 (a Sa,,) s3ey 0—3(; 8&,; +% )1 (av'sar:)a

and if between these and equation (48) we eliminate a1, ... a,, , we find this other partial differen-
tial equation of the first order

OF SF oF
(53) 0s ‘F(Sa 8a1 .,%,a,al,...,an),

which the function F must satisfy. In these two partial differential equations the form of " is
the same and is homogeneous of dimension 0 with respect to the n+ 1 partial differential
coefficients, final or initial, of the function F': so that in the notation of derived functions

8, (5F\ 8F ., (3F (SF

(64) 5 (5) 5% () 5 (52)-
and

_8F ., (5F\ 8F ., (5F SF ., (SF

(55) 3o (Sa) il (8a1)+"'+8 - (Sa)

The n equations (52) and equation (49) are equivalent by (53) only to » distinct equations;
but these are in general sufficient, when the form of F is known, to determine the forms of the
n functions z,, ..., z, in terms of the independent variable z, its assumed initial value @ and
any 2n— 1 of the 2n initial data a,, a1, a,, a3, ..., a,,, @, , which are themselves connected by the
one equation (48). The system (49)—(52) is therefore a form for the complete integral of the
system of the original differential equation (44) and the n — 1 supplementary differential equa-
tions deduced by elimination from (45), and this integration of a system of several total differ-
ential equations, by means of one principal integral relation, is the chief use of such principal
relations and the reason for giving them that name.
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366 XIV. CALCULUS OF PRINCIPAL RELATIONS [3
We have, by differentiating the principal integral relation,

; O oF , OF
(56) 0=F'= 8—+ 18——1+ -t nsxn:
so that if we put, for abbreviation,
O:dlly.us Ol 3F SF
(57) qu—l=t1$, seey ga:‘=tn'sz,
we shall have
(58) 0=142{t,+... +2pt,.
At the same time, by (50),
8fl,:z: Iafl,x Sfl,x 8fl z
(59) . Sx:’l tl (v)l (x,, S—x:’-) ’ seey an -1 E(v)l ( va )
The variation of (58) gives
(60) 210t + ...+ 2,8, = — 8,80y — ... — 1, 8z,
Therefore by (59)
o .8 b
(61) (188, + ... +2,8,) 28, ( ;{;; ) ;’1,13 @1+ ..+ gl', 8z,
et Sfl.a: _8f1,m 8fl,ac'
. .—~8—8x 52, 3y — .o — = o,
but also oF 5F
(62) 218ty + oo + 2,00 —xISi\a} .+x'8§ﬂ
Sz o
SF\71(. 8F oF o, oF
~(3) Pat® 88 bbby,
therefore
SF 811’ o 3F
+8_(8,£1a:8x+8f1z8 1+ +8fl,a:8x )

Comparing this with the variation of the partial differential equation (51), that is, with the
following formula:

, (OF 8F , (8F\ . 8F (O O
o T o (Sx) = ‘F(s )88.'1:1 i (8 ) 5,
+¥' (x) o+ V' (2,) 82y + ... + ¥’ (2,) O, ,
we find
, (OF sl (S , (OF ey
() ¥ (o) == (52) o ¥ (ae) == ()
’ Sfl,:c_ ’ 8fl,ar: ’ 8fl x ’ 8fl,:zt:
(66)  d (xl)ﬂ_qf (x)g:, PO, n) =¥ (x )
and
8F SF 8.fl:t ’ n lsfl,:c
(67) Sx‘l’ (Sx) S =¥ (x) Z¢), (x, Sa:,’,)'

The equations (65) agree evidently with (54) and (56).
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3] XIV. CALCULUS OF PRINCIPAL RELATIONS 367

Let F +AF be a function nearly equal to F, and let it be substituted instead of F' in the
partial differential equation (51) and the result developed by Taylor’s theorem as far as the
first powers of the coefficients of the small function AF. We get

OF B8AF 8F J3AF 3F J8AF
(68) W(g-{-—s‘x——-,%-{' le ’.“’S;C—-l_—n,x’ xl,...,xn)=‘F+A‘I’=A‘~F
, (OF\ 3AF SF SAF , (OF \3AF
i (Sx) . (8:1:1) o T (8:1: ) oy
that is, by (65),
, (8F\ (8AF ,8AF ,0AF , (3F\ dAF
(69) AY - (8 )( Bt +...+x,,~8xn) - (Sx) =
and therefore
, (OF\ )
(70) AF=f{‘F (55)} AV dzx.

And if we choose that F and AF shall vanish when 2 =a (which we are always at liberty to do),
we may then take a and x for the limits of the integration and write

(71) AF= f {‘F (si ) }_IA\Fdx.

This theorem is very important in the Calculus of Principal Relations for it enables us theoretic-
ally to express and often practically to calculate the small correction of an approximate form
F + AF =0 for the principal relation (40) by means of a definite integral.*

The important equations (65) might have been obtained more simply by observing that

(72) 0=dx8$F—8,sz=d(88F8 +8Fa b +gsx)
SF SF
3F OF oF OF SF
=d$.3x+d8—z1.8x1+...+dﬁ.8xn—8§£.dx—Sa—xl.dxl ng—n dmn,
that is,
SF SF o 8F (8F\’ OF\' SF\’
(73) O=88 18 San (S_x) Sx—(&—l) le—...—(b\?n) 3w,

Comparing this with (64) we find not only equations (65) but also

09 w0 v, wem-() (). -
we=—(z) ¥ (i)

With respect to the logic of (72), we may observe that z, z, , ..., z, are not all arbitrary when
a, a,, ..., a, are given but are then connected by the principal integral relation F =0, if the
functions #,, ..., , are to satisfy the original differential equation and the principal supple-

equations simpler than (66) and (67).

* [This method of approximating to the principal function is exactly the same as Hamilton used in the Second
Essay on Dynamics. Cf. equation (F), p. 170.]
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368 XIV. CALCULUS OF PRINCIPAL RELATIONS [3, 4
mentary equations assigned above. But, consistently with these differential equations and

data, we may vary @, ,, ..., ¥, provided that we make the variations satisfy the equation

(75) O e ey e +8F8x
ox oz,

omitting squares and products of the variations. At the same time 27, ..., z, will in general
vary but must satisfy (among others) the following equation, deduced by differentiation

from (75),
(76) O=—‘—i—{-S—E(le—x18:v)+...+g(8xn—x,',8x)
dx (3 3.
.—_(SF) 82y — 21 8) + .. +(88x) (8, — x, o)
OF s v
+§—(8x1—x18x)+...+s—£‘(8xn—xn8x)

—(SF) dx +(8F) 8z, + .. +(8F) dz,, +8F8 +...+8—F8x,',;

ox S oz, oz, oz,
and also the following, deduced by variation from (56),
SF pi SIf’ i 3F SF oF
(77) 0=5++ 88 e 18 A na b

Comparing therefore (76) and (77) we find that we can eliminate between these two equations
all the » variations 8z3, ..., 6z, , and that the equation (73) results.

[Two or more differential equations of the first order.]

[4.] As another example of the application of the formulae (29)-(40), let there be two
original differential equations of the first order
(78) {O:fl(x, Wy 05, B3, Eay Loy B0 R,
D == Lo () By Tyo By Fhn 3950 Ly Bhs

so that now m=2, w, ,=1, B=0, a=0, and equation (40) becomes

(79) 5F=A23,)12(:>1{A“ g = (3, —2,87) — A, 4 f"’ (Sa - ’Sa)}

It resolves itself into 2n + 2 separate equations

/Sf z\ OF f:-" oF ——-—-8f e
(80) 8 Az(p.)lz(v)l (A"’zx"——S:", ) __AE(F')I (A 8;:,[ ), ceny S——Az(p,)l (Ay,,-’t 8;,']’ ) >

and
>n Sf wa 8f »a oF -——Sf"’a
(81) Sa —AZ(“)I ()1 ()«M’aa, 8 ) 8(1,1 Az(";)1 (A 3;1“‘) 3 seey 8(1/ = _AZ(I;,)I(AIL,G sa;b ) 5
(Feb. 20t%,)

The supplementary differential equations are now
O,z O u,z\’ Ofy, Ofu,z\’
(82) 0=z@)1{)«,‘,z pa_ (AF,, 8;,’) } 0=E@,1{)«“,z-§—()\,‘,,—8;—:) }

oz, 1

www.rcin.org.pl



4] XIV. CALCULUS OF PRINCIPAL RELATIONS 369

They are n in number but they involve 2 unknown multipliers A, ,, A, , and their first differential
coefficients ;] ,, A; .. They may be differentiated any number ¢ of times, and thus we may obtain
in new equations of the form

Y Y Ofu,z\’ fu,z) "
fom Zos{ (s =) —(AM 5;;) fvd 0=z@)1{(&,’zﬁ) ~(Mee =) |

...................................................................................................

b) 0] ) (i+1)
B foangs g Foo) s o),

8z, * 5,

&f o\ @ &f . 2\ G+D
o For{ ()~ (oecl)
L AT Buy % da,

but these involve the 2i additional differential coefficients Aj ,, A5 ., ..., AFEY, AF 5D, If we take
1> 0, then n+in will be greater than 3+ 2¢ (n being supposed greater than 2), and then by
eliminating the 3 + 2¢ ratios of the 4 + 2i multipliers A, ,, Ay ;, A1 7, A3, 25 --> AY 52, AFED between
the n +in equations (82) and (83) we shall obtain a number § (n—2)+n— 3 of resultmg differen-
tial equations of the order ¢ + 2 between the functions 2y, ..., z,. Even if we take i =0, we shall
thus have n— 3 equations of the second order between these n functions by eliminating the 3
ratios of Ay, Ay z» A1 z»> A, between the n equations (82); but we must join to these another
equation, which will be of the third order, in order to determine the forms of the » functions
@y, ..., Z,; and then we shall have two equations of the first order, n — 3 of the second and one
of the third, giving for the sum of the exponents of the orders 2x 1+ (n—3)x2+1x3=2n—1:
so that the complete expressions of the n functions z, ..., , will involve 2n — 1 independent
constants and, by eliminating »— 1 of them, we can in general obtain a relation of the form
(49), which I have called the principal integral relation between the final and initial values of
the n functions z, ..., z, and of the independent variable , namely,

(49) ‘ Q= oo T By Laes B

Comparing its variation with (79), we find (80) and (81). Any three of equations (82) enable us

' Vg
to express )\ Z in terms of &, Ty, ..c; &y, TYs oeey pyy Ty .0y &y, and therefore 22 in terms of
: % a:

@y 0y eeny @y, Ay, eney Gy, @Y, ..., @y . Thus the n equations obtained by eliminating )\ ‘between (81)
will be » equations between

SF  oF

Sal Sa ’ ’ ” ”

—S—F—,. ,SF,d Ay vney Wpy Apy aeny Ay Ayy onny Ay

da 8a

when this value of A is substituted. Also the n — 3 supplementary differential equations of the

second order, combmed with the differentials of the two original differential equations (78) of the
first order and with those two original equations themselves, will give, when referred to initial
values, n— 1 equations between a, a,, ..., a,, a1, ...,a,,a}, .... a, and two equations between
@y Ay, .oy @y, Q15 -0 Ay 80 that we can in general eliminate the 2n quantities ay, ..., a,,, a7, ..., a,
between the 7 + 1 equations last mentioned and the n equations obtained from (81), and shall

HMPII 47
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370 XIV. CALCULUS OF PRINCIPAL RELATIONS [4

thus be conducted in general to a partial differential equation of the form (53), which will be
subject to the conditions (55). The rigorous equations (65) will also hold and therefore the
formula of approximation (71), as connected with a partial differential equation of the form (51)
subject to the condition (54), which may be obtained by eliminating the 2n + 4 quantities

’ ’ ” // A2,:: }‘1 x A*;,_z
between the n + 1 equations (80), the » equations (82), the two equations (78) and the two
differentials of these. Also the equations (81) or those deduced from them by elimination of A,
combined if necessary with the equation (49), are forms for the integrals of the system of the
original and supplementary differential equations of the question.

As a more general example, let the original differential system be
(84’) O=f1(x7 L1, xi’ Za» xé, ey T x;n)‘_‘fl,m: ok d 0=fm(x’ 2y, xi’ g x;s cees Ty x'r’z)=fm,ac;

so that the supplementary equations are

3 3 ’ 3 3 $
(85) 0=2m), {Am%_ (A”%’ﬁ) } s ey 0=Z0), {A“,qf;—'”_ (;\ . g;w) } .

If 7 « 2m, we can eliminate the 2m — 1 ratios of the 2m functions A, , and A, , between these n
supplementary equations; and so obtain n — 2m + 1 equations of the second order between the
n functions 2, , ..., z,, to be combined with the m original equations (84). There will then remain
m— 1 equations to be assigned between the same n functions, and these will be of the third
order and will be had by elimination from any 2m — 1 of the n equations obtained by differentiat-
ing (85). And the sum of the exponents of the orders of the » equations between the » functions
Zy, .o, @, willbem x 1+n—2m+1 x 24+ m—1 x 3=2n— 1; so that we shall still have a principal
integral relation of the form (49) and its variation will be of the form

O,z ¢ Oy, a )
(86) 8F=)\ZZ‘L)12(’;)1{)\F’$8—;’, (8x, —x, 8x) —/\“’a-;T:'; (Sa,—a,,Sa)} y
Hence
5F PRI vl kil Ofy,
(87) §=-Az(”,lz(,)1(xﬂ,,—sg—;x,), g—_,\z@l()«mq—:#),
8F O,z
s, (3
and
T BfarYi BF O y,a
(88) o=AEfhiEy (A#,asT':;a,,), 2~ ()\ 32;)’
8F & fu,a
%—_- -—/\2(”)1 (A""aﬁ) .
If we eliminate the 2m + 2n quantities
A 2.0 Az Mo M An,z W s, Xe, BBy L

4 A1,:::, it Al,a: | )‘l,z, )‘l,x’ ot Al,x o
between the n + 1 equations (87), the m +n equations (84), (85) and the m differentials of (84),
we are in general conducted to a partial differential equation of the form (51); and an analogous
elimination conducts to another partial differential equation (53)—together with conclusions
similar to those drawn in pages 364-368. In particular, the equations (88), when the form of F
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4] XIV. CALCULUS OF PRINCIPAL RELATIONS 371

is known, will give the complete integrals of the system of the n differential equations between
the » functions z,, ..., z,,.

If n < 2m but 2n « 3m, we can then eliminate the 3m — 1 ratios of A, ;, X, -, )\;, » between the
n equations (85) and their n differentials, and so obtain 2n — 3m + 1 equations of the third order
between the functions z,, ..., ,,, to be combined with the m original equations of the first order
and with 2m —n— 1 equations of the fourth order (observing that 2m —mn— 1 <n—m, because
2n + 1> 3m and therefore 2m +n— (2n+ 1) < 2m +n — 3m). Thus the sum of the exponents of
the orders is (m x 1)+ (2n—3m+ 1 x 3) + (2m—n— 1 x 4) = 2n— 1. In this case, therefore, as in
the last, we are conducted to a principal integral of the form (49) and to conclusions altogether
similar.

In general the » equations (85) and their ¢n differentials as far as the ith order contain
(¢+2)m—1ratios of A, ., X, ., .0y Aﬁf,’;l), and

@ 2\, 0
n+in—-(;+2)"m+ l=n(i+1)—m@E+2)+1=n—2m+ 1+t (n—m).
If ¢ be the least integer which makes this last remainder > 0 and % the corresponding value of
the remainder, so that .
(89) k=i(n—m)+n—2m+1
is >0 but *n—m, we shall then have k supplementary equations of order ¢+ 2 and n—m—k
equations of order (¢ + 3), to be combined with the m original differential equations of the first
order. The sum of the exponents of all these » differential equations between the n functions
&y, +e.y X, 18 therefore
(mx1)+(kxi+2)+n—m—kxi+3)=n(i+3)—m(E+2)—k=2n—1;
conclusions therefore follow in general of the same kind as those deduced for the particular
cases above.

i is the least integer which makes (i + 1) < m (i + 2), that is, 7% " Z_ﬂ , or

(90) R
n—1m
Therefore ¢ is the next less integer to
m  number of original differential equations
n—m number of supplementary differential equations’
the supplementary differential equations being between the » functions z,, z,, ..., ¢, only and
not involving the maltipliers A, , nor their differential coefficients, which are supposed to have
been eliminated. And k= (i+ 1) (n—m)—m+ 1.
Thus, let =10 and let m=1, 2, ..., 9 successively. We shall have

m ) k | n—m—Fk |Original equations Supplementary equations Sum of exponents

1 0 9 0 1 of 1st order 9 of 2nd order 1+9.2 =19

2 0 N e | g T AL IR Yot Srd lord 6 2+4+7.24+1.3=19

3 0 5 2 3 29 9 ” 5 99 008 ;: ’ 2 2 9 i3] 3+5-2+2'3=19

4 0 3 3 4515 2 85, 4 % il & el ” 4+3.2+3.3=19

5 0 1 4 5 9 ”» 1 9 9 T 4 9 ’ 5+1'2+4'3=19

6 1 3 1 5 S Woad Lk 4t 6+3.3+1.4=19

7 2 3 0 Tiony s+ 99 8 pdthy s, 7+38.4 =19

8 3 1 1 8 9 ”» 1 2 5th 9 9 1 ’ Gth ’ 8+1.5+1-6=19

9 8 1 0 DS 1,, 10th ,, 9+1.10 =19 '
47-2
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[Differential equations of order higher than the first.]

[5.] If the original differential system be of the second order,

(91) 0=f1,:c=f1 (x’ zl’ x:;.: x;’ bt ¢ xn’ x;w x;lc B 2 O=fm,a;=fm(x: xl’ .’L‘i, x']’.’ ;3 27 x x )’
then the » supplementary equations between the n original functions z, ..., 2, and the m
supplementary functions A, ., ..., A, , are

. f Y )"
o= P (s B e Y e
(92) R B - b )
o - () + ) e

n
With these we may join their derived equations up to any order s,

(93) 0=0] ;=04 ;=+0s =0, 5s +0s, 0=0{h =off) = =0l 1
and if we take ¢ large enough, it will always be possible to eliminate between these n + in equa-
tions (92), (93) the m (¢ + 3) — 1 ratios of the m (i + 3) functions A, ,, A, ;, ..., )\ﬁ*f’, and so to get
a number % of equations of the order (¢ +4) between the » functions z, ..., z,, where

(94) k=n(t+1)—m@E+3)+1=(n—m)(¢+3)—2n+1.

Let ¢ be the least integer which makes k positive, so that ¢ is the least integer which gives

2n
(95) 1+3 e
—m’

A s 2
or ¢ is the next less integer to 7—:’% . Then

that is, 4+ 2 is the next less integer to

(96) k>0, k¥n—m,
and the supplementary n —m equations between the functions z,, ..., z,, will be k of the order
1+ 4 and n —m — k of the order ¢ + 5. The total sum of exponents will be

(97) (m.2)+(k.1+4)+(n—m—k.i+5)=n(1+5)—m(t+3)—k=4n—1.
This therefore will be the total number of independent and arbitrary constants (besides a) in
the expressions of the » functions %y, ..., &,, and only the same constants will enter into the
n expressions of 2y, ..., ,. Eliminating therefore 2n— 1 constants between the 2n expressions
ofzy, ..., 2,, 21, ..., z,, we shall in general obtain a principal integral relation of the form

’ ’ ’ ’ ’ ’
(98) 0= F (o iy, ]y oy, my soywiniayya) ol ol alijusral)

If the original differential system be of order w,

0=, o =yl Bhs @14 0, B %y W W oy HED, boiss B locrvs 119500,
L T

Dl il il bt i o BIY, Ty, Hgsininy gy s B gillices sANIHETNs

then the n supplementary equations are

2 Of . Of ik 8 2\ @
03 e 32— () -1 (rnas) ) =

) Of st b (@)
10:2(;3)1 {/\M g;‘n (AM 8!« ) T o b ( mg{éf;)) A
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5] XIV. CALCULUS OF PRINCIPAL RELATIONS 373

to which we may join in equations of the form (93), making in all » (i + 1) supplementary equa-
tions between the m (i + w + 1) — 1 ratios of the m (i + w + 1) functions WP PR Aﬁf_",. Let
% be the least integer which makes

(101) PN i &
n—m

and therefore

(102) n(i+1)<m@E+w+1).
Putting ‘

(103) k=n@+1l)—-m(@+w+1)+1,
we have

(104) k>0, k¥n—m;

we have also m original equations of the wth order, £ supplementary of order ¢ + 2w and n —m — k
of order 4 + 2w + 1 between x,, %,, ..., ,,. The sum of all the exponents of these n equations is

(105) (m.w)+(k.i+2w)+(n—m—F.i+ 2w+ 1)
=n(+2w+1)—m@E+w+1)—k=2wn—1.
This therefore is the total number of independent; constants in the expressions of z,, 21, ...,
2D, 29, 25, ouny 2§V, o, Xy, Xy s e, 2,70, and by eliminating wn — 1 of the constants we can
deduce finally a principal integral relation of the form

(106) 0=F(z, Ly xé, G wliz:i:, Ze. xé, G wé‘”:l), iellia.e x,:,, Sais x‘,‘;’:l)) :
Gy By Gy mees GOV, Gy, G,y 00y GFD, <., Gy, G, o0y alOD
(Feb. 23r4,)
Let there be one original differential equation of the form
(107) LA R ARRRE N GRS L N e AR - T

The » supplementary equations are then
4 (wy)
0=2L - (A L) ot e (3 ) o

A Sy S
R G
SN, | 3f\’ R 4 )(wn)_
O_AE;—(ASx,’,) +.o (1) (s_ﬁ,yn) =0y 5

We shall suppose w; < 1, wy € @y, ..., 0, € w,_;. The n+ 1 equations (107) and (108), which may
be written for abridgment thus
(109) 0=f, 0=0,, ..., 0=0,,
may be joined with the (7 + 1) w, — Zw derived equations following:
(110) 0=f’, ..;, 0=f@w), 0=0f, ... O=cfon—), ..., O=0,_,, ..., 0=oclony o),
and with these other (n + 1) 4 derived equations
(111) 0=f@ntd, .. 0=fntd 0=gfon—wtD)  0=gfonortd .

0=olwnyon1tl), | O0=glengontd) =g}, ..., o).
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374 XIV. CALCULUS OF PRINCIPAL RELATIONS [5

Thus we shall have in all (n+1)(1+w,+¢)—Zw equations between the w,+% ratios of
X Newp+i)

PO the independent variable z, the 1+ w, +w, + ¢ functions &,, 21, ..., ¥{@ntertd the
1+w,+w,+4¢ functions z,, 23, ..., xf@ntertd, . and finally the 1+ 2w, +1 functions
@, ., ..., 22+ The number of these latter functions, when we leave out z,, zf, ...

n n 2§ 1> ’

w{@ntortd g (n—1)(1+w, +1)+ Zw—w,; and, when added to the number w, +¢ of ratios of

x &c. it gives n (1 + w, +¢) + Zw — w, — 1, which will be less than the number

n+1)(1+w,+1)—Zw
of equations provided that

(Th2) .« 1=20w—w,—w,—2+k, k>0,
When i is taken sufficiently large to satisfy this condition, we shall have, by elimination, &
equations between z, z,, 1, ..., {2*¢~2+0; we shall therefore have one equation between

z, @y, ), ..., 22D, of which differential equation the integral will contain 2Xw — 1 arbitrary
constants. These will be the only constants which will enter into the complete expressions of
the n functions z, , ..., z, and of all their differential coefficients. They can therefore in general
be eliminated between the 2Xw expressions

By @Yy vves IRy @ B i NN b By Bty

ay; 'al; Lo aReRag al e Y Ly @y iy GNCDS
and thus a principal integral relation obtained of the form
CN R RTIIN - Roei ) AN e x‘,‘,‘m—l))
B, 6y U, e, BIPD RL0A 6,10, BN

(113) 0=F(

Let there be an original differential system
0=f, (%, Ty, By, oeey BIOD, Dg, Thy oovy BEPD; vuns Ty Ty sees LW =f) 4,
(114)

’ ’ ’
O=f i (5 By Bhs nes T, Bgy By, 0005 TEM, 110y s Ty ooty G MIC)

which is to be combined with the supplementary system

P of1 o 8fy |«
O_Alsxl (Als ) +.. +( l) 1()‘18 (wl))
+ JHoew "
8 8 m 8 = (wl)
() o )
L TR E R S T
ofy 3f1 =A, 8fy )(w")
i ( b‘x) otk gl (1875(,{"'0
ot Joion s
fm &fm 2 fm
L +Am8x (’\m ) + .. +(_’1) "(Ams ) =O0p,z
Let it still be supposed that
(116) w1 €], WKWy, eeey Wy KWy
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5, 6] XIV. CALCULUS OF PRINCIPAL RELATIONS 375

The equation o, ,=0 contains

’ ’ ’ ’ 8
Ag o G oy N RGN N PN ey T e e Rt g el L, e,

the equation o, , =0 contains
Aga g sibens AR, ooy Ay Ay soey ROV, 005 0011 302, INOD gt s B, e, By, B, o0, R0,

and so on for the remaining » — 2 equations of (115). Hence the equations 0= o{@s=0, 0 = o{@s—»,

&c., contain each the same things as ¢, ,=0; and by taking ¢ large enough we can in general

eliminate the m (1+w, +1%)—1 ratios of A, A7, ..., Afentd, [ A, X, ..., A@ntD and also the

(n—1)(14+w, +1)—Zw—w, functions x,, ..., zfntertd g ... 2@etd being in all

(n+m—1)(1+w,+1)+Zw—w, — 1 things, between the (n+m) (1 +w, +1) — Zw equations

0=f1,z=fi,z= AR l(f’;:"+i)’ 0=f2,:c=fé,:c= =f2(,a:,¢?+i), LXX3) O=fm,a:=f7'n,:c= 085 Sy r(nu.”:;:+i)’
(117) {0=0y ;=01 z=-...=0{@ "), 0=0y ;=05 ,=...=cf@r@tD, |
0=0,,=0pnz=-..=0,,

and thus obtain w, + w,, +%+ 2 — 2Zw equations between z, z,, 21, ..., z{ertentd, If then we take
(118) 1=22w—w,—w,—1,

we shall have one differential equation of the order 2Xw — 1 to determine the function z,, and

thus we are conducted as before to a principal integral relation of the form (113).*

Thus, from the system of the m +n equations (114), (115), we can deduce by differentiation
(m+n)(2Zw — w, — 1) — Zw other equations and then by elimination transform the system of
all these (m +n) (2Zw — w;) — Zw equations into a system of the following form:

(119) rBEo-D=4d (2, 2,, 2}, ..., T,
(120) Zg=y o (@, 2y, 215 ., 2fPON), 'xn=¢n’o(x, Ty, T}, ..., BfEO-D);
(121) A=A, (@, 2y, 21, o0, 2f220-D);
(122) Ao =Mt o (@, @15 ooy 2{BD), iy A=At 0 (2, 7y, -, TfFE0-D);

------

{‘”&5?52.1(‘”: Tys oeey {TO7D), L, BFEHOTOTD =gy oy tanwy1 (B Ty e, TFEOD),

1ad 23w—2) 23w +wp—wy—1) — 23w—2)) -
Zp=dy, 1 (2, Ty, «ecs v i 8 n—wy )—¢n,2zw+w,.—w,—1(“‘: R i)

(124) 1=M¥ s (@, 24, ..., o gt ) R (0 )‘fzzw_‘""l)='\1¢1,2:w—w,-1 oM SR L)

A;n='Al¢m,l(xs Ly eeey x{sz—z))’ X8 Asrzzzw_w1~1)=Al‘/’m,ZZw-wl—l (x’ Ly enes xl(zzw—z)).
Now the equations (123) ought to be deducible by differentiation from (119) and (120); the
equations (124) from (119) and (121); and the equations (125) from (119), (121) and (122).*

[Particular cases treated in greater detasl.]

[6.] To illustrate this point let us consider some less general cases, and first let m=1, w, = 1
(and therefore Zw =n), so that we have the case of equation (1), page 358. Thus for (114) and
(115) we have now the =+ 1 equations (1) and (7),

(126) 0=f, O=0y=0y=...=0,;
* Consult p. 384.
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376 XIV. CALCULUS OF PRINCIPAL RELATIONS [6

to which we are to join these other 2n2 —n — 2 derived equations

(121)  0=f'=..=f0"D, 0=0j=...=0f"", ..., 0=0}=...=cf"-D,
Then by elimination we are to deduce the n+ 1 equations

(128) D= (z, 2, 2}, ..., 22"D),

(129) Ty = a0 (T oes D), oo, Bp=p o(&, o-v, TEN-D),

(130) X=X (=, ..., xf2r2),

and these other 2n%—n — 2 equations
x; e ¢2: 1 (x’ s x{zn—z)), seey xﬂ@n—l) o ¢2, 2n—1 (x: seey x{zn—z))’
(131)

x;& e ¢'n, 1 (x’ veey xl(zn_z))’ sse)y xn(zn—l) i) ¢n, 2n—1 (x’ eedy xl(an_z))’
(132) AT =My (%, ou0, 2f00) 0 L, XMD= N o (@ ..., 2fiD),
The equations (131) ought to be deducible by differentiation from the equations (128) and
(129), and the equations (132) from (128) and (130).*

To particularise still further, let » =2. We have then the three equations
. ' RN, Sl w8 ol N (Sf"_
(133) (0 =fi(asid, ls X ivg) s O—)\&—l (Ab‘_xi) =0y, O—-As—xz 52, O3

and the four derived equations

(134) Ol 1k s G0,
in which
A SRS DRl e
(135) Fm s P 5 T B T
and
.. 4 L A 82f 3f & 32f
(3% L= e i M P e P i ™
8% 2 &% &% Sff ‘ow
+8 5 %1 +28 5, — %123 +28x18x2x1x2+8——x18m;x1x2
8f o2 2f ; 8%f
el P e 1Bt e 1%
3% 8% 3%
12 ” ocd” 459 1
R B R v R e o

4 e Bl e

ks 3 1 1+8 ,x1+8 2:::E,+S_ng,;2
(0]
i el () (@)L,
()~ ()
(138
S

* See p. 383.
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6] XIV. CALCULUS OF PRINCIPAL RELATIONS 377

(Feb. 24t 1836.)

We may simplify these equations by supposing that the original relation between x, z;, 2],
Z,, 3 has been resolved with respect to x;, and thus put under the form

(139) 0=x (=, 2;, 27, T3) —2a=]f.
We shall then have .
8f _ i S o L 7 e (ﬂ )'_ .
(10) so=—L £8™% L™ il Y% w1y b
(141) wy=x (%, @y, 1, T) =f+2};
ay &, gy 7 A
(142) sx+3x 1+8:f1x,+—x2—f +al;
it 83 3%y 8%y 3%y v R o T b
(43) ef=gl+2s o a2 s al+ 2o+ syt 2 il
I ”2‘,5)( 8%X 8x”3x,,,3x,,
B ™% el i 7= S e e R A e R e
i) od 9x fl » OX.
(144) O——Ul-—l\{sva;l (le) } A 8 b e ]
(145) 0=02_A88X+X
2
therefore
. dx\ _dx _(dx\ , Ox &x
(149) O—X(al+028x) oz, (Sxi) +8x28x
that is,
Ul iR (B Sy (188 (L1 LGByl s Bhy
i 0_8_:61—83:82:1 Sy o) 8x18x’x1 521 5 Sx,x’
RSO IRRY L 4 . [ 8% 3x) » 8X
e 0=oi=r(5) - () }+¥ (o2 (a2) |- 5
7 Rl R
4 \ =gl = = AR g
(149) O A(sz) N K
therefore
, Ox dx dx Sy (8 ) } ,{Sx (Sx) dx Sx}
150 b, SR 9X
d( L Snmhtagg s )‘{(sxl) (le) tie i) [ TX (5,72 \Be) el ey
an

1 gk LAY dx\  os(dx\’ Bx) 8x)
151) 0=~ A dx\ o2 (3x) _ (3
o A(1+ 252, ) Aﬂ(“l*”zsx;)’fa(sx;) (le (le
dx (dx dx (dx
+3x1 (83’2) +8x2 (8371)

We can eliminate ; and z;; between the four equations (141), (142), (146) and (151), and thus
obtain two equations between z, z, , 21, 2], 7 , Z,; namely, the equation (147) between z, z,, 2},

HMPIT 48
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- 378 XIV. CALCULUS OF PRINCIPAL RELATIONS [6

77, ¥, and another equation deduced from (151) between z, ,, 27, 7, 27, z,. To develope this
last equation, we have

o2 52 2
(152) (8—") a8 S el o,

dwy)  dada, oz, 6y oz, 6y
Y. Px, Fx . 8 L By
o) (S_xz) _8x8x2+8x18x2x1+8x18 x1+8 2 %

dx\ _ &% 8%y &%y o - Sy ;
(150 (—) 5wz, T im, 80, 2 T 5t o

5x\"_ 8y ) Sy 83y ' $X o
e ( ) = Satoa, T 2 5wmyow, 2 5aae 1 2 S 0wy Mt St

83 3x 83x 8 X 83x
- andlbl, ¢ g ”g - ’9
Sa it PP T R M vy i G v el

8% it QB G
52,80, 1 a1 ¥ 5o 0

+

¢

therefore

&%y
8z, 8z,

V- Ao P P Sx (% 32x,-52x”§2_x)
(300 =i Tl e 5%, (8x8x2+ At e, 1T g X

dx, 8z, Sz dx,
3%y &%y &%y 8x (8x dx , Ox
+S_x2(8x3x1+8x18x' 1+8 48 1) 8z (8x+8_xlx1+8 : 1)

8y 8y 8y 8%y 8y 22 et
—(8:628:61 5752,5%, 1t 2 S Tt 2 insaom X atew T T 2 S maa Ah

%y 8%y o2 Lo e 3y d%y &2 X! )
5,52, 52, X T 5a00 +23x;23x2“’1“8x 523 X'+ 8 1t 5an ™

The system of the three equations, (145), (147) and (156), conducts by elimination to expres-

Xkew

+2

sions of 27, z, and }% as functions of z, @, #1, ], which may be thus denoted:

(157) x’{’:qS(x, Ty, zi’ x;):

(158) x2=¢2,0 (.’E, xl, xis x’]’.),
A’ ’ "

(159) X=‘/‘1 (@, 2y, 1, 7).

But the system of six equations (141), (142), (144), (145), (148) and (149) gives also three other
expressions:

(160) x;=¢2,1(x: Zys xi! x;)’

(161) x’2'=¢2,2(x’ 2:l’ .'Ei, Z;),
A" o

(162) i—=¢2 (x3 Xy, Xy, xl);

and we wish to show that these last three equations can be deduced by differentiation and
elimination from the equations (157)-(159), or, which will come to the same thing, that the two
equations (141), (144) can be deduced from the three (145), (147) and (156). To prove this, we
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shall show first that (141) can be deduced by differentiation and elimination from (147) and
(156). Differentiating (147), we find

™ Szx 82x ¥ 82x 82x L S_X 82x 82x 2 82x L 82x i
(108 O ey 5t T 5 S ¥ B B ¥ (8x8z2+8x18x2x1+8x18x2x1+gv§x2)
dx [ 8% 3%y 3%y O R OX )
+8_x2(8x8x1+8x18x’ T+ g® 1) 52, o7, (Sz e, 1t g ®
3% 8% 8% Sx . BX o
(8x28x1+ Sw52,57 1 T 25080 A ¥ 5280 5, O X F 5
[ A 8y X o (e e, A,
e s e xl(xﬂ*")*ax'a 1+ Sarise, 1 @t X)+ s dex
82x 8 x m
*5e axfl*sx;le)’
and subtracting (156) from this to eliminate x} we have
(164) 0= L (3~ x),
in which the coefficient L is
y L Wy e Bge R %x P Lk e bbb )
i 8, 8, | Oy Ok (8x8x18x2 8z18x18x2x1+8x128x2x1+8x18x2x
- %\, ox %, %
T 8%, 8¢, (82:{8:1:,) S—a:le,-'-le x2(x’ X)

Now this process of differentiating (147) and then eliminating 27 by (156)is evidently the process
to be employed in order to get an equation between z, z,, z, 7, #,, 23, which when combined
with (147) shall give 3 as a function of the form (160); and we now see that this process gives
xy = x, that is (141), because the coefficient L does not in general vanish. Having thus concluded
(141), we can conclude also (146) from (147) and (156), and then (145) will enable us to conclude
(144) also. We have then deduced, as we proposed, the equations (141) and (144), and can
therefore deduce (142), (148) and (149) from (145), (147) and (156) or from the equivalent
system (157), (158) and (159); so that this latter system conducts ultimately by differentiation
and elimination to the system (160)-(162), which was the thing to be proved. (It might be
useful to consider separately the cases in which the coefficient L, (165), vanishes.)

The argument may also be thus stated (without A, X", A”). The original equation (141), being
combined with the supplementary equation (146), which may be written

8% )“{Sx . Sy, I, S N }
7 st s~ s a1~ s
Sy 8z,

(166) x;=¢(x,z1,xi,xi,x2)=(

and with its own differential (142) and the differential of (166), namely

(167) . PR SN IR Y,

Sz b, AT e 1t 5ty T

822’

48-2
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gives the two following equations:

(168) X(x xl’ Zi, x2)=1/l(2: xls x;.: x;’ xz)
ox.. Ox'% . Ox xS & , 3 & 3¢'
it 5 8y M 8 A, X S T ey A T e i S A S X

These two equations combined give, by elimination, two others of the forms (157) and (158),
and reciprocally we may consider these two last equations as conducting to (168) and (169).
Now the differential of (168), when (169) is subtracted from it, gives

Sx _ & 5
(170) (sz sz) (e —x)=0,
and, since in general
| Sx &
171 s 0
ke 8y | Oy’

we conclude that the equations (168) and (169) give (141) and therefore also (166), (142) and
(167). The equations therefore of the forms (160) and (161), which result along with (157) and
(158) by elimination from the four equations (141), (142), (166) and (167), are consequences of
equations (157) and (158) and can be deduced from them by differentiation and elimination.

When the original equation is left under the form

(133) O=f(2, 2y, 2;, 25, 2)=],
and the supplementary equation (freed from A) is of the form
(o) s (65)

0y 0y le o ] syds L\ Ol

(172) 0= s =¢(Z, Xy, xi, .'L‘;, Xy, xé’ x;)'
% . M of

dx;  Omg dxy Sz

the function ¢ being linear with respect to ] and «3, then these two equations, combined with
the three derived equations

(173) 0=f", 0=f", 0=y,
will in general enable us to deduce by elimination 27, z,, 23, z3, } as functions of z, z,, 21, @]
of the forms (157), (158), (160), (161) and s

(174) ¥y =y 3 (2, 21, 21, 7).
We may propose to show that equations (160), (161) and (174) can be deduced from (157) and
(158). We may begin by eliminating x3 and «; between the four equations (172), (173), and so
obtain two equations between z, 2, , #1, 27, z7, z,, 2, to be combined with (133). Then it must
be shown that if z}" be eliminated between the differentials of the three last mentioned equations
the two resulting equations will both be satisfied by and will give the equation (172). Elimin-
ating xy between the equations 0=f", 0=4/, we find
_%
82:2
quadratic with respect to x3; also ehmmatmg x; between the equations 0=f', 0=4, we find

(175) f Sf '/' fmICt(x xl’ xl’ xl! xl’ xz, xlzl);

(176) lﬁf Sf x/J funct.(z, #{, 23, %1; ®g, %2);
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and another equation of the form
(177) : 0=funct (2, 2y, 2], 23, 27, s, 24)

will be obtained by eliminating 3 from (175) with the help of either 0 =" or 0 =3. The equations
(183), (176) and (177) are the three above alluded to, which give 27, ,, «; as functions of @, z,,
), 1. Differentiating them all we should get three new expressions for 21v, 2}, «}; as functions
of the same four quantities z, z,, 1, 7. We must show that the two expressions for x; agree
with each other and that the expressions for ,, x5, ; agree with the equation 0=14. We must
show therefore that, on eliminating 27, ¥ between (133), (176), (177) and their three differen-
tials, the four resulting equations between x, z,, @1, 27, z,, ;, ¥ are equivalent to 0=f, 0=f",
0=1. This comes to showing that the two equations 0=f, 0=f’, combined with the three equa-
tions (175), (176) and the differential of (176), give by the elimination of 27 only the three
equations 0=f, 0=f', 0=4. And this is easily seen to be true.

(Feb. 25t.)

We may also present the argument as follows. The system of five equations

(178) 0=f: 0=f’a 0=f", 0=4, 0=y
may be conceived to determine 27, z,, x5, «; and z7 as functions of z, z,, 7, #7, expressed by
five equations of the forms (157), (158), (160), (161), (174). If we differentiate these five func-
tions, making

(179) dz, =xdz, dx;=21dx, dej=27de,
we shall get expressions for the five first differential coefficients

ac”’ d¢’' dx'de’ dao’

If we differentiate in the same way the five equations (178), without that previous elimination

which would conduct to the five separate expressions (157), (158), (160), (161), (174), we shall
still obtain five linear equations to determine the same five differential coefficients, namely

(180) 0=df, 0=df’, 0=df’, O=dj, O0=dy’;

and a subsequent elimination between these five linear equations will give these five coefficients.
In order then to show that the two equations (157), (158) conduct in general to the equations
(160), (161) and (174), it is necessary and sufficient to show that the equations (178), when
combined with the three equations

e B o, AR, 4
(181) 0=2-, 0=2-, 0=2
(which result from i180) by the elimination of %%, (—ld%) and with (179), conduct to the
following relations:
dxz__ ’ dxé_ ” dxg_ m
(182) ‘ %-—-xg, %—xz, Ja Zg
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Accordingly equations (178), (179) and (181) give
Y g Y () Y (),

" S, \ dx dxy \ d
df o Of (day )\, Of (dwy )\  Of (dw , of _of
89) 0= 1" =5 (g~ “)J’S'x‘;(dx =) Sw;(dx"’”)’ Sy~ o2 |
'ﬁ & (day ,) Sif (d_{é_ ”) & (dxy
gy sz(dz %)t oo \de +8—x‘;(7z’;‘“2)’

and these three hnear equations conduct in general to the three relations (182).

Had we retained the A’s we might have argued thus. The equations (133), namely 0= f
0=o0,, 0=0,, with their four derived equations

(134) D=1 Y= TR ol et
may be conceived to conduct, by elimination, to seven separate expressions of the forms (157),
(158), (160), (161), (174), (159) and (162) for 27, z,, z;, 5, 3, ; ); as functions ¢, ¢ ¢, ¢ 1,
bo,0> Po,3» Y1, Yo of 2, 2, 27, 7. If these seven functions had been actually found by performing
this conceived elimination, we should then be able to deduce by differentiation and substi-
tution expressions for the following differential coefficients:

dey  dzy, dxy dxg dag
v 4z’ da’ da’ da’ da’

and also for the following ratios:

1dX'  1d)”
provided that we substitute for dz,, dz], dz] their values (179) and also make
(186) dA=Ndz.

Or, instead of thus previously eliminating between the seven equations (133) and (134), we may
at once differentiate these equations changing dx, dxj, d], dA to their values (179), (186) and
then determine the seven ratios (184), (185) by elimination between seven linear equations.
And of these seven linear equations we need use only the four following:
(187) —_-%, 0=%, 0=%‘;1, 0=‘fi—”x2,
(in combination with (133) and (134)) if we only want to deduce the four ratios
dxg . dxg  dag.  1dX

(o &’ dz’ du’ Ada’
and to examine whether they satisfy the equations (182) and also the following:
Ldx X"
K6 ) as iy

which four equations are the conditions requisite in order that the equations (160), (161), (174),
(162) may result from the equations (157), (158), (1569). Now the two first equations (187) com-
bined with the two first equations (134) and with (182) give the two first equations (183), and
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the two last equations (187) combined with the two last equations (134) and with (182), (189)
give in like manner the two following equations:

L T BT Y B LA L )

(190) dx S,y \ d Sy \ do oy \ da AN \Adx A
0_@ ¢ _ 8oy (dw, :v') <
o B 5 gl

And accordingly these equations (190) combined with the two first equations (183) conduct in
general, by the ordinary process of elimination between four equations of the first degree, to the
equations (182) and (189).

In the case of the system of 2n2—1 equations (126), (127), pages 375, 376, we may seek
the (n—1) (2n — 1) differential coefficients

(191) doy dzy  def™®  dm, du)  defnY
dx ’ dz 3 aedy dx 3 seey dx ’ dx 3 seey dx
and the 2n — 3 ratios
¢ 2 (2n—3)
(192) 1dX' 1dA 1dAe@n

X—d;) X%, sasy X—dx
by elimination between the 2n%—n — 2 equations
af O df’ bk df(zn—S) 1 do’l a4 1 da'1 e 1 da.(12n—4)

(193) 0=

dx’ Py R ™ “Ada’ Adz’ cap) U Nl

1do, 1do,, 1do®"9

5 O = O 0 bt O B
in which we are to substitute the values ;

de, dafn-9 13
(194) d—x-—-xl, cesy —W——xln
and the value

lda _X
Adz X’

" and with which we may combine the equations (126) and (127) themselves. In this manner we
obtain 2n2 —n — 2 equations of the first degree of the forms

(2n—3;
(195) 0=3_£_ o ...,0=df — #en=2) (= (d"l a;),...,

dx A\dz
e S R 3)) 1 (do,, 1 (do2n—9
=< =y i ey 0=< =" —0, aee = —2_ —gi2n-9
? A( v i Rl SRR /\(dx “")’ 0 )\( dz % )
which give
dz, L dx, gl
—_——! —_— = o ceiy =gl L, . SL
(196) F il TREE o g 2 anes o =Ty e o w1,

: 1dX X ldAen-3) pen-2
b L T e Wil
This shows that the 2n%—n — 2 equations (131), (132) result by differentiation and elimination
from the n + 1 equations (128)—(130).
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In the more general case of the system of (n+m) (25w — w,) — Zw equations (117), which
may be written (on account of the value (118) of 7)

(197) {O=‘fl’ O=fi, e 0=f1(22w—w1—1)’ $xss 0=fm’ O=fr’n’ » e 0=f('32w—w1—1)’
; 0=0y, 0=0}, ..., 0=0f2%@-20-) _ 0=g,, 0=0,, ..., 0=og@%0-w—wx-1),
if we establish the relations
dz dz; dz{%0-2) 1d\; A
198 -———1= 4 —1= o Sen 1 = (23w—1) ——1==—1
oy 4 a5 honda s o8 3y DR RO b ok
then the following (7 +m) (22w — w; — 1) — Zw linear equations between &y &c., namel
1 q dx 44
(- df df f2se—w—2) : df,
fosStap b oML rotem 0. Yt Qo Bl
0 dx fl’ ’0 dz fl ¥ Ty ’ 0 dx fm’ )
0= M _ngw—w,—l),
(199) 1 /d 1 /do2Ew—2w,—2) ”
oo b{fex il cou SIS N e SRS
N i At dx . i
i 2Ew—w,—w,—2)
will give by elimination
ey, daEote—o,—2) dx ‘
ﬁ:xz, o ouly 2fd—x—'=13(222"’""w’_wl_l), vovy d—;=xn, eoey
dx‘rfzm-;wn—wl—z) i x(fzw‘i-w,,—wl—l) i
x
200
(200) 14 X 1 dAfe-ed  )\fso—o,-) 1A, X,
VR Ve kiigeeh W dx P A CPI il Ll MY
1 d)‘giw—wl—a) A(;.‘):w—wl—l)
WP SR Y

Therefore the (n+m) (2Zw — w; — 1) — Zw equations (123)-(125) result by differentiation and
elimination from the n +m equations (119)-(122).

Thus the system of these n 4+ m equations (119)—(122) is not only a necessary consequence
of the system of the n+m equations (114), (115) but also, reciprocally, the latter equations
follow from the former. And the proof of this reciprocity was necessary, in strictness, in order to
show that the complete expressions of the functions #,, ..., #, in the equations (114), (115)
involve so many as 2Zw — 1 arbitrary constants. For the mere deduction of the system (119),
(120) (with or without the equations (121), (122)) as a necessary consequence of (114), (115) only
entitled us to infer that the complete expressions of z,, ..., z,, , deduced from this last mentioned
system, could not contain more than 2Xw — 1 arbitrary constants; and left it doubtful whether
some other combination of the equations of that system might not conduct to some new
differential equation between z, and « of an order lower than 2Zw — 1, in which case the number
of arbitrary constants would be less than 2Xw — 1, being always equal to the exponent of the
lowest order in any given set of total differential equations between a function z, and a variable
« which are supposed to be mutually compatible.
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If we include the A’s, then the complete integral of the system of the m + n equations (114),
(115) will involve in all 22w arbitrary constants, an additional constant being introduced by
the integration of the equation (121) or by the circumstance that all the m multipliers A may be
together multiplied by any common constant without altering the relations expressed by the
differential equations.

What if we had two original equations of the forms

(201) 0=f1 (2, 21, .’L‘i, T x;s T3, x{,) =f1: O=f2 (2, @y, zi: T2 .’L‘;, T3, x:;1 xlslt):fz’Z
Could we then apply the same reasoning as in the case of a system of the form (114), in which
all the equations were of some common order (w, for #, , w, for ,, &c.) for each of the » functions
though this order might change in passing from one function to another, whereas here the
first equation is only of the first order with respect to 2, while the second is of the second
order with respect to the same function?

We have now the case included in the general form (29), in which m=2, n=3, w, ;=1,
w; 9=1,w; 3=1, wy ;=1, wy =1, w, 3= 2. And the supplementary equations (30) become now

_y 8fl)' ofy 3fz)'_
O‘)‘laxl_()‘ls_x,i 50, (A“’Sa:i i &
RO A S_f_l)' Sy sz)'_
(202) lo=, 8%—()\1 )+t (Az 2) =
5 1 ko S\ [ 8\
o-nfi- (u3) -nfh- (i) + (i) -

If the circumstance of f; not containing 3 be not sufficient to interrupt the application of our
recent process, we are to consider w, =w,=1, wg=2, that is, Zw=4; and we are to form the
system of 31 equations:

0=f1’ 0=f17 O=f,1" 0= Ii” O=f11v7 0=f1v: 0=f1ﬂ’

0=f2’ 0=f;’ ’ 0=f2ﬂ:
(203) 0=0;; 0=0{, 0=0], 0='0], 0=0f", 0=0],

05 0y, 0.=i0g » 0=0j,

0=0yi0=gaq; 2 0=af’,

Then, if possible, we are to eliminate the 26 quantities
g M ONL YAy A
’ Al, Al y seey Al N A1, Al, seny Al
between the 31 equations (203) and so to obtain a new system of five equations between the
following 13 quantities

’
(204) Bios O ol Lnni s sb MR

’

(205) i gl R L A o )\_1’ 5\3,
" 1 M
enabling us to express' -
(206) o,z A A
2 8.8 Al, Al

as functions of z, z,, z}, 2, 27, 21", 2] and «}'. We must now endeavour to show that the deduc-
tion of equations (205) from equations (203), or ultimately from equations (201), (202), is

HMPII 49
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possible; and that, reciprocally, these five equations (201), (202) can be deduced by differentia-
tion and elimination from (205).

The equation 0=f{ involves
B, Wy, Wy, i W By ey BPTN S 0N, RPTR

and the equation 0=f% involves

’ i ’ i ’ i
Xy Wy 0 B8 s oo o BEED, Zon ey ooy B TR Ll Dl AR
The equation 0= o, involves
Al A A
’ ’ ” ’ 1 2 2
x, xls 131, xis xz: z27 x2, x3, xa: x,é’ x’g’ X‘, A_, A_’
160 AN
the equation 0=og, involves
’ ’
A1 AZ AZ

’ ’ " ’ Jr
x:xlyxly %"1',.’272, .’Ez, x27 xs; xa: x3, “"g: 30 ps BT
ACAT A
and the equation 0= g, involves
Illx/rl Illxlll IlexmivAiA2AéAg
@y Tyy Ty By By ' Wy5 Bys Ty Tyy\ gy Tys Tau 85 Ty 50y 39 A A
1 N AN
Hence the equations 0=07, 0=03y, 0=0l" involve each the quantities
’ ” vi ’ vi
AN N NN N

B, Byy Eyy ooey TID, By, By oory B0 By Vg iibesy WM, H) an 2 BB o8
s W1y L1 93 W1 9 Ngy Wgy s Wg 5 Ng,y L3, s Ag :,\1’ Al’ ) A19A1: Al, ’ A],,
d AYt .
except that 0= ol does not involve N Generally the three equations
; 1
0=“1(i+1): 0=o.2(i+1)’ ()=as(i)

contain all the same quantities, namely

: (1+2) (i+2)
2y Byh 21, ores TIPSR RPN, B LR, f\ﬁ, g ’\1)\ ; ;\Tz’ s /\2)‘ ;
1 1 A 1
i A(43)
except that 0=o{? does not contain ; . This last mentioned circumstance, however, does
vi \vi "
not hinder us to eliminate )\l y Xz_ , a3l a3yl between the five equations 0 =f}! =f§i= o} = 0y = o},
g g

nor does the circumstance that 0 = f}!does not involve 3'ii. And generally the circumstance that
some of the 26 things (204) to be eliminated do not appear in some of the 31 equations (203)
does not hinder us to effect the elimination supposed above, but rather tends to facilitate it.
Since then the equations (203) contain altogether only the 26 things (204) and the 13 things
(205) and are in general 31 distinct and independent relations between these 39 things so far as
elimination is concerned (although, with respect to differentiation, only 5 of these relations are
independent and the 26 others are deduced from them), we can deduce by elimination at least
Jive equations between the 13 things (205).

Indeed, a doubt might be felt whether we could not in general deduce more than five equations
between these 13 things; or, in other words, whether we could in general return by differentiation
and elimination from the five equations thus deduced to the system of the 31 equations (203).
But if we suppose (as, setting aside singular exceptions, we may and ought to do) that for pur-
poses of elimination the 31 relations (203) are distinct and independent and therefore suffice to
determine the 31 functions (204), (205), we can conclude that the expressions of the 26 functions
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(204) result by differentiation and elimination from those of the five functions (206); namely,
by showing that the following 26 linear equations between ‘flx , &c.,

dfy U oW g _YI
d_z—fl’ o O_dx 1, O_J;—fz, AL O_% g
_do’l ’ —doiv d ’ _do‘%v
(207) 0—%—0]_, ceny 0= dx 0'1, 0—%—02, ceey O—E;—Ug,
0=% T o ’fl"” oly,
conduct by elimination and by supposing
de, dey' o ldA A
(208) %—xl, .es —d?—xl s Al dx Al
to the following 26 expressions
da ? dayi da. dacytt
Eﬁ:xg,_..., 7%2—_.'” dxs :I: coey d—:::x;ui,
) dAy axy da, Ay
sl < ) (g — Loyt T2 —2 =\
;o s s = A 2 i ) il i AL
(Feb. 26%.)

The five equations (201), (202), 0=f, =f, =0, = 0, = 03, might be proposed to be integrated
by five series of the forms
2+ Avy =2+ 2 Ax+ o] AR + ..., Azx,=z;Ax+ fa;Ax?+
(210) Azy =25 Az + o'y Ax? +
A +AN =A A AT+ AT AR ..., Adg=X Az + 3N A22+ ...,
by substitution of which series we are to satisfy, independently of Az, the five equations
(211) 0=fi+Af;, 0=fa+Afy, 0=0,+A0;, 0=0y3+A0c,, 0=03+Acy,
" that is,
[0=f1+f;Ax+%f’{Ax2+ vees  O=fo+foAx+3fs0a?+...,
(212) 0=0,+01A2+ 30]A2%+ ..., 0=o0,+0Az+ }oyAa?+
1 0=03+05Ax+ o5 Ax?+....
- It is therefore necessary and, if Az be small enough to allow the convergence of the three
developments, it is in general sufficient to satisfy the five indefinite series of conditions:

0=f1, 0=f1, 0=f1, .., 0=f,, O=f4, 0=F2, ...,

’ ’ '
0=0y, 0=03, ..., 0=05, 0=0,, ..., 0=03, 0=03, ...;

(213) {

for any one particular value of x in order to satisfy the equations (211) by the developments (210)
for any near value of x, and so to obtain the five integrals of (211), at least in series. The question,
“how many arbitrary constants does the system of these five integrals contain?,” is therefore
reducible to the question, ‘““how many functions of the five following series

’ 4 ’ ” £ /A ’ " ! ”
(214) @y, @ @y R g ) g Wght ok TR R, TS R s ATy Sy Agy A ARy eee
49-2
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may have arbitrary values assigned to them, for an assumed particular value of #, so as to
satisfy all the conditions of the five series (213)%?”
The five conditions
(215) Ot 0 =1, D=t D goc) =1}
involve only the 18 funections
(216) Zy, By, Xy, XY, Ty, Ty, Xy, Ty, Xy, Ty, T3, Ty, T, Ay, AL, Ay, Ag, A
besides the variable x. The six additional conditions

(217) 0=f1, 0=f1, 0=f3, 0=f3, 0=01, O=0y
involve only one additional function, namely
(218) - i

Thus the 11 conditions (215), (217) involve only the variable x and the 19 functions (216), (218)
and leave only 8, at most, of these functions arbitrary in value when the value of 2 is agsumed.
We might have eliminated A] between the two last of the six conditions (217) and then we should
have five relations between the 18 functions (216) to combine with the five conditions (215),
leaving thus only 8, at most, of those functions arbitrary in value for any one assumed value
of z. Reciprocally, no new relation, deducible from the conditions (213), restricts the number of
these arbitrary values so as to reduce it to be less than 8. For every new condition or set of
conditions, taken out of the series (213), introduces a new function or functions which cannot
in general be eliminated by means of those new conditions. Thus the condition 0=f7 introduces
the two new functions 21¥, 21¥, the condition 0= f7 introduces 1, zi¥, ¥ , the condition 0= o]
introduces 2i¥, ai¥, «¥, A, A7, the condition 0= ¢} introduces the same five functions as 0 =07,
and the condition 0= oy introduces 21", «i¥, ay, Aj. These five conditions are indeed sufficient
to determine, but not in general sufficient to eliminate, the five new functions ziv, ziv, a3, A7, Ay
when the 19 functions (216) and (218) are known. So that the five new conditions
(219) 0=f7, 0=f3, O=pof, 0=0f, O=o]
can in general all be satisfied, but only in one way, by choosing suitable values for these five
new functions
(220) ¥, off, 2, 27,43,

after 8 of the 19 functions (216), (218) have had their values arbitrarily assumed and after the
remaining 11 values have been determined so as to satisf the 11 conditions (215), (217). In
like manner, the five new conditions :

(221) 0=F{", 0=f{F, 0=07, 0=0], 0=0]

can be satisfied by one but by only one set of values of the five new functions
(222) zy, x3, z3t, AT, ALY,

and so on indefinitely. We may therefore conclude, by this mode of reasoning, that the five
indefinite series of conditions (213) can all be satisfied together by one set of values of the
functions (214), of which values eight and only eight are arbitrary after the value of « has been

assumed. But of these eight arbitrary values, one is introduced by the consideration of
the two series
(223) A AL AT, ey Ay, A3, 3, .
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and only seven belong to the three series

(224) B, 0 GG O RS . By Mgy T e

For if the 11 conditions (215), (217) be distributed into these two new groups
(225) O=f1!0=fi’0=f;’0=f2’0=fé’0=f12’

and
(226) 0=ay,'0=07'0 =0y} 0='0g,' 0=y,

the six equations of the group (225) contain only the 13 functions
(227) xl’x£7 x’{’ f’ x2’ xé’ x;’ x’é” xa’ xé’ z’é’ g’ xi;’
besides the variable z which is always understood. They leave therefore only 7 of these 13 values
arbitrary and the eighth arbitrary value is that of any one of the six functions
(228) Al’ Ai’ '{’Az:)‘é:le,
of which the five equations of the group (226) determine only the five ratios.

It is important however to observe that we may not assume any seven of the values of the
functions (227), although we have only the six equations (225) between them. Thus the first
equation of this group, namely 0=f;, prevents us from assuming arbitrary values for all the
functions z,, 1, @,, ¥3, &5, 3, and therefore if the seven arbitrary values contain five of these
they cannot contain the sixth. With this exception, however, we seem to be at liberty to select
any seven of the functions (227) because the equation 0=f, contains the same six functions as
0=f, along with the new function z; and because the differentials of these equations contain
each more than seven different functions.

When the arbitrary values of some seven of the functions (227) have been assumed (not
more than five belonging to the group z,, @1, ,, %3, 5, @3 for the reason just now assigned) and
when the other six of these functions have been determined by (225), we can then in general
deduce the values of all the other functions of the series (224), without yet assuming that eighth
arbitrary constant which is connected with the passage from the ratios to the absolute values
of the functions (223). For the ratios only, and not the absolute values, of those multiplier-

_functions enter into the conditions (213).

We see, therefore, in this new way, that the complete expressions for the three functions
%, Ty, 23 (deduced from the differential equations (201) and (202) by differential elimination of
A;, A, and by integration) contain in general seven arbitrary constants and no more. We can
therefore deduce a principal integral relation of the following form between those functions
and z, z; and their initial values a,, a,, a3, @, a3:

(229) 0= F (2, 2;, Ty, Ty Ts, Uy By By, By, Ag)-

Can we generalise the foregoing investigation so as to show, by a similar process, that a
principal integral relation of the form (35) results from the two systems (29) and (30)?

In the first place we.may observe that when equations of the forms (114) and (115) are given
they are in number m +n, and they contain, taken altogether, the (n+m)(w, + 1)+ Zw func-
tions following (besides the independent variable z):

(230) {xl, B, iy BTN . A L T DR, g ),

U D LA el e s TG AR .

www.rcin.org.pl



390 XIV. CALCULUS OF PRINCIPAL RELATIONS [6

which functions, however, and no others will (at most) be contained in the following additional
equations,

(231) {

being in number (n+m)w, —Zw. Thus we have (n+m)(w,+1)—2Zw equations between
(n+m) (w,+ 1)+ Zw functions and therefore, so far, 2Xw of these functions remain arbitrary
in value. Nor will any new derived equations of the forms

(232) 0=flontd, ..., 0=fwntd 0=gfon—ortd (=gt . 0=o

Omfls 05 f basesos DT, oi0y Omf Ui Ofi o540 =flaw,

’ ” w ’ ” A
0=0], 0=0], .., 0= T2, .0 0= Gy, 0=0p_} 00z, 0=cittnTon-)

give any new relations between these arbitrary values. They remain therefore ultimately
arbitrary and the complete integrals of the m + n differential equations (114), (115) contain in
general 2Xw arbitrary constants. But of these only 2Xw — 1 enter into the expressions of the
functions ,, ,, ..., @, the other being introduced by the circumstance that the m multiplier-
functions A, ..., A, may be multiplied by any arbitrary constant without disturbing the
relations of the question.
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