VI.

THEORY OF THE MOON*

[1837.]
[Note Book 48.]
Dunraven Castle, Septr 25, 1837.
Let x, y, z be the Moon's geocentric rectangular coordinates; m Moon's mass; $x_{,}, y_{1}, z$, those of the Sun; m, Sun's mass; $\mu=$ sum of masses of Moon and Earth. Then
(1)

$$
\begin{cases}0=x^{\prime \prime}+\mu x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+m, x,\left(x_{1}^{2}+y_{1}^{2}+z_{,}^{2}\right)^{-\frac{3}{2}} & +m_{,}\left(x-x_{1}\right) \\ 0=y^{\prime \prime}+ & \times\left\{\left(x-x_{,}\right)^{2}+\left(y-y_{,}\right)^{2}+\left(z-z_{,}\right)^{2}\right\}^{-\frac{3}{2}} ; \\ 0=z^{\prime \prime}+ & \end{cases}
$$

and
(2)

$$
\begin{cases}0=x_{1}^{\prime \prime}+(\mu-m+m,) x,\left(x_{1}^{2}+y_{1}^{2}+z_{,}^{2}\right)^{-\frac{3}{2}}+m x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+m\left(x_{1}-x\right) \\ & \times\left\{\left(x-x_{,}\right)^{2}+\left(y-y_{,}\right)^{2}+(z-z,)^{2}\right\}^{-\frac{3}{2}} ; \\ 0=y_{1}^{\prime \prime}+ & \\ 0=z_{1}^{\prime \prime}+ & \end{cases}
$$

(Hence

$$
0=m x^{\prime \prime}+m, x^{\prime \prime}+(\mu+m,)\left\{m x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+m, x,\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}\right)\right\}^{\frac{-3}{2}}
$$

If m ($=$ Moon's mass) be extremely small, we shall have, very nearly, for the Sun's motion, the equations of elliptic motion,

$$
\begin{equation*}
0=x_{1}^{\prime \prime}+\left(\mu+m_{,}\right) x_{,}\left(x_{1}^{2}+y_{l}^{2}+z_{\prime}^{2}\right)^{-\frac{3}{2}}, \quad 0=\quad, \quad 0=\quad ; \tag{3}
\end{equation*}
$$

\& may conceive x_{1}, y_{l}, z, expressed thereby as functions of the time t. (And as a mathematical problem we may propose to integrate the 3 equations (1), considering $x_{,}, y_{,}, z$, as explicit functions of t, which satisfy these 3 equations (3). Physically, this corresponds to seeking the limiting state of motion of the Moon, when the Moon's mass is considered to tend to the limiting value 0 .)

By easy combination of (1) and (3) we get
(4) $0=x^{\prime \prime}-\frac{m_{,} x_{1}^{\prime \prime}}{\mu+m_{1}}+\mu x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+m,\left(x-x_{,}\right)\left\{\left(x-x_{,}\right)^{2}+\left(y-y_{,}\right)^{2}+\left(z-z_{,}\right)^{2}\right\}^{-\frac{3}{2}}$;
\because, if $\delta t=0 \quad \&$ if

(6)

$$
\delta s=\left(x^{\prime}-\frac{m_{,} x_{1}^{\prime}}{\mu+m_{1}}\right) \delta x++-\left(x_{0}^{\prime}-\frac{m_{,}, x_{1,0}^{\prime}}{\mu+m_{1}}\right) \delta x_{0}-
$$

* [See also Correspondence with J. W. Lubbock, pp. 249 et seq.]

This last formula of variation would have resulted equally if instead of (5) we had put
(7) $s=\int_{0}^{t}\left\{\frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}+\mu\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}\right.$

$$
\left.+m,\left(-\frac{x^{\prime} x_{1}^{\prime}+y^{\prime} y_{1}^{\prime}+z^{\prime} z_{1}^{\prime}}{\mu+m}+\left({\overline{x-x_{1}}}^{2}+{\overline{y-y_{1}}}^{2}+\overline{z-z}_{2}^{2}\right)^{-\frac{1}{2}}\right)\right\} d t
$$

Besides, the part

$$
\begin{aligned}
&-\frac{m_{1}}{\mu+m_{1}} \int_{0}^{t}\left(x^{\prime} x_{,}^{\prime}+y^{\prime} y_{,}^{\prime}+z^{\prime} z_{,}^{\prime}\right) d t=-\frac{m_{,}}{\mu+m_{,}}\left(x x_{,}^{\prime}+y y_{,}^{\prime}+z z_{,}^{\prime}-x_{0} x_{, 0}^{\prime}-y_{0} y_{, 0}^{\prime}-z_{0} z_{, 0}^{\prime}\right) \\
&+\frac{m,}{\mu+m_{,}} \int_{0}^{t}\left(x x_{,}^{\prime \prime}+y y_{,}^{\prime \prime}+z z_{,}^{\prime \prime}\right) d t=-\frac{m_{1}}{\mu+m_{,}}\left(x x_{,}^{\prime}++-x_{0} x_{, 0}^{\prime}--\right) \\
& \quad-m, \int_{0}^{t} \frac{x x,+y y_{1}+z z_{2}}{\left(x_{,}^{2}+y_{1}^{2}+z_{,}^{2}\right)^{\frac{3}{2}}} d t
\end{aligned}
$$

If then we put*

$$
\begin{equation*}
R=m,\left\{\frac{x x_{1}+y y_{,}+z z_{\prime}}{\left(x_{1}^{2}+y_{1}^{2}+z_{\prime}^{2}\right)^{\frac{3}{2}}}-\left(\overline{x-x}+{\overline{y-y_{1}}}^{2}+\overline{z-z}_{,}^{2}\right)^{-\frac{1}{2}}\right\} \tag{8}
\end{equation*}
$$

we shall have, by (7),

$$
\begin{align*}
s=\int_{0}^{t}\left(\frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}\right. & \left.+\mu\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}-R\right) d t \tag{9}\\
& -\frac{m}{\mu+m_{,}}\left(x x_{,}^{\prime}+y y_{,}^{\prime}+z z_{,}^{\prime}-x_{0} x_{, 0}^{\prime}-y_{0} y_{, 0}^{\prime}-z_{0} z_{, 0}^{\prime}\right)
\end{align*}
$$

and hence by (6) we have
(A) $\ldots \delta \int\left(\frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}+\mu\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}-R\right) d t=x^{\prime} \delta x+y^{\prime} \delta y+z^{\prime} \delta z-x_{0}^{\prime} \delta x_{0}-y_{0}^{\prime} \delta y_{0}-z_{0}^{\prime} \delta z_{0}$.

The only thing neglected in this very simple formula is the mass of the Moon; by neglecting which we are able to treat the Sun's coordinates $x_{,}, y_{,}, z$, in R as explicit functions of the time t. Accordingly when the Moon's mass is thus neglected, \& δt is made $=0$, the formula (A) results at once from the 3 known equations
(B) \ldots

$$
x^{\prime \prime}+\mu x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}+\frac{\delta R}{\delta x}=0
$$

In fact if we multiply the three equations (B) by $\delta x, \delta y, \delta z$ and add the products, we get

$$
x^{\prime \prime} \delta x+y^{\prime \prime} \delta y+z^{\prime \prime} \delta z=\mu \delta\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}-\delta R
$$

\because because

$$
x^{\prime}(\delta x)^{\prime}+y^{\prime}(\delta y)^{\prime}+z^{\prime}(\delta z)^{\prime}=\delta \frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}
$$

we have

$$
\Delta_{t=t_{0}}^{t=t}\left(x^{\prime} \delta x+y^{\prime} \delta y+z^{\prime} \delta z\right)=\delta \int_{0}^{t}\left(\frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}+\mu\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}-R\right) d t
$$

Let

$$
x=r \cos \lambda, \quad y=r \sin \lambda, \quad z=0
$$

$$
x,=a, \cos n, t, \quad y_{1}=a, \sin n, t, \quad z,=0, \quad a_{2}^{2} n_{1}^{3}=\mu+m
$$

so that the Sun's orbit is now supposed to be circular and the inclination of the Moon's orbit is neglected.

Then the fundamental formula (A) becomes
(C) \ldots

$$
\delta \int_{0}^{t}\left(\frac{r^{\prime 2}+r^{2} \lambda^{\prime 2}}{2}+\frac{\mu}{r}-R\right) d t=r^{\prime} \delta r+r^{2} \lambda^{\prime} \delta \lambda-r_{0}^{\prime} \delta r_{0}-r_{0}^{2} \lambda_{0}^{\prime} \delta \lambda_{0}
$$

* [See p. 51.]
also
(D)...

$$
R=m,\left\{\frac{r \cos (\lambda-n, t)}{a_{1}^{2}}-\left\{a_{1}^{2}-2 a, r \cos (\lambda-n, t)+r^{2}\right\}^{-\frac{1}{2}}\right\} .
$$

At the same time the differential equations (B) become

$$
\text { (E) } \ldots \quad r^{\prime \prime}-r \lambda^{\prime 2}+\frac{\mu}{r^{2}}+\frac{\delta R}{\delta r}=0 ; \quad\left(r^{2} \lambda^{\prime}\right)^{\prime}+\frac{\delta R}{\delta \lambda}=0
$$

Besides we may put, with a great degree of approximation, ${ }^{*} m_{,}=a_{1}^{3} n_{1}^{2}$, neglecting Earth's mass in comparison with Sun's; and then if in general we make $\left(1-2 \alpha p+\alpha^{2}\right)^{-\frac{1}{2}}=1+\alpha P_{1}+\alpha^{2} P_{2}+\& c$., and put also $p=\cos \overline{\lambda-n, t}$, we shall then have

$$
-R=a_{1}^{2} n_{1}^{2}+n_{r}^{2}\left(r^{2} P_{2}+\frac{r^{3}}{a_{1}} P_{3}+\frac{r^{4}}{a_{1}^{2}} P_{4}+\& \mathrm{cc} .\right)
$$

Hence,
(F)...

$$
\begin{gathered}
\delta \int_{0}^{t}\left(\frac{r^{\prime 2}+r^{2} \lambda^{\prime 2}}{2}+\frac{\mu}{r}\right) d t+n^{2} \delta \int_{0}^{t}\left(r^{2} P_{2}+\frac{r^{3}}{a,} P_{3}+\frac{r^{4}}{a_{1}^{2}} P_{4}+\& c .\right) d t \\
=r^{\prime} \delta r+r^{2} \lambda^{\prime} \delta \lambda-r_{0}^{\prime} \delta r_{0}-r_{0}^{2} \lambda_{0}^{\prime} \delta \lambda_{0} .
\end{gathered}
$$

As a first approximation we may neglect n, (which comes to treating the month as very small in comparison with the year;) \& then we may take elliptic values for r and λ, (that is, for the moon's geocentric radius vector and geocentric longitude,) which values, if we retain only the $1^{\text {st }}$ power of the excentricity e, will be

$$
\begin{gathered}
r=a-a e \cos (n t+\epsilon-\varpi)=a-a e \cos \xi, \quad \text { (if } \xi=n t+\epsilon-\varpi, \text {) } \\
\lambda=n t+\epsilon+2 e \sin (n t+\epsilon-\varpi)=n t+\epsilon+2 e \sin \xi ;
\end{gathered}
$$

also $\mu=a^{3} n^{2}$.
Accordingly these expressions give, when we put

$$
\begin{aligned}
k & =e \cos (\epsilon-\varpi), \quad l=e \sin (\epsilon-\varpi), \\
r & =a(1-k \cos n t+l \sin n t), \quad \lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t, \\
\lambda^{\prime} & =n(1+2 k \cos n t-2 l \sin n t), \quad \frac{1}{2} r^{2} \lambda^{\prime 2}=a^{2} n^{2}\left(\frac{1}{2}+k \cos n t-l \sin n t\right),
\end{aligned}
$$

\& \because

$$
\begin{aligned}
\delta \int_{0}^{t} & \left(\frac{r^{\prime 2}+r^{2} \lambda^{\prime 2}}{2}+\frac{\mu}{r}\right) d t=\delta\left\{\frac{3}{2} a^{2} n^{2} t+2 a^{2} n(k \sin n t+l \overline{\cos n t-1})\right\} \\
& =a^{2} n(t \delta n+2 \delta k \sin n t+2 \delta l \overline{\cos n t-1})=a^{\Sigma} n \delta\left(\lambda-\lambda_{0}\right)=a^{2} n \delta \lambda-a^{2} n \delta \lambda_{0} \\
& =r^{2} \lambda^{\prime} \delta \lambda-r_{0}^{2} \lambda_{0}^{\prime} \delta \lambda_{0}=r^{\prime} \delta r+r^{2} \lambda^{\prime} \delta \lambda-r_{0}^{\prime} \delta r_{0}-r_{0}^{2} \lambda_{0}^{\prime} \delta \lambda_{0} .
\end{aligned}
$$

In these last equations it has been supposed that k and l vanish after the act of variation δ has been performed, but if we even retain terms of the $1^{\text {st }}$ dimension with respect to $k \& l$, we find that the differential equations

$$
r^{\prime \prime}-r \lambda^{\prime 2}+\frac{\mu}{r^{2}}=0 \quad \text { and } \quad\left(r^{2} \lambda^{\prime}\right)^{\prime}=0 \text { are satisfied. }
$$

* $\left[a^{3} n_{m}^{2}=m_{r}\left(1+\frac{\mu}{m_{1}}\right)\right.$. We have the following approximate values: $\frac{\mu}{m_{,}}=\frac{1}{330,000} ; \frac{n,}{n}=\frac{1}{13} ; e=\frac{1}{20^{2}} ; \frac{a}{a}=\frac{1}{400}$ the tangent of the inclination of the Moon's orbit $=\frac{1}{11}$ and the excentricity of the Sun's orbitt $=\frac{1}{60}$. Brown, Lunar Theory, pp. 42, 80.]

As a second approximation we may take the differential equations

$$
0=r^{\prime \prime}-r \lambda^{\prime 2}+\frac{\mu}{r^{2}}+\frac{\delta R}{\delta r}, \quad 0=\left(r^{2} \lambda^{\prime}\right)^{\prime}+\frac{\delta R}{\delta \lambda}
$$

retaining in R only the term

$$
-n_{r}^{2} r^{2} P_{2}=-\frac{n^{2} r^{2}}{4}(1+3 \cos \overline{2 \lambda-2 n, t})
$$

At the same time,

$$
\delta \int_{0}^{t}\left(\frac{r^{\prime 2}+r^{2} \lambda^{\prime 2}}{2}+\frac{\mu}{r}\right) d t+\frac{1}{4} n_{,}^{2} \delta \int_{0}^{t} r^{2}\left(1+3 \cos \overline{2 \lambda-2 n, t)} d t=r^{\prime} \delta r+r^{2} \lambda^{\prime} \delta \lambda-r_{0}^{\prime} \delta r_{0}-r_{0}^{2} \lambda_{0}^{\prime} \delta \lambda_{0}\right.
$$

We are now to employ the expressions

$$
r=a(1-k \cos n t+l \sin n t), \quad \lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t
$$

but are no longer to consider a, n, ϵ, k, l as constant. We are however to suppose $r_{0}=a(1-k)$, $\lambda_{0}=\epsilon+2 l$; but $r^{\prime}, \lambda^{\prime}, r_{0}^{\prime}, \lambda_{0}^{\prime}$ will now have new values, at least in the $2^{\text {nd }}$ member of the formula $\delta \int \& c .=r^{\prime} \delta r+\& c .$, though in the $1^{\text {st }}$ member of that formula the values of r^{\prime} and λ^{\prime} remain unaltered. We may \because make, in the $2^{\text {nd }}$ member of that formula, (if we neglect $n_{,}^{2} k$ and $n_{,}^{2} l$)

$$
\begin{gathered}
r^{\prime}=\Delta r^{\prime}, \quad \lambda^{\prime}=n+\Delta \lambda^{\prime}, \quad r_{0}^{\prime}=\Delta r_{0}^{\prime}, \quad \lambda_{0}^{\prime}=n+\Delta \lambda_{0}^{\prime}, \quad r=r_{0}=a \\
\delta r=\delta a-a \delta k \cdot \cos n t+a \delta l \cdot \sin n t, \quad \delta \lambda=t \delta n+\delta \epsilon+2 \delta k \cdot \sin n t+2 \delta l \cdot \cos n t, \\
\delta r_{0}=\delta a-a \delta k, \quad \delta \lambda_{0}=\delta \epsilon+2 \delta l,
\end{gathered}
$$

\& we may suppress in it the part $a^{2} n\left(\delta \lambda-\delta \lambda_{0}\right)$, if we suppress in the $1^{\text {st }}$ member the part

$$
\delta \int_{0}^{t}\left(\frac{r^{\prime 2}+r^{2} \lambda^{\prime 2}}{2}+\frac{\mu}{r}\right) d t
$$

by which means it becomes*

$$
\Delta r^{\prime} \cdot(\delta a-a \delta k \cdot \cos n t+a \delta l \cdot \sin n t)+a^{2} \Delta \lambda^{\prime} \cdot(t \delta n+\delta \epsilon+2 \delta k \cdot \sin n t+2 \delta l \cdot \cos n t)
$$

$$
-\Delta r_{0}^{\prime} .(\delta a-a \delta k)-a^{2} \Delta \lambda_{0}^{\prime} .(\delta \epsilon+2 \delta l)=\frac{1}{4} n^{2} \delta \int_{0}^{t} r^{2}(1+3 \cos \overline{2 \lambda-2 n, t}) d t=\delta s
$$

that is, after expressing $\quad s=\frac{1}{4} n_{1}^{2} \int_{0}^{t} r^{2}(1+3 \cos \overline{2 \lambda-2 n, t}) d t$
as a function of a, n, ϵ, k, l, t \& taking its variation relatively to n, ϵ, k, l, (observing that $\left.a=\left(\mu / n^{2}\right)^{-\frac{1}{3}} \& \because \delta a=-\frac{2}{3} \frac{a}{n} \delta n,\right)$

$$
\begin{gathered}
\frac{\delta s}{\delta n}=-\frac{2}{3} \frac{a}{n}\left(\Delta r^{\prime}-\Delta r_{0}^{\prime}\right)+a^{2} t \Delta \lambda^{\prime} ; \quad \frac{\delta s}{\delta \epsilon}=a^{2}\left(\Delta \lambda^{\prime}-\Delta \lambda_{0}^{\prime}\right) \\
\frac{\delta s}{\delta k}=-a\left(\Delta r^{\prime} \cdot \cos n t-\Delta r_{0}^{\prime}\right)+2 a^{2} \Delta \lambda^{\prime} \cdot \sin n t ; \quad \frac{\delta s}{\delta l}=a \Delta r^{\prime} \cdot \sin n t+2 a^{2}\left(\Delta \lambda^{\prime} \cdot \cos n t-\Delta \lambda_{0}^{\prime}\right)
\end{gathered}
$$

These four equations will give, by elimination, expressions for Δr_{0}^{\prime} and $\Delta \lambda_{0}^{\prime}$ of the forms

$$
R_{1} \frac{\delta s}{\delta n}+R_{2} \frac{\delta s}{\delta \epsilon}+R_{3} \frac{\delta s}{\delta k}+R_{4} \frac{\delta s}{\delta l} \quad \text { and } L_{1} \frac{\delta s}{\delta n}+\ldots+L_{4} \frac{\delta s}{\delta l}
$$

$R_{1}, \ldots L_{4}$ being functions of $n \& t$; while $\frac{\delta s}{\delta n}, \ldots \frac{\delta s}{\delta l}$ are functions of n, t and $n,$.

> * [See First Essay, p. 161, (G8.).]

H M P II

VI. THEORY OF THE MOON

Besides, if we neglect the products of n, k, l, we may retain the expressions thus found for Δr_{0}^{\prime} and $\Delta \lambda_{0}^{\prime}$ and substitute them in these new equations

$$
r_{0}^{\prime}=a n l+\Delta r_{0}^{\prime}, \quad \lambda_{0}^{\prime}=n(1+2 k)+\Delta \lambda_{0}^{\prime}
$$

with which we are then to combine the 2 equations

$$
r_{0}=a(1-k), \quad \lambda_{0}=\epsilon+2 l, \quad\left(\text { and } a^{3} n^{2}=\mu,\right)
$$

in order to get n, ϵ, k, l (and a) as functions of $r_{0}, \lambda_{0}, r_{0}^{\prime}, \lambda_{0}^{\prime}, t$ and n, which functions are then to be substituted in the expressions

$$
r=a(1-k \cos n t+l \sin n t), \quad \lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t .
$$

To effect this substitution, it is convenient* to change a and n, ϵ, k, l to $a+\Delta a, n+\Delta n, \epsilon+\Delta \epsilon$, $k+\Delta k, l+\Delta l$, and to establish the equations

$$
r_{0}=a(1-k), \quad \lambda_{0}=\epsilon+2 l, \quad r_{0}^{\prime}=a n l, \quad \lambda_{0}^{\prime}=n(1+2 k), \quad a^{3} n^{2}=\mu
$$

and

$$
\begin{gathered}
0=\Delta a-a \Delta k, \quad 0=\Delta \epsilon+2 \Delta l, \quad 0=a n \Delta l+\Delta r_{0}^{\prime} \\
0=\Delta n+2 n \Delta k+\Delta \lambda_{0}^{\prime}, \quad \Delta a=-2 a \Delta n / 3 n
\end{gathered}
$$

after which we shall have

$$
\Delta r=\Delta a-a \Delta k \cdot \cos n t+a \Delta l \cdot \sin n t ; \quad \Delta \lambda=t \Delta n+\Delta \epsilon+2 \Delta l \cdot \sin n t+2 \Delta l \cdot \cos n t
$$

and finally

$$
r=a(1-k \cos n t+l \sin n t)+\Delta r, \quad \lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t+\Delta \lambda
$$

in which expressions a and n, ϵ, k, l are constants independent of the time t.
In this manner we have

$$
\begin{gathered}
\Delta a=a \Delta k ; \quad \Delta n=-\frac{3 n}{2} \Delta k ; \quad \Delta k=-\frac{2}{n} \Delta \lambda_{0}^{\prime} ; \\
\because \quad \Delta n=3 \Delta \lambda_{0}^{\prime}, \quad \Delta a=-\frac{2 a}{n} \Delta \lambda_{0}^{\prime} ; \quad \text { and } \quad \Delta l=-\frac{1}{a n} \Delta r_{0}^{\prime}, \quad \Delta \epsilon=\frac{2}{a n} \Delta r_{0}^{\prime}
\end{gathered}
$$

therefore

$$
\begin{aligned}
& \Delta r=-\frac{2 a}{n}(1-\cos n t) \Delta \lambda_{0}^{\prime}-\frac{1}{n} \sin n t . \Delta r_{0}^{\prime} \\
& \Delta \lambda=\left(3 t-\frac{4 \sin n t}{n}\right) \Delta \lambda_{0}^{\prime}+\frac{2}{a n}(1-\cos n t) \Delta r_{0}^{\prime}
\end{aligned}
$$

Besides, by the equations near the foot of page 241, we have

$$
\Delta \lambda^{\prime}=\Delta \lambda_{0}^{\prime}+\frac{1}{a^{2}} \frac{\delta s}{\delta \epsilon}, \quad \Delta r^{\prime}=\Delta r_{0}^{\prime}+\frac{3}{2} a n t\left(\Delta \lambda_{0}^{\prime}+\frac{1}{a^{2}} \frac{\delta s}{\delta \epsilon}\right)-\frac{3 n}{2 a} \frac{\delta s}{\delta n}
$$

[^0]also, $\quad \sin n t \cdot \frac{\delta s}{\delta k}+\cos n t \cdot \frac{\delta s}{\delta l}=2 a^{2}\left(\Delta \lambda^{\prime}-\cos n t \Delta \lambda_{0}^{\prime}\right)+a \Delta r_{0}^{\prime} \sin n t$
$$
=2 a^{2}(1-\cos n t) \Delta \lambda_{0}^{\prime}+a \sin n t \Delta r_{0}^{\prime}+2 \frac{\delta s}{\delta \epsilon}=-a n \Delta r+2 \frac{\delta s}{\delta \epsilon},
$$
and
$\cos n t \cdot \frac{\delta s}{\delta k}-\sin n t \cdot \frac{\delta s}{\delta l}=-a \Delta r^{\prime}+a \Delta r_{0}^{\prime} \cos n t+2 a^{2} \Delta \lambda_{0}^{\prime} \sin n t$
\[

$$
\begin{aligned}
& =-a(1-\cos n t) \Delta r_{0}^{\prime}+a^{2}\left(-\frac{3}{2} n t+2 \sin n t\right) \Delta \lambda_{0}^{\prime}-\frac{3}{2} n t \frac{\delta s}{\delta \epsilon}+\frac{3 n}{2} \frac{\delta s}{\delta n} \\
& =-\frac{a^{2} n}{2} \Delta \lambda-\frac{3 n t}{2} \frac{\delta s}{\delta \epsilon}+\frac{3 n}{2} \frac{\delta s}{\delta n}
\end{aligned}
$$
\]

therefore

$$
\begin{aligned}
& \Delta r=\frac{2}{a n} \frac{\delta s}{\delta \epsilon}-\frac{1}{a n}\left(\sin n t \frac{\delta s}{\delta k}+\cos n t \frac{\delta s}{\delta l}\right), \\
& \Delta \lambda=\frac{3}{a^{2}}\left(\frac{\delta s}{\delta n}-t \frac{\delta s}{\delta \epsilon}\right)-\frac{2}{a^{2} n}\left(\cos n t \frac{\delta s}{\delta k}-\sin n t \frac{\delta s}{\delta l}\right)
\end{aligned}
$$

To calculate s, we have

$$
r^{2}=a^{2}(1-2 k \cos n t+2 l \sin n t)
$$

$$
2 \lambda-2 n, t=2\left(n-n_{,}\right) t+2 \epsilon+4 k \sin n t+4 l \cos n t
$$

$1+3 \cos (2 \lambda-2 n, t)=1+3 \cos (2 n t-2 n, t+2 \epsilon)-12(k \sin n t+l \cos n t) \sin (2 n t-2 n, t+2 \epsilon) ;$
$\because \quad \frac{4 s^{\prime}}{a^{2} n_{1}^{2}}=\{1+3 \cos (2 n t-2 n, t+2 \epsilon)\}\{1-2 k \cos n t-2 l \sin n t\}$

$$
-12(k \sin n t+l \cos n t) \sin (2 n t-2 n, t+2 \epsilon)
$$

$$
\begin{aligned}
=1 & +3 \cos (2 n t-2 n, t+2 \epsilon)-2 k \cos n t+2 l \sin n t \\
& +3 k\{\cos (3 n t-2 n, t+2 \epsilon)-3 \cos (n t-2 n, t+2 \epsilon)\} \\
& -3 l\{\sin (3 n t-2 n, t+2 \epsilon)+3 \sin (n t-2 n, t+2 \epsilon)\}
\end{aligned}
$$

$$
\because \quad \frac{4 s}{n_{2}^{2}}=a^{2} t+\frac{3 a^{2}}{2 n-2 n,}\{\sin (2 n t-2 n, t+2 \epsilon)-\sin 2 \epsilon\}
$$

$$
+k a^{2}\left\{-\frac{2}{n} \sin n t+\frac{3}{3 n-2 n}\{\sin (3 n t-2 n, t+2 \epsilon)-\sin 2 \epsilon\}\right.
$$

$$
\left.-\frac{9}{n-2 n,}\{\sin (n t-2 n, t+2 \epsilon)-\sin 2 \epsilon\}\right\}
$$

$$
+l a^{2}\left\{\frac{2}{n}-\frac{2}{n} \cos n t+\frac{3}{3 n-2 n,}\{\cos (3 n t-2 n, t+2 \epsilon)-\cos 2 \epsilon\}\right.
$$

$$
\left.+\frac{9}{n-2 n}\{\cos (n t-2 n, t+2 \epsilon)-\cos 2 \epsilon\}\right\}
$$

$$
\because \quad \frac{4 n}{a n_{2}^{2}} \Delta r=\frac{6}{n-n}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos 2 \epsilon)+\frac{2}{n}(1-\cos n t)
$$

$$
-\frac{3}{3 n-2 n,}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos \overline{n t-2 \epsilon})
$$

$$
-\frac{9}{n-2 n}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos \overline{n t+2 \epsilon})
$$

and

$$
\begin{aligned}
\frac{4 n}{n_{,}^{2}} \Delta \lambda= & -4\left\{t+\frac{3}{2 n-2 n,}(\sin \overline{2 n t-2 n, t+2 \epsilon}-\sin 2 \epsilon)\right\}+\frac{9 n t \cos 2 \epsilon}{n-n} \\
& -\frac{9 n}{2\left(n-n_{,}\right)^{2}}(\sin \overline{2 n t-2 n, t+2 \epsilon}-\sin 2 \epsilon)+\frac{4}{n} \sin n t \\
& -\frac{6}{3 n-2 n,}(\sin \overline{2 n t-2 n, t+2 \epsilon}+\sin \overline{n t-2 \epsilon}) \\
& +\frac{18}{n-2 n}(\sin \overline{2 n t-2 n, t+2 \epsilon}-\sin \overline{n t+2 \epsilon})
\end{aligned}
$$

(As verifications, these expressions for, Δr and $\Delta \lambda$ should not only vanish themselves when $t=0$, which they evidently do, but also their differential coefficients, taken with respect to t, should vanish at the same time; we ought \because to have
\& so we have.)
It results then from the foregoing calculations that if squares \& products of n_{l}^{2}, k, l be neglected, the two differential equations of the $2^{\text {nd }}$ order

$$
0=r^{\prime \prime}-r \lambda^{\prime 2}+\frac{\mu}{r^{2}}-\frac{n_{r}^{2} r}{2}(1+3 \cos \overline{2 \lambda-2 n, t}), \quad 0=\left(r^{2} \lambda^{\prime}\right)^{\prime}+\frac{3 n_{r}^{2} r^{2}}{2} \sin \overline{2 \lambda-2 n, t}
$$

(in which μ and n, are constant,) admit of having their integrals expressed as follows:
$r=a-a k \cos n t+a l \sin n t+\frac{a}{2} \frac{n^{2}}{n^{2}}(1-\cos n t)$

$$
\begin{array}{r}
+\frac{3 a n_{2}^{2}}{4 n}\left\{\frac{2}{n-n}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos 2 \epsilon)-\frac{1}{3 n-2 n}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos \overline{n t-2 \epsilon})\right. \\
\left.-\frac{3}{n-2 n}(\cos \overline{2 n t-2 n, t+2 \epsilon}-\cos \overline{n t+2 \epsilon})\right\}
\end{array}
$$

$\lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t-\frac{n_{,}^{2} t}{n}\left(1-\frac{9 n \cos 2 \epsilon}{4(n-n,)}\right)+\frac{n^{2}}{n^{2}} \sin n t$

$$
\begin{aligned}
& -\frac{3 n_{t}^{2}}{4 n}\left\{\left(\frac{2}{n-n}+\frac{3 n}{2(n-n,)^{2}}\right)(\sin \overline{2 n t-2 n, t+2 \epsilon}-\sin 2 \epsilon)\right. \\
& \left.+\frac{2}{3 n-2 n}(\sin \overline{2 n t-2 n, t+2 \epsilon}+\sin \overline{n t-2 \epsilon})-\frac{6}{n-2 n}(\sin \overline{2 n t-2 n, t+2 \epsilon}-\sin \overline{n t+2 \epsilon})\right\}
\end{aligned}
$$

in which a and n, ϵ, k, l are 5 arbitrary constants determinable by the 5 conditions

$$
r_{0}=a-a k, \quad \lambda_{0}=\epsilon+2 l, \quad r_{0}^{\prime}=a n l, \quad \lambda_{0}^{\prime}=n+2 n k, \quad a^{3} n^{2}=\mu
$$

These expressions may be put under the forms

$$
\begin{aligned}
r= & a\left\{1+\frac{n_{1}^{2}}{2 n^{2}}\left(1-\frac{3 n \cos 2 \epsilon}{n-n,}\right)\right\} \\
& -a \cos n t\left\{l+\frac{n_{1}^{2}}{2 n^{2}}\left(1-\frac{3 n}{2}\left(\frac{1}{3 n-2 n}+\frac{3}{n-2 n}\right) \cos 2 \epsilon\right)\right\} \\
& +a \sin n t\left\{l+\frac{3 n_{1}^{2}}{4 n}\left(\frac{1}{3 n-2 n_{,}}-\frac{3}{n-2 n}\right) \sin 2 \epsilon\right\} \\
& \quad+\frac{3 a n_{r}^{2}}{4 n}\left(\frac{2}{n-n},-\frac{1}{3 n-2 n,}-\frac{3}{n-2 n_{t}}\right) \cos (2 n t-2 n, t+2 \epsilon)
\end{aligned}
$$

$$
\begin{aligned}
\lambda= & n t\left\{1-\frac{n_{1}^{2}}{n^{2}}\left(1-\frac{9 n \cos 2 \epsilon}{4\left(n-n_{I}\right)}\right)\right\} \\
& +\epsilon+\frac{3 n_{1}^{2}}{4 n}\left(\frac{2}{n-n_{,}}+\frac{3 n}{2\left(n-n_{l}\right)^{2}}\right) \sin 2 \epsilon \\
& +2 \sin n t\left\{l+\frac{n_{l}^{2}}{2 n^{2}}\left(1-\frac{3 n}{2}\left(\frac{1}{3 n-2 n_{,}}+\frac{3}{n-2 n_{,}}\right) \cos 2 \epsilon\right)\right\} \\
& +2 \cos n t\left\{l+\frac{3 n_{I}^{2}}{4 n}\left(\frac{1}{3 n-2 n_{,}}-\frac{3}{n-2 n_{I}}\right) \sin 2 \epsilon\right\} \\
& -\frac{3 n_{1}^{2}}{4 n}\left(\frac{2}{n-n_{,}}+\frac{3 n}{2\left(n-n_{,}\right)^{2}}+\frac{2}{3 n-2 n_{,}}-\frac{6}{n-2 n_{,}}\right) \sin \left(2 n t-2 n_{,} t+2 \epsilon\right)
\end{aligned}
$$

In the same order of approximation, if we put

$$
\begin{aligned}
& \mathrm{n}=n-\frac{n_{1}^{2}}{n}\left(1-\frac{9 n \cos 2 \epsilon}{4(n-n,)}\right) ; \quad \mathrm{a}=\sqrt[3]{\frac{\mu}{\mathrm{n}^{2}}}\left\{=a+\frac{2 n_{r}^{2} a}{3 n^{2}}\left(1-\frac{9 n \cos 2 \epsilon}{4\left(n-n_{,}\right)}\right)\right\} \\
& \mathrm{k}=k+\frac{n_{1}^{2}}{2 n^{2}}\left(1-\frac{3 n}{2}\left(\frac{1}{3 n-2 n_{,}}+\frac{3}{n-2 n_{t}}\right) \cos 2 \epsilon\right) ; \quad 1=l+\frac{3 n_{1}^{2}}{4 n}\left(\frac{1}{3 n-2 n}-\frac{3}{n-2 n_{t}}\right) \sin 2 \epsilon \\
& \mathrm{e}=\epsilon+\frac{3 n_{t}^{2}}{2 n\left(n-n_{t}\right)}\left(1+\frac{3 n}{4\left(n-n_{t}\right)}\right) \sin 2 \epsilon
\end{aligned}
$$

we shall have

$$
\begin{aligned}
r=\mathrm{a}\left\{1-\frac{n_{r}^{2}}{6 \mathrm{n}^{2}}-\mathrm{k} \cos \mathrm{n} t\right. & t+1 \sin \mathrm{n} t\} \\
& +\frac{3 \mathrm{a} n_{l}^{2}}{4 \mathrm{n}}\left(\frac{2}{\mathrm{n}-n},-\frac{1}{3 \mathrm{n}-2 n}-\frac{3}{\mathrm{n}-2 n}\right) \cos (2 \mathrm{n} t-2 n, t+2 \mathrm{e})
\end{aligned}
$$

$$
\lambda=\mathrm{n} t+\mathrm{e}+2 \mathrm{k} \sin \mathrm{n} t+2 \mathrm{l} \cos \mathrm{n} t
$$

$$
-\frac{3 n_{1}^{2}}{4 \mathrm{n}}\left(\frac{2}{\mathrm{n}-n_{,}}+\frac{3 \mathrm{n}}{2\left(\mathrm{n}-n_{,}\right)^{2}}+\frac{2}{3 \mathrm{n}-2 n_{,}}-\frac{6}{\mathrm{n}-2 n_{,}}\right) \sin (2 \mathrm{n} t-2 n, t+2 \mathrm{e})
$$

Developing, we have

$$
\frac{2}{\mathrm{n}-n,}=\frac{2}{\mathrm{n}}(1+m) ; \quad-\frac{1}{3 \mathrm{n}-2 n,}=-\frac{1}{3 \mathrm{n}}\left(1+\frac{2}{3} m\right) ; \quad-\frac{3}{\mathrm{n}-2 n}=-\frac{3}{\mathrm{n}}(1+2 m)
$$

if we put for abbreviation $m=\frac{n,}{n}, \&$ neglect $m^{2} ; \because$ sum $=-\frac{4}{3 n}-\frac{38 m}{9 n}$; and similarly
$\frac{2}{\mathrm{n}-n,}=\frac{2}{\mathrm{n}}(1+m) ; \quad \frac{3 \mathrm{n}}{2\left(\mathrm{n}-n_{,}\right)^{2}}=\frac{3}{2 \mathrm{n}}(1+2 m) ; \quad \frac{2}{3 \mathrm{n}-2 n,}=\frac{2}{3 \mathrm{n}}\left(1+\frac{2}{3} m\right) ; \quad-\frac{6}{\mathrm{n}-2 n,}=-\frac{6}{\mathrm{n}}(1+2 m) ;$
\because sum $=-\frac{11}{6 n}-\frac{59 m}{9 n} ; \because$ putting for abbreviation $\tau=\mathrm{n} t-n, t+e$, we have

$$
\begin{aligned}
& r=\mathrm{a}\left\{1-\frac{m^{2}}{6}-\mathrm{k} \cos \mathrm{n} t+1 \sin \mathrm{n} t-m^{2}\left(1+\frac{19 m}{6}\right) \cos 2 \tau\right\} \\
& \lambda=\mathrm{n} t+\mathrm{e}+2(\mathrm{k} \sin \mathrm{n} t+1 \cos \mathrm{n} t)+m^{2}\left(\frac{11}{8}+\frac{59 m}{12}\right) \sin 2 \tau
\end{aligned}
$$

VI. THEORY OF THE MOON

and accordingly these agree, so far as they go, with the expressions of M. Plana, as cited by Mr Lubbock,* in the Appendix to the $1^{\text {st }}$ Part of his Theory of the Moon.

We might have commenced our $2^{\text {nd }}$ approximation by retaining in R the two terms $-n_{,}^{2} r^{2} P_{2}$ and $-\frac{n_{f}^{2}}{a} r^{3} P_{3} ;$ in which

$$
\begin{aligned}
P_{3}=\frac{1}{6}\left(\frac{d}{d p}\right)^{3}\left(\frac{p^{2}-1}{2}\right)^{3}=\frac{1}{48}\left(p^{6}-3 p^{4}+3 p^{2}-1\right)^{\prime \prime \prime} & =\frac{5 p^{3}-3 p}{2}=\frac{5}{2} \cos \overline{\lambda-n, t^{3}}-\frac{3}{2} \cos \overline{\lambda-n, t} \\
& =\frac{5 \cos \overline{3 \lambda-3 n, t}+3 \cos \overline{\lambda-n, t}}{8}
\end{aligned}
$$

so that we should thus have had

$$
s=\frac{n_{\prime}^{2}}{4} \int_{0}^{t} r^{2}(1+3 \cos \overline{2 \lambda-2 n, t}) d t+\frac{n_{r}^{2}}{8 a} \int_{0}^{t} r^{3}(3 \cos \overline{\lambda-n, t}+5 \cos \overline{3 \lambda-3 n, t}) d t
$$

while Δr and $\Delta \lambda$ would still have been given by the formulae of page 243 ,

$$
\Delta r=\frac{1}{a n}\left(2 \frac{\delta s}{\delta \epsilon}-\sin n t \frac{\delta s}{\delta k}-\cos n t \frac{\delta s}{\delta l}\right), \quad \Delta \lambda=\frac{1}{a^{2} n}\left(3 n \frac{\delta s}{\delta n}-3 n t \frac{\delta s}{\delta \epsilon}-2 \cos n t \frac{\delta s}{\delta k}+2 \sin n t \frac{\delta s}{\delta l}\right)
$$

If then we put
and

$$
s^{\prime}=\int_{0}^{t} r^{3}(3 \cos \overline{\lambda-n, t}+5 \cos \overline{3 \lambda-3 n, t}) d t
$$

$$
r^{\prime}=2 \frac{\delta s^{\prime}}{\delta \epsilon}-\sin n t \frac{\delta s^{\prime}}{\delta k}-\cos n t \frac{\delta s^{\prime}}{\delta l}, \quad \lambda^{\prime}=3 n \frac{\delta s^{\prime}}{\delta n}-3 n t \frac{\delta s^{\prime}}{\delta \epsilon}-2 \cos n t \frac{\delta s^{\prime}}{\delta k}+2 \sin n t \frac{\delta s^{\prime}}{\delta l},
$$

we shall only have to add $\frac{n_{l}^{2} r^{\prime}}{8 a a, n}$ and $\frac{n_{,}^{2} \lambda^{\prime}}{8 a^{2} a, n}$ to the values already found for r and λ.
In developing s^{\prime} we are to use for r and λ their $1^{\text {st }}$ approximate values
which give

$$
r=a-a k \cos n t+a l \sin n t, \quad \lambda=n t+\epsilon+2 k \sin n t+2 l \cos n t
$$

$$
r^{3}=a^{3}(1-3 k \cos n t+3 l \sin n t)
$$

$$
3 \cos \overline{\lambda-n, t}=3 \cos \overline{n t-n, t+\epsilon}-6(k \sin n t+l \cos n t) \sin \overline{n t-n, t+\epsilon}
$$

$$
5 \cos \overline{3 \lambda-3 n}, t=5 \cos \overline{3 n t-3 n, t+3 \epsilon}-30(k \sin n t+l \cos n t) \sin \overline{3 n t-3 n, t+3 \epsilon}
$$

$$
\begin{aligned}
& \frac{2 s^{\prime \prime}}{a^{3}}=\frac{2 r^{3}}{a^{3}}(3 \cos \overline{\lambda-n, t}+5 \cos \overline{3 \lambda-3 n, t})=6 \cos \overline{n t-n, t+\epsilon}+10 \cos \overline{3 n t-3 n, t+3 \epsilon} \\
& -6(k \cos n t-l \sin n t)(3 \cos \overline{n t-n, t+\epsilon}+5 \cos \overline{3 n t-3 n, t+3 \epsilon}) \\
& -12(k \sin n t+l \cos n t)(\sin \overline{n t-n, t+\epsilon}+5 \sin \overline{3 n t-3 n, t+3 \epsilon})
\end{aligned}
$$

* [Lubbock, Theory of the Moon (1834), Appendix, pp. i, viii [1]. Brown, Lunar Theory, p. 110.]

$$
\begin{aligned}
\because s^{\prime}= & \frac{3 a^{3}}{n-n,}(\sin \overline{n t-n, t+\epsilon}-\sin \epsilon)+\frac{5 a^{3}}{3(n-n,)}(\sin \overline{3 n t-3 n, t+3 \epsilon}-\sin 3 \epsilon) \\
& -\frac{3 k a^{3}}{2}\left\{\frac{5}{n,}(\sin \overline{n, t-\epsilon}+\sin \epsilon)+\frac{1}{2 n-n,}(\sin \overline{2 n t-n, t+\epsilon}-\sin \epsilon)\right. \\
& \left.+\frac{15}{2 n-3 n,}(\sin \overline{2 n t-3 n, t+3 \epsilon}-\sin 3 \epsilon)-\frac{5}{4 n-3 n,}(\sin \overline{4 n t-3 n, t+3 \epsilon}-\sin 3 \epsilon)\right\} \\
& -\frac{3 l a^{3}}{2}\left\{\frac{5}{n,}(\cos \overline{n, t-\epsilon}-\cos \epsilon)+\frac{1}{2 n-n,}(\cos \overline{2 n t-n, t+\epsilon}-\cos \epsilon)\right. \\
& \left.-\frac{15}{2 n-3 n,}(\cos \overline{2 n t-3 n, t+3 \epsilon}-\cos 3 \epsilon)-\frac{5}{4 n-3 n,}(\cos \overline{4 n t-3 n, t+3 \epsilon}-\cos 3 \epsilon)\right\} ;
\end{aligned}
$$

\& consequently,

$$
\begin{aligned}
r^{\prime}= & \frac{6 a^{3}}{n-n,}(\cos \overline{n t-n, t+\epsilon}-\cos \epsilon)+\frac{10 a^{3}}{n-n,}(\cos \overline{3 n t-3 n, t+3 \epsilon}-\cos 3 \epsilon) \\
& +\frac{3 a^{3}}{2}\left\{\frac{5}{n,}(\cos \overline{n t-n, t+\epsilon}-\cos \overline{n t+\epsilon})+\frac{1}{2 n-n,}(\cos \overline{n t-n, t+\epsilon}-\cos \overline{n t-\epsilon})\right. \\
& -\frac{15}{2 n-3 n,}\left(\cos \overline{3 n t-3 n, t+3 \epsilon}-\cos \overline{n t+3 \epsilon}-\frac{5}{4 n-3 n,}(\cos \overline{3 n t-3 n, t+3 \epsilon}-\cos \overline{n t-3 \epsilon})\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda^{\prime}= & -\frac{a^{3}(3 n-2 n,)}{(n-n,)^{2}}\{9(\sin \overline{n t-n, t+\epsilon}-\sin \epsilon)+5(\sin \overline{3 n t-3 n, t+3 \epsilon}-\sin 3 \epsilon)\} \\
& +\frac{3 a^{3} n t}{n-n}(3 \cos \epsilon+5 \cos 3 \epsilon) \\
& -3 a^{3}\left\{\frac{5}{n}(\sin \overline{n t-n, t+\epsilon}-\sin \overline{n t+\epsilon})-\frac{1}{2 n-n,}(\sin \overline{n t-n, t+\epsilon}+\sin \overline{n t-\epsilon})\right. \\
& \left.-\frac{15}{2 n-3 n,}(\sin \overline{3 n t-3 n, t+3 \epsilon}-\sin \overline{n t+3 \epsilon})+\frac{5}{4 n-3 n,}(\sin \overline{3 n t-3 n, t+3 \epsilon}+\sin \overline{n t-3 \epsilon})\right\} .
\end{aligned}
$$

We have only to add
to k the terms

$$
\frac{3 a}{16 a}, \frac{n,}{n}\left\{\left(5+\frac{n,}{2 n-n_{,}}\right) \cos \epsilon-5\left(\frac{3 n,}{2 n-3 n,}+\frac{n,}{4 n-3 n,}\right) \cos 3 \epsilon\right\} ;
$$

to 1 the terms

$$
\frac{3 a}{16 a}, \frac{n,}{n}\left\{\left(5-\frac{n,}{2 n-n,}\right) \sin \epsilon-5\left(\frac{3 n_{,}}{2 n-3 n,}-\frac{n,}{4 n-3 n,}\right) \sin 3 \epsilon\right\} ;
$$

to e the terms

$$
\frac{1}{8} \frac{a}{a} \frac{n_{1}^{2}}{n} \frac{3 n-2 n,}{(n-n,)^{2}}(9 \sin \epsilon+5 \sin 3 \epsilon) ;
$$

to n the terms

$$
\frac{3}{8} \frac{a}{a}, \frac{n_{1}^{2}}{n-n,}(3 \cos \epsilon+5 \cos 3 \epsilon) ;
$$

and consequently (because $\mathrm{a}^{3} \mathrm{n}^{2}=\mu$)
to a the terms

$$
-\frac{1}{4} \frac{a^{2}}{a} \frac{n,}{n} \frac{n,}{n-n_{r}}(3 \cos \epsilon+5 \cos 3 \epsilon):
$$

\& we shall have (making $\frac{n_{1}}{\mathrm{n}}=m, \mathrm{n} t-n, t+\mathrm{e}=\tau$)

$$
\begin{aligned}
& \begin{array}{l}
\lambda=\mathrm{n} t+\mathrm{e}+2 \mathrm{k} \sin \mathrm{n} t+2 \mathrm{l} \cos \mathrm{n} t-\frac{3 m^{2}}{4}\left\{\frac{2}{\mathrm{I}-m}+\frac{3}{2(1-m)^{2}}+\frac{2}{3-2 m}-\frac{6}{1-2 m}\right\} \sin 2 \tau \\
\quad-\frac{3 m}{8} \frac{\mathrm{a}}{a}\left\{5-\frac{m}{2-m}+\frac{3 m(3-2 m)}{(1-m)^{2}}\right\} \sin \tau+\frac{5 m^{2}}{8} \frac{\mathrm{a}}{a}\left\{\frac{9}{2-3 m}-\frac{3}{4-3 m}-\frac{3-2 m}{(1-m)^{2}}\right\} \sin 3 \tau \\
\frac{r}{\mathrm{a}}=1-\frac{m^{2}}{6}-\mathrm{k} \cos \mathrm{n} t+1 \sin \mathrm{n} t+\frac{3 m^{2}}{4}\left\{\frac{2}{1-m}-\frac{1}{3-2 m}-\frac{3}{1-2 m}\right\} \cos 2 \tau
\end{array} \$=\$ \text {, }
\end{aligned}
$$

Developing,

$$
+\frac{3 m}{16} \frac{\mathrm{a}}{a}\left\{5+\frac{m}{2-m}+\frac{4 m}{1-m}\right\} \cos \tau-\frac{5 m^{2}}{16} \frac{\mathrm{a}}{a_{,}}\left\{\frac{9}{2-3 m}+\frac{3}{4-3 m}-\frac{4}{1-m}\right\} \cos 3 \tau
$$

$$
\begin{aligned}
& \begin{array}{r}
\lambda=\mathrm{n} t+\mathrm{e}+2 \mathrm{k} \sin \mathrm{n} t+21 \cos \mathrm{n} t+m^{2}\left(\frac{11}{8}+\frac{59 m}{12}\right) \sin 2 \tau-\frac{3 m \mathrm{a}}{8 a}\left(5+\frac{17 m}{2}+\frac{47 m^{2}}{4}\right) \sin \tau \\
\\
+\frac{5 m^{2} \mathrm{a}}{32 a}\left(3+\frac{35 m}{4}\right) \sin 3 \tau
\end{array} \\
& \begin{array}{r}
\frac{r}{\mathrm{a}}=1-\mathrm{k} \cos \mathrm{n} t+1 \sin \mathrm{n} t-\frac{m^{2}}{6}-m^{2}\left(1+\frac{19 m}{6}\right) \cos 2 \tau+\frac{3 m \mathrm{a}}{16 a}\left(5+\frac{9 m}{2}+\frac{17 m^{2}}{4}\right) \cos \tau \\
\\
\end{array} \quad-\frac{5 m^{2} \mathrm{a}}{64 a}\left(5+\frac{53 m}{4}\right) \cos 3 \tau
\end{aligned}
$$

And accordingly these equations are integrals, in the present order of approximation, of the following system of differential equations of the $2^{\text {nd }}$ order:

$$
\begin{gathered}
r^{\prime \prime}-r \lambda^{\prime 2}+\frac{\mu}{r^{2}}=\frac{n_{,}^{2} r}{2}(1+3 \cos \overline{2 \lambda-2 n, t})+\frac{3 n_{1}^{2} r^{2}}{8 a}(3 \cos \overline{\lambda-n, t}+5 \cos \overline{3 \lambda-3 n, t}) \\
\left(r^{2} \lambda^{\prime}\right)^{\prime}=-\frac{3 n_{,}^{2} r^{2}}{2} \sin \overline{2 \lambda-2 n, t}-\frac{3 n_{,}^{2} r^{3}}{8 a}(\sin \overline{\lambda-n, t}+5 \sin \overline{3 \lambda-3 n, t})
\end{gathered}
$$

Yet the coefficients of $\sin \tau$ and $\cos \tau$ do not agree except in their first terms with the expressions of Plana and Lubbock.*

[^1]
[^0]: * [Six variable parameters are introduced: $\Delta r_{0}^{\prime}, \Delta \lambda_{0}^{\prime}, \Delta n$ (or $\left.\Delta a\right), \Delta \epsilon, \Delta k, \Delta l$. It is possible therefore to prescribe four relations between them. The four given above are not the usual relations employed. Cf. Appendix, Note 7, p.628.]

[^1]: * [In the remainder of this manuscript Hamilton attempts to verify that these equations for λ and r satisfy the differential equations of motion to the present order of approximation. Actually he recognised later (see page 275) that the approximations of Plana and Lubbock were correct. Lubbock, loc. cit. pp. vi, xviii [101]. Brown, loc. cit. p. 241. See also Appendix, Note 6, p. 627.]

