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III. GENERAL METHOD IN DYNAMICS 163

Introductory Remarks.

The former Essay* contained a general method for reducing all the most important pro-
blems of dynamics to the study of one characteristic function, one central or radical relation.
It was remarked at the close of that Essay, that many eliminations required by this method in
its first conception might be avoided by a general transformation, introducing the time ex-
plicitly into a part S of the whole characteristic function V'; and it is now proposed to fix the
attention chiefly on this part S, and to call it the Principal Function. The properties of this part
or function S, which were noticed briefly in the former Essay,{ are now more fully set forth;
and especially its uses in questions of perturbation, in which it dispenses with many laborious
and circuitous processes, and enables us to express accurately the disturbed configuration of
a system by the rules of undisturbed motion, if only the initial components of velocities be
changed in a suitable manner. Another manner of extending rigorously to disturbed motion the
rules of undisturbed, by the gradual variation of elements, in number double the number of the
coordinates or other marks of position of the system, which was firstinvented by Lagrange, [ and
was afterwards improved by Poisson, is considered in this Second Essay under a form perhaps
a little more general; and the general method of calculation which has already been applied to
other analogous questions in optics and in dynamics by the author of the present Essay, is now
applied to the integration of the equations which determine these elements. This general method
is founded chiefly on a combination of the principles of variations with those of partial differ-
entials, and may furnish, when it shall be matured by the labours of other analysts, a separate
branch of algebra, which may be called perhaps the Calculus of Principal Functions;§ because,
in all the chief applications of algebra to physics, and in a very extensive class of purely mathe-
matical questions, it reduces the determination of many mutually connected functions to the
search and study of one principal or central relation. When applied to the integration of the
equations of varying elements, it suggests, as is now shown, the consideration of a certain
Function of Elements, which may be variously chosen, and may either be rigorously determined,
or at least approached to, with an indefinite accuracy, by a corollary of the general method.
And to illustrate all these new general processes, but especially those which are connected with
problems of perturbation, they are applied in this Essay to a very simple example, suggested
by the motions of projectiles, the parabolic path being treated as the undisturbed. As a more
important example, the problem of determining the motions of a ternary or multiple system,
with any laws of attraction or repulsion, and with one predominant mass, which was touched
upon in the former Essay, is here resumed in a new way, by forming and integrating the
differential equations of a new set of varying elements, entirely distinct in theory (though little
differing in practice)from the elements conceived by Lagrange,||and having this advantage, that
the differentials of all the new elements for both the disturbed and disturbing masses may be
expressed by the coefficients of one disturbing function.

* [P. 103.] 1 [Pp. 160, 161.]

1 [Lagrange, “Sur la théorie générale de la variation des constantes arbitraires,” Mémoires de I’ Institut (1808),
p. 267; Méc. Anal. 3rd ed. Tome 1, pp. 299-320; Poisson, “Sur la variation des constantes arbitraires dans les
questions de mécanique,” Journal de I’Ecole Polyt. Tome v (1809), p. 266.]

§ [For the development of the Calculus of Principal Functions see pp. 297410 of this volume. A brief account
of the theory is given on pp. 408-410.]

|| [For Lagrange’s elements see Méc. Anal. 3rd ed. Tome 11, Chap. 11, § 2.]



164 III. GENERAL METHOD IN DYNAMICS 1,2

Transformations of the Differential Equations of Motion of an Attracting or
Repelling System.

1. It is well known to mathematicians, that the differential equations of motion of any
system of free points, attracting or repelling one another according to any functions of their
distances, and not disturbed by any foreign force, may be comprised in the following formula:

Z.m(x"dx+y"dy+2"62)=38U: ' (1.)

the sign of summation X extending to all the points of the system; m being, for any one such
point, the constant called its mass, and «, ¥, z being its rectangular coordinates; while 2", ", 2"
are the accelerations, or second differential coefficients taken with respect to the time, and
Sz, 8y, 6z are any arbitrary infinitesimal variations of those coordinates, and U is a certain
force-function, introduced into dynamics by Lagrange, and involving the masses and mutual
distances of the several points of the system. If the number of those points be n, the formula (1.)
may be decomposed into 3z ordinary differential equations of the second order, between the

coordinates and the time,
mix'i'=8“*U§ mi?/’i'=8‘—; miz'i'=—8U= : (2.)
dw; - 8y, 8z,

and to integrate these differential equations of motion of an attracting or repelling system, or
some transformations of these, is the chief and perhaps ultimately the only problem of mathe-
matical dynamics.

2. To facilitate and generalize the solution of this problem, it is useful to express previously
the 3n rectangular coordinates #, y, z as functions of 3n other and more general marks of position
N1s Nas - -» Nap; and then the differential equations of motion take this more general form, discovered
by Lagrange,*

457 _57_U y
dtdn; 8n; Oy’ (3)

in which
T=3%.mx?+y2+22). (4.)

For, from the equations (2.) or (1.),
U ( BN Kb yEai 82) )
—=2.m|x +2" —
o, 3, &,
d ( e e 8z)
==X .m(2 —+y +2 — > 5.
5. Y Bn; " B (5)
( ddx. . ,ddy ,d8z)

b

—2.m xaﬁ8_m+ (BS_‘Y):;-'-Z (Ttb‘—n,
in which
Z.m(:ar:'E y'%+z’§i)
o, o &, (6.)
S’ Sy’ ,8z’) T 3

=E.m(x’—,+ st ? 5
dm; 5 o o

_8—%,

* [Méc. Anal. 3rd ed. Tome 1, pp. 290-292.]
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2, 3] III. GENERAL METHOD IN DYNAMICS 165

4o ,ddy ,dd
and Z.m(x dtb‘ni_*-y dt§1_);+z E:S_m)
182t 0yt ,Sz’) 3T
L +2 =)=,
o y on; ony) O

T being here considered as a function of the 6n quantities of the forms " and 7, obtained by
introducing into its definition (4.) the values

ox ¥ )
1+"lz

5 e S 4
81} 87)2 WED)

(7.)

=2_m(

&' =} 20 &o. (8.)
3n

3
A different proof of this important transformation (3.) is given in the Mécanique Analytique.

3. The function 7', being homogeneous of the second dimension with respect to the quan-
tities ', must satisfy the condition

, T
and since the variation of the same function 7' may evidently be expressed as follews,
U AT 1
we see that this variation may be expressed in this other way,
L AN,
If then we put, for abridgement,
8T T
8—111=w1, ces %—wan, (12.)
and consider 7' (as we may) as a function of the following form,
T=F (0, @p;+e BapsN1s N2> -+ Man)s (13.)
we see that
dE ks .,
§i=n1, oo S—m—a;“"]a'n, (14.)
and
3F 3T 3F 3T
= e, i gl 15.
oy n, : 3Man OM3an (%)
and therefore that the general equation (3.) may receive this new transformation,
dw; 8(U-F)
L ! 16.
If then we introduce, for abridgement, the following expression H,
‘H=F_ U=F(Q1, Wy +ee Wy N15 N2> oo Ngn) = U (1,795 -+ M3n) (17.)
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166 : III. GENERAL METHOD IN DYNAMICS [3, 4

we are conducted to this new manner of presenting the differential equations of motion of a
system of » points, attracting or repelling one another:*

dg, SH dw, 8H

i U R
dy, _8H dw, _ OH
7 Ty 8__132 g ol (A.)
dng, 8H  dwy,  8H
B° Smg’ . @B S

N

In this view, the problem of mathematical dynamics, for a system of » points, is to integrate a
system (A.) of 6n ordinary differential equations of the first order, between the 6n variables
74, @; and the time ¢; and the solution of the problem must consist in assigning these 6n variables
as functions of the time, and of their own initial values, which we may call ¢;, p;. And all these
6n functions, or 6n relations to determine them, may be expressed, with perfect generality and
rigour, by the method of the former Essay, or by the following simplified process.

Integration of the Equations of Motion, by means of one Principal Function.

4. If we take the variation of the definite integral

8= f(z w——H)dt (18.)

without varying ¢ or dt, we find, by the Calculus of Variations,

t
SS=f 38’ .dt, (19.)
0
in which
g SH
S—E.w%—ﬂ, (20.)
and thereforet
e 8H O&H
58 _z(ma%—gaﬁq), 21.)
that is, by the equations of motion (A.),
d-q dw d :
58" = Z(det ol )—‘th.w&q, (22.)
the variation of the integral S is therefore
38 =2 (wdn—pde), (23.)

* [The canonical form (A.) had already been introduced by Lagrange in the particular case of the equations for
the variations of the elements in his perturbation theory. Cf. Méec. Anal. 3rd ed. Tome 1, p. 310; also Whittaker,
Analytical Dynamws (1927), p. 264. ]

1[8.8’= ( S+ saH> 228 5o zaHsv,]
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4, 5] III. GENERAL METHOD IN DYNAMICS 167

(p and e being still initial values,) and it decomposes itself into the following 6n expressions,
when 8 is considered as a function of the 6n quantities 7;, ¢;, (involving also the time,)

S - gy L BR
o LS e T
38 38
z=3—%’ Pz=—§‘ez,> (B.)
4 ARy
et T deg,,”

which are evidently forms for the sought integrals of the 6xn differential equations of motion
(A.), containing only one unknown function S. The difficulty of mathematical dynamics is
therefore reduced to the search and study of this one function S, which may for that reason
be called the PrincrpaL FuncTioN of motion of a system.

This function S was introduced in the first Essay under the form*
t
P f (T+U)dt,
0

the symbols 7' and U having in this form their recent meanings; and it is worth observing, that
when § is expressed by this definite integral, the conditions for its variation vanishing (if the
final and initial coordinates and the time be given) are precisely the differential equations of
motion (3.), under the forms assigned by Lagrange. The variation of this definite integral S has
therefore the double property, of giving the differential equations of motion for any trans-
formed coordinates when the extreme positions are regarded as fixed, and of giving the integrals
of those differential equations when the extreme positions are treated as varying.t

5. Although the function § seems to deserve the name here given it of Principal Function,
as serving to express, in what appears the simplest way, the integrals of the equations of motion,
and the differential equations themselves; yet the same analysis conducts to other functions,
which also may be used to express the integrals of the same equations. Thus, if we put

O f( 3. n——+H)dt (24.)
and take the variation of this integral @ without varying ¢ or dt, we find, by a similar process,
3Q=X (ndw—edp); (25.)
so that if we consider @ as a function of the 6n quantities w;, p; and of the time, we shall have 6n
expressions
3 3Q
e E;Q @= "3—17{, (26.)

which are other forms for the integrals of the equations of motion (A.), involving the function @
instead of S. We might a.lso employ the mtegral

V= fZ W— dt Zf wdn, (27.)

* [P. 160.] T[SS [z 8’7] {[ <d o 3T ~on 87’:, :l



168 IIT. GENERAL METHOD IN DYNAMICS [5, 6

which was called the Characteristic Function in the former Essay, and of which, when considered
as a function of the 6n+ 1 quantities 7, ¢;, H, the variation is -

8V =2 (wdy—pde)+1t3H. (28.)
And all these functions 8, @, V, are connected in such a way, that the forms and properties of
any one may be deduced from those of any other.*

Investigation of a Pair of Partial Differential Equations of the first Order,
whach the Principal Function must satisfy.

6. Informing the variation (23.), or the partial differential coefficients (B.), of the Principal
Function 8, the variation of the time was omitted; but it is easy to calculate the coefficient

corresponding to this variation, since the evident equation

St
s SS 38 dn
¥ TR = (29.)
gives, by (20.), and by (A.), (B.),
D8 s 8H

It is evident also that this coefficient, or the quantity — H, is constant, so as not to alter
during the motion of the system; because the differential equations of motion (A.) give
dH 0Hdn OHdw
W=2(5E+§5E)=0' (31.)
If, therefore, we attend to the equation (17.), and observe that the function F is necessarily
rational and integer and homogeneous of the second dimension with respect to the quantities
w;, we shall perceive that the principal function S must satisfy the two following equations
between its partial differential coefficients of the first order, which offer the chief means of
discovering its form:¥
38 " (SS 38 38
8 " \8ny’ 8ny” " S
38 38 88 88
x7 (8_61’ P~
* [S=V—Ht, Q=—8+X (qw—ep). The process is analogous to that on pp. 174, 175, Mathematical Papers,
Vol. 1, in which the functions W and 7" are introduced. See also Routh, Advanced Rigid Dynamics (1905), Art. 487.]

s M1 M2 ---Wsn)'—- U (m1sm25 -+« M3n)s
(C)

S 09, €a s ovs e3”)= U(e; 65 el

1 [It is now more usual to write S= f <E Zii—H) dt, and we have, analogous to (29) and (30),
a8 _oa8 (o8 de 38’ . oH, oH,
i, 0, Z s 219 gy = (B gt Ha) + 0 0= e
The two partial differential equations are therefore
28 (08 o8 o8
i +H\a?1’ va;’, E, N1 N2s <=+ Nans )_0,
o8 o8 o8 o8 \
aTo—H ("" afel, e a—ea, e e 887‘, €15 €gy +ev C3py to =0,

even when H is not constant. It is easy to see that these are equivalent to (C.) when H is constant. Jacobi
(Crelle, xxvm1, pp. 97-162) showed that equations (C.) still hold when U contains ¢ explicitly, and the corre-
sponding equations for the function V are also given there.] i
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6, 7] IITI. GENERAL METHOD IN DYNAMICS

Reciprocally, if the form of S be known, the forms of these equations (C.) can be deduced
from it, by elimination of the quantities e or  between the expressions of its partial differential
coefficients; and thus we can return from the principal function § to the functions ¥ and U,
and consequently to the expression H, and the equations of motion (A.).

169

Analogous remarks apply to the functions @ and V, which must satisfy the partial differential

equations,
3Q 8Q 8Q 5Q 8Q 8Q 3@)
‘ﬁ*d%%”mwws% %Q Wwﬁ%'%;’ me
5Q ( 85Q 8Q aQ) ( 35Q 8Q SQ)J’ ‘
_""_'+F ] g T B T S e U it e Enset gt K01 Rk el ]
3t B Fa oo o By by 3Psn op,"  Opy 8Pan
and
8V &V 14 \
F(a—"-yr---msﬁp’?zs---’Is«)=H+U(’h:"?s:---’?sn),
M1 OMg S’Tan (33.)
8V 8V 8V ) )
F(E’E""&;’ €1, €q, "‘ean)=H+U(el’62!"'ean)'

General Method of improving an approximate Expression for the Principal
Function in any Problem of Dynamics.
7. If we separate the principal function S into any two parts,
B48=8, (34.)
and substitute their sum for S in the first equation (C.), the function F, from its rational and
integer and homogeneous form and dimension, may be expressed in this new way,

o8 88 ) (SJS'1 88, )
F O L/ S F s+
(8‘01 M3 o e ony " " Smm ioaifite
88, 88, 88, 88, 88, 88
+F{ q s+ +F( ﬁ +F(s s—3 n)
o7y 3’?1 Mg, S'hm oy Bﬂan T (35.)
a8 &8 88 88
i (R N B L O N
R il ) o1y Mg i
" SS) SS,, ( a8 ) 88,
+F .+ F
(5'21 3"71 gn/ Ogn’
because* :
. (98, , (08 , (88,
d (8'%) 4 (8"){) x (5"'1) (26.)
and
88\ 88 38, 88
(. B )
and since, by (A.) and (B.),
, (8 oH
F (5) = F (00=50. - G (38.)
[By F’( ) is meant the partial derivative of ¥ with respect to 38::

HMPII 22
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170 III. GENERAL METHOD IN DYNAMICS [7, 8

we easily transform the first equation (C.) to the following,
as,_ _35, 55, 38, (2.5 )
dt St +U (05 000 mg0) — F(Sq .81.! sMpseeeNgn |+ F aql""anan”?l""’?!n , (D)

which gives rigorously

Srf{—-—~+U(m. Tgn) = F(ssfl 58,,31 ,,”)}ds

849, 89,
*fdﬁ i B WM’

supposing only that the two parts S;, S,, like the whole principal function S, are chosen so as
to vanish with the time.

This general and rigorous transformation offers a general method of improving an approxi-
mate expression for the principal function 8, in any problem of dynamics. For if the part S; be
such an approximate expression, then the remaining part S, will be small; and the homo-
geneous function F involving the squares and products of the coefficients of this small part,
in the second definite integral (E.), will be in general also small, and of a higher order of small-
ness; we may therefore in general neglect this second definite integral, in passing to a second
approximation, and may in general improve a first approximate expression 8, by adding to
it the following correction,

¢

ASI:L{ 8§l+ UnyseeeMan) = F(g%‘, ---gfﬁﬁiv ---ﬂm)}dt; (F.)
in calculating which definite integral we may employ the following approximate forms for the
integrals of the equations of motion,

p1="88_§11’ p2=_%’ ks p3n="§e%! (39.)

expressing first, by these, the variables 7, as functions of the time and of the 6n constants
¢;, p;, and then eliminating, after the integration, the 3n quantities p,, by the same approximate
forms. And when an improved expression, or second approximate value S,+AS;, for the
principal function S, has been thus obtained, it may be substituted in like manner for the first
approximate value S;, so as to obtain a still closer approximation, and the process may be
repeated indefinitely.

An analogous process applies to the indefinite improvement of a first approximate expression
for the function @ or V.

(E.)

Rigorous Theory of Perturbations, founded on the Properties of the Disturbing
Part of the whole Principal Function.

8. If we separate the expression H (17.) into any two parts of the same kind,

H,+H,~H, (40.)
in which
3 H,=F, (0,0, ... Og,,M15M25 - Ngn) — Us (01,05 -+« Ngn)s (41.)
an
Hy=F, (0,04, ... W35,M15M25 -+ Nan) = Uz (01, Mg -+ M30)s (42.)
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8, 9] IIT. GENERAL METHOD IN DYNAMICS 171

the functions F,, F,, U,, U, being such that
Fi+F=F, U,+U,=T; (43.)
the differential equations of motion (A.) will take this form,
dy; _8H, 8H, dw; 8H, 5H,
dt  dw; ow,’ dt &y Oong
and if the part H, and its coefficients be small, they will not differ much from these other
differential equations,

’ (G.)

dn; 8H, dw; 8H,

@t dw’ At Oy’
so that the rigorous integrals of the latter system will be approximate integrals of the former.
Whenever then, by a proper choice of the predominant term H,, a system of 6n equations such
as (H.) has been formed and rigorously integrated, giving expressions for the 6n variables ;, @,
as functions of the time #, and of their own initial values e;, p;, which may be thus denoted:

Ni=P; (6, €1,€5, --- €3, D15 P2 -+ Pan)s (44.)

(H.)

and

o=y, (t,€1,€5, ... €35, D1, D3> -+ Pan); (45.)
the simpler motion thus defined by the rigorous integrals of (H.) may be called the undisturbed
motion of the proposed system of n points, and the more complex motion expressed by the
rigorous integrals of (G.) may be called by contrast the disturbed motion of that system; and to
pass from the one to the other, may be called a Problem of Perturbation.

9. To accomplish this passage, let us observe that the differential equations of undisturbed
motion (H.), being of the same form as the original equations (A.), may have their integrals

similarly expressed, that is, as follows:
o8, e 38, (L)
f on;” 531 !

8, being here the principal function of undisturbed motion, or the definite integral
¢ SH
= (50 ) o)

considered as a function of the time and of the quantities »;, ¢;. Inlike manner if we represent
by S, + 8, the whole principal function of disturbed motion, the rigorous integrals of (G.) may
be expressed by (B.), as follows: 55,58 o e

1, 902 i 1 2
“Onom T 8o B ol
Comparing the forms (44.) with the second set of equations (I.) for the integrals of undisturbed
motion, we find that the following relations between the functions ¢;, S, must be rigorously and

identically true:

88, 88, ssl) Ry

;7)1:=¢i (t’e1962,-.-e3n, _'8—61" _’8—6_2,-.. 863n
and therefore, by (K.), that the integrals of disturbed motion may be put under the following

forms,

8 88, 332) @)

n1=¢i(tsel’e2""e3n’p1 83 !pz 862,---p3n+8—e;"

22-2
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172 III. GENERAL METHOD IN DYNAMICS [9-11

We may therefore calculate rigorously the disturbed variables »; by the rules of undisturbed
motion (44.), if without altering the time ¢, or the initial values e; of those variables, which
determine the initial configuration, we alter (in general) the initial velocities and directions, by
adding to the elements p; the following perturbational terms,
38, 38, 38, .
Apl_B_l Ap2=—86—2, cie Apg, Se:,
a remarkable result, which includes the whole theory of perturbation. We might deduce from
it the differential coefficients ;, or the connected quantities ;, which determine the disturbed
directions and velocities of motion at any time ¢; but a similar reasoning gives at once the
general expression,

(M.)

mi=%§f+¢l(t,el’ezi"'eah’pl 885 ’p2+88§ ge_é;:):
implying, that after altering the initial velocities and directions or the elements p, as before, by
the perturbational terms (M.), we may then employ the rules of undisturbed motion (45.) to
calculate the velocities and directions at the time ¢, or the varying quantities m;, if we finally
apply to these quantities thus calculated the following new corrections for perturbation:

BN 38, o8,
Ay el el N e G B T =2,
b 8"11 - 8”]2 g 87’311

(N.)

(0.)

Approximate expressions deduced from the foregoing rigorous Theory.

10. The foregoing theory gives indeed rigorous expressions for the perturbations, in passing
from the simpler motion (H.) or (I.) to the more complex motion (G.) or (K.): but it may seem
that these expressions are of little use, because they involve an unknown disturbing function
8, (namely, the perturbational part of the whole principal function §,) and also unknown or
disturbed coordinates or marks of position »;. However, it was lately shown that whenever
a first approximate form for the principal function 8, such as here the principal function S; of
undisturbed motion, has been found, the correction S, can in general be assigned, with an
indefinitely increasing accuracy; and since the perturbations (M.) and (O.) involve the disturbed
coordinates 7; only as they enter into the coefficients of this small disturbing function §,, it is
evidently permitted to substitute for these coordinates, at first, their undisturbed values, and
then to correct the results by substituting more accurate expressions.

11. The function S, of undisturbed motion must satisfy rigorously two partial differential
equations of the form (C.), namely,

F1( CRBRPRdont R AR ) Uy (ys - M30)s
8 &, Sy, i
881 88, 88, )_ ) ;
8 Fl(sel 833,., €1, wes €3y —Ul(el""esn),

and therefore, by (D.), the disturbing function S, must satisfy ngorously the following other
condition:

ds, (ss, 88,

2 53, o8,
W—Uz(nli""’kn) 2 87)1’”.81]3"

s 15 e ﬂan)"'ﬁ'(s,ql a1 A ")an)a Q)

g s N e el
WWW.IrCINn.o ft,} 3 PI



11, 12] III. GENERAL METHOD IN DYNAMICS 173

and may, on account of the homogeneity and dimension of F, be approximately expressed as
follows:

fone < 38, 38,
Sz—vfo{Uz(nl, ...nsn)—Fz (ﬁ, 87’ ,1]1’ n3’n)}dt’ (R.)
or thus, by (L.),
t
Sz=fo{U2(n,,...nan)—Fz(wl, das D, 15 ---nan)}dt» (8.)
that is, by (42.),
t
i j H,dt. (T.)
0

In this expression, H, is given immediately as a function of the varying quantities ;, @;, but
it may be considered in the same order of approximation as a known function of their initial
values e;, p; and of the time ¢, obtained by substituting for ,, @, their undisturbed values (44.),
(45.) as functions of those quantities; its variation may therefore be expressed in either of the
two following ways:

8H2=2(88H“’8 +8;{23 ) (48.)
or
8H2=2(5§128 +8H 25 ) Sg"‘st. (49.)

Adopting the latter v1ew, and effecting the mtegratlon (T.) with respect to the time, by
treating the elements e;, P, as constant, we are afterwards to substitute for the quantities p, their
undisturbed expressions (39.) or (I.), and then we find for the variation of the disturbing func-
tion S, the expression*

e 3H, 38, [t3H,
88,= —H28t+2(—8e.f0§dt+8 5o .J‘o—%—dt), (50.)
which enables us to transform the perturbational terms (M.), (O.)into the following approximate
forms:
8H, 8281 0H,
f dt+ Sp dt, (U.)
and
8%8; (téH
Aw=Z. 1| <2dt, Y;
)0 9 R

containing only functions and quantities which may be regarded as given, by the theory of
undisturbed motion.

12. In the same order of approximation, if the variation of the expression (44.) for an un-
disturbed coordinate n; be thus denoted,

\ sm_ss’;fawz(?'s +8’7is ) (51.)
the perturbation of that coordinate may be expressed as follows:
O A, .
Am—z-géﬁp, (W.)

* [The object is to express S, in terms of % and e, or 83, in terms of 4, &, e, de.]
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that is, by (U.),

_ oy SHd 8 SH 54 J‘Sﬂzd
0p1J o Sey 8p2J 0 802 ; 8p3,, Segy
(%&Sl 8y, 828, ot on; 828, ) aszt
Opy Oef  Opydeidey T Opg, Oeydey,) J o Opy ¥ (52.)
Henilyoe
(Sﬂ 828, | &m; 3%, AR dn; 8281) H, it
py Beg, Oe;  Opy Begy, 06y OPan 8€3, ) J 0 8psn
Besides, the identical equation (47.) gives*
' On; _Om; 8°8, O 8%8, By 828,
e, Op, deyde, * Spg Oe ey " % 8P, O¢; 8¢, @)
the expression (52.) may therefore be thus abridged,
dn; (t8H dn; (t0H
A= —2 | Bdt—...— | <2dt
T o) o 5y 8PanJ 03¢, )
4 3ms f S S gy
861 Sean 8p.‘m

and shows that instead of the rigorous perturbatlonal terms (M.) we may approximately
employ the following,

t3H, 9
Apy= — oS_eidt’ (X.)

in order to calculate the disturbed configuration at any time ¢ by the rules of undisturbed
motion, provided that besides thus altering the initial velocities and directions we alter also the
initial configuration, by the formula
t3H.
Ae;= 2dt. Z.
i f 0 0p; %)

It would not be difficult to calculate, in like manner, approximate expressions for the disturbed
directions and velocities at any time ¢; but it is better to resume, in another way, the rigorous
problem of perturbation.

Other Rigorous Theory of Perturbation, founded on the properties of the disturbing
part of the constant of living force, and giving formule for the Variation of
Elements more analogous to those already known.

13. Suppose that the theory of undisturbed motion has given the 6n constants e;, p; or any
combinations of these, ky, k3, ... kg, as functions of the 6n variables »;, w; and of the time ¢,
which may be thus denoted:

K= Xy (8,01, M5 o+ Nan> By, Dy, - Dy, (54.)
and which give reciprocally expressions for the variables ,, @, in terms of these elements and of
the time, analogous to (44.) and (45.), and capable of being denoted similarly,

Ni=¢; (b, K1, K95 o Kgn)y  @i=1; (b, 11, K9, . Kgp); (65.)

* [Equation (47.) is differentiated partially with respect to e, the »’s being kept constant.]
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then, the total differential coefficient of every such element or function «;, taken with respect
to the time, (both as it enters explicitly and implicitly into the expressions (54.),) must vanish
in the undisturbed motion; so that, by the differential equations of such moticn (H.), the
following general relation must be rigorously and identically true:
e Ly gl
3t i

In passing to disturbed motion, if we retain the equation (54.) as a definition of the quantity
k;, that quantity will no longer be constant, but it will continue to satisfy the inverse relations
(55.), and may be called, by analogy, a varying element of the motion; and its total differential
coefficient, taken with respect to the time, may, by the identical equation (56.), and by the
differential equations of disturbed motion (G.), be rigorously expressed as follows:
dx; v (SK,. 3H, o&x;0H 2) ;

dt~ “\8n dw " Sw o

0 (56.)

(AL)

14. This result (Al.) contains the whole theory of the gradual variation of the elements of
disturbed motion of a system; but it may receive an advantageous transformation, by the sub-
stitution of the expressions (55.) for the variables 7,, @, as functions of the time and of the
elements; since it will thus conduct to a system of 6n rigorous and ordirary differential equations
of the first order between those varying elements and the time. Expressing, therefore, the
quantity H, as a function of these latter variables, its variation 8H, takes this new form,

3H, 3H,
SHZ—Z.WSK-FW&, (57.)
and gives, by comparison with the form (48.), and by (54.),

SHy _ 8Hydc  8H, o 8H, o«

g I Sl el et
and thus the general equation (A'.) is transformed to the following,
' dic;  8H, 8H, SH, :
—Jt—-—az-,l§E+ai'2—8—l—<;+...+ai’6n%, (B .)
in which ;
[0 By By By | .
ai’a—z(gs_l;-—s_u;%)' (C .)

8o that it only remains to eliminate the variables 7, @ from the expressions of these latter
coefficients. Now it is remarkable that this elimination removes the symbol ¢ also, and leaves
the coefficients a; ; expressed as functions of the elements « alone, not explicitly involving the
time. This general theorem of dynamics, which is, perhaps, a little more extensive than the
analogous results discovered by Lagrange and by Poisson,*since it does not limit the disturbing
terms in the differential equations of motion to depend on the configuration only, may be
investigated in the following way.

* [Lagrange, ““Sur la théorie générale de la variation des constantes arbitraires,” Mémoires de UInstitut (1808),

p- 288; Poisson, “Sur la variation des constantes arbitraires dans les questions de mécanique,” Journal de UEcole
Polyt. Tome vix (1809), pp. 288, 289. See reference to Lovett, p. 160.] .
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176 III. GENERAL METHOD IN DYNAMICS [15

15. The sign of summation X in (C.), like the same sign in those other analogous equations
in which it has already occurred without an index in this Essay, refers not to the expressed
indices, such as here ¢, s, in the quantity to be summed, but to an index which is not expressed,
and which may be here called r; so that if we introduce for greater clearness this variable index
and its limits, the expression (C'.) becomes

3n (OKk; Oy Ok OKg
=21 (g o 5;';) (59.)
and its total differential coefficient, taken with respect to the time, may be separated into the
two following parts,
| S oo (b d B B )
dt " "1\on, dt dw, on,dtdw,
3n (8"3 d dk; dr; d Sks)

®1\8w, dt &y, dw,dt oy,

which we shall proceed to calculate separately, and then to add them together. By the definition
(54.), and the differential equations of disturbed motion (G.),

(60.)
4%

A 3"{ b (S_HI S__Hz)_ e (3_H1 LI"?)} (61.)
dtdw, &tdw, ~ W1 (&, 0w, \Ow, Ow,] Ow,dw,\dn, o,
in which, by the identical equation (56.),
_82"_i=_i 3”(8&8£_%8H) (62')
dtdw,  dw, Wl\on,dw, d&w, on,)’ s
we have therefore
18:(1 (8'( 0H,  8%; OH, Oox; 8®H, ok 8"’H1) (63.)
dtéw, ~W1\8y, 0w, dw, Owv,dw,dn, Ow,dn,dw,. o, dw,8w,)’ ‘
and d%g—;ir may be found from this, by merely changing i to s: so that*
3n (S_K!_d- Sk _SK d SK,)
®1\3n,dt dw, On,dtdw,
oz, |l B b a0 B B he, B VUL
Ll |\y, dw,dw, O, dw,dw,) 8y, \87,89,0w, &n,o7,8w,)éw, ;
(s e B s i) B
o, 8w, on,dw,/ on,8w, \d,5n, On,3n, Sw o
and similarly,
(ks N Sy
"1\3w,dtdn, Ow,didy,
B i B P B, (b BB B Vi,
n0L1(\8w, 3,5, 6w, 87,07,/ éw,  \ow, w8y, dw, 8w, d1,) n, |
8 Oy Bk, dk;\ O82H, dry By Ok Oky\ 82H,
(s—wr 8_1;‘-8_23,%;) 3w, &1, (g _8—'3—_ 8o, 8_wu) snus'qr}
* [In (64.) and (65.) the coefficients of 88,,1811 nd of > 81111 are easily seen to be zero, Also if we interchange

S H

the suffices in the coefficient of in (64.) the term cancels against the corresponding term of (65.).]
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Adding, therefore, the two last expressions, and making the reductions which present them-
selves, we find, by (60.),*

=T (405 g2, o)
in which
A(u) 5 3n(8K 0% Oky O, +8K1- 8%k, Ok, 8% )
"1\8y,8w,0m, On,dw,om, owm,0w,d, Ow,dw,on,)’

(66.)

i,8 . “r)1 o

B™ > 3n (% 8%c; A Sr; 8%k, S_K_,; d%k, 8K3 &%¢; )
dw, 81,0, Ow,dn,0n, O, o, dw, 8771' 017, 0w

and since this general form (D!.) for ‘%ai, s contains no term independent of the disturbing

5 ° SSH it is easy to infer from it the important consequence already mentioned,
namely, that the coefficients @, ,, in the differentials (B'.) of the elements, may be expressed as
functions of those elements alone, not explicitly involving the time.

quantities ——* oty

It is evident also, that these coefficients a, ; have the property

a —a (67.)

8,i= i,89

a;;=0; (68.)
the term proportional to 88152 disappears therefore from the expression (B*.) for %’7 ; and the term
oS S s By . BB gdig

By R B o

and

destroys the term
8H, 8H, . 8H,dxk,
. in —°-°

: dk; dx, dt’
when these terms are added together; we have, therefore,

OH dk
1
& (E.)

Skg

or
aHy_3H,

di ot
that is, in taking the first total differential coefficient of the disturbing expression H, with
respect to the time, the elements may be treated as constant.

(F.)

Simplification of the differential equations which determine these gradually varying
elements, in any problem of Perturbation; and Integration of the simplified
equations by means of certain Functions of Elements.

16. The most natural choice of these elements is that which makes them correspond, in

* [Tt follows that in the undisturbed motion the a’s are constant, which is Poisson’s theorem (Journal de I’ Ecole
Polyt. Tome vimx (1809), pp. 281, 282).]

1 [This is most easily seen as follows. If a; ,, when expressed in terms of the «’s, contains ¢ explicitly, it would
not remain constant during the undisturbed motion, which would contradict (D1.).]

HMPII 23
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178 III. GENERAL METHOD IN DYNAMICS [16

undisturbed motion, to the initial quantities e;, p,; . These quantities, by the differential equations
(H.), may be expressed in undisturbed motion as follows,

t3H, J‘t 8H,
e;=m;— | <—dt, =w;+ | <—dt; 69.
0 fo 5w, Pi= § 50, (69.)
and if we suppose them found, by elimination, under the forms

€= 7]i+®{(t"’]1"’72’ coe Nan> Wy, Dy, oee wsn)’} (70.)

Pi=w+ Wi (6,01, M2; - Man > By s By, -on Tgy),
it is easy to see that the following equations must be rigorously and identically true,* for all

values of »;, w;,
0=q)i(o"’hs"lz’"'nan’ml’wz""wan)’} (71.)

0=";(0,791,72, .- Ngn, By, Dy, ... Ty,).
When, therefore, in passing to disturbed motion, we establish the equations of definition,

kg =75+ Qs (6,71, M2 - Ngp > By By, - Tyyy), } (72.)

A=+ Wi (611, M0, - Nan > @1, Dy, .. Tyy),
introducing 6n varying elements «;, A;, of which the set A; would have been represented in our
recent notation as follows:

>‘i=K3n-:-1i; (73.)

Si; Bi; BN O,

8 4 Sw, 87]1‘ Sw,’ vanish when

we see that all the partial differential coefficients of the forms

t=0, except the following:
o\
Swi
and, therefore, that when ¢is made = 0, in the coefficients a, ,, (59.), all those coefficients vanish,
except the following:

=T (74.)

ar, 3n+r

=1, Ggurs=-1. (75.)

But it has been proved that these coefficients a;,, when expressed as functions of the
elements, do not contain the time explicitly; and the supposition =0 introduces no relation
between those 6n elements «;, A;, which still remain independent: the coefficients a; ,, therefore,
could not acquire the values 1, 0, — 1, by the supposition ¢ =0, unless they had those values
constantly, and independently of that supposition. The differential equations of the forms
(B1.) may therefore be expressed, for the present system of varying elements, in the following
simpler way:

di; SH, d)\ SHZ_

L Y e
and an easy verification of these expressions is offered by the formula (E'.), which takes now
this form,

(GL)

(H)

SHydx SH,dX
Z(a %2 dt) g

* [Putting ¢=0 in (70.) we have @; (0, e;, ... g5, Py, -.. Pg,)=0 for all values of the €’s and p’s. Hence (71.)
follows.]
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17. The initial values of the varying elements «;, A; are evidently e;, p;, by the definitions
(72.), and by the identical equations (71.); the problem of integrating rigorously the equations
of disturbed motion (G.), between the variables 7;, @; and the time, or of determining these
variables as functions of the time and of their own initial values e;, p;, is therefore rigorously
transformed into the problem of integrating the equations (G.), or of determining the 6n
elements «;, A; as functions of the time and of the same initial values. The chief advantage of
this transformation is, that if the perturbations be small, the new variables (namely, the
elements,) alter but little: and that, since the new differential equations are of the same form
as the old, they may be integrated by a similar method. Considering, therefore, the definite
integral

t
E=f0-(2 .A%—Hz)dt, (76.)

as a function of the time and of the 6n quantities ky, kg, ... k3, €1, €5, .- €3, , and observing that
its variation, taken with respect to the latter quantities, may be shown by a process similar to
that of the fourth number of this Essay to be

8E =3 (A\ox—pde), (IL)

we find that the rigorous integrals of the differential equations (G'.) may be expressed in the
following manner:

3E 3E
== p T S, Sa— B 1
A'l- 8 Ki > p ? 8 ei ’ (K ‘)
in which there enters only one unknown function of elements E, to the search and study of which
single function the problem of perturbation is reduced by this new method.

We might also have put
t
o[ (-2 (17,
0 81(

and have considered this definite integral C' as a function of the time and of the 6n quantities
A;» p;; and then we should have found the following other forms for the integrals of the differential
equations of varying elements,
el = 480
k= +§A—¢, é= —%.
And each of these functions of elements, C and E, must satisfy a certain partial differential
equation, analogous to the first equation of each pair mentioned in the sixth number of this

Essay, and deduced on similar principles.*

(L)

18. Thus, it is evident, by the form of the function E, and by the equations (K1.), (G1.), and
(76.), that the partial differential coefficient of this function, taken with respect to the time, is

| 8E_dE_g 8Bdx_ _
‘ 8 dt "8k dt
and therefore that if we separate this function Z into any two parts
; E,+E,=E, (NL)

e (M1)

* [C and E are the generating functions for the contact transformations from p, e to A, «.]
23-2
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and if, for greater clearness, we put the expression H, under the form

H =T 1617 g s ¥ W s AL AR oo g )3 (0L)
we shall have rigorously the partial differential equation
_8E, 3K, 3E, 8E, dE, S_EE) 4 4
0=5 %" Ha (s o G g g 2 Wil

which gives, approximately, by (G'.) and (K.), when the part £, is small, and when we neglect
the squares and products of its partial differential coefficients,*

B, SE, 3B, 8, i
—+§—+H (t Kyyeee Kgp s SK -S—K;;)- (Q ')

Hence, in the same order of approximation, if the part #,, like the whole function Z, be chosen
80 as to vanish with the time, we shall have

_[t(3E, 58, 3, :
Fom o | (0 s g oy

and thus a first approximate expression %, can be successively and indefinitely corrected.

Again, by (L'.) and (G'.), and by the definition (77.),

8030 ' G80dL~ 4 :
5= 5 = H (S1)

the function C must therefore satisfy rigorously the partial differential equation,

aC 8C 3C ; "
E e =H ( A .%,Al,...Aan). (Tv)
and if we put
0=0,+0,, (U
and suppose that the part C, is small, then the rigorous equation
3C, 80, 8C, 80, 30, 80’2 ) "
Slgi=H (t,—871+8—)‘1,. L T ¥ (V1)
becomes approximately, by (G'.) and (L.),
dCy, 80, 80, 80, ) : 4
et B +H( B g i) (W)
and gives by integration,
ft{ 80 8C, 80y 3
02—J { +H2(t, N, A ...Aan)}dt, (X%)

the parts C; and C, being supposed to vanish separately when ¢=0, like the whole function of
elements C.

And to obtain such a first approximation, . B, or €, to either of these two functions of
elements £, C, we may change, in the definitions (76.), (77.), the varying elements «, A, to their

* [The deduction is the same as that of (D.), p. 170.]
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initial values e, p, and then eliminate one set of these initial values by the corresponding set of
the following approximate equations, deduced from the formule (G.):

t8H,
= —'dt; Yl‘
Ky 31+J‘0 59, (YL)
and
t8H,
=p,— | —dt. VAR
“i P .[D 88‘ ( )

It is easy also to see that these two functions of elements € and E are connected with each
other,* and with the disturbing function S,, so that the form of any one may be deduced from
that of any other, when the function S, of undisturbed motion is known.

Analogous formule for the motion of a Single Point.

19. Our general method in dynamics, though intended chiefly for the study of attracting
and repelling systems, is not confined to such, but may be used in all questions to which the law
of living forces applies. And all the analysis of this Essay, but especially the theory of per-
turbations, may usefully be illustrated by the following analogous reasonings and results
respecting the motion of a single point.

Imagine then such a point, having for its three rectangular coordinates , y, z, and moving in
an orbit determined by three ordinary differential equations of the second order of forms
analogous to the equations (2.), namely,

2 80 SV e AV

73 PE S L e
U being any given function of the coordinates not expressly involving the time: and let us
establish the following definition, analogous to (4.),

T=}@*+y?+27), .(79.)
',y , 2’ being the first, and z”, ", 2" being the second differential coefficients of the coordinates,
considered as functions of the time ¢. If we express, for greater generality or facility, the
rectangular coordinates @, y, z as functions of three other marks of position 7, , 75, 1, 7' will
become a homogeneous function of the second dimension of their first differential coefficients
71, 13, N taken with respect to the time; and if we put, for abridgement,
R T R R

T may be considered also as a function of the form

T=F(W1yms;ms,'ﬁ'1s7}2:’?a): (81')
which will be homogeneous of the second dimension with respect to , , w,, ;. We may also put,
for abridgement,

x (78.)

(80.)

F (@, @y, 03,11, 12, 13) — U (11,72, m3) = H; (82.)
and then, instead of the three differential equations of the second order (78.), we may employ
- * [0=X (kA—ep)—E.]
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the six following of the first order, analogous to the equations (A.), and obtained by a similar

reasoning, _
dg, | OH dn, +8H dng _ +8H

dt 8w’ dt dwy’ dt  Owy’

do,__oH do,_ 3H dw,__3H

dt ~ "%y At oy’ dt 1

20. The rigorous integrals of these six differential equations may be expressed under the
following forms, analogous to (B.),

(83.)

wl=§§: wa=§§: ; ws=§s
o1, s 570 o
38 38 88 :

Py _3_9;’ D= —E; Ps= _E,
inwhich e, e,, €5, p;, Py, Ps are the initial values, or values at the time 0, of 7, 15, %3, @y, Ts, Ty;
and 8 is the definite integral

= I(wla +w 28 +msg§;—ﬂ)dt, (85.)

considered as a function of 5, ,7,, 73, €,, €3, €g and ¢. The quantity H does not change in the course
of the motion, and the function § must satisfy the following pair of partial differential equations
of the first order, analogous to the pair (C.),
; 88 58 88 &8 U 3
(8’71 81}‘ 81] » T 7?2’ "?3) (15 Mas Ms);

SS 88 88 88
3 F(E’ Be,’ Bey’ €1, €3, ea)'—'U(el, €y, €3)-
This important function §, which may be called the principal function of the motion, may
hence be rigorously expressed under the following form, obtained by reasonings analogous to
those of the seventh number of this Essay:
%t L 88, 38, 88, 88,
S—Sl+fo{ S 14+ U (915 2s ma)— F(&h 8"]2 s’ N> MN2s "Fa)}‘a
88 &8, 88 388, 88 &8
£y F(_—""—l’_—'_;’ """""_1’ ] ’ )dt:
J‘ Ony Omy’ Omy Omy’ Omy Oy Ml

8, being any arbitrary function of the same quantities n, ,79,, 73, €;, €5, €3, £, 50 chosen as to vanish
with the time. And if this arbitrary function S, be chosen so as to be a first approximate value
of the principal function S, we may neglect, in a second approximation, the second definite
integral in (87.).

21. A first approximation of this kind can be obtained, whenever, by separating the
expression H, (82.), into a predominant and a smaller part, H, and H,, and by neglecting the
part H,, we have changed the differential equations (83.) to others, namely,
dn, _oH, dny _ §{-{_1 d")a 8H1

TR o o R o 7
dw, 8;31 dﬂ2 _8H, dma _8H,

IR S T~ G s )

(86.)

(87.)

(88.)

www.rcin.org.pl



21, 22] III. GENERAL METHOD IN DYNAMICS 183

and have succeeded in integrating rigorously these simplified equations, belonging to a simpler
motion, which may be called the undisturbed motion of the point. For the principal function of
such undisturbed motion, namely, the definite integral
¢
Sl—f ( 18H1+m,831+ 38H —H,|dt, (89.)
dwy 0w, "y

considered as a function of 9, , 75,73, €1 , s, €3, ¢, will then be an approximate value for the original
function of disturbed motion S, which original function corresponds to the more complex
differential equations,

dn, _8H, SH,  dn, OH, 8H,  dy,_8H, 5H,

dt ow, dw,’  dt Ow, Ow,’ dt dwy Odwy’
dwy | 8H; 8Hy dwy 3H; SHy dw, . 8H, 8H,

dt "%_ I T R e
The function 8, of undisturbed motion must satisfy a pair of partial differential equations of
the first order, analogous to the pair (86.); and the integrals of undisturbed motion may be
represented thus,

(90.)

OBy OBy s 3
8"71 oy 3’72 % 8”)3’ (91.)
88, 89, 89, '

= —ggs P2= __8?2’ ps= *‘ge‘

while the integrals of disturbed motion may be expressed with equal rigour under the following
analogous forms,

Th=

55, 88, 88, 88 38 b,
ony Oy’ 2Oy Omy’ T ]

(92.)
- 88, 88, 88, , 89, 38, 88, ]

AT e T T Oa o R

if S, denote the rigorous correction of S;, or the disturbing part of the whole principal function
8. And by the foregoing general theory of approximation, this disturbing part or function S,
may be approximately represented by the definite integral (T.),

8= —-J:szt; (93.)
in calculating which definite ir;tegral the equations (91.) may be employed.
22. If the integrals of undisturbed motion (91.) have given
1’1=¢1 (t’ €15 €25 €35 P15 P2 Ps)’

v Me=y(t, €, €, ea,pl,pz,pa),j (94.)

ng=p3(t, €1, €3, €3, D1, Ps> P3);
and

@y = (¢, €1, €3, €3, P15 Pa> P3);
m2=‘/12 (t’ €15 €3, €3, D15 Pas Ps): (95')
m3=z/13(t, €15 €2, €3, P15 P2 ps)r
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then the integrals of disturbed motion (92.) may be rigorously transformed as follows,

88 BN N
"11—951(t €1, €, €3, P1t Sez Z’2+§:, 1’3+§:),
o8 o8, 38,
7)2=¢2 (t: €1, €3, €3, Pt .86_2’ P2+§53, B s S ) (96.)
SS 38, o8
N3=P3 |b €15 €2, €3, P31 s P2 Ps
(;S(te €2 €5 P1¥ 82p+8e +8e:)
and
88, B, ch 38, MG A
wl_s;;-l—l/’l (t, €, €3, €3, Pit 86 ’ p2+§’ p3+86 )
88 o8 38 38
w2=‘%3+z/12 (t’ €, €, €3, P1+ gz: Pt~ Se, o P3+To~e_2)s (97.)
38, 382 88’2 38’2)
81’3+'/’3 (t €1 €9, €3, pl 86 ? I’z 862’ p8+ Se

8, being here the rigorous disturbing function. And the perturbations of position, at any time ¢,
may be approximately expressed by the following formula,
3, ((t0H, 3, [ SH 8 8H
O AR AR L k] .
O[3, (‘30 bm (1900 j :
81”1 de, 81’2 832 8psJ o Sey
together with two similar formule for the perturbations of the two other coordinates, or marks
of position 7,,7,. Intheseformuls, the coordinates and H, are supposed to be expressed, by the
theory of undisturbed motion, as functions of the time ¢, and of the constantse, , ¢,, €3, P, Py, P3-
23. Again, if the integrals of undisturbed motion have given, by elimination, expressions
for these constants, of the forms
er=n1+ @y (¢, 71, M2, M3, By, Ty, Ty),
e=1g+ Qg (t, 11, 12, M3, Ty, Dy, ws)»} (99.)

eg=n3+ Dy (¢, 7y, N2s N3> W1, Dy, @,),
and
Pr=w+ ¥, 115 125 N> Wy, Wy, WS)’\L

Pa=wy+ Y5 (L, 0y, 125 Mg, Ty, Ty, By),

Ps=w3+Y5(L, 11, 3, 13, By, By, T3);
and if, for disturbed motion, we establish the definitions

wy =11+ D@y (¢, 91, N2, N3, By, By, w;,),}

(100.)

K2=712+d)2 (t, N1s N2> M3s Ty D, ma): (101)

ky=n3+ Dy (¢, 11, Mg, N3, By, Ty, W),
and
A=o,+¥ (t 11, 125 13, Ty, Ty, wa),'

Ap=wy+ W5 (t, 015 125 M3, By Ty, Wa):iL (102.)
As=w3+ Y3 (¢ M1, 125 M35 D1y By, Wy);!
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23] III. GENERAL METHOD IN DYNAMICS 185

we shall have, for such disturbed motion, the following rigorous equations, of the forms (94.)
and (95.),
7’1=¢1(t’ Ky, Kg, K3, Aly Az; Aa):

Na=a(t, K1, Ka, K3, Aps Ay Ag), (103.)
Ng=es(t, K1, kg, K3, A5 Agy Ag),

and @y =9y (t, ks Koy K3, Ap, Ag, Ag),
By=y (I, Ky, kg, Ky, Ap, Ags Ag), (104.)

3= (1, K1, kg, K5 Ays Ag, Ag);
and may call the quantities ky , ky, Ky, Ay, Ay, Ay the 6 varying elements of the motion. To determine
these six varying elements, we may employ the six following rigorous equations in ordinary
differentials of the first order, in which H, is supposed to have been expressed by (103.) and
(104.) as a function of the elements and of the time:
dr, &H, dK2 8H, dx; O6H,
I RN T e Tl
d\,__O8H, dX, __8H, d); _3H,

B Bt R W By

and the rigorous integrals of these 6 equations may be expressed in the following manner,

(105.)

MR AT M)
dky sz dreg” o
Py SE SE (106.)

DP= _8_61’ Pa= —S_ez’ P3=.—§e—a:

the constants e, , e, , €5, P, , Py, P; retaining their recent meanings, and being therefore the initial
values of the elements «y , k5, K5, A; , Ay, A3 ; While the function #, which may be called the function
of elements, because its form determines the laws of their variations, is the definite integral

e :

E- f (Al = 242, 2Hs 8)\ Hh? Hz)clt, (107.)
considered as depending on «y, k,, k3, €y, €5, €3 and ¢. The integrals of the equations (105.) may
also be expressed in this other way,

o J sl 8 e hems iz
g Jrfu TNl > WA R e
e——E e——§g e———E :

; X o * oy’ ° ops’

C being the definite integral
t
C’=—f( §H+ 8H+ 3%Ii-H)dt, (109.)
Ky

regarded as a function of A, , Ay, A3, P51, Ps, P5 and £: and it is easy to prove that each of these two
functions of elements, C and E, must satisfy a partial differential equation of the first order,*

* [The partial differential equations are

oC ac oF oF
--—+H,< al\,,\)=o, a:*H'(‘ "’a) 0.]

HMPII : ; 24

www.rcin.org.pl



186 III. GENERAL METHOD IN DYNAMICS [23, 24

which can be previously assigned, and which may assist in discovering the forms of these two
functions, and especially in improving an approximate expression for either. All these results
for the motion of a single point are analogous to the results already deduced in this Essay, for
an attracting or repelling system.

Mathematical Example, suggested by the motion of Projectiles.

24. If thethree marks of position %, , 75, ns0f the moving point are the rectangular coordinates
themselves, and if the function U has the form

| U= —gny—3{n*(ni+n3) +v*n3}, (110.)
g, u, v being constants; then the expression
H =} (o} + o} + o) +gns+ $ {1* (0 +n3) + v"n} (111,

is that which must be substituted in the general forms (83.), in order to form the 6 differential
equations of motion of the first order, namely,

%1= — K, %ﬁ=;ﬂz’72’ %‘zg= —g—vn;. St
These differential equations have for their rigorous integrals the six following,
1= €, coS ut + % sin pt,
Ng=6y cos;ut+%’sinp.t, r (113.)
g = €3 COS Vi +%’ sin vt — v% vers vt,
and @, =P, COS pul — pe, sin ut,
Wy =P, COS put — ey Sin ud, (114.)

Wy =g COS Vi — (vea + %) sin vt;

ey, €3, €3, Py, Py, Py being still the initial values of 9, , 7,, 75, @, , @,, ;.

Employing these rigorous integral equations to calculate the function 8, that is, by (85.)
and (110.), (111.), the definite integral

S=J‘t(w—%ﬂz§i?—?2’+U)dt, (115.)
0
we find bt ot od) = {p1+pt o+t )+ (e ) |
+3{pi+p3—p? (el +€d)} cos 2ut — Ju (e, p, + €, p,) sin 2t (116.)
+1 {pg— (vea +‘(—i)2} cos 2vt—} (V€3+%) P4 8in 2ut, l
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and U=gv1,— lp§+P%+P§+p’ (€3 +e3) + (%"‘%)2} l
+3{pi+pi—p? (el + €)} cos 2ut — Ju (€,py + ey py) sin 2ut (117.)
AT g ot VO
and therefore,
8=t (014 1= @+ D) T~ mr - ap) vors 2t |
A {Pg_("es‘i‘%)’}shlf”—i}'s (ea+%) A j' (118.)

In order, however, to express this function 8, as supposed by our general method, in terms
of the final and initial coordinates and of the time, we must employ the analogous expressions
for the constants p, , p,, ps, deduced from the integrals (113.), namely, the following:

» _ My — e, COS pb
1 sinp.t )
P _ By — preg COS pb
v sinut ' . (119.)
—m,+%—(ves+%)cos vi!.
.’ﬂs— sinvt ]
and then we find
S=£‘+"—" (’?1‘81)8_+(7is_33)’+‘_’ (ns—¢3)*
22" 2° tan ut 2" tanwut
o - p E (120.)
—}l(ﬂ191+1}363)t&n§—v(q3+ ;2) (es+;z)tan—2—.

This principal function S satisfies the following pair of partial differential equations of the
first order, of the kind (86.),

b () () G-

121.)
58 1((88)2 (88)\* (88)?) 5 N (
3+ 31(60) +(oe) *(a) = - H v -5

and if its form had been previously found, by the help of this pair, or in any other way, the
integrals of the equations of motion might (by our general method) have been deduced from it, under
the forms, :

88 ¢
ml-—-gl:p(m—el)cota.npt—peltan% .
w,:%’i:p(qz—e,)comm—%tm}g, \ (122,

2

ms=§%=v(q3—es)cotanvt—(ves-f-g)tanZF,

24-2
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188 III. GENERAL METHOD IN DYNAMICS [24, 25

88 ¢
and P $1 = (0, —e;) cotan pt + prn, ta,n% A
8s
Ps= —3—6—2=#(nz—ez)cotanﬂH#nztan%t, " (123.)
o8 g Vi
Psr~ _S_ea_ v (93 —eg) cotan vt + (vn3+;)tan§ :

the last of these two sets of equations coinciding with the set (119.), or (113.), and conducting,
when combined with the first set, (122.), to the other former set of integrals, (114.).

25. Suppose now, to illustrate the theory of perturbation, that the constants u, v are small,
and that, after separating the expression (111.) for H into the two parts,

H, =} (o} + @} + @3) + g3, (124.)

Hy=3{p? (93 +73) +v*13}, (125.)

we suppress at first the small part H,, and so form, by (88.), these other and simpler differential
equations of a motion which we shall call undisturbed:

and

d"h_ d").z_ d"?a__
] L T e
dw, _
av

b 4, (126.)
N v

These new equations have for their rigorous integrals, of the forms (94.) and (95.),

d m=e,+Pit, Ny=ey+pyl, my=es+pst—igi? (127.)
an

Wy =P1, Wy=Py, Wy=pP3—gl; (128.)
and the principal function S, of the same undisturbed motion is, by (89.),

i w2+w2+m2
Sl=f0(;22—§_g’78)dt

$ fpR i miit 8
=f (p1+12’2+p3—ge3—2gp3t {-g’tz)dt
0

Filoine
i (p—l +2;2 + 25 —ges) t—gpat®+ 1973,

b

(129.)

J

or finally, by (127.),

s ¢ ey s
Sl=(”h )+ (12 2t92) + (13— ¢3) — 1gt (ng+ e5) — g%, (130.)

This function satisfies, as it ought, the following pair of partial differential equations,
35, LIS (35" (25| -
st " 2|\8n,) "\8ny) T\8u) T 9’73’]

(131.)
85, LIO8) 0L A8)
3 2|\ de e, deg) | 96s:
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25, 26] III. GENERAL METHOD IN DYNAMICS 189

And if by the help of this pair, or in any other way, the form (130.) of this principal function S,
had been found, the integral equations (127.) and (128.) might have been deduced from it, by
our general method, as follows:

w2=§8_;3':=*iz;_e_z, , (132.)
w3=%=1~7§—;@—%¢,
and '
Py —Z—‘i:m—f‘l’ )
bk _38_*32;=’72t;32, [ (133.)

the latter of these two sets coinciding with (127.), and the former set conducting to (128.).

26. Returning now from this simpler motion to the more complex motion first mentioned,
and denoting by S, the disturbing part or function which must be added to S, in order to make
up the whole principal function S of that more complex motion; we have, by applying our
general method, the following rigorous expression for this disturbing function,

t t1((88,\2 (88,\2 (88,2
S,=— | H dt+f —{(—2) (—2) +(—2) }dt, 134.
: fo y 021\5n,) T 5, dng e

in which we may, approximately, neglect the second definite integral, and calculate the first
by the help of the equations of undisturbed motion. In this manner we find, approximately,
by (125.), (127.),

2 2
—H,= _% {(ex+p1)* + (€3 +pyt)?} "% (es+pst—3gt%)?, (135.)

and therefore, by integration,*
Sy= —3{u? (e} +€3) + 23}t — § {1® (e, 11 + €2p) + VP53 p3} £ } (136.)
— ${p® (P} +p3) + 2 (p3 —ges)} & + 3Pgpstt — £V,

* [The approximate S, of (136.) is primarily a solution of the partial differential equation
88, 88, 88, 88, 88, A &S, 88, i
LT TS TN TS TN
It must be a complete integral, the arbitrary constants being e;, €,, €5 and an additive constant. The method
employed by Hamilton in such cases is as follows. The value of S, is found by integrating along the path
_ 85 Sl ey
= —Es Pe= Tles P e

8, is then a function of ¢, e, €,, €3, Py, P3, P3. Replacing p, by —ggl, etc., S, now satisfies the partial differential
1

equation because the part arising from the differentiation of the p’s vanishes on account of relations such as
5,85, p 88 Bp 88 op |

3_?+8;8'h+377:8"): 33 O3
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)
or, by (133.), 8y = —%—(n§+e1n1+e§+n§+ezq2+e§) 1
(137.)

2
" %{’73"'93’73'*‘9%4' 19 (n3+¢€5) tz‘*‘ﬁgz#}:J
the error being of the fourth order, with respect to the small quantities p, v. And neglecting this
small error, we can deduce, by our general method, approximate forms for the integrals of the
equations of disturbed motion, from the corrected function S; + S,, as follows:
Wl W
Oy Oy t
S_SA 68, L e Trbs P *

24
y,_ (. + 3€1)s

87)2 1’2 n 3 2+%e2), r (138')
88, 88 —e 2
m3=g:+§;]—f=n——3t 3_%gt—-—%(7]3+%ea+%gt2),
and

88; 88 9 )

Pl "‘3;11— 8e12 h-a t +E2 (e1+%'r)1),
88; 88 —e g

Pa= —8—62—-~8;:=”2Tz+’1—<e2+%n2>, > (139.)
88, o8

Pg= —S—e:—gj 1'3 +1}9t+—(€s+%ﬂa+%9t2):

or, in the same order of approximation,
n1= €+ Pt — 3’ (e + §py ),
Na= €5+ Pat — 1% (€5 + 3 P51), (140.)
3= e+ Pyt — 39 — 3% (e5+ §pst — 1591%),
and
@ =p1—pt (e +3p0),
Wy =Py — 1t (€3 + §Pst), (141.)
wy =Py — gt — v* (eg + 3pgt— g1°).
Accordingly, if we develope the rigorous integrals of disturbed motion, (113.) and (i 14.), as far
as the squares (inclusive) of the small quantities u and v, we are conducted to these approximate
integrals; and if we develope the rigorous expression (120.) for the principal function of such

motion, to the same degree of accuracy, we obtain the sum of the two expressions (130.) and
(137.).

27. To illustrate still further, in the present example, our general method of successive
approximation, let S; denote the small unknown correction of the approximate expression
(187.), so that we shall now have, rigorously, for the present disturbed motion,

S8=8;,+8,+8;, (142.)
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8, and 8, being here determined rigorously by (130.) and (137.). Then, substituting 8, + S, for
§; in the general transformation (87.), we find, rigorously, in the present question, *

#1 188,381 (085\2 1168,
==, 5{(om) * (o) *(ang) 1
7 Jo2\8n) T \Ony) " \Bng
= | 85’3)2 (8S3)2 (SS ) }
+] i) +52) + dt:
f 02 {(3")1 07)q O
and if we neglect only terms of the eighth and higher dimensions with respect to the small
quantities x, v, we may confine ourselves to the first of these two definite integrals, and may

employ, in calculating it, the approximate expressions (140.) for the coordinates of disturbed
motion. In this manner we obtain the very approximate expression,

4
S3= TS_J- 2{(my+ 3e1)% + (na + €)%} dt

(143.)

3

V4

18 t (7)3 m %63 ay %gtz)ﬂdt

-gg() D n+ Ty + 463 + g+ Ty + ded)

- (144.)
e, o VP 179207

e 56—(—) (47]3 * 717363 i 463) gy —24_0 (1’3 3) 40320

945 b+ Hmey+ 4 ri+ e + e

175t 31v592%°

2 3 |

~ 5 1+ Hrrses+ o)~ Zool6 ()= 15200 3

which is accordingly the sum of the terms of the fourth and sixth dimensions in the development

of the rigorous expression (120.), and gives, by our general method, correspondingly approxi-
mate expressions for the integrals of disturbed motion, under the forms

SSI 38, 88,

8’71 8”)1 8171

SSI 882 38,

i 145.)

37]2 8’72 31y (

881 + 38, 882 38,

3’73 813 8"13 )

Wy ==

8T

* [8; and 8, are rigorously determined by

and \ "’S' zgj’: Z_n_Sz e Sl (i)
In (143) 4 means = : +E§:,gl 331, where 8=, +8,+S;, and so becomes
ngz (681+Z;9:+g;9’:> a‘g’+gz (Zi’) - (38*’) 3 (i)

2
We see at once that the sum of three equations (i), (ii) and (iii) gives % +§2 (5:15;) =—H,—H,.]
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88, 88, 88,
and pl—_a—el_s_el_—Se—l’
88, 38, 88,
Pz——aez S—e;_B—ea“ (146.)
R . W
Po= " e, Oeg Seg

28. To illustrate by the same example the theory of gradually varying elements, let us
establish the following definitions, for the present disturbed motion,
Ky =M=ty Ky=1y— Wyt, "3=’73—wst—%9t2»} (147.)
A=y, Ay =1y, Ay =3+ g1,
and let us call these six quantities «,, Ky, k3, Ay, Ay, A3 the varying elements of that motion, by
analogy to the six constant quantities e,, e,, €5, p;, Py, P3, Wwhich may, for the undisturbed
motion, be represented in a similar way, namely, by (127.) and (128.),
e =M~ Wl, e=1ny—Wyl, e3=173—m3t—%gt2,} (148.)
P1=1y, De=1y, P3=w3+gt. ~
We shall then have rigorously, for the six disturbed variables 1, , 15, 13, @, , @y, s, €xpressions
of the same forms as in the integrals (127.) and (128.) of undisturbed motion, but with variable
instead of constant elements, namely, the following:
m=ry+Al, Ng=ky+Ast, 7)3=K3+Aat“%9t2’} (149.)
oy=A;, We=Ay, wy=A3—gt;

and the rigorous determination of the six varying elements «,, ky, k3, A;, Ay, Ay, 88 functions of
the time and of their own initial values e,, ¢,, €5, Py, Ps, P3, depends on the integration of the
6 following equations, in ordinary differentials of the first order, of the forms (105.):

%:%_If=p2t(xl+)\1t), )
%%_i?:m imdn, ) (150.)
%’%:%{;fw%(xaﬂat—%gt“),
and
%= —%gl?= — p? (kg + Ay t),
‘%= _z_il:= — p2 (kg + Agl), (151.)
%= —88-;?:= = v? (kg + Agt — §g1%),
H, being here the expression
H, =’-§ {(rer+ A 8)2+ (kg + Ag)2) + "; (k3 + At — 3gt%)2, (162.)
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which is obtained from (125.) by substituting for the disturbed coordinates 1, , 1,, 1, their values
(149.), as functions of the varying elements and of the time. It is not difficult to integrate
rigorously this system of equations (150.) and (151.); and we shall soon have occasion to state
their complete and accurate integrals: but we shall continue for a while to treat these rigorous
integrals as unknown, that we may take this opportunity to exemplify our general method of
indefinite approximation, for all such dynamical questions, founded on the properties of the
Sfunctions of elements C and E. Of these two functions either may be employed, and we shall
use here the function C.

29. This function, by (109.) and (152.), may rigorously be expressed as follows:

B2 e 2 yege 2
O=Ef0(klt — K3+ A3 —«3)dt
il (153.)
+ 5 [ 10t - dorr - gy
and has therefore the following for a first approximate value, obtained by treating the elements
Ky, K9, Kg, Ay, Ay, Az as constant and equal to their initial values e, , e,, €, Py, Pa, D3,

i $
= — 5+ )+ viel}+ 5 {u® (P +p8) + '}
1564.
il
In like manner we have, as first approximations, of the kind expressed by the general formula
(Z1.), the following results deduced from the equations (151.),
g q

A =pi—p (et + 3, 1%),
Ay =Py — p? (egt + p,t?), (155.)
Ay =Py —v2 (egt+ §pst?— 4gt3),

and therefore, as approximations of the same kind,

D Wt
s _%plt— llu'ztpls

o
ey= —§pyt— “thpz, . (156.)
A &
€= —%p3t+§gt2—3v—2tﬁ’.

Substituting these values for the initial constants e,, ¢,, ¢; in the approximate value (154.) for
the function of elements C, we obtain the following approximate expression C; for that func-
tion, of the form supposed by our theory:

C,= __1_ {()‘l_pl)z"‘ 0‘2‘1’2)2_*_ (A5 _P:s)z}

2 12 2
i
e {0 —21) 1+ Ay —p2) Do+ (A5 — p3) (P35 — $98)} (167.)
AT iy ERIERE 2
+5q W (PR+28) + Vi) — 5 vigps + 55 %™
HMPII ; 25
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The rigorous function C must satisfy, in the present question, by the principles of the eighteenth
number, the partial differential equation,

- (]S s

and if it be put under the form (U'.),
C=0,40,,

(', being a first approximation, supposed to vanish with the time, then the correction C, must
satisfy rigorously the condition

[t _8C, p*(3C, 801 4 30, 2) }
Cy= 0{ ¥ TR ] (SA )«t) (8)\ Azt) (8)\ + A3t —3gt
3C, 80, 3C.
b ko 2 2
ol (o) +om (o) o (o) o
In passing to a second approximation we may neglect the second definite integral, and may
calculate the first by the help of the approximate equations (155.); which give, in this manner,

)

(159.)

Cy= “f {Aa =)+ Qe — o) + (A3 — p3)%} dt
T3 Jo M Ar—21) + 23 (A —p)} di
W2 [t
+5 [, 0s—100 0y —po) et
¢
e g{()ﬁ_lh)z'*‘ Ag—p2)*+ (A5 —3)%} ’ (160.)
&
RV {1201 Ay —21) + p2p2 (Aa — po) + v2p3 (A — )}
t4 2 ° 4,2 2 42
BT 90‘3‘1’3)"‘@(# 'Pi+ pipi+vip3)
- i 4 4 _?._ 4,2
340" a7 945" |
We might improve this second approximation in like manner, by calculating a new definite

integral C;, with the help of the following more approximate forms for the relations between the
varying elements A;, A,, A; and the initial constants, deduced by our general method:

80 et 22 4t4 t 2‘2 4t4
el—‘gf‘%=—hlyzfl(l+%+’;—4) ¥ b
1 1
80, 80, M—py(, . U ptA\ tpy( P pt
“= T, S W (1+ s t3r) 2 Pt ) o
e 30301 demma(y PR A () i
e 2 R 2¢) 2 ' T2 60
LI () T A
T E (” 60 T40)° J
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in which we can only depend on the terms as far as the second order, but which acquire a correct-
ness of the fourth order when cleared of the small divisors, and give then*
Ay =py— Pt (e, + 3Py 8) + §utt® (ey + 124 ),
Ay =Py — p? (€x+ §pat) + §1*t° (ex + 1p51), (162.)
A3 =Py — v (e3+ 3yt — §98°) + $v*6° (e + 1Pst — 3'591%):
But a little attention to the nature of this process shows that all the successive corrections to
which it conducts can be only rational and integer and homogeneous functions, of the second
dimension, of the quantities A, Ay, A3, P;, Ps, P, ¢, and that they may all be put under the
following form, which is therefore the form of their sum, or of the whole sought function C;
O= p%a, (A —p1)*+b,0, (A —p) +p’c,p
+p%a, (A —Ppa)?+ bup2 (Ay—p3) + p*e, p3 (163.)
* v_zav (A3 —p3)2 + bvpa ()‘3 "pa) i x Vzcvpg '
+£,9 Qg —Ps) +v¥h,gps + v, 9%
the coefficients a,,, a,, &c. being functions of the small quantities u, v, and also of the time, of
which it remains to discover the forms. Denoting therefore their differentials, taken with
respect to the time, as follows,
da,=a,dt, da,=a,dt, &c., (164.)
and substituting the expression (162.) in the rigorous partial differential equation (158.), we
are conducted to the six following equations in ordinary differentials of the first order:
2a, = (2a, + v*)?; b,=(2a,+v%) (b, +1); c,=%}(b,+1)% }
fo=(2a,+v%) (f,—1%); k=0, +0)(f,—38); 4,=3(f,—3%
along with the 6 following conditions, to determine the 6 arbitrary constants introduced by
integration, {

(165.)

1 t 2 [Ad (ol : (o
a0= _'2_t, b0=_§, f0=6,_ 66—2—;’ ho—"‘2“‘“4, @0—9_0- (166.)
In this manner we find, without difficulty, observing that Ay bl,‘, ¢, may be formed from
a,,b,, ¢, by changing v to u,

a,= — % — }vcotan i, a, = —}p*t— jpcotan ut,)

b,= —t+%tanv§t, b= —Hitan’it,

c,= —Ei—2:+vlstanv§t, Cu= —2L’L2+’%tan%t,

f,,=%t2—~vlz+§cotan vt, [ (F0¥.]
h,=2t—;—vistan%t,

i,=§fﬁ‘——£§—;—;cotan vi. ;

* [If we substitute on the right-hand side of (150.) and (151.) e,, e,, €3, Py, P, P3 fOT Ky, Ky, kg, Ay, Ags A5 88 @
first approximation, integration gives
ky=e+3p* (e +§mt), =P~ p't (e +1p,1), ete.
The insertion of these values in the same equations followed by an integration as before gives (162.).]
1 [These coefficients come from (157.).]
. 25-2
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The form of the function C is therefore entirely known, and we have for this function of
elements the following rigorous expression,

Py oy

(AL —21)*+ (A —p,)? :
2 tan pt 2vtan vé

= % {Ar=21)2 + (Ag—p2)? + (A3 — p3)?}
—P1) + P2 (A —p5) + P3 (A3 —p3)}

_(Ag—py)?

—t{p, (A
1 " | vi
i {Pl (AL =p1) + 22 (A3 — p)} tan’i + _Pa (A3—ps) ta,nE

o

——(P1+P2+Z’a)+ (Pl"‘Pﬂ)tan + jp%t

albdle
+(t§ g cotan vt) g(As— p3)+(———tan
& - _ﬁ’_ 2cot‘,a,nvt #
2276 2 o ‘

(168.)

which may be variously transformed, and gives by our general method the following systems
of rigorous integrals of the differential equations of varying elements, (150.), (151.):

and «, _gT

50
-
3
N

K2=

g

that is,

and

3
1 1 ut
—p1) (t—i—;cotanyt) +p, (—t+;tan§),

53— Ps) (t+ icotan vt) + 3 (

oC
sz
8C
Spa

)‘2 P2 pzt n}‘vt,
Cpsingt p 2
/\a Ps _Ps ath g
vsinvi v 2

€g= —

e

¢ 1
(sm v i)’
[.Lt
2

1 vt (
% t it
t+v an 2)+g(2

+1 cotanp.t)+ ( t+1 tan =
p i p

Ay =P, COS ut — e, wsin ut,
Ag = Py COS put — ey 8in ut,

g a4
Ag=pgcos vi—egvsin vi+g t—;smvt %

1
Ky =€, (cos ut + pt sin ut) + py ( sin ut — ¢ cos p.t)

! A
Ko =€y (CO8 put + ut sin ut) + py (; sin ut —t cos ,Lt) .

‘ a8
Ky =64 (cos vt + visin vt) + pg (;sm vi—tcos vt) —-g(

versvi .
53— —-sinvi+
14 v

1
3 + I—f cotan vt) -

tz)
2/

(169.)

(170.)

(171.)

(172.)
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Accordingly, these rigorous expressions for the 6 varying elements, in the present dynamical
question, agree with the results obtained by the ordinary methods of integration from the 6
ordinary differential equations (150.) and (151.) and with those obtained by elimination from
the equations (113.), (114.), (147.).

Remarks on the foregoing Example.

30. The example which has occupied us in the last six numbers is not altogether ideal, but
is realised to some extent by the motion of a projectile in a void. For if we consider the earth as
a sphere, of radius R, and suppose the accelerating force of gravity to vary inversely as the

square of the distance r from its centre, and to be =g at the surface, this force will be repre-
2

sented generally by gri;; and to adapt the differential equations (78.) to the motion of a pro-

jectile in a void, it will be sufficient to make

U=gR® (;1—}13) (173.)

If we place the origin of rectangular coordinates at the earth’s surface, and suppose the
semiaxis of + 2z to be directed vertically upwards, we shall have

r=V(R+2)?+a%+y% (174.)
and

_ .97 g@+y?)

U= gz+f————2R » (175.)

neglecting only those very small terms which have the square of the earth’s radius for a divisor:
neglecting therefore such terms, the force-function U in this question is of that form (110.) on
which all the reasonings of the example have been founded; the small constants ., v being the

real and imaginary quantities A/ %, / —_251, respectively. We may therefore apply the results

of the recent numbers to the motions of projectiles in a void, by substituting these values for
the constants, and altering, where necessary, trigonometrical to exponential functions. But
besides the theoretical facility and the little practical importance of researches respecting such
projectiles, the results would only be accurate as far as the first negative power (inclusive) of
the earth’s radius, because the expression (110.) for the force-function U is only accurate so far;
and therefore the rigorous and approximate investigations of the six preceding numbers,
founded on that expression, are offered only as mathematical illustrations of a general method,
extending to all problems of dynamics, at least to all those to which the law of living forces
applies.

Attracting Systems resumed: Differential Equations of internal or Relative
Motion ; Integration by the Principal Function.

31. Returning now from this digression on the motion of a single point, to the more im-
portant study of an attracting or repelling system, let us resume the differential equations (A.),

which may be thus summed up:
: dtSH =% (dyéw —dwdn); (A2)
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198 III. GENERAL METHOD IN DYNAMICS [31

and in order to separate the absolute motion of the whole system in space from the motions of
its points among themselves, let us choose the following marks of position:

_Z.mx _X.my _X.mz
S Rl e

(176.)

and

£i=xi_xn’ Ni=Yi—Yn> c't:zi_zn; (177.)
that is, the 3 rectangular coordinates of the centre of gravity of the system, referred to an
origin fixed in space, and the 3n — 3 rectangular coordinates of the n — 1 masses m,, ms, ... m,, ;,
referred to the nth mass m,,, as an internal and moveable origin, but to axes parallel to the
former.* We then find, as in the former Essay,{

T=}(z;2+y,+2,%) Zm s
+3Z,.m (£ +72+ C’z)—%;n (=, - mE2+(Z, . my')2+(Z,.mL)3, i

the sign of summation X, referring to the first n — 1 masses only; and therefore,

7=z (o) o)+ (2) 1+ -l oe) o) + o)

, (179.)
1 3T\? DINS 3T\2
am | (ag) *+(Ba) + (B |
If then we put for abridgement,
oo 18T _ e Z,.m¢
" md¢ S
piues QB o LBty
?/,—ﬁs—n“:—’? >m (180.)
PR e SR A
S Bl
we shall have the expression
H=%(+y,+2,%) Zm+ 3%, .m(@* +y* +22)
1 B2,
b (5, )+ (5, g (5, e T, oty
of which the variation is to be compared with the following form of (A2.),
dtdH = (dx, 8z, —dx, 8z, + dy, 8y, — dy. 8y, +dz, 8z, — dz, 8z,) Zm} (2.
+2,.m (d€dx, —dx, 8¢ + dn Sy, — dy. dn + d{ 8z, — dz. 8Y), :

in order to form, by our general process, 6n differential equations of motion of the first order,
between the 6n quantities z,,y,,2,,2,,¥,,2,,& 7,{,2,,y,, z, and the time ¢. In thus taking
the variation of H, we are to remember that the force-function U depends only on the 3n—3
internal coordinates ¢, 5, {, being of the form

U=m, (m1f1+m2f2+....+mn_1fn__1) }
+myMyfy0+Mymgfy g+ .o +My_gMy 3 fr o nas

X, mé
g ete.]

T [P. 127, equation (69.).]

(D)

e [Tp=2,,—
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in which f; is a function of the distance of m, from m,,, and f; ; is a function of the distance of m;
from my,, such that their derived functions or first differential coefficients, taken with respect
to the distances, express the laws of mutual repulsion, being negative in the case of attraction;
and then we obtain, as we desired, two separate groups of equaticns, for the motion of the
whole system of points in space, and for the motions of those points among themselves; namely,
first, the group

do. =ntdt . del=0.
dy,=y,dt, dy,=0, (181.)
dz,=z'dt, dz’ =0,
and secondly the group
iy y ,_ 18U
d{—(x,+a2,.mx,)dt, do) = 7,
vy ah A ,_18U (182.)
d"?‘“(y;+azf-my-)dt; dyr_mgdts
e i ,_ 18U
dﬁ_(z,-g-a;ﬂ,.mz,)dt, dz)= Sﬁdt

The six differential equations of the first order, (181.), between z,,, ¥, ,2, , 2., ¥, , 2, and t, con-
tain the law of rectilinear and uniform motion of the centre of gravity of the system ; and the
6n — 6 equations of the same order, (182.), between the 6n — 6 variables &, v, , 2, , 9,2, and the
time, are forms for the differential equations of internal or relative motion. We might eliminate
the 3n— 3 auxiliary variables z. 3/, z, between these last equations, and so obtain the following
other group of 3n — 3 equations of the second order, involving only the relative coordinates and

the time,

L 180 1 o 8T
=m st E.E's.s

e Lo e

Tm o m,"" &y’ (1.83')
b ¢ S8 114 8T
E=ms Tm, ST

but it is better for many purposes to retain them under the forms (182.), omitting, however, for
simplicity, the lower accents of the auxiliary variables z,, y, , z,, because it is easy to prove that
these auxiliary variables (180.) are the components of centrobaric velocity,® and because, in
investigating the properties of internal or relative motion, we are at liberty to suppose that the
centre of gravity of the system is fixed in space, at the origin of z,,2. We may also, for simplicity,
omit the lower accent of X,, understanding that the summations are to fall only on the first
n— 1 masses, and denoting for greater distinctness the nth mass by a separate symbol M; and
then we may comprise the differential equations of relative motion in the following simplified

formula, '
dt8H =% .m (dédx’ —dx'8§+dn8y’ —dy' 8y +d{dz' —dz' 87), (E2.)

in which H=3}%. -m(a:"+y"+z")+ {(E mx' )2+ (Z.my' )2+ (2.mz')? - U. (F2,)

* [By nent.robane velocity is meant the velocity relative to the mean centre:
z( ,,—-{:t.’ .'c‘)+(.1: —x;,)= f{ —Z,m§ .J'rzm z![
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200 III. GENERAL METHOD IN DYNAMICS [31,32

And the integrals of these equations of relative motion are contained (by our general
method) in the formula
88 =% .m (2’8 —a'Sa+y'dn—b'df +2'8L —c'dy), (G2)
in which «, B, y, @', b’, ¢’ denote the initial values of &, 7, {, 2", ¥', 2’, and § is the principal function
of relative motion of the system; that is, the former function S, simplified by the omission of the
part which vanishes when the centre of gravity is fixed, and which gives in general the laws of
motion of that centre, or the integrals of the equations (181.).

Second Example: Case of a Ternary or Multiple System with one Predominant
Mass; Equations of the undisturbed motions of the other masses about this, in
their. several Binary Systems; Differentials of all their Elements, expressed by
the coefficients of one Disturbing Function.

32. Letusnowsuppose that the n — 1 masses m are smallin comparison with the nth mass M ;
and let us separate the expression (F2.) for H into the two following parts,

m m ’ ’ ’
H1=2'§(1+ﬂ—1) (®"2+y'2+2"%) — MZ . mf,

mymy

Hy=—3 @12+ 919+ 2122~ Ufy0) + ... ; (H2.)

m m ’ ’ ’ ’ L T
+_jn—k (i@ + Y Yr+ 22— Mfi ) + s

of which the latter is small in comparison with the former, and may be neglected in a first
approximation. Suppressing it accordingly, we are conducted to the following 6n — 6 differential
equations of the 1st order, belonging to a simpler motion, which may be called the undisturbed:
d§ 108H, m) ,  da 138H, of .

(+5)=s G=—mw =

d”_lSHl_(1+m)y'; dy lSHl_MS;f

@t ms \TH)”® s Y
(I%)

dt m 8y M dt =~ m &y &’
d¢ 138H, m) , -de 18H, Sf
These equations arrange themselves in »—1 groups, corresponding to the n—1 binary
systems (m, M); and it is easy to integrate the equations of each group separately. We may
suppose, then, these integrals found, under the forms,
S ol (2 0 T 0 Y BRI ok e B A A z’),l
A= X(z) (X 7, {,z,y,?), == X(s) ¢, 7, {,@',y',?),
b= X(s) (t. €, 7, §,2y,7), w= X(s) (A s L, y',2),
the six quantities «, A, u, v, 7, w being constant for the undisturbed motion of any one binary
system; and therefore the six functions @, ¥, x®, y@, +® +®) or k, A, u, v, 7, w, being such as
to satisfy ¢dentically the following equation,
dx OxdH, &xdH, 0xkdH, 8xdH, OxdH, d&x 8H,
O=mi TS sy Tor 8 Toydy by oy Toter e arc (M
with five other equations analogous, for the five other elements A, y, v, 7, , in any one binary
system (m, M).

(K2)
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33. Returning now to the original multiple system, we may retain as definitions the equa-
tions (K2.), but then we can no longer consider the elements «;, A;, p;, v, 7;, w; of the binary
system (m;, M) as constant, because this system is now disturbed by the other masses m;; how-
ever, the 6n — 6 equations of disturbed relative motion, when put under the forms

8H, O&H dx’' 3H, dH
dn 8H, 8H dy’ 3H, 8H
™=y Ty m%=—§7—1——8;)3, (M2,)
odi_8H, 8H, i _H, 3H, '
' it e i dt Tt
and combined with the identical equations of the kind (L2.), give the following simple expression
for the differential of the element «, in its disturbed and variable state,

i 33y S 5H, 53, 5 bH,  SxdH, e BH o
dt 8¢ dx' 8’ 8¢ dndy Oy &y 8L & & 8’ i
together with analogous expressions for the differentials of the other elements. And if we
express £, 7, {, ', y', 2/, and therefore H, itself, as depending on the time and on these varying
elements, we may transform the 6n — 6 differential equations of the 1st order, (M2.), between
&, m, L2, y, 2/, t, into the same number of equations of the same order between the varying

elements and the time; which will be of the forms

+

dr 8H oH oH oH 8H,
o S el W e A =i SRR SR e

dA 0H, 8H,
m oy ={A, «} e +{A, u} &

d 8H oH 8H oH oH
m e = (e g Bt e gt T o g

0H OH OH
T i el

Pt QL)
dv 3H OH oH 8H oH
g Mty sl il P i~ B
dr 8H 3H 8H oH 3H
ST g, Tl al G g el

ot
or 7 |

dw SH SH SH oH
m:ﬁ ={w, ;S}E?+{w, A}—S—/\—2+{w, y}8—:+{w, V}B—v2+{w, 7}

if we put, for abridgement,
(o DeBA BB BeBN BB Bedd e o) ko
! S¢S’ 8a'd¢ " dndy Sy on 8[82 62'd( ;
and form the other symbols {«,u}, {A, «}, &c., from this, by interchanging the letters. It is
evident that these symbols have the properties,

A= —{x,A}, {k,k}=0; (184.)
and it results from the principles of the 15th number, that these combinations {x, A}, &c., when
expressed as functions of the elements, do not contain the time explicitly. There are in general,
by (184.), only 15 such distinct combinations for each of the n— 1 binary systems; but there
would thus be, in all, 15z — 15, if they admitted of no further reductions: however, it results

HMPII 26
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202 III. GENERAL METHOD IN DYNAMICS [33, 34

from the principles of the 16th number, that 12n— 12 of these combinations may be made to
vanish by a suitable choice of the elements. The following is another way of effecting as great a
simplification, at least for that extensive class of cases in which the undisturbed distance
between the two points of each binary system (m, M) admits of a minimum value.

Simplification of the Differential Expressions by a suitable choice of the Elements.
34. When the undisturbed distance r of m from M admits of such a minimum g, corre-
sponding to a time 7, and satisfying at that time the conditions
r'=0, r">0, (185.)
then the integrals of the group (I2.), or the known rules of the undisturbed motion of m about
M, may be presented in the following manner:*

e=vVA{(€y —n')*+ (n2' — Ly')* + (L' — &)%)

~

A=k—E&y +na';
M
b=t @y ) — M ()
w8 mA
v=tan > g »
r M dr
N N A i il 2
il A/M+m d'rz‘dr . > (Q)
i m\ k?)’
22l )= (1)
r M+m dr K ar
wlr-1 M gt

w=v+8in~1

ey A qJ{2M+2Mf(r)—(1+%)§};,

the minimum distance ¢ being a function of the two elements «, u, which must satisfy the

conditions
m

2p,+2Mf(q)—(1+—)K—2=O Mf' (q)+(l+ﬁ)'<—2>0' (186.)
M LGE L Mgk 5

and sin—s, tan—1¢, being used (according to Sir John Herschel’s notation)} to express, not the
cosecant and cotangent, but the inverse functions corresponding to sine and cosine, or the arcs
which are more commonly called arc (sin=s), arc (tan=¢). It must also be observed that the

factor —dL , which we have introduced under the signs of integration, is not superfluous, but

Vart

is designed to be taken as equal to positive or negative unity, according as dr is positive or
negative; that is, according as r is increasing or diminishing, so as to make the element under
each integral sign constantly positive. In general, it appears to be a useful rule, though not
always followed by analysts, to employ the real radical symbol V'R only for positive quantities,

unless the negative sign be expressly prefixed; and then L_2 will denote positive or negative
r

* [See Appendix, Note 4, p. 623, and also footnote on p. 206.]
1 [For the history of the notation for the inverse trigonometrical functions see Cajori, History of Mathematical
Notations, Vol. 11, pp. 1756-178.]
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unity, according as 7 is positive or negative. The arc given by its sine, in the expression of the
element w, is supposed to be so chosen as to increase continually with the time.

35. After these remarks on the notation, let us apply the formula (P2.) to calculate the
values of the 15 combinations such as {«, A}, of the 6 constants or elements (Q2.).

Since
r=v/(E+72+0), (187.)
it is easy to perceive that the six combinations of the 4 first elements are as follows:
{Ks A =0, {k,pu}=0, {xk,v}=0, {Apu}=0, {Av}=1, {u,v}=0. (188.)

To form the 4 combinations of these 4 first elements with =, we may observe, that this 5th
element 7, as expressed in (Q2.), involves explicitly (besides the time) the distance r, and the
two elements «, u; but the combinations already determined show that these two elements may
be treated as constant in forming the four combinations now sought; we need only attend,
therefore, to the variation of r, and if we interpret by the rule (P2.) the symbols {x, 7}, {A, 7},
{u,r}, {v,r}, and attend to the equations (I2.), we see that

{«,7}=0, {A,r}=0, {,u,r}=—g;, {v,r}=0, (189.)
dr

= bemg the total differential coefficient of » in the undisturbed motion, as determined by the
equatlons (I2.); and, therefore, that

{x,7}=0, {A7}=0, {v,7}=0, (190.)
and
S'rd?‘ dt dr

observing that in differentiating the expressions of the elements (Q%.), we may treat those
elements as constant, if we change the differentials of £, 7, {, ', y’, 2’ to their undisturbed values.
It remains to calculate the 5 combinations of these 5 elements with the last element w; which is
given by (Q2.) as a function of the distance r, the coordinate {, and the 4 elements «, A, p, v; 0
that we may employ this formula,

dw dw Sw dw dw dw
{e, w}=§ {e, ?‘}+S—C- {e,}+ g;{e, K}+ 5 {e,A} + 5a {e,u} + . {e,v}, (192.)

in which, if e be any of the first five elements, or the distance r,
de de

{e, f}——-( 5z sy ‘:3 ) {e,{}=— 8,, {e,x}=0, (193.)

dw [Sk\1l dw d{dw Bw
=)+ m--Zn b (104,

the formula (192.) may therefore be thus written:

PR { (538;””?33,'*533) e | (8;4)‘1]

&x' +ny’ +Cz QJ 52’

and

(195.)

+{e, v}+ S e R}+ {-g s

26-2
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204 III. GENERAL METHOD IN DYNAMICS [35

We easily find, by this formula, that
drdw

{r,w}==1; A w}=0; {p,w}=0; {r,o}= dtap, (196.)
and
o dw dw
{v,w}= —&—8—{—§=O. (197.)

The formula (195.) extends to the combination {r,w} also; but in calculating this last
combination we are to remember that r is given by (Q?2.) as a function of «, y, 7, such that

& Lt
5= — 7 (198.)
and thus we see, with the help of the combinations (196.) already determined, that
o dw 8 3
{'r,w}=—s'~(—8‘u S f 0,dr +— J Q.dr, (199.)

if we represent for abridgement by ©, and Q, the coefficients of dr under the integral signs in
(Q2.), namely,

M+m «?)7%
i A/M+m\/d2{ bl A Fz} ’
e g g (200.)
+m ar +m k
PR e \/dz{2 +2Mf(r)—T.;§} .
These coefficients are evidently connected by the relation
’ 50, 80,
S s r -0, (201.)
which gives
2 ["o,ar+2 ["Qar=0 (202.)
SKT,T S‘U,,.'rr_’ "

r, being any quantity which does not vary with the elements x and p; we might therefore at
once conclude by (199.) that the combination {r, w} vanishes, if a difficulty were not occasioned
by the necessity of varying the lower limit ¢, which depends on those two elements, and by the
circumstance that at this lower limit the coefficients ©,, {2, become infinite. However, the
relation (202.) shows that we may express this combination {r, w} as follows:

S [ S [ »
{T, w}=$J‘q @rd?’-f'-a—’—LJ‘q Q,.dr, (203.)

r, being an auxiliary and arbitrary quantity, which cannot really affect the result, but may be
made to facilitate the calculation; or in other words, we may assign to the distance r any
arbitrary value, not varying for infinitesimal variations of «, u, which may assist in calculating
the value of the expression (199.). We may therefore suppose that the increase of distance r — ¢
is small, and corresponds to a small positive interval of time ¢ —, during which the distance r
and its differential coefficient 7" are constantly increasing; and then after the first moment =,
the quantity

®r= = (204.)
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will be constantly finite, positive, and decreasing, during the same interval, so that its integral
must be greater than if it had constantly its final value; that is,

t~r=r®,dr>(r—q) 0,. (205.)
q

Hence, although O, tends to infinity, yet (r—g)®, tends to zero, when by diminishing the
interval we make r tend to ¢; and therefore the following difference

J:Q,.dr-—&mxf 0, dr _M“*mj (rz )@ de (206.)

will also tend to 0, and so will also its partial differential coefficient of the first order, taken with
respect to u.* We find therefore the following formula for {r, w}, (remembering that this com-
bination has been shown to be independent of r,)

{f,w}=r{xq{ f 0, dr +M;m ";88 L@ d«r}; (207.)

the sign A implying that the limit is to be taken to which the expression tends when r tends

Pe=g

to ¢. In this last formula, as in (199.), the integral fr @®,dr may be considered as a known
. a
function of 7, ¢, «, p, or simply of r, ¢, x, if u be eliminated by the first condition (186.); and since
it vanishes independently of « when » =g, it may be thus denoted:
[fe.ar=p0.0.0-4@.2.0, (208.)
d .
the form of the function ¢ depending on the law of attraction or repulsion. This integral there-
fore, when considered as depending on « and p, by depending on « and ¢, need not be varied with
respect to «, in calculating {7, w} by (207.), because its partial differential coefficient (88—« r @,dr) .
q

obtained by treating ¢ as constant, vanishes at the limit r = g; nor need it be varied with respect
to g, because, by (186.),

dq M +m K dq _
e (209.)
it may therefore be treated as constant, and we find at last
{r,w}=0, (210.)

the two terms (199.) or (203.) both tend.mg to infinity when r tends to ¢, but always destroying
each other.

[—mof the form ¢ , where s remains finite, ('; :5)3_8 is of the form —[_—_,wherefisﬁnite in
(r_Q)i i & a.u. afr—
the interval of integration. It follows that ai (:, #) & O,dr -0 as r— q:l
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36. Collecting now our results, and presenting for greater clearness each combination
under the two forms in which it occurs when the order of the elements is changed, we have, for
each binary system, the following thirty expressions:*

{x, }=0, {x,u}=0, {x, v}=0, {x, 7}=0, {x,w}=-1,

{A «}=0, {A, pu}=0, {a, v}=1, A, 71=0, {A w}=0,

{:“" K} =0, {/“’ A} =0, {l-": V} =0, {F"’ 7'} =1, {F", w} =0, | (R2.)
{v, }}=0, {v, }=-=1, {v, u}=0, {v, 7}=0, {v, w}=0,

{r, k}=0, {r, A}=0, {r, p}=—1, {1, v}=0, {7, w}=0,

{w,k}=1, {w,A}=0, {w,pu}=0, {w,}=0, {w,7}=0;

so that the three combinations
{w) Ao, A}
are each equal to positive unity; the three inverse combinations
muh ool B4
are each equal to negative unity; and all the others vanish. The six differential equations of the
first order, for the 6 varying elements of any one binary system (m, M), are therefore, by (02.),

odu_8H, dr__SH,
oo g e o’
do 8H, _dc_ 8H, i
10 s il e e
RO _8Hy v 8H,
g A Ve W Gy

and, if we still omit the variation of ¢, they may all be summed up in this form for the variation

ofiH 5,
: SHy=%.m(u'dr—7'8u+ w'dk — k'8w + A'8v—v'3A), 6 )

which single formula enables us to derive all the 6n — 6 differential equations of the first order,
for all the varying elements of all the binary systems, from the variation or from the partial
differential coefficients of a single quantity H,, expressed as a function of those elements.

If we choose to introduce into the expression (T2.), for 8H,, the variation of the time ¢, we
have only to change 8r to v —8t, because, by (Q2.), 8t enters only so accompanied; that is, ¢
enters only under the form ¢ —7;, in the expressions of &;, 9;, {;, #;, ¥;, 2; as functions of the time
and of the elements; we have, therefore,

oH, SH, i
—B‘t— =-2 Sr i b g mu
* [If we put §=r cos l cos ¢, n=r cos I sin ¢, {=r sin [, the principal function S satisfies

The Jacobi Complete Integral can be put in the form

S=—y.t+(l<—/\)¢+/\/l( X o dl+\/M+ f{zwéw(r)_(u;l})r—“:}*dmconst.,

where «, A, p are arbitrary constants. We, then, easily obtain %—S—w, gi - ZS Hence by Donkin’s

Theorem (Routh’s Advanced Rigid Dynamics, Art. 496), (x, —w), (A, v), (u, 7) form a ca.nomcal set of constants and
hence relations (R2.) hold.]

(211.)
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36, 37] III. GENERAL METHOD IN DYNAMICS 207
and since, by (H2.), (Q2.),

H,=X.my, (212.)
we find finally,
dHl_ _SHz 2
> R i

This remarkable form for the differential of H,, considered as a varying element, is general
for all problems of dynamics. It may be deduced by the general method from the formule of
the 13th and 14th numbers, which give*

dH, _8H, (8111 Sk, SH, skl) 8H, o, (SHl Skey OH, aksn)
31(1

dt oy dw Ow & Skg, \ Oy 8@ dm &y (213.)
Sy SHyd | Syde,_ OH, |
i e Bl e 86 vl B Bbic it Bl

Ky, Ka, ... K¢, being any 6n elements of a system expressed as functions of the time and of the
quantities 7, w; or more concisely by this special consideration, that H, + H, is constant in the
disturbed motion, and that in taking the first total differential coefficient of H, with respect to
the time, the elements may by (F.) be treated as constant. It is also a remarkable corollary of
the general principles just referred to, but one not difficult to verify, that the first partial

differential coefficient %i:—“’ of any element «,, taken with respect to the time, may be expressed

as a function of the elements alone, not involving the time explicitly.

On the essential distinction between the Systems of Varying Elements considered in
this Essay and those hitherto employed by mathematicians.

37. When we shall have integrated the differential equations of varying elements (S2.), we
can then calculate the varying relative coordinates ¢, 7, {, for any binary system (m, M), by the
rules of undisturbed motion, as expressed by the equations (I%.), (Q2.), or by the followmg
connected formulze:

§=r(cose+%sin(0-—v)sinv),
=78l O—ésin(e— ) 2
n=r|sin - v)cosv]|, (V )

E:f—(\/msin(()-—v)z

* [To deduce (213.) from §§ 13, 14. We have (since H, remains constant for undisturbed motion)
d_I_{1 -3 OH, on, dr; | OH, 0w, dr; (aHlav,,+aHIam> oH,

s el T i B L\ B O, B, T, ) P B,

=2(9H_16m AN
avh 6:(, 3w 6:(‘ 31;,3w¢ 612!,3% 3:(,
0H,[ 0H, {617, Ok; Ox;  Ong Ok 3;:,} 5 oH, {6111 s Oy Ore;  Owg Ok ﬂhj}]

O L ony \o; &, 0, Orc; O, Oy

Ok; Ony 0wy Oke; Oy Oy

But Zai’ 231],31(; Zam Ok b, zaw Ore;

axi%=8“’ e e 2 Bn, O, B, =8, where §;; equals 1 or 0 according as s is or is
not equal to ¢.. . dH,_. oH, {aH, Ok; _OH, 8_;q} 6H Orc; ]
oAt T % o o, 0w, 0w, On, O; Ot

# S Sl D M e nll)
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208 III. GENERAL METHOD IN DYNAMICS [37, 38

in which the distance 7 is determined as a function of the time ¢ and of the elements , «, u, by
the 5th equation (Q2.), and in which* e it
r M+m dr K
M vap B

2y ?
M/{2’°+ 2 Mf (r)— Mﬂ}m i %}
q being still the minimum of r, when the orbit is treated as constant, and being still connected
with the elements «, u, by the first equation of condition (186.). In astronomical language, M
is the sun, m a planet, £, 5,  are the heliocentric rectangular coordinates,  is the radius vector,
6 the longitude in the orbit, w the longitude of the perihelion, v of the node, 6 — w is the true
anomaly, ¢ — v the argument of latitude, p the constant part of the half square of undisturbed
heliocentric velocity, diminished in the ratio of the sun’s mass (M) to the sum (M + m) of masses

(W2)

0=w+

of sun and planet, « is the double of the areal velocity diminished in the same ratio, - is the

K
versed sine of the inclination of the orbit, ¢ the perihelion distance, and 7 the time of perihelion
passage. The law of attraction or repulsion is here left undetermined; for Newton’s law, p is
the sun’s mass divided by the axis major of the orbit taken negatively, and « is the square root
of the semiparameter, multiplied by the sun's mass, and divided by the square root of the sum
of the masses of sun and planet. But the varying ellipse or other orbit, which the foregoing
formule require, differs essentially (though little) from that hitherto employed by astronomers:
because it gives correctly the heliocentric coordinates, but not the heliocentric components of
velocity, without differentiating the elements in the calculation; and therefore does not touch
but cuts, (though under a very small angle,) the actual heliocentric orbit, described under the
influence of all the disturbing forces.

38. For it results from the foregoing theory, that if we differentiate the expressions (V2.)
for the heliocentric coordinates, without differentiating the elements, and then assign to those
new varying elements their values as functions of the time, obtained from the equations (S2.),
and deduce the centrobaric components of velocity by the formulz (I2.), or by the following:

g M r i M r ’ MCF
. i =m§?_n’ y =M:m’ =M (3144
* [To deduce (V2.) from (Q2.) we have
(7' =Ly P+ — ) =1 — (k= 2)*= (2 A — X*).

Therefore 7 =Ly =V2A—Asiny, ¢ —l&'=V2kA—2%cos .
Consequently V' 2id— X (¢ sin v—mn 08 v)+(k—A) {=Z¢ (2’ = Ly') =0,
that is, £sinv—n cos v= v—‘7‘2ﬂ;;——i-x‘- L.
Also E4nqr=r-[2
B . | 580 2rz \ 4
s, el e~ )
From (W2.) and (Q2.) we see that Fé:ac_,\a =r sin (#—v), and therefore

£siny—n coav=(—l+-2)rsin{9—v},

£ cos v+ q sinv=rcos (6 —v),
from which (V2.) follows immediately.]
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38, 39] III. GENERAL METHOD IN DYNAMICS 209

then these centrobaric components will be the same functions of the time and of the new varying
elements which might be otherwise deduced by elimination from the integrals (Q32.), and will
represent rigorously (by the extension given in the theory to those last-mentioned integrals) the
components of velocity of the disturbed planet m, relatively to the centre of gravity of the whole
solar system. We chose, as more suitable to the general course of our method, that these centro-
baric components of velocity should be the auxiliary variables to be combined with the helio-
centric coordinates, and to have their disturbed values rigorously expressed by the formule
of undisturbed motion; but in making this choice it became necessary to modify these latter
formulee, and to determine a varying orbit essentially distinct in theory (though little differing
in practice) from that conceived so beautifully by Lagrange.* The orbit which he imagined was
more simply connected with the heliocentric motion of a single planet, since it gave, for such
heliocentric motion, the velocity as well as the position; the orbit which we have chosen is
perhaps more closely combined with the conception of a multiple system, moving about its
common centre of gravity, and influenced in every part by the actions of all the rest. Whichever
orbit shall be hereafter adopted by astronomers, they will remember that both are equally fit
to represent the celestial appearances, if the numeric elements of either set be suitably deter-
mined by observation, and the elements of the other set of orbits be deduced from these by
calculation. Meantime mathematicians will judge, whether in sacrificing a part, of the simplicity
of that geometrical conception on which the theories of Lagrange and Poisson are founded, a
simplicity of another kind has not been introduced, which was wanting in those admirable
theories; by our having succeeded in expressing rigorously the differentials of all our own new
varying elements through the coefficients of a single function: whereas it has seemed necessary
hitherto to employ one function for the Earth disturbed by Venus, and another function for
Venus disturbed by the Earth.

Integration of the Simplified Equations, which determine the new varying Elements.

39. The simplified differential equations of varying elements, (S2.), are of the same form as
the equations (A.), and may be integrated in a similar manner. If we put, for abridgement,
_(*s(.9H, , 08H, &H, .
(‘T,K,V)—JO lz(T—?s?'i"K—S—’;—“l'V—S;/")—Hz dt, (X .)
and interpret similarly the symbols (i, w, A), &c., we can easily assign the variations of the
following 8 combinations, (7, &, v), (g, w, A), (@, &, v), (7, , A), (1, W, v), (g, &, A), (1, &, A), (K, w, );

namely,
3 (1, k, v)=2.m (10p — 7¢O + K dw — ko Sy + v OA — vy 8A,) — H, 3¢,

8 (1, 0, A) =2 . m (g 07— 8T + wodrcg — w8k + Ay dvy — Adv) — H , 8t,
3 (1, 1, v) =2 . m (g d7g— O + K 8w — Ky dwy + VA — v 8Ay) — H, 8t,
d(r, w,A)=Z . m (78 — 7By + wy Sy — w i + Ay Sy — Adv) — H 3¢,
8 (.0, VY= B . 10 Bt = 7o Bt g Bieq 10 81 + A —wy Sg) = H B4,
3 (u, Kk, A) =2 .M (pgd7g— 7 + Kk dw — Ky Sy + Aydvy — Adv) — H, 8,
3(r, k, A) =2 .m (T3 —7y Sy + kS — Ky Sewy + AgSvy — Adv) — H, 8¢,
8 (1, w,v) =2 .m (ugdry— por + wydicy — w Sk + v A — vy 8Ag) — H , 3t, )
i * [See Appendix, Note 7, p. 628.]

HMPII 27
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Ko Ags os Vo To» W being the initial values of the varying elements «, A, p, v, 7, w. If, then, we
consider, for example, the first of these 8 combinations (r, k, v), as a function of all the 3n —3
elements u;, w;, A;, and of their initial values y, ;, g ;, Ag ¢, involving also in general the time
explicitly, we shall have the following forms for the 6n— 6 rigorous integrals of the 6n—6
equations (S2.):

m’i'ri=8~8_(’r’ K, V); mi‘ro ! B T (Ty K, V);
e } Spto, s
8 '
mik;= % (7': K, V); m’lKO,i= b o 80)0 g ('T, K, V); l&- (ZJ.)
(] T
b} )
mt”i=3—Ai (r,1,v); mMyvy = e B (7, 1,v);

and in like manner we can deduce forms for the same rigorous integrals, from any one of the
eight combinations (Y2.). The determination of all the varying elements would therefore be
fully accomplished, if we could find the complete expression for any one of these 8 combinations.

40. A first approximate expression for any one of them can be found from the form under
which we have supposed H, to be put, namely, as a function of the elements and of the time,
which may be thus denoted: :

Hy=H,(t, 11, A1, 151,71, @15 000 K15 A0 15 P15 Vi1 Tn-1> @n_1)3 (A3)

by changing in this function the varying elements to their initial values, and employing the
following approximate integrals of the equations (S2.),

esiidd Lt it i R
wmtat [ gt Ty [
A 1 tSHz 43 1 tSHZ 3
wmorty [ Geth xere—y [ ! 2
5 igo i oot i Sy l
“*"o*;ﬁfos—u;d" ”‘”“‘ZJOW‘”'

For if we denote, for example, the first of the 8 combinations (Y2.) by G, so that

G=(7,k,v), (C)
we shall have, as a first approximate value,
6.1 s 8H, OH, o0H, : : .
Gl—fo{z (To-g’:-f'Kom-}-VoB—Vo)—Hz}dt, (D3.)

and after thus expressing (7, as a function of the time, and of the initial elements, we can
eliminate the initial quantities of the forms 7, «,, v,, and introduce in their stead the final
quantities u, w, A, so as to obtain an expression for @, of the kind supposed in (Z2.), namely, a
function of the time ¢, the varying elements u, w, A, and their initial values y,, w,, A,. An approxi-
mate expression thus found may be corrected by a process of that kind, which has often been
employed in this Essay for other similar purposes. For the function @, or the combination
(v, x, v), must satisfy rigorously, by (Y2.), (A3.), the following partial differential equation:

8@ 156G 156 135G 1356 )

H t:‘__ A: y RS e tale L PN R
> 2( m 1 B o SN g Sy’ Y Mg Sy T

0 o Wy
18“)1’ n—1

(E2)

www.rcin.org.pl



40] : III. GENERAL METHOD IN DYNAMICS 211

and each of the other analogous functions or combinations (Y2.) must satisfy an analogous
equation: if then we change @ to G; + @,, and neglect the squares and products of the coeffi-
cients of the small correction Gy, G, being a first approximation such as that already found, we
are conducted, as a second approximation on principles already explained, to the following
expression for this correction G,:

il £ 138G, 18G, 1 3G, ; g

Gi= —fo {Tt +H, (t, i e Al ABAL o By, Wy, ...)}dt. (F3.)
which may be continually and indefinitely improved by a repetition of the same process of
correction. We may therefore, thecretically, consider the problem as solved; but it must remain
for future consideration, and perhaps for actual trial, to determine which of all these various
processes of successive and indefinite approximation, deduced in the present Essay and in the
former, as corollaries of one general Method, and as consequences of one central Idea, is best
adapted for numeric application, and for the mathematical study of phenomena.*

* [Two memoirs by M. Houél presented to the Faculté des Sciences de Paris (1855) are of interest. In the first
he employs the Principal Function to prove various known theorems about planetary perturbations and in the
second applies this method to detailed calculations of the perturbations of Jupiter. A complete bibliography of
works relating to Hamilton’s dynamical methods prior to that of Houél was given by Cayley, Brit. Ass. Report
(1857), p. 40.]
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