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III. GENERAL METHOD IN DYNAMICS 163

Introductory Remarks.

The former Essay*  contained a general method for reducing all the most important pro­
blems of dynamics to the study of one characteristic function, one central or radical relation. 
It was remarked at the close of that Essay, that many ehminations required by this method in 
its first conception might be avoided by a general transformation, introducing the time ex- 
phcitly into a part *S  of the whole characteristic function V; and it is now proposed to fix the 
attention chiefly on this part N, and to call it the Priιwipal Function. The properties of this part 
or function S, which were noticed briefly in the former Essay,↑ are now more fully set forth; 
and especially its uses in questions of perturbation, in which it dispenses with many laborious 
and circuitous processes, and enables us to express accurately the disturbed configuration of 
a system by the rules of undisturbed motion, if only the initial components of velocities be 
changed in a suitable manner. Another manner of extending rigorously to disturbed motion the 
rules of undisturbed, by the gradual variation of elements, in number double the number of the 
coordinates or other marks of position of the system, which was first invented by Lagrange, J and 
was afterwards improved by Poisson, is considered in this Second Essay under a form perhaps 
a little more general; and the general method of calculation which has already been apphed to 
other analogous questions in optics and in dynamics by the author of the present Essay, is now 
apphed to the integration of the equations which determine these elements. This general method 
is founded chiefly on a combination of the principles of variations with those of partial differ­
entials, and may furnish, when it shall be matured by the labours of other analysts, a separate 
branch of algebra, which may be called perhaps the Calculus of Principal Functions·,§ because, 
in all the chief apphcations of algebra to physics, and in a very extensive class of purely mathe­
matical questions, it reduces the determination of many mutually connected functions to the 
search and study of one principal or central relation. When apphed to the integration of the 
equations of varying elements, it suggests, as is now shown, the consideration of a certain 
Function of Elements, which may be variously chosen, and may either be rigorously determined, 
or at least approached to, with an indefinite accuracy, by a corollary of the general method. 
And to illustrate all these new general processes, but especially those which are connected with 
problems of perturbation, they are applied in this Essay to a very simple example, suggested 
by the motions of projectiles, the parabolic path being treated as the undisturbed. As a more 
important example, the problem of determining the motions of a ternary or multiple system, 
with any laws of attraction or repulsion, and with one predominant mass, which v,^as touched 
upon in the former Essay, is here resumed in a new way, by forming and integrating the 
differential equations of a new set of varying elements, entirely distinct in theory (though httle 
differing in practice) from the elements conceived by Lagrange, ∣∣ and having this advantage, that 
the differentials of aU the new elements for both the disturbed and disturbing masses may be 
expressed by the coefficients of one disturbing function.* [P. 103.] t [Pp∙ 160,161.]ί [Lagrange, “Sur la theorie g6n6rale de la variation des constantes arbitraires,” Memoires de, I'Institut (1808), p. 257; Μέα. Anal. 3rd ed. Tome i, pp. 299-320; Poisson, “Sur la variation des constantes arbitraires dans les questions de m6canique,” Journal de l'6c0le Polyt. Tome vτπ (1809), p. 266.]§ [For the development of the Calculus of Principal Functions see pp. 297^10 of this volume. A brief account of the theory is given on pp. 408-410.]II [For Lagrange’s elements see M&i. Anal. 3rd ed. Tome π, Chap, π, § 2.]
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164 III. GENERAL METHOD IN DYNAMICS [1, 2

Transformations of the Differential Equations of Motion of an Attracting or 
Repelling System.

1. It is well known to mathematicians, that the differential equations of motion of any 
system of free points, attracting or repelhng one another according to any functions of their 
distances, and not disturbed by any foreign force, may be comprised in the following formula:

the sign of summation Σ extending to all the points of the system; m being, for any one such 
point, the constant called its mass, and x, y, z being its rectangular coordinates; while x", y", z" 
are the accelerations, or second differential coefficients taken with respect to the time, and 
δaj, δ?/, 8z are any arbitrary infinitesimal variations of those coordinates, and U is a certain 
force-function, introduced into dynamics by Lagrange, and involving the masses and mutual 
distances of the several points of the system. If the number of those points be n, the formula (1.) 
may be decomposed into 3n ordinary differential equations of the second order, between the 
coordinates and the time.

and to integrate these differential equations of motion of an attracting or repelling system, or 
some transformations of these, is the chief and perhaps ultimately the only problem of mathe­
matical dynamics.

2. To facilitate and generalize the solution of this problem, it is useful to express previously 
the 3n rectangular coordinates x, y, z as functions of 3n other and more general marks of position 
)7ι, ¾,... and then the differential equations of motion take this more generalform, discovered
by Lagrange,*

in which

For, from the equations (2.) or (1.),

(3.)

(4.)

(5.)

in wliich

* [Jiec. Anal. 3rd ed. Tome i, pp. 290-292.]
(θ∙)
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2, 3] III. GENERAL METHOD IN DYNAMICS 165

and
(7.)

T being here considered as a function of the 6w quantities of the forms η and η, obtained by 
introducing into its definition (4.) the values

(8.)

A different proof of this important transformation (3.) is given in the Mecanique. Analytique.

3. The function T, being homogeneous of the second dimension with respect to the quan­
tities η', must satisfy the condition

(9.)

and since the variation of the same function T may evidently be expressed as follows,

(10.)

(11.)

we see that this variation may be expressed in this other way,

If then we put, for abridgement,

(12.)

and consider T (as we may) as a function of the following form.

we see that

and

(13.)

(14.)

(15.)

and therefore that the general equation (3.) may receive this new transformation.

(16.)

If then we introduce, for abridgement, the following expression Zi,

(17.)
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166 III. GENERAL METHOD IN DYNAMICS [3, 4

we are conducted to this new manner of presenting the differential equations of motion of a 
system of n points, attracting or repelling one another:*

(A.)

In this view, the problem of mathematical dynamics, for’a system of n points, is to integrate a 
system (A.) of 6n ordinary differential equations of the first order, between the 6n variables 

, and the time t; and the solution of the problem must consist in assigning these 6n variables 
as functions of the time, and of their own initial values, which we may call e⅛, . And all these
6n functions, or 6n relations to determine them, may be expressed, with perfect generality and 
rigour, by the method of the former Essay, or by the following simplified process.

Integration of the Equations of Motion, by means of one Principal Function.

4. If we take the variation of the definite integral

without varying t or dt, we find, by the Calculus of Variations,

in which

and therefore!

that is, by the equations of motion (A.),

(18.)

(19.)

(20.)

(21.)

(22.)

(23.)

the variation of the integral /S' is therefore

* [The canonical form (A.) had already been introduced by Lagrange in the particular case of the equations for the variations of the elements in his perturbation theory. Cf. M^c. Anal. 3rd ed. Tome i, p. 310; also Whittaker, 
Analytical Dynamics (1927), p. 264,]
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4, 5] III. GENERAL METHOD IN DYNAMICS 167

{p and e being still initial values,) and it decomposes itself into the following 6n expressions, 
when S is considered as a function of the 6n quantities η^, (involving also the time,)

(B.)

which are evidently forms for the sought integrals of the 6n differential equations of motion 
(A.), containing only one unknown function ∕S. The difficulty of mathematical dynamics is 
therefore reduced to the search and study of this one function 8, which may for that reason 
be caUed the Principal Function of motion of a system.

This function was introduced in the first Essay under the form*  

* [P. 160.]

the symbols T and U having in this form their recent meanings; and it is worth observing, that 
when 8 is expressed by this definite integral, the conditions for its variation vanishing (if the 
final and initial coordinates and the time be given) are precisely the differential equations of 
motion (3.), under the forms assigned by Lagrange. The variation of this definite integral 8 has 
therefore the double property, of giving the differential equations of motion for any trans­
formed coordinates when the extreme positions are regarded as fixed, and of giving the integrals 
of those differential equations when the extreme positions are treated as varying.↑

5. Although the function 8 seems to deserve the name here given it of Principal Function, 
as serving to express, in what appears the simplest way, the integrals of the equations of motion, 
and the differential equations themselves; yet the same analysis conducts to other functions, 
which also may be used to express the integrals of the same equations. Thus, if we put

(24.)

and take the variation of this integral Q without varying t or dt, we find, by a similar process,

so that if we consider Q as a function of the 6n quantities , p^ and of the time, we shall have 6n
expressions

(26.)

which are other forms for the integrals of the equations of motion (A.), involving the function Q 
instead of 8. We might also employ the integral

(27.)
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168 III. GENERAL METHOD IN DYNAMICS [5, 6

which was called the Characteristic Function in the former Essay, and of which, when considered 
as a function of the 6w ÷ 1 quantities , H, the variation is

And all these functions S, Q, V, are connected in such a way, that the forms and properties of 
any one may be deduced from those of any other.*

Investigation of a Pair of Partial Differential Equations of the first Order, 
which the Principal Function must satisfy.

6. In forming the variation (23.), or the partial differential coefficients (B.), of the Principal 
Function S, the variation of the time was omitted; but it is easy to calculate the coefficient

corresponding to this variation, since the evident equationnt

gives, by (20.), and by (A.), (B.),
(29.)

(30.)

It is evident also that this coefficient, or the quantity — H, is constant, so as not to alter 
during the motion of the system; because the differential equations of motion (A.) give

(31.)

If, therefore, we attend to the equation (17.), and observe that the function F is necessarily 
rational and integer and homogeneous of the second dimension with respect to the quantities 
W{, we shall perceive that the principal function S must satisfy the two following equations 
between its partial differential coefficients of the first order, which offer the chief means of 
discovering its form:f

(C.)

* [iS= V—Ht, Q= -8+∑, (ηιB-ep). The process is analogous to that on pp. 174, 175, Mathematical Papers, Vol. I, in which the functions W and T are introduced. See also Routh, Advanced Rigid Dynamics (1905), Art. 487.] 
i f ∂H ∖I [It is now more usual to write *S  = J have, analogous to (29) and (30),

The two partial differential equations are therefore

even when H is not constant. It is easy to see that these are equivalent to (C.) when H is constant. Jacobi 
(CreUe, xxvπ, pp. 97-162) showed that equations (C.) still hold when U contains t explicitly, and the corre­sponding equations for the function V are also given there.]
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6,  7]  i n. G E N E R A L  M E T H O D  I N D Y N A MI C S  1 6 9

R e ci pr o c all y,  if t h e f or m of  ∕ S b e  k n o w n,  t h e f or ms of  t h es e e q u ati o ns  ( C.) c a n  b e  d e d u c e d  

fr o m it, b y  eli mi n ati o n  of  t h e q u a ntiti es  e oτ η  b et w e e n  t h e e x pr essi o ns  of  its p arti al  diff er e nti al  

c o effi ci e nts; a n d  t h us w e  c a n  r et ur n fr o m t h e pri n ci p al  f u n cti o n S  t o t h e f u n cti o ns F  a n d  U,  

a n d  c o ns e q u e ntl y  t o t h e e x pr essi o n  H,  a n d  t h e e q u ati o ns  of  m oti o n  ( A.).

A n al o g o us  r e m ar ks a p pl y  t o t h e f u n cti o ns Q  a n d  V,  w hi c h  m ust  s atisf y  t h e p arti al  diff er e nti al  

e q u ati o ns.

( 3 2.)

a n d

( 3 3.)

G e n er al  M et h o d  of  i m pr o vi n g a n  a p pr o xi m at e  E x pr essi o n  f or t h e Pri n ci p al  

F u n cti o n  i n a n y  Pr o bl e m  of  D y n a mi cs.

7. If w e  s e p ar at e t h e pri n ci p al  f u n cti o n S  i nt o a n y  t w o p arts.

∖ ------ z

a n d  s u bstit ut e  t h eir s u m f or S  i n t h e first e q u ati o n  ( C.),.t h e f u n cti o n F,  fr o m its r ati o n al a n d  

i nt e g er a n d  h o m o g e n e o us  f or m a n d  di m e nsi o n,  m a y  b e  e x pr ess e d  i n t his n e w  w a y.

( 3 5.)

b e c a us e*

a n d

a n d  si n c e, b y  ( A.) a n d  ( B.),

( 3 6.)

( 3 7.)

( 3 8.)

t
∕ 8 5  ∖  8 5  " 1

B y  F' J i s m e a nt  t h e p a rti al  d e ri v ati v e  of  F  wit h  r e s p e ct t o .J

H M P Π  2 2
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1 7 0  III. G E N E R A L  M E T H O D  I N D Y N A MI C S  [ 7, 8

w e  e asil y  tr a nsf or m t h e first e q u ati o n ( C.) t o t h e f oll o wi n g,

w hi c h  gi v es  ri g or o usl y

( D.)

( E.)

V  V  ∖ ∕ Λ / o n /

s u p p osi n g o nl y  t h at t h e t w o p arts  li k e t h e w h ol e  pri n ci p al  f u n cti o n / S', ar e  c h os e n  s o as

t o v a nis h  wit h  t h e ti m e.

T his  g e n er al  a n d  ri g or o us tr a nsf or m ati o n off ers  a  g e n er al  m et h o d  of  i m pr o vi n g a n  a p pr o xi ­

m at e  e x pr essi o n  f or t h e pri n ci p al  f u n cti o n ∕ S, i n a n y  pr o bl e m  of  d y n a mi cs.  F or  if t h e p art b e  

s u c h a n  a p pr o xi m at e e x pr essi o n, t h e n t h e r e m ai ni n g p art  / S g will  b e  s m all; a n d  t h e h o m o ­

g e n e o us  f u n cti o n F  i n v ol vi n g t h e s q u ar es a n d  pr o d u cts  of  t h e c o effi ci e nts  of  t his s m all p art,  

i n t h e s e c o n d  d efi nit e  i nt e gr al ( E.), will  b e  i n g e n er al  als o  s m all, a n d  of  a  hi g h er  or d er  of  s m all ­

n ess;  w e  m a y  t h er ef or e i n g e n er al  n e gl e ct  t his s e c o n d d efi nit e  i nt e gr al, i n p assi n g  t o a  s e c o n d  

a p pr o xi m ati o n,  a n d  m a y  i n g e n er al  i m pr o v e a  first a p pr o xi m at e  e x pr essi o n 6  b y  a d di n g  t o 

it t h e f oll o wi n g c orr e cti o n.

i n c al c ul ati n g  w hi c h  d efi nit e  i nt e gr al w e  m a y  e m pl o y  t h e f oll o wi n g a p pr o xi m at e  f or ms f or t h e 

i nt e gr als of  t h e e q u ati o ns  of  m oti o n.

e x pr essi n g  first, b y  t h es e, t h e v ari a bl es as  f u n cti o ns of  t h e ti m e a n d  of  t h e 6 n  c o nst a nts  

e ,̂ p ,̂  a n d  t h e n eli mi n ati n g,  aft er  t h e i nt e gr ati o n, t h e 3 n  q u a ntiti es , b y  t h e s a m e a p pr o xi m at e  

f or ms. A n d  w h e n  a n  i m pr o v e d e x pr essi o n, or  s e c o n d a p pr o xi m at e v al u e  ∕ S ^ι 4- Δ∕ Sι, f or t h e 

pri n ci p al  f u n cti o n S,  h as  b e e n  t h us o bt ai n e d,  it m a y  b e  s u bstit ut e d i n li k e m a n n er  f or t h e first 

a p pr o xi m at e v al u e  S ,̂  s o as  t o o bt ai n  a  still cl os er  a p pr o xi m ati o n, a n d  t h e pr o c ess  m a y  b e  

r e p e at e d i n d efi nit el y.

A n  a n al o g o us  pr o c ess  a p pli es  t o t h e i n d efi nit e i m pr o v e m e nt of  a  first a p pr o xi m at e  e x pr essi o n  

f or t h e f u n cti o n Q  or  V.

Ri g or o us  T h e or y  of  P ert ur b ati o ns,  f o u n d e d o n  t h e Pr o p erti es  of  t h e Dist ur bi n g  

P art  of  t h e w h ol e  Pri n ci p al  F u n cti o n,

8. If w e  s e p ar at e t h e e x pr essi o n  H  ( 1 7.) i nt o a n y  t w o p arts  of  t h e s a m e ki n d,

i n w hi c h

a n d

( 4 0.)

( 4 1.)

( 4 2.)
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8, 9] III. GENERAL METHOD IN DYNAMICS 171

the functions J’l, F^, being such that

the differential equations of motion (A.) will take this form,
(43.)

(G.)

and if the part Hg its coefficients be small, they will not differ much from these other 
differential equations.

so that the rigorous integrals of the latter system will be approximate integrals of the former. 
Whenever then, by a proper choice of the predominant term , a system of 6n equations such
as (H.) has been formed and rigorously integrated, giving expressions for the 6n variables , 
as functions of the time t, and of their own initial values e^, p^, which may be thus denoted:

and

the simpler motion thus defined by the rigorous integrals of (H.) may be called the undisturbed 
motion oi the proposed system of n points, and the more complex motion expressed by the 
rigorous integrals of (G.) may be called by contrast the disturbed motion of that system; and to 
pass from the one to the other, may be called a Problem of Perturbation.

9. To accomphsh this passage, let us observe that the differential equations of undisturbed 
motion (H.), being of the same form as the original equations (A.), may have their integrals 
similarly expressed, that is, as follows:

8γ being here the principal function of undisturbed motion, or the definite integral

(46.)

considered as a function of the time and of the quantities ¾ > β< ∙ In like manner if we represent 
by + Ng the whole principal function of disturbed motion, the rigorous integrals of (G.) may 
be expressed by (B.), as follows:

Comparing the forms (44.) with the second set of equations (I.) for the integrals of undisturbed 
motion, we find that the following relations between the functions , Nχ must be rigorously and 
identically true:

and therefore, by (K.), that the integrals of disturbed motion may be put under the following 
forms,
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172 III. GENERAL METHOD IN DYNAMICS [9-11

We may therefore calculate rigorously the disturbed variables by the rules of undisturbed 
motion (44.), if without altering the time t, or the initial values of those variables, which 
determine the initial configuration, we alter (in general) the initial velocities and directions, by 
adding to the elements Pf the following perturbational terms.

a remarkable result, which includes the whole theory of perturbation. λVe might deduce from 
it the differential coefficients , or the connected quantities t∏γ, which determine the disturbed 
directions and velocities of motion at any time t; but a similar reasoning gives at once the 
general expression.

implying, that after altering the initial velocities and directions or the elements p^ as before, by 
the perturbational terms (M.), we may then employ the rules of undisturbed motion (45.) to 
calculate the velocities and directions at the time t, or the varying quantities , if we finally 
apply to these quantities thus calculated the following new corrections for perturbation:

(υ.)

Approximate, expressions deduced from the foregoing rigorous Theory.

10. The foregoing theory gives indeed rigorous expressions for the perturbations, in passing 
from the simpler motion (H.) or (I.) to the more complex motion (G.) or (K.): but it may seem 
that these expressions are of little use, because they involve an unknown disturbing function 
82, (namely, the perturbational part of the whole principal function /S',) and also unknown or 
disturbed coordinates or marks of position . However, it was lately shown that whenever 
a first approximate form for the principal function 8, such as here the principal function 8^ of 
undisturbed motion, has been found, the correction 82 can in general be assigned, with an 
indefinitely increasing accuracy; and since the perturbations (M.) and (0.) involve the disturbed 
coordinates only as they enter into the coefficients of this small disturbing function 82, it is 
evidently permitted to substitute for these coordinates, at first, their undisturbed values, and 
then to correct the results by substituting more accurate exp^Ossions.

11. The function 8^^ of undisturbed motion must satisfy rigorously two partial differential 
equations of the form (C.), namely.

(P.)

and therefore, by (D.), the disturbing function 82 must satisfy rigorously the following other 
condition:
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11, 12] in. GENERAL METHOD IN DYNAMICS 173

and may, on account of the homogeneity and dimension of F, be approximately expressed as 
follows:

or thus, by (I.),

(R.)

(S.)

{T.)
that is, by (42.),

In this expression, is given immediately as a function of the varying quantities , w^, but 
it may be considered in the same order of approximation as a known function of their initial 
values , and of the time t, obtained by substituting for , their undisturbed values (44.), 
(45.) as frmctions of those quantities; its variation may therefore be expressed in either of the 
two following ways:

or

(48.)

(49.)

Adopting the latter view, and effecting the integration (T.) with respect to the time, by 
treating the elements q, as constant, we are afterwards to substitute for the quantities Pi their 
undisturbed expressions (39.) or (I.), and then we find for the variation of the disturbing func­
tion So the expression*

(50.)

which enables us to transform the perturbational terms (M,), (0.)into the following approximate 
forms:

and

(U.)

(V.)

containing only functions and quantities which may be regarded as given, by the theory of 
undisturbed motion.

12. In the same order of approximation, if the variation of the expression (44.) for an un­
disturbed coordinate be thus denoted.

(51.)

(W.)

the perturbation of that coordinate may be expressed as follows:

* [The object is to express in terms of η and e, or 8S2 in terms of η, 8η, e, δe.]
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174 in. GENERAL METHOD IN DYNAMICS [12, 13

that is, by (U.),

(52.)

Besides, the identical equation (47.) gives*

* [Equation (47.) is differentiated partially with respect to e⅛, the ηs being kept constant.]

(53.)

the expression (52.) may therefore be thus abridged,

(X.)

and shows that instead of the rigorous perturbational terms (M.) we may approximately 
employ the following.

(Y.)

in order to calculate the disturbed configuration at any time t by the rules of undisturbed 
motion, provided that besides thus altering the initial velocities and directions we alter also the 
initial configuration, by the formula

(Z.)

It would not be difficult to calculate, in like manner, approximate expressions for the disturbed 
directions and velocities at any time i; but it is better to resume, in another way, the rigorous 
problem of perturbation.

Other Rigorous Theory of Perturbation, founded on the properties of the disturbing 
part of the constant of living force, and giving formulce for the Variation of 
Elements more analogous to those already known.

13. Suppose that the theory of undisturbed motion has given the 6w constants , or any 
combinations of these, , K2, ... , as functions of the 6w variables , and of the time t,
which may be thus denoted: 

and which give reciprocally expressions foτ the variables , in terms of these elements and of 
the time, analogous to (44.) and (45.), and capable of being denoted similarly.
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13, 14] III. GENERAL METHOD IN DYNAMICS 175

then, the total differential coefficient of every such element or function , taken with respect 
to the time, (both as it enters explicitly and implicitly into the expressions (54.),) must vanish 
in the undisturbed motion; so that, by the differential equations of such motion (H.), the 
following general relation must be rigorously and identically true:

(56.)

In passing to disturbed motion, if we retain the equation (54.) as a definition of the quantity 
κ^, that quantity will no longer be constant, but it will continue to satisfy the inverse relations 
(55.), and may be called, by analogy, a varying element of the motion; and its total differential 
coefficient, taken with respect to the time, may, by the identical equation (56.), and by the 
differential equations of disturbed motion (G.), be rigorously expressed as follows:

(Ab)

14. This result (A^.) contains the whole theory of the gradual variation of the elements of 
disturbed motion of a system; but it may receive an advantageous transformation, by the sub­
stitution of the expressions (55.) for the variables ¾ as functions of the time and of the 
elements; since it will thus conduct to a system of 6n rigorous and ordinary differential equations 
of the first order between those varying elements and the time. Expressing, therefore, the 
quantity as a function of these latter variables, its variation takes this new form.

(57.)

and gives, by comparison with the form (48.), and by (54.),

(58.)

and thus the general equation (A’.) is transformed to the following.

in which

(Bb)

(Cb)

so that it only remains to eliminate the variables 77, τa from the expressions of these latter 
coefficients. Now it is remarkable that this elimination removes the symbol t also, and leaves 
the coefficients a^ 3 expressed as functions of the elements κ alone, not explicitly involving the 
time. This general theorem of dynamics, which is, perhaps, a little more extensive than the 
analogous results discovered by Lagrange and by Poisson,*  since it does not limit the disturbing 
terms in the differential equations of motion to depend on the configuration only, may be 
investigated in the following way.* [Lagrange, “Snr la th6orie g6n6rale de la variation des constantes arbitraires,” Mdmoires de I'Institut (1808), p. 288; Poisson, “Sur la variation des constantes arbitraires dans les questions de m6canique,**  Journal de Vβcole 
Polyt. Tome vιπ (1809), pp. 288, 289. See reference to Lovett, p. 160.]
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15. The sign of summation Σ in (C^.), like the same sign in those other analogous equations 
in which it has already occurred without an index in this Essay, refers not to the expressed 
indices, such as here i, 5, in the quantity to be summed, but to an index which is not expressed, 
and which may be here called r; so that if we introduce for greater clearness this variable index 
and its limits, the expression (C^.) becomes

(59.)

and its total differential coefficient, taken with respect to the time, may be separated into the 
two following parts.

(60.)

which we shaU proceed to calculate separately, and then to add them together. By the definition 
(54.), and the differential equations of disturbed motion (G.),

(61.)

in which, by the identical equation (56.),

we have therefore
(62.)

(63.)

and 3- may be found from this, by merely changing i to s: so that*  at oTHf

(64.)

and similarly.

(65.)

δ^ίί δ^∕i* [In (64.) and (65.) the coefficients of and of easily seen to be zero. Also if we interchange■ g2the suffices in the coefficient of in (64.) the term cancels against the corresponding term of (65.).]
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Adding, therefore, the two last expressions, and making the reductions which present them­
selves, we find, by (60.),*

(Dh)

in which

(66.)

and since this general form (D^.) for contains no term independent of the disturbing
δjy δTyquantities , , it is easy to infer from it the important consequence already mentioned,

namely, that the coeificients ¾ in the differentials (BL) of the elements, may be expressed as 
functions of those elements alone, not explicitly involving the time.↑

It is evident also, that these coefficients a^g have the property

and
(67.)

(68.)
the term proportional tc disappears therefore from the expression (B^.) for and the term

destroys the term

when these terms are added together; we have, therefore.

or
(EL)

(FL)

that is, in taking the first total differential coefficient of the disturbing expression with 
respect to the time, the elements may be treated as constant.

Simplification of the differential equations which determine these gradually varying 
elements, in any problem of Perturbation; and Integration of the simplified 7 
equations by means of certain Functions of Elements.

16. The most natural choice of these elements is that which makes them correspond, in* [It follows that in the undisturbed motion the a’s are constant, which is Poisson’s theorem {Journal de l'βcole 
Polyt. Tome viii (1809), pp. 281, 282).]I [This is most easily seen as follows. If α< ,, when expressed in terms of the κs, contains t explicitly, it would not remain constant during the undisturbed motion, which would contradict (D^.).]

HMPII 23
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undisturbed motion, to the initial quantities , . These quantities, by the differential equations 
(H.), may be expressed in undisturbed motion as follows,

(69.)

and if we suppose them found, by elimination, under the forms

(70.)

it is easy to see that the following equations must be rigorously and identically true,*  for all 
values of η√, πj√ ,

(71.)

When, therefore, in passing to disturbed motion, we establish the equations of definition.

(72.)

introducing 6n varying elements , , of which the set would have been represented in our
recent notation as follows:

we see that all the partial differential coefficients of the forms

< = 0, except the following:

, vanish when

and, therefore, that when t is made = 0, in the coefficients ¾ , (59.), all those coefficients vanish, 
except the following:

But it has been proved that these coefficients when expressed as functions of the 
elements, do not contain the time explicitly; and the supposition i = 0 introduces no relation 
between those 6n elements , , which still remain independent: the coefficients ¾ , therefore, 
could not acquire the values 1, 0, — 1, by the supposition t -0, unless they had those values 
constantly, and independently of that supposition. The differential equations of the forms 
(B^.) may therefore be expressed, for the present system of varying elements, in the following 
simpler way:

and an easy verification of these expressions is offered by the formula (E^.), which takes now 
this form.

* [Putting Z = 0 in (70.) we have Φ,- (0, e^, ... ... i>3„) = 0 for all values of the e’s and p's. Hence (71.)follows.]
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17. The initial values of the varying elements κ^,  are evidently , , by the definitions
(72.), and by the identical equations (71.); the problem of integrating rigorously the equations 
of disturbed motion (G.), between the variables and the time, or of determining these
variables as functions of the time and of their own initial values , , is therefore rigorously
transformed into the problem of integrating the equations (G^.), or of determining the 6n 
elements , as functions of the time and of the same initial values. The chief advantage of 
this transformation is, that if the pertm∙bations be small, the new variables (namely, the 
elements,) alter but little: and that, since the new differential equations are of the same form 
as the old, they may be integrated by a similar method. Considering, therefore, the definite 
integral

(76.)

as a function of the time and of the 6w quantities κ^,κ^,... ∙∙∙ observing that
its variation, taken with respect to the latter quantities, may be shown by a process similar to 
that of the fourth number of this Essay to be

we find that the rigorous integrals of the differential equations (G^.) may be expressed in the 
following manner:

in which there enters only one unknoyvn function of elements E, to the search and study of which 
single function the problem of perturbation is reduced by this new method.

We might also have put
(77.)

and have considered this definite integral C as a function of the time and of the 6n quantities 
, Pi; and then we should have found the following other forms for the integrals of the differential 

equations of varying elements.

And each of these functions of elements, G and E, must satisfy a certain partial differential 
equation, analogous to the first equation of each pair mentioned in the sixth number of this 
Essay, and deduced on similar principles.*

18. Thus, it is evident, by the form of the function E, and by the equations (K^.), (G^.), and 
(76.), that the partial differential coefficient of this function, taken with respect to the time, is

(Mb)

and therefore that if we separate this function E into any two parts
(Nb)* [C and E are the generating functions for the contact transformations from p, e to λ, κ.] 23-2
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and if, for greater clearness, we put the expression under the form

we shall have rigorously the partial differential equation

which gives, approximately, by (G^.) and (K^.), when the part is small, and when we neglect 
the squares and products of its partial differential coefficients,*

Hence, in the same order of approximation, if the part E-^, like the whole function E, be chosen 
so as to vanish with the time, we shall have

and thus a first approximate expression E^ can be successively and indefinitely corrected.

Again, by (L^.) and (G^.), and by the definition (77.),

the function C must therefore satisfy rigorously the partial differential equation.

and if we put

and suppose that the part is small, then the rigorous equation

(Ti.)

(Ui.)

(Yi.)

(Wi.)

becomes approximately, by (G^.) and (L^.),

and gives by integration.

the parts and C^, being supposed to vanish separately when t = 0, like the whole function of 
elements G.

And to obtain such a first approximation, ∙E^ or Cto either of these two functions of
elements E, C, we may change, in the definitions (76.), (77.), the varying elements κ, λ, to their* [The deduction is the same as that of (D.), p. 170.]
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i niti al v al u es  e,  p,  a n d  t h e n eli mi n at e  o n e  s et of  t h es e i niti al v al u es  b y  t h e c orr es p o n di n g  s et of  

t h e f oll o wi n g a p pr o xi m at e  e q u ati o ns,  d e d u c e d  fr o m t h e f or m ul a e ( G .̂):

a n d

( Y L)

( Z'.)

It is e as y  als o  t o s e e t h at t h es e t w o f u n cti o ns of  el e m e nts G  a n d  E  ar e  c o n n e ct e d  wit h  e a c h  

ot h er,*  a n d  wit h  t h e dist ur bi n g  f u n cti o n s o t h at t h e f or m of  a n y  o n e  m a y  b e  d e d u c e d  fr o m 

t h at of  a n y  ot h er,  w h e n  t h e f u n cti o n of  u n dist ur b e d  m oti o n  is k n o w n.

A n al o g o us  f or m ul c e f or t h e m oti o n  of  a  Si n gl e  P oi nt.

1 9. O ur  g e n er al  m et h o d  i n d y n a mi cs,  t h o u g h i nt e n d e d c hi efl y  f or t h e st u d y of  attr a cti n g  

a n d  r e p elli n g s yst e ms, is n ot  c o nfi n e d  t o s u c h, b ut  m a y  b e  us e d  i n all  q u esti o ns  t o w hi c h  t h e l a w 

of  h vi n g  f or c es a p pli es.  A n d  all  t h e a n al ysis  of  t his Ess a y,  b ut  es p e ci all y  t h e t h e or y of  p er ­

t ur b ati o ns, m a y  us ef u U y  b e  ill ustr at e d b y  t h e f oll o wi n g a n al o g o us r e as o ni n gs a n d r es ults 

r es p e cti n g t h e m oti o n  of  a  si n gl e p oi nt.

I m a gi n e t h e n s u c h  a  p oi nt,  h a vi n g  f or its t hr e e r e ct a n g ul ar c o or di n at es  x,  y,  z,  a n d  m o vi n g  i n 

a n  or bit  d et er mi n e d  b y  t hr e e or di n ar y  diff er e nti al  e q u ati o ns of  t h e s e c o n d or d er  of  f or ms 

a n al o g o us  t o t h e e q u ati o ns  ( 2.), n a m el y,

U  b ei n g  a n y  gi v e n  f u n cti o n of  t h e c o or di n at es  n ot  e x pr essl y  i n v ol vi n g t h e ti m e: a n d  l et us  

est a blis h  t h e f oll o wi n g d efi niti o n,  a n al o g o us  t o ( 4.),

x',  y ∖  z'  b ei n g  t h e first, a n d  x " , y " , z " b ei n g  t h e s e c o n d  diff er e nti al  c o effi ci e nts  of  t h e c o or di n at es,  

c o nsi d er e d as f u n cti o ns of  t h e ti m e t. If w e  e x pr ess, f or gr e at er  g e n er alit y  or  f a cilit y, t h e 

r e ct a n g ul ar c o or di n at es  x,  y,  z as  f u n cti o ns of  t hr e e ot h er  m ar ks  of  p ositi o n , η 2  > Vs » will  
b e c o m e  a  h o m o g e n e o us  f u n cti o n of  t h e s e c o n d di m e nsi o n  of  t h eir first diff er e nti al  c o effi ci e nts  

η[ , η' 2,  V 3  t a k e n wit h  r es p e ct t o t h e ti m e; a n d  if w e  p ut,  f or a bri d g e m e nt.

( 8 0.)

( 8 1.)

T  m a y  b e  c o nsi d er e d  als o  as  a  f u n cti o n of  t h e f or m

w hi c h  will  b e  h o m o g e n e o us  of  t h e s e c o n d  di m e nsi o n  wit h  r es p e ct t o , nj g , π > 3 . W e  m a y  als o  p ut,  

f or a bri d g e m e nt.

a n d  t h e n, i nst e a d 0 1  t n e t hr e e dι π er e ntι al  e q u ati o ns  0 1  t h e s e c o n d or d er  ( 7 o.), w e  m a y  e m pl o y
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t h e si x f oll o wi n g of  t h e first or d er,  a n al o g o us  t o t h e e q u ati o ns  ( A.), a n d  o bt ai n e d  b y  a  si mil ar  

r e as o ni n g,

2 0. T h e  ri g or o us i nt e gr als of  t h es e si x diff er e nti al  e q u ati o ns  m a y  b e  e x pr ess e d  u n d er  t h e 

f oll o wi n g f or ms, a n al o g o us  t o ( B.),

( 8 3.)

( 8 4.)

i n w hi c h  , , β θ , , , P 3  ar e  t h e i niti al v al u es,  or  v al u es  at  t h e ti m e 0,  of  η 2 >  V 3 >
a n d  < S  is t h e d efi nit e  i nt e gr al

Λ  √  / C*  T T  C <  T T  C s  T T  ∖

c o nsi d er e d  as  a  f u n cti o n oι ηι, η 2 > V 3 > ^ι > ^ 2 > ^ 3  T h e  q u a ntit y  H  d o es  n ot  c h a n g e  i n t h e c o urs e
of  t h e m oti o n,  a n d  t h e f u n cti o n S  m ust  s atisf y  t h e f oll o wi n g p air  of  p arti al  diff er e nti al  e q u ati o ns  

of  t h e first or d er,  a n al o g o us  t o t h e p air  ( C.),

( 8 6.)

T his  i m p ort a nt f u n cti o n / S', w hi c h  m a y  b e  c all e d t h e pri n ci p al  f u n cti o n of  t h e m oti o n,  m a y  

h e n c e  b e  ri g or o usl y e x pr ess e d  u n d er  t h e f oll o wi n g f or m, o bt ai n e d  b y  r e as o ni n gs a n al o g o us  t o 

t h os e of  t h e s e v e nt h n u m b er  of  t his Ess a y:

( 8 7.)

b ei n g  a n y  ar bitr ar y  f u n cti o n of  t h e s a m e  q u a ntiti es η ,̂  V 3’ ^ 3 ’^ > c h os e n  as  t o v a nis h  
wit h  t h e ti m e. A n d  if t his ar bitr ar y  f u n cti o n b e  c h os e n  s o as  t o b e  a  first a p pr o xi m at e  v al u e  

of  t h e pri n ci p al  f u n cti o n S,  w e  m a y  n e gl e ct,  i n a  s e c o n d a p pr o xi m ati o n,  t h e s e c o n d d efi nit e  

i nt e gr al i n ( 8 7.).

2 1. A  first a p pr o xi m ati o n of  t his ki n d  c a n b e  o bt ai n e d,  w h e n e v er,  b y  s e p ar ati n g t h e 

e x pr essi o n  H,  ( 8 2.), i nt o a  pr e d o mi n a nt  a n d  a  s m all er p art, a n d  H ,̂  a n d  b y  n e gl e cti n g  t h e 

p art  ∏ 2,  w e  h a v e  c h a n g e d  t h e diff er e nti al  e q u ati o ns  ( 8 3.) t o ot h ers,  n a m el y.

( 8 8.)
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and have succeeded in integrating rigorously these simplified equations, belonging to a simpler 
motion, which may be called the undisturbed motion of the point. Eor the principal function of 
such undisturbed motion, namely, the definite integral

(89.)

considered as a function of , 7/2 > Vs > > ^2 > ⅜ > will then be an approximate value for the original 
function of disturbed motion 8, which original function corresponds to the more complex 
differential equations.

(90.)

The function 8^ of undisturbed motion must satisfy a pair of partial differential equations of 
the first order, analogous to the pair (86.); and the integrals of undisturbed motion may be 
represented thus.

(91.)

while the integrals of disturbed motion may be expressed with equal rigour under the following 
analogous forms.

(92.)

if 82 denote the rigorous correction of >Sι, or the disturbing part of the whole principal function 
8. And by the foregoing general theory of approximation, this disturbing part or function 8^ 
may be approximately represented by the definite integral (T.),

(93.)

in calculating which definite integral the equations (91.) may be employed.

22. If the integrals of undisturbed motion (91.) have given

and

(94.)

(95.)
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184 in. GENERAL METHOD IN DYNAMICS [22, 23

then the integrals of disturbed motion (92.) may be rigorously transformed as follows,

and

(96.)

(97.)

S2 being here the rigorous disturbing function. And the perturbations of position, at any time t, 
may be approximately expressed by the following formula,

(98.)

together with two similar formulae for the perturbations of the two other coordinates, or marks 
of position ^2 > ’?3 ∙ these formulae, the coordinates and //g supposed to be expressed, by the 
theory of undisturbed motion, as functions of the time t, and of the constants βχ, 62 > > ι*ι  > i>2 j i’s ∙

23. Again, if the integrals of undisturbed motion have given, by elimination, expressions 
for these constants, of the forms

and

and if, for disturbed motion, we establish the definitions

(99.)

(100.)

(101.)

(102.)

and

www.rcin.org.pl
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we shall have, for such disturbed motion, the following rigorous equations, of the forms (94.) 
and (95.),

and

(103.)

(104.)

and may call the quantities , Kg, K3, , λg, λθ the 6 varying dements of the motion. To determine
these six varying elements, we may employ the six following rigorous equations in ordinary 
differentials of the first order, in which is supposed to have been expressed by (103.) and 
(104.) as a function of the elements and of the time:

(105.)

and the rigorous integrals of these 6 equations may be expressed in the following manner.

(106.)

the constants e^, Cg, ¢3, , P2, P3 retaining their recent meanings, and being therefore the initial 
values of the elements Kj, κg, K3, λ∣, λg, λ3; while the function E, which may be called the function 
of elements, because its form determines the laws of their variations, is the definite integral

(107.)

considered as depending on , , K3, , Cg, ¢3 and t. The integrals of the equations (105.) may
also be expressed in this other way.

(108.)

(109.)
C being the definite integral

regarded as a function of , λg, λ3, p^, p^, p^ and ∙ and it is easy to prove that each of these two 
functions of elements, C and E, must satisfy a partial differential equation of the first order,** [The partial differential equations are

H MPΠ 24

www.rcin.org.pl



186 III. GENERAL METHOD IN DYNAMICS [23, 24

which can be previously assigned, and which may assist in discovering the forms of these two 
functions, and especially in improving an approximate expression for either. AU these results 
for the motion of a single point are analogous to the results already deduced in this Essay, for 
an attracting or repelling system.

Mathematical Example, suggested by the motion of Projectiles.

24. If the three marks of position , > Vs θf ⅛ he moving point are the rectangular coordinates
themselves, and if the function U has the form

(110.)
g, μ, V being constants; then the expression

illl.l
is that which must be substituted in the general forms (83.), in order to form the 6 differential 
equations of motion of the first order, namely.

(112.)

These differential equations have for their rigorous integrals the six foUowing,

and

(113.)

(114.)

βχ > βg, 6g, Pl, P2, Ps being still the initial values of , > Vs > > ⅝ ∙

Employing these rigorous integral equations to calculate the function S, that is, by (85.) 
and (110.), (111.), the definite integral

(115.)

(116.)

we find
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a n d

a n d  t h er ef or e,

( 1 1 7.)

( 1 1 8.)

I n or d er,  h o w e v er,  t o e x pr ess  t his f u n cti o n 8,  as  s u p p os e d b y  o ur  g e n er al  m et h o d,  i n t er ms 

of  t h e fi n al a n d  i niti al c o or di n at es  a n d  of  t h e ti m e, w e  m ust  e m pl o y  t h e a n al o g o us  e x pr essi o ns  

f or t h e c o nst a nts Pι, P 2 > P 3 >  d e d u c e d  fr o m t h e i nt e gr als ( 1 1 3.), n a m el y,  t h e f oll o wi n g:

( 1 1 9.)

( 1 2 0.)

a n d  t h e n w e  fi n d

T his  pri n ci p al  f u n cti o n 8  s atisfi es t h e f oll o wi n g p air  of  p arti al  diff er e nti al  e q u ati o ns  of  t h e 

first or d er,  of  t h e ki n d  ( 8 6.),

( 1 2 1.)

a n d  if its f or m h a d  b e e n  pr e vi o usl y  f o u n d, b y  t h e h el p  of  t his p air,  or  i n a n y  ot h er  w a y,  t h e 

i nt e gr als of  t h e e q u ati o ns  of  m oti o n  mi g ht  { b y  o ur  g e n er al  m et h o d]  h a v e  b e e n  d e d u c e d  fr o m it, u n d er  
t h e f or ms,

O'  Cl  Λ  ∖

( 1 2 2.)

2 4- 2
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and

(123.)

the last of these two sets of equations coinciding with the set (119.), or (113.), and conducting, 
when combined with the first set, (122.), to the other former set of integrals, (114.).

25. Suppose now, to illustrate the theory of perturbation, that the constants μ,, v are small, 
and that, after separating the expression (111.) for H into the two parts,

and
(124.)

(125.)

we suppress at first the small part , and so form, by (88.), these other and simpler differential 
equations of a motion which we shall call undisturbed·.

(126.)

These new equations have for their rigorous integrals, of the forms (94.) and (95.),

and
(127.)

(128.)

and the principal function of the same undisturbed motion is, by (89.),

(129.)

or finally, by (127.),

This function satisfies, as it ought, the following pair of partial differential equations.

(131.)
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And if by the help of this pair, or in any other way, the form (130.) of this principal function
had been found, the integral equations (127.) and (128.) might have been deduced from it, by 
our general method, as follows:

and

(132.)

(133.)

the latter of these two sets coinciding with (127.), and the former set conducting to (128.).

26. Returning now from this simpler motion to the more complex motion first mentioned, 
and denoting by the disturbing part or function which must be added to in order to make 
up the whole principal function >S of that more complex motion; we have, by applying our 
general method, the following rigorous expression for this disturbing function,

(134.)

in which we may, approximately, neglect the second definite integral, and calculate the first 
by the help of the equations of undisturbed motion. In this manner we find, approximately, 
by (125.), (127.),

9. 9.

and therefore, by integration,*

(135.)

(136.)

* [The approximate (Sg of (136.) is primarily a solution of the partial differential equation
ot O7∕ι UΥ∕ι UTJ2 ^/2 ^/3 ^73It must be a complete integral, the arbitrary constants being e^, 62, 63 and an additive constant. The method employed by Hamilton in such cases is as follows. The value of S2 is found by integrating along the path

St is then a function of t, e^, e^, e^, p^, p^, p^. Replacing p^ by ~©to., now satisfies the partial differential equation because the part arising from the differentiation of the p’s vanishes on account of relations such as
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or, by (133.),
(137.)

the error being of the fourth order, with respect to the small quantities μ, v. And neglecting this 
small error, we can deduce, by our general method, approximate forms for the integrals of the 
equations of disturbed motion, from the corrected function ∕Sι + JS^, as follows:

and

(138.)

(139.)

or, in the same order of approximation.

and

(140.)

(141.)

Accordingly, if we develope the rigorous integrals of disturbed motion, (113.) and (H4.), as far 
as the squares (inclusive) of the small quantities μ and v, we are conducted to these approximate 
integrals; and if we develope the rigorous expression (120.) for the principal function of such 
motion, to the same degree of accuracy, we obtain the sum of the two expressions (130.) and 
(137.).

27. To illustrate still further, in the present example, our general method of successive 
approximation, let denote the small unknown correction of the approximate expression 
(137.), so that we shall now have, rigorously, for the present disturbed motion.

(142.)
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8^ and being here determined rigorously by (130.) and (137.). Then, substituting + 8^, for 
)Sι in the general transformation (87.), we find, rigorously, in the present question,*

(143.)

and if we neglect only terms of the eighth and higher dimensions with respect to the small 
quantities μ,, v, we may confine ourselves to the first of these two definite integrals, and may 
employ, in calculating it, the approximate expressions (140.) for the coordinates of disturbed 
motion. In this manner we obtain the very approximate expression.

(144.)

⅛7∙χu *±vu‰v  t t uv

which is accordingly the sum of the terms of the fourth and sixth dimensions in the development 
of the rigorous expression (120,), and gives, by our general method, correspondingly approxi­
mate expressions for the integrals of disturbed motion, under the forms

(14δ.)

* [*Sι  and are rigorously determined by
and 0)(ii)

(iii), and so becomes
We see at once that the sum of three equations (i), (ii) and (iii) gives -
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and

(146.)

28. To illustrate by the same example the theory of gradually varying elements, let us 
establish the following definitions, for the present disturbed motion.

(147.)

and let us call these six quantities κ^, κ^, λ^, λ^, λg the varying elements of that motion, by
analogy to the six constant quantities e^, eg, ^3, Pi, P2> P3> which may, for the undisturbed 
motion, be represented in a similar way, namely, by (127.) and (128.),

(148.)

We shall then have rigorously, for the six disturbed variables ηι,η2)'']3> ^2> expressions
of the same forms as in the integrals (127.) and (128.) of undisturbed motion, but with variable 
instead of constant elements, namely, the following:

(149.)

and the rigorous determination of the six varying elements κχ, Kg, Kg, λj, λg, λg, as functions of 
the time and of their own initial values βι, ^3> Pι^ P2> P3> depends on the integration of the 
6 following equations, in ordinary difierentials of the first order, of the forms (105.): 

and

(150.)

(151.)

Hg being here the expression

(152.)
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which is obtained from (125.) by substituting for the disturbed coordinates , 172 > Vs their values 
(149.), as functions of the varying elements and of the time. It is not difficult to integrate 
rigorously this system of equations (150.) and (151.); and we shall soon have occasion to state 
their complete and accurate integrals: but we shall continue for a while to treat these rigorous 
integrals as unknown, that we may take this opportunity to exemplify our general method of 
indefinite approximation, for all such dynamical questions, founded on the properties of the 
functions of elements C and E. Of these two functions either may be employed, and we shall 
use here the function C.

29. This function, by (109.) and (152.), may rigorously be expressed as follows:

(153.)

∙' '' /

and has therefore the following for a first approximate value, obtained by treating the elements
Kχ, , K3, λj, λg, λ3 as constant and equal to their initial values βj, 62, 63, , pg > i>3,

(154.)

In like manner we have, as first approximations, of the kind expressed by the general formula 
(Z^.), the following results deduced from the equations (151.),

(155.)

and therefore, as approximations of the same kind.

(156.)

Substituting these values for the initial constants e^, Cg, 63 in the approximate value (154.) for 
the function of elements (7, we obtain the following approximate expression for that func­
tion, of the form supposed by our theory:

HMPΠ

(157.)

25
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The rigorous function C must satisfy, in the present question, by the principles of the eighteenth 
number, the partial differential equation.

∩58- κ ∖'"'1 /
and if it be put under the form (U^.),

Gj being a first approximation, supposed to vanish with the time, then the correction must 
satisfy rigorously the condition

159.

In passing to a second approximation we may neglect the second definite integral, and may 
calculate the first by the help of the approximate equations (155.); which give, in this manner.

(160.)

We might improve this second approximation in like manner, by calculating a new definite 
integral Cg, with the help of the following more approximate forms for the relations between the 
varying elements λj, Ag, λg and the initial constants, deduced by our general method:

(161.)
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in which we can only depend on the terms as far as the second order, but which acquire a correct­
ness of the fourth order when cleared of the small divisors, and give then*

* [If we substitute on the right-hand side of (150.) and (151.) e^, eg, es,Pι,Pz,P8 for ∕cχ, κg, κg, λ∣, λg, λg as a first approximation, integration givesκχ = eι + ⅛¾2 (eι + ⅛ιθ, λχ=Pι-μ¾ (eχ + ⅜PιO, etc.The insertion of these values in the same equations followed by an integration as before gives (162.).]t [These coefficients come from (157.).]

(162.)

But a little attention to the nature of this process shows that all the successive corrections to 
which it conducts can be only rational and integer and homogeneous functions, of the second 
dimension, of the quantities , Ag, λg, , p^,, , g, and that they may all be put under the
following form, which is therefore the form of their sum, or of the whole sought function C;

(163.)

the coefficients , , &c, being functions of the small quantities ∕x, v, and also of the time, of
which it remains to discover the forms. Denoting therefore their differentials, taken with 
respect to the time, as follows.

and substituting the expression (162.) in the rigorous partial differential equation (158.), we 
are conducted to the six following equations in ordinary differentials of the first order: 

along with the 6 following conditions, to determine the 6 arbitrary constants introduced by 
integration, I

(166.)

. In this manner we find, without difficulty, observing that may be formed from
c„ by changing v to μ,,

(167.)

25-2
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The form of the function C is therefore entirely known, and we have for this function of 
elements the following rigorous expression.

(168.)

which may be variously transformed, and gives by our general method the following systems 
of rigorous integrals of the differential equations of varying elements, (150.), (151.):

(169.)

and

(170.)

that is,

(171.)

and

(172.)
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Accordingly, these rigorous expressions for the 6 varying elements, in the present dynamical 
question, agree with the results obtained by the ordinary methods of integration from the 6 
ordinary differential equations (150.) and (151.) and with those obtained by elimination from 
the equations (113.), (114.), (147.).

Remarks on the foregoing Example.

30. The example which has occupied us in the last six numbers is not altogether ideal, but 
is realised to some extent by the motion of a projectile in a void. For if we consider the earth as 
a sphere, of radius R, and suppose the accelerating force of gravity to vary inversely as the 
square of the distance r from its centre, and to be -= g at the surface, this force will be repre- 

σ-R2
sented generally by ; and to adapt the differential equations (78.) to the motion of a pro­

jectile in a void, it will be sufficient to make

(173.)

If we place the origin of rectangular coordinates at the earth’s surface, and suppose the 
semiaxis of + 2 to be directed vertically upwards, we shall have

and
(174.)

(175.)

neglecting only those very small terms which have the square of the earth’s radius for a divisor: 
neglecting therefore such terms, the force-function U in this question is of that form (110.) on 
which all the reasonings of the example have been founded; the small constants μ, v being the 
real and imaginary quantities JiJ , respectively. We may therefore apply the results 

of the recent numbers to the motions of projectiles in a void, by substituting these values for 
the constants, and altering, where necessary, trigonometrical to exponential functions. But 
besides the theoretical facility and the little practical importance of researches respecting such 
projectiles, the results would only be accurate as far as the first negative power (inclusive) of 
the earth’s radius, because the expression (110.) for the force-function U is only accurate so far; 
and therefore the rigorous and approximate investigations of the six preceding numbers, 
founded on that expression, are offered only as mathematical illustrations of a general method, 
extending to aU problems of dynamics, at least to all those to which the law of living forces 
applies.

Attracting Systems resumed: Differential Equations of internal or Relative 
Motion; Integration by the Principal Function.

31. Returning now from this digression on the motion of a single point, to the more im­
portant study of an attracting or repelling system, let us resume the differential equations (A.), 
which may be thus summed up:

dtbH = ^{dη^w-dw^rι}∙, (A≡.)
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and in order to separate the absolute motion of the whole system in space from the motions of 
its points among themselves, let us choose the following marks of position:

and

(176.)

∩77

that is, the 3 rectangular coordinates of the centre of gravity of the system, referred to an 
origin fixed in space, and the 3w — 3 rectangular coordinates of the n—1 masses , Wg,... ^„-..1, 
referred to the nth mass , as an internal and moveable origin, but to axes parallel to the 
former.*  We then find, as in the former Essay,↑

the sign of summation Σ, referring to the first n—1 masses only; and therefore.

(178.)

(179.)

If then we put for abridgement.

(180.)

we shall have the expressiontr 1 I
(B≡.)

of which the variation is to be compared with the following form of (A≡.),

(C≡.)

in order to form, by our general process, 6n differential equations of motion of the first order, 
between the 6n quantities x„,y„, , a:',, z'„, ξ, η, ζ, x',,y',, and the time t. In thus taking
the variation of H, we are to remember that the force-function U depends only on the 3n-^ 
internal coordinates ξ, η, ζ, being of the form

(D≡.)

I [P. 127, equation (69.).]
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i n w hi c h  is a  f u n cti o n of  t h e dist a n c e  of fr o m , a n dis  a  f u n cti o n of  t h e dist a n c e  of  

fr o m w ⅛ , s u c h t h at t h eir d eri v e d  f u n cti o ns or  first diff er e nti al  c o effi ci e nts,  t a k e n wit h  r es p e ct 

t o t h e dist a n c es,  e x pr ess  t h e l a ws of  m ut u al  r e p ulsi o n, b ei n g  n e g ati v e  i n t h e c as e  of  attr a cti o n;  

a n d  t h e n w e  o bt ai n,  as  w e  d esir e d,  t w o s e p ar at e gr o u ps  of  e q u ati o ns,  f or t h e m oti o n  of  t h e 

w h ol e  s yst e m  of  p oi nts  i n s p a c e,  a n d  f or t h e m oti o ns  of  t h os e p oi nts  a m o n g  t h e ms el v es; n a m el y,  

first, t h e gr o u p

a n d  s e c o n dl y t h e gr o u p

( 1 8 1.)

( 1 8 2.)

T h e  si x  diff er e nti al  e q u ati o ns  of  t h e first or d er,  ( 1 8 1.), b et w e e n  x,, , y,,  a n d  t, c o n ­

t ai n t h e l a w of  r e ctili n e ar a n d  u nif or m  m oti o n  of  t h e c e ntr e  of  gr a vit y  of  t h e s yst e m ; a n d  t h e 

6 n  —  6  e q u ati o ns  of  t h e s a m e  or d er,  ( 1 8 2.), b et w e e n  t h e 6 n  —  6  v ari a bl es  ζ, η,  ζ, x[  , y',, z', a n d  t h e 

ti m e, ar e  f or ms f or t h e diff er e nti al  e q u ati o ns  of  i nt er n al or  r el ati v e m oti o n.  W e  mi g ht  eli mi n at e  

t h e 3 w  —  3  a u xili ar y  v ari a bl es  x ∖∙ y',,  z ∖ b et w e e n  t h es e l ast e q u ati o ns,  a n d  s o  o bt ai n  t h e f oll o wi n g 

ot h er  gr o u p  of  3 n  —  3  e q u ati o ns  of  t h e s e c o n d  or d er,  i n v ol vi n g o nl y  t h e r el ati v e c o or di n at es  a n d  

t h e ti m e.

( 1 8 3.)

b ut  it is b ett er  f or m a n y  p ur p os es  t o r et ai n t h e m u n d er  t h e f or ms ( 1 8 2.), o mitti n g,  h o w e v er,  f or 

si m pli cit y,  t h e l o w er a c c e nts  of  t h e a u xili ar y  v ari a bl es  x' , y', z' , b e c a us e  it is e as y  t o pr o v e  t h at 

t h es e a u xili ar y  v ari a bl es  ( 1 8 0.) ar e  t h e c o m p o n e nts  of  c e ntr o b ari c  v el o cit y ^*  a n d  b e c a us e,  i n 

i n v esti g ati n g t h e pr o p erti es  of  i nt er n al or  r el ati v e  m oti o n,  w e  ar e  at  li b ert y t o s u p p os e t h at t h e 

c e ntr e  of  gr a vit y  of  t h e s yst e m  is fi x e d i n s p a c e,  at  t h e ori gi n  of  x,  y,z Λ N ^  m a y  als o,  f or si m pli cit y, 

o mit  t h e l o w er a c c e nt  of  Σ, , u n d erst a n di n g  t h at t h e s u m m ati o ns ar e  t o f all o nl y  o n  t h e first 

n — 1  m ass es,  a n d  d e n oti n g  f or gr e at er  disti n ct n ess  t h e nt h  m ass  b y  a  s e p ar at e s y m b ol M ; a n d  

t h e n w e  m a y  c o m pris e  t h e diff er e nti al  e q u ati o ns  of  r el ati v e m oti o n  i n t h e f oll o wi n g si m p hfi e d 

f or m ul a, '

i n w hi c h

* [ B y c e nt r o b a ri c  v el o cit y  i s m e a nt  t h e v el o cit y  r el ati v e t o t h e m e a n  c e nt r e : 

x'i  - x ∖ , =  ( ≈ ≈i -  O  +  «  - ) =  i ∙ -  ∑∕  = a ≈ 7  ∙]
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And the integrals of these equations of relative motion are contained (by our general 
method) in the formula 

in which α, β, γ, a', b', c' denote the initial values ofξ,η, ζ, x',y',z', and /S' is the principal function 
of relative motion of the system; that is, the former function S, simplified by the omission of the 
part which vanishes when the centre of gravity is fixed, and which gives in general the laws of 
motion of that centre, or the integrals of the equations (181.).

Second Example: Case of a Ternary or Multiple System with one Predominant 
Mass; Equations of the undisturbed motions of the other masses about this, in 
their several Binary Systems; Differentials of all their Elements, expressed by 
the coefficients of one Disturbing Function.

32. Let us now suppose that the n — 1 masses m are small in comparison with the nth mass M; 
and let us separate the expression (F≡,) for H into the two following parts.

(H≡.)

of which the latter is small in comparison with the former, and may be neglected in a first 
approximation. Suppressing it accordingly, we are conducted to the following 6n — 6 differential 
equations of the 1st order, belonging to a simpler motion, which may be called the undisturbed'.

(R)

These equations arrange themselves in n — 1 groups, corresponding to the n — 1 binary 
systems {m, M}∙, and it is easy to integrate the equations of each group separately. We may 
suppose, then, these integrals found, under the forms.

(K≡.)

the six quantities κ, λ, μ, v, τ, ω being constant for the undisturbed motion of any one binary 
system; and therefore the six functions χ(3)^ ^(4)^ θP being such as
to satisfy identically the following equation.

with five other equations analogous, for the five other elements λ, μ, v, r, ω, in any one binary 
system {m, M).
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33. Returning now to the original multiple system, we may retain as definitions the equa­
tions (K≡.), but then we can no longer consider the elements λ^, , τ^, of the binary
system , Jf) as constant, because this system is now disturbed by the other masses zn^; how­
ever, the 6n — 6 equations of disturbed relative motion, when put under the forms

(M2.)

and combined with the identical equations of the kind (L2.), give the following simple expression 
for the differential of the element κ, in its disturbed and variable state.

together with analogous expressions for the differentials of the other elements. And if we 
express ξ, η, ζ, x', y', z', and therefore itself, as depending on the time and on these varying
elements, we may transform the 6w — 6 differential equations of the Ist order, (M2.), between 

η, ζ,x', y', z', t, into the same number of equations of the same order between the varying 
elements and the time; which will be of the forms

(02.)

if we put, for abridgement.

(P2.)

and form the other symbols {κ,μ}, {λ, χ}, &c., from this, by interchanging the letters. It is 
evident that these symbols have the properties.

and it results from the principles of the 15th number, that these combinations {κ, λ}, &c., when 
expressed as functions of the elements, do not contain the time exphcitly. There are in general, 
by (184.), only 15 such distinct combinations for each of the n—1 binary systems; but there 
would thus be, in all, 15n- 15, if they admitted of no further reductions: however, it results

HMPII 26
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from the principles of the 16th number, that 12n — 12 of these combinations may be made to 
vanish by a suitable choice of the elements. The following is another way of effecting as great a 
simplification, at least for that extensive class of cases in which the undisturbed distance 
between the two points of each binary system (zn, M) admits of a minimum value.

Simplification of the. Differential Expressions by a suitable choice of the Elements.
34. When the undisturbed distance r of m from M admits of such a minimum q, corre­

sponding to a time τ, and satisfying at that time the conditions
√ = 0, r">0, (185.)

then the integrals of the group (I^.), or the known rules of the undisturbed motion of m about 
M, may be presented in the following manner:*

* [See Appendix, Note 4, p. 623, and also footnote on p. 206.]t [For the history of the notation for the inverse trigonometrical functions see Cajori, History of Mathematical 
Notations, Vol. ∏, pp. 175-178.]

(Q≡.)

the minimum distance q being a function of the two elements κ, μ, which must satisfy the 
conditions /  2 /  2

and sin~^5, tan^^i, being used (according to Sir John Herschel’s notation)! to express, not the 
cosecant and cotangent, but the inverse functions corresponding to sine and cosine, or the arcs 
which are more commonly called arc (sin = s), arc (tan = i). It must also be observed that the 

factor __ , which we have introduced under the signs of integration, is not superfluous, but
Vdr^

is designed to be taken as equal to positive or negative unity, according as dr is positive or 
negative; that is, according as r is increasing or diminishing, so as to make the element under 
each integral sign constantly positive. In general, it appears to be a useful rule, though not 
always followed by analysts, to employ the real radical symbol vCK only for positive quantities, 

zunless the negative sign be expressly prefixed; and then —will denote positive or negative
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u nit y,  a c c or di n g  as  r is p ositi v e  or  n e g ati v e.  T h e  ar c  gi v e n  b y  its si n e, i n t h e e x pr essi o n  of  t h e 

el e m e nt  ω,  is s u p p os e d t o b e  s o c h os e n  as  t o i n cr e as e c o nti n u all y  wit h  t h e ti m e.

3 5. Aft er  t h es e r e m ar ks o n  t h e n ot ati o n,  l et us  a p pl y  t h e f or m ul a ( P ≡.) t o c al c ul at e  t h e 

v al u es  of  t h e 1 5  c o m bi n ati o ns  s u c h as  { z e,  λ },  of  t h e 6  c o nst a nts  or  el e m e nts ( Q .̂).

Si n c e

it is e as y  t o p er c ei v e  t h at t h e si x c o m bi n ati o ns  of  t h e 4  first el e m e nts  ar e  as  f oll o ws:

T o  f or m t h e 4  c o m bi n ati o ns  of  t h es e 4  first el e m e nts  wit h  τ, w e  m a y  o bs er v e,  t h at t his 5t h  

el e m e nt  τ, as  e x pr ess e d  i n ( Q .̂), i n v ol v es e x pli citl y  ( b esi d es t h e ti m e) t h e dist a n c e  r, a n d  t h e 

t w o el e m e nts  κ,  μ∙,  b ut  t h e c o m bi n ati o ns  alr e a d y  d et er mi n e d  s h o w  t h at t h es e t w o el e m e nts  m a y  

b e  tr e at e d as  c o nst a nt  i n f or mi n g t h e f o ur c o m bi n ati o ns  n o w  s o u g ht; w e  n e e d  o nl y  att e n d,  

t h er ef or e, t o t h e v ari ati o n  of  r, a n d  if w e  i nt er pr et b y  t h e r ul e ( P ≡.) t h e s y m b ols { κ,  r }, { λ,r },  

{∕ x,  r }, { v,  r }, a n d  att e n d  t o t h e e q u ati o ns  ( P.), w e  s e e t h at

( 1 8 9.)

6 Γ∕
—  b ei n g  t h e t ot al diff er e nti al  c o effi ci e nt  of  r i n t h e u n dist ur b e d  m oti o n,  as  d et er mi n e d  b y  t h e 

e q u ati o ns  (I .̂); a n d,  t h er ef or e, t h at

a n d
( 1 9 0.)

( 1 9 1.)

o bs er vi n g  t h at i n diff er e nti ati n g  t h e e x pr essi o ns  of  t h e el e m e nts ( Q .̂), w e  m a y  tr e at t h os e 

el e m e nts  as  c o nst a nt,  if w e  c h a n g e  t h e diff er e nti als  of  ζ,  η,  ζ,  x',  y',  z'  t o t h eir u n dist ur b e d  v al u es.  

It r e m ai ns t o c al c ul at e  t h e 5  c o m bi n ati o ns  of  t h es e 5 el e m e nts  wit h  t h e l ast el e m e nt  ω;  w hi c h  is 

gi v e n  b y  ( Q .̂) as  a  f u n cti o n of  t h e dist a n c e  r, t h e c o or di n at e  ζ, a n d  t h e 4  el e m e nts  κ,  λ,  ∕ χ, v ∖ s o 

t h at w e  m a y  e m pl o y  t his f or m ul a.

i n w hi c h,  if β  b e  a n y  of  t h e first fi v e el e m e nts,  or  t h e dist a n c e  r.

( 1 9 2.)

( 1 9 3.)

( 1 9 4.)

a n d

t h e f or m ul a ( 1 9 2.) m a y  t h er ef or e b e  t h us writt e n:

( 1 9 5.)

2 6- 2
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We easily find, by this formula, that

and

(196.)

(197.)

The formula (195.) extends to the combination {τ,ω} also; but in calculating this last 
combination we are to remember that τ is given by (Q≡.) as a function of κ, μ, r, such that

(198.)

and thus we see, with the help of the combinations (196.) already determined, that

(199.)

if we represent for abridgement by Θ,. and Ω,, the coefficients of dr under the integral signs in 
(Q2.), namely.

(200.)

These coefficients are evidently connected by the relation

which gives

(201.)

(202.)

r, being any quantity which does not vary with the elements κ and /x; we might therefore at 
once conclude by (199.) that the combination {τ, ω} vanishes, if a difficulty were not occasioned 
by the necessity of varying the lower limit q, which depends on those two elements, and by the 
circumstance that at this lower limit the coefficients Θ^, Ω,. become infinite. However, the 
relation (202.) shows that we may express this combination {r, ω) as follows:

r, being an auxihary and arbitrary quantity, which cannot really affect the result, but may be 
made to facilitate the calculation; or in other words, we may assign to the distance r any 
arbitrary value, not varying for infinitesimal variations of κ, μ, which may assist in calculating 
the value of the expression (199.). We may therefore suppose that the increase of distance r — q 
is small, and corresponds to a small positive interval of time t— τ, during which the distance r 
and its differential coefficient r' are constantly increasing; and then after the first moment τ, 
the quantity

(204.)
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will  b e  c o nst a ntl y  fi nit e, p ositi v e,  a n d  d e cr e asi n g,  d uri n g  t h e s a m e i nt er v al, s o t h at its i nt e gr al 

m ust  b e  gr e at er  t h a n if it h a d  c o nst a ntl y  its fi n al v al u e;  t h at is.

( 2 0 5.)

H e n c e,  alt h o u g h Θ,.  t e n ds t o i nfi nit y, y et  {r- q) Qj, t e n ds t o z er o, w h e n  b y  di mi nis hi n g  t h e 

i nt er v al w e  m a k e  r t e n d t o q;  a n d  t h er ef or e t h e f oll o wi n g diff er e n c e

( 2 0 6.)

will  als o  t e n d t o 0,  a n d  s o will  als o  its p arti al  diff er e nti al  c o effi ci e nt  of  t h e first or d er,  t a k e n wit h  

r es p e ct t o μ*  W e  fi n d t h er ef or e t h e f oll o wi n g f or m ul a f or { τ,  ω },  (r e m e m b eri n g t h at t his c o m ­

bi n ati o n  h as  b e e n  s h o w n t o b e  i n d e p e n d e nt of  r,)

( 2 0 7.)

t h e si g n A  i m pl yi n g t h at t h e li mit is t o b e  t a k e n t o w hi c h  t h e e x pr essi o n  t e n ds w h e n  r  t e n ds 
»• = 3

t o q. I n t his l ast f or m ul a, as  i n ( 1 9 9.), t h e i nt e gr al 0,. dr  m a y  b e  c o nsi d er e d  as  a  k n o w n  
J  9

f u n cti o n of  r, q,  κ,  μ,  or  si m pl y  of  r, q,  κ,  if μ  b e  eli mi n at e d  b y  t h e first c o n diti o n  ( 1 8 6.); a n d  si n c e  

it v a nis h es  i n d e p e n d e ntl y of  κ  w h e n  r =  g',  it m a y  b e  t h us d e n ot e d:  

t h e f or m of  t h e f u n cti o n φ  d e p e n di n g  o n t h e l a w of  attr a cti o n  or  r e p ulsi o n. T his  i nt e gr al t h er e­

f or e, w h e n  c o nsi d er e d  as  d e p e n di n g  o n  κ  a n d  μ,  b y  d e p e n di n g  o n  κ  a n d  q,  n e e d  n ot  b e  v ari e d  wit h  

r es p e ct t o κ,  i n c al c ul ati n g  { τ,  ω }  b y  ( 2 0 7.), b e c a us e  its p arti al  diff er e nti al  c o effi ci e nt  ( έ/; Qj, dr  j, 

o bt ai n e d  b y  tr e ati n g q  as  c o nst a nt,  v a nis h es  at  t h e li mit r  =  q ∖  n or  n e e d  it b e  v ari e d  wit h  r es p e ct 

t o q,  b e c a us e,  b y  ( 1 8 6.), 

it m a y  t h er ef or e b e  tr e at e d as  c o nst a nt,  a n d  w e  fi n d at  l ast 

t h e t w o t er ms ( 1 9 9.) or  (' 2 0 3.) b ot h  t e n di n g t o i nfi nit y w h e n  r  t e n ds t o q,  b ut  al w a ys  d estr o yi n g  

e a c h  ot h er.
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36. Collecting now our results, and presenting for greater clearness each combination 
under the two forms in which it occurs when the order of the elements is changed, we have, for 
each binary system, the following thirty expressions:*

(R2.)

so that the three combinations 

are each equal to positive unity; the three inverse combinations 

are each equal to negative unity; and all the others vanish. The six differential equations of the 
first order, for the 6 varying elements of any one binary system (w, M}, are therefore, by (0^.),

(S≡.)

J
and, if we still omit the variation of t, they may all be summed up in this form for the variation 
ofZ^2, 

which single formula enables us to derive all the 6w — 6 differential equations of the first order, 
for all the varying elements of all the binary systems, from the variation or from the partial 
differential coefficients of a single quantity expressed as a function of those elements.

If we choose to introduce into the expression (T≡.), for δ∕∕25 the variation of the time t, we 
have only to change δτ to δτ-δi, because, by (Q^.), δi enters only so accompanied; that is, t 
enters only under the form t—, in the expressions of ξi,ηι, ζi as functions of the time
and of the elements: we have, therefore.

(211.)* [K wθ put ξ≈r cos I cos <f>, v—r cos I sin φ, ζ = r sin I, the principal function S satisfies
The Jacobi CJomplete Integral can be put in the form

utS do VfJwhere κ, λ, μ are arbitrary constants. We, then, easily obtain yr- = ω, ^=-v, ^=-τ. Hence by Donkin’s <7∣c OΛ OμTheorem (Routh’s Advanced Rigid Dynamics, Art. 496), (κ, -ω), {λ, v), (μ, τ) form a canonical set of constants and hence relations (R^.) hold.]
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and since, by

we find finally,
(212.)

(U≡.)

This remarkable form for the differential of , considered as a varying element, is general 
for all problems of dynamics. It may be deduced by the general method from the formulae of 
the 13th and 14th numbers, which give*

(213.)

Kj, Kg J ∙ ∙ ∙ ^6w being any 6n elements of a system expressed as functions of the time and of the 
quantities η, ω; or more concisely by this special consideration, that + is constant in the 
disturbed motion, and that in taking the first total differential coefficient of Hg with respect to 
the time, the elements may by (Γ^.) be treated as constant. It is also a remarkable corollary of 
the general principles just referred to, but one not difficult to verify, that the first partial 

δκdifferential coefficient of any element Kg, taken with respect to the time, may be expressed ot
as a function of the elements alone, not involving the time explicitly.

On the essential distinction between the Systems of Varying Elements considered in 
this Essay and those hitherto employed by rriathernaticians.

37. When we shaU have integrated the differential equations of varying elements (S≡.), we 
can then calculate the varying relative coordinates ξ, η, ζ, for any binary system {m, M), by the 
rules of undisturbed motion, as expressed by the equations (I≡.), (Q^.), or by the following 
connected formulae:

(V≡.)

* [To deduce (213.) from §§ 13, 14. We have (since ∏ι remains constant for undisturbed motion)

Butnot equal to t.

, where δgt equals 1 or 0 according as s is or is
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i n w hi c h  t h e dist a n c e  r  is d et er mi n e d  as  a  f u n cti o n of  t h e ti m e t a n d  of  t h e el e m e nts  τ, κ,  μ,  b y  

t h e 5t h  e q u ati o n a n d  i n w hi c h*

( W ≡.)

√  y v ∖  ---- /

q  b ei n g  still  t h e mi ni m u m  of  r, w h e n  t h e or bit  is tr e at e d as  c o nst a nt,  a n d  b ei n g  still c o n n e ct e d  

wit h  t h e el e m e nts  κ,  μ,  b y  t h e first e q u ati o n  of  c o n diti o n  ( 1 8 6.). I n astr o n o mi c al  l a n g u a g e, M  

is t h e s u n, m  a  pl a n et,  ξ,  η,  ζ ar e  t h e h eli o c e ntri c  r e ct a n g ul ar c o or di n at es,  r  is t h e r a di us v e ct or,  

θ  t h e l o n git u d e i n t h e or bit,  ω  t h e l o n git u d e of  t h e p eri h eli o n,  v  of  t h e n o d e,  θ  —  ω  is t h e tr u e 

a n o m al y,  θ- v  t h e ar g u m e nt  of  l atit u d e, μ  t h e c o nst a nt  p art  of  t h e h alf  s q u ar e of  u n dist ur b e d  

h eli o c e ntri c  v el o cit y,  di mi nis h e d  i n t h e r ati o of  t h e s u n ’s  m ass  { M)  t o t h e s u m (Jtf ÷  m)  of  m ass es  

of  s u n a n d  pl a n et,  κ  is t h e d o u bl e  of  t h e ar e al  v el o cit y  di mi nis h e d  i n t h e s a m e r ati o, - is t h e 

v ers e d  si n e of  t h e i n c h n ati o n of  t h e or bit,  q  t h e p eri h eli o n  dist a n c e,  a n d  τ  t h e ti m e of  p eri h eli o n  

p ass a g e.  T h e  l a w of  attr a cti o n  or  r e p ulsi o n is h er e  l eft u n d et er mi n e d;  f or N e wt o n ’s l a w, μ  is 

t h e s u n ’s m ass  di vi d e d  b y  t h e a xis  m aj or  of  t h e or bit  t a k e n n e g ati v el y,  a n d  κ  is t h e s q u ar e  r o ot 

of  t h e s e mi p ar a m et er, m ulti pli e d  b y  t h e s u n ’s m ass,  a n d  di vi d e d  b y  t h e s q u ar e  r o ot of  t h e s u m  

of  t h e m ass es  of  s u n a n d  pl a n et.  B ut  t h e v ar yi n g  elli ps e or  ot h er  or bit,  w hi c h  t h e f or e g oi n g 

f or m ul a e r e q uir e, diff ers  ess e nti all y  (t h o u g h littl e) fr o m t h at hit h ert o  e m pl o y e d  b y  astr o n o m ers : 

b e c a us e  it gi v es  c orr e ctl y  t h e h eli o c e ntri c  c o or di n at es,  b ut  n ot  t h e h eli o c e ntri c  c o m p o n e nts  of  

v el o cit y,  wit h o ut  diff er e nti ati n g  t h e el e m e nts  i n t h e c al c ul ati o n; a n d  t h er ef or e d o es  n ot  t o u c h 

b ut  c uts,  (t h o u g h u n d er  a  v er y  s m all a n gl e,)  t h e a ct u al  h eli o c e ntri c  or bit,  d es cri b e d  u n d er  t h e 

i nfl u e n c e of  all  t h e dist ur bi n g  f or c es.

3 8. F or  it r es ults fr o m t h e f or e g oi n g t h e or y, t h at if w e  diff er e nti at e  t h e e x pr essi o ns  ( V ≡.) 

f or t h e h eli o c e ntri c  c o or di n at es,  wit h o ut  diff er e nti ati n g  t h e el e m e nts,  a n d  t h e n assi g n  t o t h os e 

n e w  v ar yi n g  el e m e nts  t h eir v al u es  as  f u n cti o ns of  t h e ti m e, o bt ai n e d  fr o m t h e e q u ati o ns  ( S .̂), 

a n d  d e d u c e  t h e c e ntr o b ari c  c o m p o n e nts  of  v el o cit y  b y  t h e f or m ul a e (I .̂), or  b y  t h e f oll o wi n g:

( 2 1 4.)

* [ T o d e d u c e  ( V .̂) f r o m ( Q .̂) w e  h a v e

T h e r ef o r e

C o n s e q u e ntl y

t h at i s.

Al s o

H e n c e,

F r o m  ( W .̂) a n d  ( Q .̂) w e  s e e t h at 

f r o m w hi c h  ( V ≡.) f oll o w s i m m e di at el y.]

w w w.r ci n. or g. pl



38, 39] III. GENERAL METHOD IN DYNAMICS 209

then these centrobaric components will be the same functions of the time and of the new varying 
elements which might be otherwise deduced by elimination from the integrals (Q^.), and will 
represent rigorously (by the extension given in the theory to those last-mentioned integrals) the 
components of velocity of the disturbed planet m, relatively to the centre of gravity of the whole 
solar system. We chose, as more suitable to the general course of our method, that these centro­
baric components of velocity should be the auxiliary variables to be combined with the helio­
centric coordinates, and to have their disturbed values rigorously expressed by the formulae 
of undisturbed motion; but in making this choice it became necessary to modify these latter 
formulae, and to determine a varying orbit essentially distinct in theory (though little differing 
in practice) from that conceived so beautifully by Lagrange.*  The orbit which he imagined was 
more simply connected with the heliocentric motion of a single planet, since it gave, for such 
heliocentric motion, the velocity as well as the position; the orbit which we have chosen is 
perhaps more closely combined with the conception of a multiple system, moving about its 
common centre of gravity, and influenced in every part by the actions of all the rest. Whichever 
orbit shall be hereafter adopted by astronomers, they will remember that both are equally fit 
to represent the celestial appearances, if the numeric elements of either set be suitably deter­
mined by observation, and the elements of the other set of orbits be deduced from these by 
calculation. Meantime mathematicians will judge, whether in sacrificing a part of the simplicity 
of that geometrical conception on which the theories of Lagrange and Poisson are founded, a 
simplicity of another kind has not been introduced, which was wanting in those admirable 
theories; by our having succeeded in expressing rigorously the differentials of all our own new 
varying elements through the coefficients of a single function: whereas it has seemed necessary 
hitherto to employ one function for the Earth disturbed by Venus, and another function for 
Venus disturbed by the Earth.

* [See Appendix, Note 7, p. 628.J
HMPII 27

Integration of the Simplified Equations, which determine the new varying Elements.

39. The simphfied differential equations of varying elements, (S≡.), are of the same form as 
the equations (A.), and may be integrated in a similar manner. If we put, for abridgement,

(X≡.)

and interpret similarly the symbols {μ,, ω, λ), &c., we can easily assign the variations of the 
lonowmg » comomauons, 
namely.

Y2.)
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Kq,Xq, ^q,vq,tq, ωθ being the initial values of the varying elements κ, λ, μ,, v,r, ω. If, then, we 
consider, for example, the first of these 8 combinations (τ, κ, v), as a function of all the 3w — 3 
elements μ^, ω^,λ^, and of their initial values , ωQ^ involving also in general the time 
explicitly, we shall have the following forms for the Gn — 6 rigorous integrals of the Gn — 6 
equations (S^.):

(2^∙)

and in like manner we can deduce forms for the same rigorous integrals, from any one of the 
eight combinations (Y^.). The determination of all the varying elements would therefore be 
fully accomphshed, if we could find the complete expression for any one of these 8 combinations.

40. A first approximate expression for any one of them can be found from the form under 
which we have supposed to be put, namely, as a function of the elements and of the time, 
which may be thus denoted:

by changing in this function the varying elements to their initial values, and employing the 
following approximate integrals of the equations (S≡.),

(B≡.)

For if we denote, for example, the first of the 8 combinations (Y≡.) by G, so that

we shall have, as a first approximate value,
(C≡.)

(D≡.)

and after thus expressing as a function of the time, and of the initial elements, we can 
eliminate the initial quantities of the forms τθ, κθ, rθ, and introduce in their stead the final 
quantities μ, ω, λ, so as to obtain an expression for of the kind supposed in (Z≡.), namely, a 
function of the time t, the varying elements μ, ω, λ, and their initial values p,θ, ωθ, λθ. An approxi­
mate expression thus found may be corrected by a process of that kind, which has often been 
employed in this Essay for other similar purposes. For the function G, or the combination 
(τ, κ, v}, must satisfy rigorously, by (Y^.), (A≡.), the following partial differential equation:

(E3.)
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and each of the other analogous functions or combinations (Y≡.) must satisfy an analogous 
equation: if then we change G to Gj + 0^, and neglect the squares and products of the coeffi­
cients of the small correction G^, G^ being a first approximation such as that already found, we 
are conducted, as a second approximation on principles already explained, to the following 
expression for this correction Gg:

(F≡.)

which may be continually and indefinitely improved by a repetition of the same process of 
correction. We may therefore, theoretically, consider the problem as solved; but it must remain 
for future consideration, and perhaps for actual trial, to determine which of all these various 
processes of successive and indefinite approximation, deduced in the present Essay and in the 
former, as corollaries of one general Method, and as consequences of one central Idea, is best 
adapted for numeric application, and for the mathematical study of phenomena.** [Two memoirs by M. Houel presented to the Facult6 des Sciences de Paris (1855) are of interest. In the first he employs the Principal Γιmction to prove various known theorems about planetary perturbations and in the second applies this method to detailed calculations of the perturbations of Jupiter. A complete bibliography of works relating to Hamilton’s dynamical methods prior to that of Houel was given by Cayley, Brit. Ass. Report (1857), p. 40.]

2 7∙ 2
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