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ON THE HIGHER SINGULARITIES OF A PLANE CURVE.

[From the Quarterly Jowrnal of Pure and Applied Mathematics, vol. viI. (1866),
pp. 212—223.]

THE theory of the singularities of a plane curve was first established by Pliicker
in his great work the Theorie der Algebraischen Curven, (1839), where he establishes,
in regard to the ordinary singularities, a system of six equations; viz. if we have

m, the order of the curve,

n, , Cclass,

8, , number of double points,
13 s s cusps,

e ) i) double “tangents
Ky i A inflexions,

then Pliicker’s six equations are
n = m(m—1)—28 — 3k,
¢ =3m(m—2)— 68— 8k,
=fm(m—-2)(m*—=9) —(m* —m—06) (26+3x) + 26 (8 — 1)+ 60« + § 1 (k — 1),

K
|

m= nn —1)—=2r—3,
k= 3n(n —2)—67—2,
S=4n(n—-2)(n*=9)—(*—n—6)(27+30) +27(t—1) + 61+ (. — 1),

Il

equivalent to three equations; thus m and (within proper limits) 8 and x may be
considered arbitrary, and the first three equations then give %, ¢, 7; and in like
manner 7 and (within proper limits) = and ¢ may be considered as arbitrary, and the
equations then give m, «, 8.
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374] ON THE HIGHER SINGULARITIES OF A PLANE CURVE. 521

I have used the ordinary expressions double points, cusps, double tangents, inflexions ;
but (using as I have elsewhere done wneunt as the correlative of tangent) it would be
more precise and symmetrical to say, double ineunts, stationary ineunts, double tangents,
and stationary tangents. The double ineunt is called also a node, viz. it is a crunode,
or an acnode, according as the tangents are real or imaginary; and the stationary
ineunt, or cusp, considered as (what in the theory of point-coordinates it in fact is)
a particular case of the double ineunt, is a spinode; to render this notation symmetrical,
we require certain new terms, say link, as the correlative to node, and flex as the
correlative to cusp; then the double tangent is a link, viz. it is a colink, or an
allink according as the ineunts upon it (points of contact) are real or imaginary; and
the stationary tangent (inflexion) or flex, considered as (what in the theory of line-
coordinates it in fact is) a particular case of the double tangent, is a relink. The
ordinary singularities of a plane curve would thus be the node, the cusp, the link,
and the flex; but I shall retain the above-mentioned more usual expressions.

Deducible from the six equations, we have

n—m =3(t—«),
(n—m)(n+m—9)=2(r—9),
which are noticed by Pliicker; and also the equation
tm=1)(m—=2)—8-k=4(n=-1)(n—2)— 71—y,

recently noticed by M. Clebsch, in connection with Riemann’s investigations on the
Abelian Integrals; a curve of the order m may have 4 (m—1)(m —2) double points,
reckoning the cusp as a double point, and so a curve of the class » may have
3 (m—1)(n—2) double tangents, reckoning the inflexion as a double tangent; the two
sides of this equation exhibit therefore, the right-hand side the deficiency of the actual
from the possible number of double tangents, and the left-hand side the deficiency of
the actual from the possible number of double points; and these two numbers are
equal. We have a division into families based on the value of the expressions in
question, or say on that of 4 (m—1)(m—2)—8—«; when this is =0, that is, when
the curve has its maximum number of double points (reckoning the cusp as a double
point), the coordinates z, y are expressible rationally in terms of a parameter 6; when
the number is =1, they can be expressed rationally in terms of € and of the square
root of a cubic or a quartic function of 6, &c. &c. It thus appears that as well the
pumber &+ «, as the combinations 26+ 3« and 68+ 8« which enter into Pliicker’s
equations, plays an important part in the theory of the curve; the bearing of this
remark will be seen in the sequel.

Pliicker considers also some of the higher singularities; it will be convenient to
mention two of his results.

No. 76, p. 216. If two branches of a curve touch each other, or more generally
have a g-pointic intersection, the point in question is equivalent to g double points,

g . 66
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522 ON THE HIGHER SINGULARITIES OF A PLANE CURVE. [374

and the tangent at this point to g double tangents; hence, if there is no other point
singularity, the equations give
n= m(m—1)—2g,
¢ = 3m(m— 2)— 6y,
8+g=3%m(m—2)(m*—9)—(m*—m—6)29+29(9g-—1),
the last of which may also be written
S=4m(m—2)(m*—9)—(m*—m — g —4%) 29.
And Nos. 77—82, pp. 217—222. For a cusp of the second kind, we have

nm= m(m—1)— 5,
¢t =3m(m — 2) — 15,
d=tm(m—-2)(m*—=9)—(m—m—17)5;

these equations Pliicker establishes by an independent algebraical investigation, and
having done so, he remarks that they are deducible from the foregoing ones by writing
therein g=2%; that is, that the cusp of the second kind may be considered as
equivalent to 2} double points, and the tangent at the cusp to 24 double tangents.
And he thence passes to the cusp of a higher cusp equivalent to A +4 double points
and &+ % double tangents. The results in this general case (although not, as in the
original case, g =24, established independently) is perfectly correct; but the theory is
open to a grave objection.

I remark, that assuming a certain singularity to be equivalent to the numbers &
of double points, «" of cusps, 7 of double tangents, and ¢ of inflexions, we have in
the first instance to determine &, «', 7 and ¢ in such manner as to give in the
class », and in the numbers ¢ of inflexions and 7 of double tangents, the reductions
actually given by the singularity in question. Thus in the case of the cusp of the
second kind, we ought to have

28" + 3’ =5,
68" + 8« + ¢ =15,
(m*—m—6) (28 +3k") — 28 (8§’ = 1) — 68k’ — 4« (K = 1)+ 7' =(m*—m =T7) 5,
or, what is the same thing,
20' (8 = 1)+ 68k + 36/ (K —1)—7'=5;
and so in general there are, for the determination of the four quantities &, «, 7, ¢,
three equations. In the particular case these are satisfied by the values & =2%, « =0,

=24 =0, which are Pliicker’s values; they are also satisfied by the values
&=1, «=1, =1, /=1, which have the advantage of being integer instead of

fractional.

But there is really a further condition to be satisfied, viz. the number & + «’
must have a certain definite value dependent on the nature of the singularity; for
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the case in hand, this is &+ «'=2 (I obtain this by the consideration of a quartic
curve, having a cusp of the second kind, and also a double point; 8+ « has here its
maximum value =3; and as the double point gives 6=1, the cusp of the second
kind gives &'+ «'=2); and joining to the former conditions this new condition, we have
definitely &’=1, «'=1, 7=1, /=1. I have elsewhere noticed, [343], that the cusp of
the second kind was equivalent to a double point and cusp, and accordingly proposed
to call it the node-cusp; but I had not then remarked that it was also necessary to
treat the tangent as equivalent to a double tangent and a stationary tangent (or
inflexion).

It appears from the foregoing considerations, that any singularity whatever is to
be regarded as equivalent, and that in a perfectly definite manner, to a certain number
& of double points, & of cusps, 7 of double tangents, and ¢ of inflexions; we have
only to ascertain how for any given singularity the values of these numbers are to
be ascertained; and when this is done, Pliicker’s equations will be applicable to any
singularities whatever of a plane curve.

At any point of a plane curve there is either one branch, or any number of
branches, touching or not touching each other: taking the given point as origin, then
for each branch the equation of the curve gives for the ordinate y an expression of

the form
y=Ada?+ Bzl + ...,

where the series is arranged in ascending powers of z, and where the coefficients
A, B,... have definite unique values; and, conversely, that which is given by such
expression of y is a branch of the curve. It is assumed that the axis of y, or line
z=0, is not a tangent to the curve; this implies that the exponents p, ¢,... are none
of them inferior to 1, or, what is the same thing, that the lowest exponent p is =1 at
least: it is for the most part convenient to take the axis of #, or line ¥y =0, a tangent
to the branch; the lowest exponent p is then > 1.

The exponents may be all integer, and the branch is then said to be lmnear; or
else the exponents or some of them may be fractional, and the branch is then
superlinear ; viz. in the latter case, assuming that the fractional exponents are all of

them in their least terms, and that « is the least common multiple of the denominators
1
(so that the expression for y is a rational function of z*), then the branch is quadric,

cubic, &ec. according as we have a=2, a=3, &c. It is clear that the expression for y
1
has precisely a values, viz. the values obtained by attributing to the radical z* each

of its a values. Corresponding to each of these a values, we have what I term a
partial branch of the curve, so that the quadric branch is made up of two partial
branches, the cubic branch of three partial branches and so on; for a linear branch
or when a=1, a partial branch is nothing else than the branch itself; and the
expression a partial branch will accordingly include the case of a linear branch.

Suppose that at any point of the curve we have two partial branches, belonging
or not belonging to the same branch; let these be referred to the same axes, the

66—2
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524 ON THE HIGHER SINGULARITIES OF A PLANE CURVE. [374

axis of y mnot being a tangent to either branch, so that the exponents are none of
them <1. If in the series for y,—y,, (the difference of the two ordinates) the least
exponent is = P, then (whether P is integer or fractional) the two partial branches are
said to have, at the given point, P common points, or, more briefly, to intersect in
P points. We may from this definition calculate the number of intersections of two
branches with each other, or of a branch with itself; for instance, suppose that at
any point of the curve we have (a=6) the sextic branch

y=at+at+ ...,
we have the six partial branches

h= m§+w‘%+..., Y= wg—w%+...,
y2=ww§+x’§+..., y5=wz§—w%+...,
y3=w”x§+mg+..., y6=w“a:*—w%+...;

hence calculating (what is most convenient) twice the number of intersections of the
branch with itself, the partial branch gy, intersects the other partial branches in
4,4, 4, 4, 4 points respectively, giving the sum 1f 4 §=47; each other partial branch
intersects the remaining five branches in the same number of points; and therefore
twice the number of intersections is = 47.

For the singularity y=a%+a%+ ... in question, I say that if this be equivalent
as above to & double points, & cusps, 7 double tangents and ¢ inflexions, then that
the number 47 just obtained is the value of 2& + 3«’, and moreover, that the value
of ¥ is K =a—1=5; that is, we have 20"+ 3« =47 and «=5; or, what is the same
thing, &' =16; ' =5. For the determination of the numbers 7, ¢, it is to be observed
that the foregoing theory of branches is a theory of the points of a branch, by means
of point-coordinates: there is a precisely similar theory of the tangents of a branch
by means of line-coordinates, and we may inquire as to the number of the common
tangents of two partial branches; and thence as to the number of common tangents of
two branches, or of a branch with itself—it will appear that the line-equation of the
branch is Z=X‘...+ X% ..., so that the branch (which is as to its points sextic,
a=6) is as to its tangents quadric, B=2, the two partial branches have with each
other the number =415 of common tangents, or twice this number is =15; that is, we
have 27"+ 3/ =15, and moreover /=8—1=1, that is =6, /=1; or finally for the
singularity in question, the numbers &, «/, 7, // are =16, 5, 6, 1 respectively.

And so generally in the case of a branch which is as to its points a-ic, having
with itself a number =4M of common points; and as to its tangents B-ic, having
with itself a number =4N of common tangents, we have 28'+3«' =M, K'=a—1,
27+ 3/=N, /=8 —1, or, what is the same thing, the values of &, «/, 7/, ¢/ are

§=}[M—3(@-1),

= a—1 ,
T=%[N-3(8-1)],
S = B-1
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I say that a singularity is simple when we have one branch, compound when we
have more than one branch; the case above considered is that of a simple singularity,
viz. we have on the curve one point, one tangent, one branch.

We may have a compound singularity where the branches all touch, that is we
may have one point, one tangent, several branches. It may be seen that if }M denote
the number of common points of all the branches (that is of each branch with itself,
and of every two branches with each other), and in like manner if }N denote the
number of common tangents of all the branches (that is of each branch with itself,
and of every two branches with each other), then the formule are

&=} M35 (a-1),

Ky S(a-1),
' =}[N—35(8-1)],
pieligie glggiey,

where the signs 3 refer to the different branches.

Again, we may have a compound singularity, one point, several tangents with to
each of them a branch or branches; here if M denote the number .of the common
points of all the branches, and N the number of the common tangents of all the
branches belonging to any one tangent, then the formule are

¥=4 [M-3¥2(a-1)]

= 33 (2-1),
T=4¥[N-3% (B-1)]
L= (-1,

where the signs X refer to all the branches belonging to the same tangent, and the
signs 3/ to the different tangents. It is to be remarked, that the point on the curve
is equivalent to the & double points and &’ cusps; each tangent is equivalent to
3} [N —32(B—1)] double tangents, and X (8 —1) inflexions, the numbers N, B referring
of course to the tangent in question.

Lastly, we may have a compound singularity, one tangent, several points (of
contact), with to each of them a branch or branches; here if N denote the number
of the commen tangents of all the branches, M the number of the common points of
all the branches belonging to any one point of contact, the formule are

=¥ [(M =32 (2-1)]

K= 33 (a—-1),
=% [(V-333(B-1)],
J= YE(B-1),

where the signs 3 refer to all the branches belonging to the same point of contact,
and the signs 3’ to the different points of contact; it is to be remarked that the
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tangent of the curve is equivalent to the 7' double tangents and ¢ inflexions; each
point of contact is equivalent to 4 [M —3Z(a—1)] double points and = (a—1) cusps,
the numbers M, a referring of course to the point of contact in question.

There is no difficulty in passing to the case of the compound singularity when
the formule for the simple singularity, one point, one tangent, one branch, are once
obtained, and I now go back to the consideration of this case.

The class of a curve is equal to the number of tangents which can be drawn
through an arbitrary point: the points of contact of these tangents are given as the
intersections of the curve with a certain curve, the polar of the arbitrary point in
regard to the curve; this polar passes through- each double point and cusp, the double
point. counting as two points of intersection, and the cusp as three points of inter-
section (this is in fact the theory by which is found the reduction =28+ 8« in the
class of the curve). Hence, if the curve has a singularity (&, «', 7, /), which to fix
the ideas may be assumed to be a simple singularity, ‘one point, one tangent, one
branch ”; then the polar passes through the singular point, the number of intersections
being 28+ 3«’, or if the actual number of intersections be M, then we have M = 2§+ 3«'.
It is to be shown that the number M is equal to twice the number of common points
which the curve has with itself at the singular point, so that the last-mentioned number
is =4M. Suppose in the first instance that there is only a single branch, and let the
branch be given by the equation

P=y. . +dab., Bl t...=0;
or introducing for homogeneity the third coordinate z, let this equation be
P=yz'+ AaPz P+ Balz72... =0,

and let P,=0, P,=0,... P,=0, be the corresponding equations for the component partial
branches; it is allowable to write P,P,...P,=0 for the equation of the curve(?).
Hence if (a, B, ) be the coordinates of the arbitrary point, or putting in the first
instance y=1, if (&, B, 1) be the coordinates, then writing A =ad,+ B5,+8,, the
equation of the polar is AP, P, ... P,=0, or, what is the same thing,

Py Pyiica PalA Py 4 PPy oo Ba AP e, =0,
and we have

AP =a(pAdar7z7? +qBut7279...)+ Bz — (pAarz P 4+ qBaiz™171...),

or putting z=1, this is

AP=a(pdar? +qBztt ..)+B —(pda? +qBa o ..,
and we have thence the values of AP,, AP,...AP,; the thing to be observed is,
that the equation AP =0 is not satisfied (and therefore also each of the equations

AP =0,... AP,=0 is not satisfied) by the coordinates #=0, y=0 of the singular
point. We have now with the equation AP,P,... P,=0 of the polar to combine the

1 Of course this is not the equation in its rational and integral form, and on this account the reasoning
of the text is not free from difficulty ; the same remark applies to a subsequent equation.
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equation P, P,... P, =0: the last-mentioned equation breaks up into the equations
P, =0, P,=0,... P,=0; and selecting for example the equation P,=0, this gives the
system P,=0, P,P;...P,AP, =0, or since we require only the intersections at the
singular point, and AP, =0 does not pass through this point, this may be replaced
by P,=0, P,P,...P,=0. The complete system is thus (P,=0, P,P,...P,=0),
(P.=0, P,Py...P,=0),...(P,=0, PP, ... P,_,=0); or, what is the same thing, we have
each pair (P,=0, P;=0) taken twice. To eliminate y from these equations, we have
merely to write P,— P;=0, or, what is the same thing, we have &(P,, P,...P,) =0,
¢ denoting the product of the squares of the differences of the functions (P, P.... Pa).
Suppose that any two partial branches P,=0, Py,=0 intersect (according to the
above-mentioned definition) in p points; then P,— P, contains the factor 2#, and hence
the product ¢(P,, P,... P,) contains as a factor a to the power 2Zp, that is, the
equation in z has 2Zp roots each =0. Whence if Zp=4%M, then the equation in z has
M roots each =0, or the curve and polar have at the singular point M intersections,
that is M =28 + 3«

I have no complete proof to offer of the remaining equation « =a—1, it was
obtained from the consideration of a particular case as follows. Consider the linear
branch y=Aa?+ ..., where the exponents are all positive integers, and taking the
axis of x to be the tangent, the least exponent p is greater than unity; if p=2
there is at the origin no inflexion, if p=3 there is a single inflexion, and generally
the number of inflexions is =p—2. Now it will presently appear that in line-coordi-

2.
nates the equation of the branch is Z=A4'X7?"1, or replacing Z, X by the original

»

point-coordinates y, # the branch y= A’z?-14... has at the origin p—2 cusps; but
in the branch in question- we have a=p—1, and the number of cusps is thus
=a—1; this result is confirmed by other particular instances, and I assume  in
general that we have «'=a—1; whence in the case of a simple singularity, or where
there is only one branch we have M =28+ 3«, ¥ =a—1, or, what is the same thing,
&=L[M—3(a—1)], ¥’=a—1. The reasoning is easily adapted to the case of a com-

pound singularity.
I consider the branch
Yoot Ao Bat v +i000=0,
(where it is assumed that the axis of # is a tangent to the branch, and therefore

that the lowest exponent p is greater than unity), introducing the coordinate z for
homogeneity, this becomes

Yz + AaPz P+ Baiz=1+ ... =0,
and I proceed to find the corresponding equation in line coordinates, taking these to
be X, Y, Z, we have

AX =pAa?'z7? + Boat™'277+ ...,

AY = &

A =— Y2 —pAaPz P —gBzlz17 ...,
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or writing z=1, ¥Y=1, we find A=1, and therefore
Xi= pAar + qBxt + ...,
Z =—y—pda? - qBx? + ...

here substituting for —y its value = .42? + B2?+ ..., we have

X= pAzP + qBztt + ...,
Z=(1-p)Ada? +(A—q)Bx? +....

Hence writing pAa?— = 6, the equations are

-1

9
X=0-Bgr1—

e =
Z= —A'6r1—-B@r-1 — .

so that eliminating 6, we have

e & 4
Z= A'Xr14+BXrl4.,,

and it is easy to see by Lagrange’s theorem, that the general form of the exponents
z:rwf@_-zﬂ;f_,gl (e Pt abtingy ol go st 9
positive integers, zero included. The equation in line-coordinates being known, the
subsequent investigation is precisely the same as that for the point-coordinates, and
hence in the case of one branch, if this be in regard to its tangents [B-ic, and have F XV
common tangents with itself, then 27'+3/=N, /=8—1, or, what is the same thing,
"= [N-3(B—-1)], /=B —1. The investigation in the case of a simple singularity of
the values of &, «’, 7/, ¢ is thus completed.

in the series on the right-hand side is
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