369.

ON A PROPERTY OF COMMUTANTS.

[From the Philosophical Magazine, vol. xxx. (1865), pp. 411-413.]

I call to mind the definition of a commutant, viz. if in the symbol

$$
\left[\begin{array}{llll}
+ & & \\
1 & 1 & 1 & (\theta) \\
2 & 2 & 2 & \\
\vdots & \vdots & \vdots \\
p & p & p
\end{array}\right]
$$

we permute independently in every possible manner the numbers $1,2, \ldots p$ of each of the θ columns except the column marked (\dagger), giving to each permutation its proper sign, + or - , according as the number of inversions is even or odd, thus

$$
\begin{array}{r}
\pm_{s} \pm t \ldots A_{1 s_{1} t_{1} \ldots(\theta)} \\
2 s_{2} t_{2} \\
\vdots \\
p s_{p} t_{p}
\end{array}
$$

which is to be read as meaning

$$
\pm_{s} \pm_{t} \ldots A_{1 s_{1} t_{1} . .} \quad A_{2 s_{2} t_{2} . .} \ldots A_{p s_{p} t_{p} \ldots}
$$

the sum of all the $(1.2 .3 \ldots p)^{\theta-1}$ terms so obtained is the commutant denoted by the above-mentioned symbol. In the particular case $\theta=2$, the commutant is of course a determinant: in this case, and generally if θ be even, it is immaterial which of the columns is left unpermuted, so that the (\uparrow) instead of being placed over any column may be placed on the left hand of the A; but when θ is odd, the function has different values according as one or another column is left unpermuted, and the position of the (\dagger) is therefore material. It may be added that if all the columns are permuted, then, if θ be even, the sum is $1.2 \ldots p$ into the commutant obtained by leaving any one column unpermuted; but if θ is odd, then the sum is $=0$.

The property in question is a generalization of a property of determinants, viz. we have

$$
\left.\begin{array}{ccc}
2 \lambda \lambda^{\prime} & \lambda \mu^{\prime}+\lambda^{\prime} \mu, & \lambda \nu^{\prime}+\lambda^{\prime} \nu, \ldots \\
\lambda \mu^{\prime}+\lambda^{\prime} \mu, & 2 \mu \mu^{\prime}, & \mu \nu^{\prime}+\mu^{\prime} \nu, \ldots \\
\lambda \nu^{\prime}+\lambda^{\prime} \nu, & \mu \nu^{\prime}+\mu^{\prime} \nu, & 2 \nu \nu^{\prime},
\end{array} \right\rvert\,=0
$$

whenever the order of the determinant is greater than 2 .
To enunciate the corresponding property of commutants, let

$$
\left\{\begin{array}{cc}
\lambda_{11}, & \lambda_{12} . \\
\lambda_{21}, & \lambda_{22}
\end{array}\right\}
$$

or, in a notation analogous to that of a commutant,

$$
\left[\begin{array}{r}
+\lambda+ \\
11 \\
2 \\
2 \\
\vdots \\
p \\
p
\end{array}\right]
$$

denote a function formed precisely in the manner of a determinant (or commutant of two columns), except that the several terms (instead of being taken with a sign + or - as above) are taken with the sign + : thus

$$
\left\{\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right\} \text { or }\left[\begin{array}{rr}
+ \\
& + \\
1 & 1 \\
2 & 2
\end{array}\right]
$$

each denote

$$
\lambda_{11} \lambda_{22}+\lambda_{12} \lambda_{21}
$$

This being so, the theorem is that the commutant

$$
\left[\begin{array}{cccc}
A & & & \\
1 & 1 & 1 & \ldots(\theta) \\
2 & 2 & 2 \\
\vdots & \vdots & \\
p & p & p
\end{array}\right]
$$

where

$$
A_{r s t \ldots(\theta)}=\left\{\begin{array}{ccc}
\lambda_{1 r}, & \lambda_{1 s} . . & (\theta) \\
\lambda_{2 r}, & \lambda_{2 s} & 0 \\
\vdots & & \\
\lambda_{\theta r}, & \lambda_{\theta s} & .
\end{array}\right\}=\left[\begin{array}{c}
\lambda^{\dagger}+ \\
r \\
r \\
s \\
t \\
t \\
\vdots \\
\vdots \\
.
\end{array}\right]
$$

whenever $p>\theta$, is $=0$.
To prove this, consider the general term of the commutant, viz. this is

$$
\pm_{s} \pm_{t} \ldots A_{1 s^{\prime} t^{\prime} . .} A_{2 s^{\prime \prime} t^{\prime \prime} \ldots} \ldots A_{p s^{\prime \prime} t^{p} .}
$$

the general term of $A_{r s t . .}$ is $\lambda_{a r} \lambda_{b s} \lambda_{c t} \ldots$, where a, b, c, \ldots represent some permutation of the numbers 1, 2, 3... Substituting the like values for each of the factors $A_{1 s^{\prime} t^{\prime} . .,} A_{2 s^{\prime} t^{\prime \prime} . .,} \& c$., the general term of the commutant is

$$
= \pm_{s} \pm_{t} \ldots \lambda_{a^{\prime} 1} \lambda_{b^{\prime} s^{\prime}} \lambda_{c^{\prime} t^{\prime}} \ldots \lambda_{a^{\prime \prime 2}} \lambda_{b^{\prime \prime} s^{\prime \prime}} \lambda_{c^{\prime \prime} t^{\prime \prime}} . . \lambda_{a^{p} p} \lambda_{b^{\prime \prime} s^{p}} \lambda_{c^{p} t^{p}} \ldots
$$

Taking the sum of this term with respect to the quantities $s^{\prime}, s^{\prime \prime}, \ldots s^{p}$, which denote any possible permutation of the numbers $1,2 \ldots p$; again, with respect to the quantities $t^{\prime}, t^{\prime \prime}, \ldots t^{p}$, which denote any possible permutation of the numbers $1,2, \ldots p$; and the like for each of the $(\theta-1)$ series of quantities, the sum in question is

$$
\lambda_{a^{\prime} 1} \lambda_{a^{\prime \prime 2}} \ldots \lambda_{a^{p} p} \Sigma \pm_{s} \lambda_{b^{\prime} s^{\prime}} \lambda_{b^{\prime \prime} s^{\prime \prime}} . . \lambda_{b^{p} s^{p}} \Sigma \pm_{t} \lambda_{c^{\prime} t^{\prime}} \lambda_{c^{\prime \prime} t^{\prime \prime}} \ldots \lambda_{c^{p} t^{p}} \ldots,
$$

which is

$$
=\lambda_{a^{\prime} 1} \lambda_{a^{\prime \prime}} \ldots \lambda_{a^{p} p}\left[\begin{array}{c}
\lambda^{\dagger} \\
b^{\prime} 1 \\
b^{\prime \prime} 2 \\
\vdots \\
\vdots \\
b^{p} p
\end{array}\right]\left[\begin{array}{c}
\lambda^{\dagger} \\
c^{\prime} 1 \\
c^{\prime \prime} 2 \\
\vdots \\
\vdots \\
c^{p} p
\end{array}\right] \cdots ;
$$

but p being greater than θ, since the numbers $b^{\prime}, b^{\prime \prime}, \ldots b^{p}$ are all of them taken out of the series $1,2 \ldots \theta$, some of these numbers must necessarily be equal to each other, and we have therefore

$$
\left[\begin{array}{c}
\lambda^{\dagger} \\
b^{\prime} 1 \\
b^{\prime \prime} 2 \\
\vdots \\
\vdots \\
b^{p} p
\end{array}\right]=0 ;
$$

whence finally the commutant is $=0$.
In the case where $p=\theta=2$, we have for a determinant of the order 2 the theorem

$$
\left|\begin{array}{cc}
2 \lambda \lambda^{\prime}, & \lambda \mu^{\prime}+\lambda^{\prime} \mu \\
\lambda \mu^{\prime}+\lambda^{\prime} \mu, & 2 \mu \mu^{\prime}
\end{array}\right|=-\left|\begin{array}{cc}
\lambda, & \mu \\
\lambda^{\prime}, & \mu^{\prime}
\end{array}\right|^{2} ;
$$

and it is probable that there exists a corresponding theorem for the commutant

$$
\left[\begin{array}{cc}
A^{\dagger} & \\
1 & 1
\end{array}\right] . .(p) 1 \text {, }
$$

where

$$
A_{r s t \ldots(p)}=\left\{\begin{array}{cll}
\lambda_{1 v}, & \lambda_{1 s} \ldots(p) \\
\lambda_{2 r}, & \lambda_{2 s} \\
\vdots & & . \\
\lambda_{p r}, & \lambda_{p s} & .
\end{array}\right\}=\left[\begin{array}{r}
\dagger \lambda^{+} \\
r 1 \\
s 2 \\
t 3 \\
\vdots \\
\vdots
\end{array}\right] \text {, }
$$

but I have not ascertained what this theorem is.

Cambridge, October 26, 1865.
c. V .

