333.

NOTE ON THE NODAL CURVE OF THE DEVELOPABLE DERIVED FROM THE QUARTIC EQUATION $\left(a, b, c, d, e_{\chi} t, 1\right)^{4}=0$.

[From the Philosophical Magazine, vol. xxviI. (1864), pp. 437-440.]
Considering the coefficients (a, b, c, d, e) as linear functions of the coordinates x, y, z, w, then the equation

$$
\text { Disct. }\left(a, b, c, d, e^{\gamma} t, 1\right)^{4}=0 \text {, }
$$

or, as it may be written,

$$
\left(a e-4 b d+3 c^{2}\right)^{3}-27\left(a c e+2 b c d-a d^{2}-b^{2} e-e^{3}\right)^{2}=0
$$

represents, as is known, a developable surface or "torse," having for its edge of regression (or cuspidal curve) the sextic curve the equations whereof are

$$
\begin{aligned}
& a e-4 b d+3 c^{2}=0 \\
& a c e+2 b c d-a d^{2}-b^{2} e-c^{3}=0
\end{aligned}
$$

and for its nodal curve, a curve the equations whereof (equivalent to two independent relations between the coordinates) are

$$
\frac{a c-b^{2}}{a}=\frac{a d-b c}{2 b}=\frac{a e+2 b d-3 c^{2}}{6 c}=\frac{b e-c d}{2 d}=\frac{c e-d^{2}}{e}
$$

or, as these may also be written,

$$
\begin{array}{ll}
a^{2} d-3 a b c+2 b^{3} & =0, \\
a^{2} e+2 a b d-9 a c^{2}+6 b^{2} c=0, \\
a b e-3 a c d+2 b^{2} d & =0, \\
a d^{2}-b^{2} e & =0, \\
a d e-3 b c e+2 b d^{2} & =0, \\
a e^{2}+2 b d e-9 c^{2} e+6 c d^{2}=0, \\
b e^{2}-3 c d e+2 d^{3} & =0 ;
\end{array}
$$

which curve is in fact an excubo-quartic,-viz. a quartic curve the partial intersection of a quadric surface and a cubic surface, having in common two non-intersecting right lines. To show that this is so, I remark that the coefficients a, b, c, d, e, quà linear functions of the four coordinates, satisfy a linear equation which may be taken to be

$$
a+b+c+d+e=0
$$

this being so, the first form shows that the curve in question lies on the quadric surface

$$
a c-b^{2}+\frac{1}{2}(a d-b c)+\frac{1}{6}\left(a e \div 2 b d-3 c^{2}\right)+\frac{1}{2}(b e-c d)+c e-d^{2}=0
$$

or, as this equation may also be written,

$$
c\left(a-\frac{1}{2} b-\frac{1}{2} c-\frac{1}{2} d+e\right)-b^{2}+\frac{1}{2} a d+\frac{1}{6}(a e+2 b d)+\frac{1}{2} b e-d^{2}=0
$$

Substituting for c its value, this equation is

$$
-(a+e+b+d)\left(\frac{3}{2} a+\frac{3}{2} e\right)-b^{2}+\frac{1}{2} a d+\frac{1}{6}(a e+2 b d)+\frac{1}{2} b e-d^{2}=0
$$

or, what is the same thing,

$$
9(a+e+b+d)(a+e)+6\left(b^{2}+d^{2}\right)-3(a d+b e)-(a e+2 b d)=0
$$

Hence, finally, the equation of the quadric surface is

$$
9 a^{2}+17 a e+9 e^{2}+6 b^{2}-2 b d+6 d^{2}+9 a b+9 d e+6 a d+6 b e=0
$$

and the curve lies also on the cubic surface

$$
a d^{2}-b^{2} e=0
$$

It only remains to show that these surfaces have in common two right lines, and to find the equations of these lines.

The cubic surface is a skew surface or "scroll" such that the equations of any generating line are $d-\theta b=0, e-\theta^{2} a=0$, where θ is an arbitrary parameter. But considering the two lines

$$
\left(d-\theta_{1} b=0, \quad e-\theta_{1}^{2} a=0\right), \quad\left(d-\theta_{2} b=0, \quad e-\theta_{2}^{2} a=0\right)
$$

the general equation of the quadric surface through these two lines may be written

$$
\begin{aligned}
& A \cdot\left(d-\theta_{1} b\right)\left(d-\theta_{2} b\right) \\
+ & B \cdot\left(e-\theta_{1}^{2} a\right)\left(e-\theta_{2}^{2} a\right) \\
+ & C \cdot\left(d-\theta_{1} b\right)\left(e-\theta_{2}^{2} a\right)+\left(d-\theta_{2} b\right)\left(e-\theta_{1}^{2} a\right) \\
+ & \frac{D}{\theta_{1}-\theta_{2}}\left\{\left(d-\theta_{1} b\right)\left(e-\theta_{2}^{2} a\right)-\left(d-\theta_{2} b\right)\left(e-\theta_{1}^{2} a\right)\right\}=0
\end{aligned}
$$

or, expanding and reducing,

$$
\begin{aligned}
& A\left\{d^{2}-\left(\theta_{1}+\theta_{2}\right) b d+\theta_{1} \theta_{2} b^{2}\right\} \\
+ & B\left\{e^{2}-\left(\theta_{1}^{2}+\theta_{2}^{2}\right) e a+\theta_{1}^{2} \theta_{2}^{2} a^{2}\right\} \\
+ & C\left\{2 d e-\left(\theta_{1}^{2}+\theta_{2}^{2}\right) a d-\left(\theta_{1}+\theta_{2}\right) b e+\theta_{1} \theta_{2}\left(\theta_{1}+\theta_{2}\right) a b\right\} \\
+ & D\left\{\quad\left(\theta_{1}+\theta_{2}\right) a d-\quad b e-\quad \theta_{1} \theta_{2} a b\right\}=0
\end{aligned}
$$

which, if θ_{1}, θ_{2} are the roots of the equation $\theta^{2}-\frac{1}{3} \theta+1=0$, and therefore $\theta_{1}+\theta_{2}=\frac{1}{3}$, $\theta_{1} \theta_{2}=1$, and $\theta_{1}{ }^{2}+\theta_{2}{ }^{2}=-\frac{17}{9}$, is

$$
\begin{aligned}
& A\left(d^{2}-\frac{1}{3} d b+b^{2}\right) \\
+ & B\left(e^{2}+\frac{17}{9} a e+a^{2}\right) \\
+ & C\left(2 d e+\frac{17}{9} a d-\frac{1}{3} b e+\frac{1}{3} a b\right) \\
+ & D\left(\quad \quad \frac{1}{3} a d-b e-a b\right)=0 .
\end{aligned}
$$

Putting $A=6, B=9, C=\frac{9}{2}, D=-\frac{15}{2}$, this is

$$
\begin{aligned}
& 9\left(a^{2}+\frac{17}{9} a e+e^{2}\right) \\
+ & 6\left(b^{2}-\frac{1}{3} b d+d^{2}\right) \\
+ & \frac{9}{2}\left(\frac{1}{3} a b+2 d e+\frac{17}{9} a d-\frac{1}{3} b e\right) \\
+ & \frac{15}{2}\left(a b \quad-\frac{1}{3} a d+b e\right)=0,
\end{aligned}
$$

which is the before-mentioned quadric surface ; hence the quadric surface and the cubic surface intersect in the two lines

$$
\left(d-\theta_{1} b=0, \quad e-\theta_{1}^{2} a=0\right), \quad\left(d-\theta_{2} b=0, \quad e-\theta_{2}^{2} a=0\right)
$$

(where θ_{1}, θ_{2} are the roots of the quadric equation $\theta^{2}-\frac{1}{3} \theta_{1}+1=0$); and they consequently intersect also in an excubo-quartic curve, which is the theorem required to be proved.

Blackheath, March 26, 1864.
c. v .

