126.

ON THE THEORY OF GROUPS, AS DEPENDING ON THE SYMBOLIC EQUATION $\theta^{n}=1$. -Second Part.

[From the Philosophical Magazine, vol. vir. (1854), pp. 408-409.]

Imagine the symbols

$$
L, M, N, \ldots
$$

such that (L being any symbol of the system),

$$
L^{-1} L, L^{-1} M, L^{-1} N, \ldots
$$

is the group

$$
1, \quad \alpha, \quad \beta, \ldots
$$

then, in the first place, M being any other symbol of the system, $M^{-1} L, M^{-1} M$, $M^{-1} N, \ldots$ will be the same group $1, \alpha, \beta, \ldots$. In fact, the system L, M, N, \ldots may be written $L, L \alpha, L \beta \ldots$; and if e.g. $M=L \alpha, N=L \beta$ then

$$
M^{-1} N=(L \alpha)^{-1} L \beta=\alpha^{-1} L^{-1} L \beta=\alpha^{-1} \beta
$$

which belongs to the group $1, \alpha, \beta, \ldots$
Next it may be shown that

$$
L L^{-1}, M L^{-1}, N L^{-1}, \ldots
$$

is a group, although not in general the same group as $1, \alpha, \beta, \ldots$. In fact, writing $M=L \alpha, N=L \beta$, \&c., the symbols just written down are

$$
L L^{-1}, L \alpha L^{-1}, L \beta L^{-1}, \ldots
$$

and we have e.g. $L \alpha L^{-1} . L \beta L^{-1}=L \alpha \beta L^{-1}=L \gamma L^{-1}$, where γ belongs to the group 1, α, β.

The system L, M, N, \ldots may be termed a group-holding system, or simply a holder; and with reference to the two groups to which it gives rise, may be said to hold on the nearer side the group $L^{-1} L, L^{-1} M, L^{-1} N, \ldots$, and to hold on the further side the group $L L^{-1}, L M^{-1}, L N^{-1}, \ldots$ Suppose that these groups are one and the same group $1, \alpha, \beta \ldots$, the system L, M, N, \ldots is in this case termed a symmetrical holder, and in reference to the last-mentioned group is said to hold such group symmetrically. It is evident that the symmetrical holder L, M, N, \ldots may be expressed indifferently and at pleasure in either of the two forms $L, L \alpha, L \beta, \ldots$ and L, $\alpha L, \beta L$; i.e. we may say that the group is convertible with any symbol L of the holder, and that the group operating upon, or operated upon by, a symbol L of the holder, produces the holder. We may also say that the holder operated upon by, or operating upon, a symbol α of the group reproduces the holder.

Suppose now that the group

$$
1, \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \ldots
$$

can be divided into a series of symmetrical holders of the smaller group

$$
1, \alpha, \beta, \ldots
$$

the former group is said to be a multiple of the latter group, and the latter group to be a submultiple of the former group. Thus considering the two different forms of a group of six, and first the form

$$
1, \alpha, \alpha^{2}, \gamma, \gamma \alpha, \gamma \alpha^{2},\left(\alpha^{3}=1, \gamma^{2}=1, \alpha \gamma=\gamma \alpha\right),
$$

the group of six is a multiple of the group of three, $1, \alpha, \alpha^{2}$ (in fact, $1, \alpha, \alpha^{2}$ and $\gamma, \gamma \alpha, \gamma \alpha^{2}$ are each of them a symmetrical holder of the group $1, \alpha, \alpha^{2}$); and so in like manner the group of six is a multiple of the group of two, $1, \gamma$ (in fact, $1, \gamma$ and $\alpha, \alpha \gamma$, and $\alpha, \alpha^{2} \gamma$ are each a symmetrical holder of the group 1, γ). There would not, in a case such as the one in question, be any harm in speaking of the group of six as the product of the two groups $1, \alpha, \alpha^{2}$ and $1, \gamma$, but upon the whole it is, I think, better to dispense with the expression.

Considering, secondly, the other form of a group of six, viz.

$$
1, \alpha, \alpha^{2}, \gamma, \gamma \alpha, \gamma \alpha^{2}\left(\alpha^{3}=1, \gamma^{2}=1, \alpha \gamma=\gamma \alpha^{2}\right) ;
$$

here the group of six is a multiple of the group of three, $1, \alpha, \alpha^{2}$ (in fact, as before, $1, \alpha, \alpha^{2}$ and $\gamma, \gamma \alpha, \gamma \alpha^{2}$, are each a symmetrical holder of the group $1, \alpha, \alpha^{2}$, since, as regards $\gamma, \gamma \alpha, \gamma \alpha^{2}$, we have $\left.\left(\gamma, \gamma \alpha, \gamma \alpha^{2}\right)=\gamma\left(1, \alpha, \alpha^{2}\right)=\left(1, \alpha^{2}, \alpha\right) \gamma\right)$. But the group of six is not a multiple of any group of two whatever; in fact, besides the group $1, \gamma$ itself, there is not any symmetrical holder of this group $1, \gamma ;$ and so, in like manner, with respect to the other groups of two, $1, \gamma \alpha$, and $1, \gamma \alpha^{2}$. The group of three, $1, \alpha, \alpha^{2}$, is therefore, in the present case, the only submultiple of the group of six.

It may be remarked, that if there be any number of symmetrical holders of the same grnup, 1, α, β, \ldots then any one of these holders bears to the aggregate of the holders a relation such as the submultiple of a group bears to such group; it is proper to notice that the aggregate of the holders is not of necessity itself a holder.

