Object structure


Oszacowanie skali wpływu pozyskiwania drewna na wybrane elementy środowiska we wschodniej części polskich Karpat = Estimating the impact of logging on selected elements of the environment in the eastern part of the Polish Carpathians


Przegląd Geograficzny T. 91 z. 1 (2019)


Affek, Andrzej : Autor ORCID ; Gerlée, Alina : Autor ORCID ; Sosnowska, Agnieszka : Autor ORCID ; Zachwatowicz, Maria : Autor ORCID


Affek, Andrzej : Autor ; Gerlée, Alina : Autor ; Sosnowska, Agnieszka : Autor ; Zachwatowicz, Maria : Autor



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

forest roads ; timber extraction ; skidding ; LiDAR ; erosion ; edge effect ; East Carpathians


Although ground mechanised skidding is an economically efficient method of timber extraction, it brings several negative consequences to the natural environment. According to the literature, out of all the different forest operations, it is timber extraction (skidding) and the associated presence of forest roads and skid trails that contribute most to soil compaction, increased erosion, surface runoff and flash floods (see Affek 2019 for review). The objective of our study was thus to assess the size of environmental impacts of logging in the eastern part of the Polish Carpathians with more accuracy and a broader scope than has been achieved before (the results of the first phase of this work being published in Forest Ecology and Management; Affek et al., 2017). To this end, we took twice as large a sample of forest divisions and calculated the density of forest roads and its links to topography. We also estimated the range of any potential edge effect caused by forest roads, and supplemented our analysis with a description of the methods and intensity of timber harvesting in the study area. Within the 15 Forest Districts analysed (comprising 2639 km2 of forested area), we randomly selected 120 Forest divisions (covering 48 km2 in total) for analysis. We used the national LiDAR dataset of countrywide coverage (point density of 4 per m2) to detect forest roads and skid trails. The total length, mean density, mean and maximum inclination, and mean coverage of forest roads were calculated, while the potential combined edge effect of these was also determined. These data were linked with official forest spatial data regarding forest management practices, forest types, age of stands and planned cuts, as well as relevant policy documents, reports and scientific literature. We demonstrated that the mean density of forest roads in the 120 forest divisions selected is 12.48 km/km², including paved and unpaved roads and skid trails. The estimated density for the eastern part of the Polish Carpathians is in the range 11.43-13.53 km/km² (with 95% probability). The obtained confidence interval was lower by 35% when set against the one derived from the analysis of 60 Forest Districts. The length of the entire road network was an estimated 30166-35706 km, equating to some 4.6-5.4% of the forest area being covered by roads. Maximum road inclination in the sampled forest divisions ranges from 9 to 38°, while about 8% of forest roads lead through slopes of more than 20°. Ground skidding by means of skidders, forwarders and agricultural tractors adapted for logging is the most common method of timber extraction in the Polish Carpathians. The total volume of the harvest in the analysed 15 Forest Districts in 2016 was of a planned 1,230,153 m3, equating to an average harvest of 4.62 m3/ha. The most common types of treatment for the current 10-year periods are: late and early thinning (38.5% of the area), gradual thinning improved (35.6%) and early and late cleaning (7%). We concluded that the LiDAR-assessed density of Carpathian logging roads (including skid trails) is among the highest reported in the literature, which translates into disturbed soil structure over approx. 5% of the entire area analysed. The density of forest roads is not related to slope steepness, but the same density of roads in steep terrain obviously has a far greater impact on erosion and sediment transport than is the case in more gentle terrain. The selective harvesting method used today in the Carpathians requires frequent entry of heavy equipment (skidders, forwarders or tractors) into large forest areas, hence skidding now appears to be a bottleneck for sustainable forest management in the Carpathians. One of the possible solutions leading to a more sustainable management of forest resources in the mountains is thus the replacement of ground skidding with environment-friendly cable cars.


1. Affek A., 2014, Lotnicze skanowanie laserowe (ALS) w modelowaniu rzeźby terenu - nowe możliwości i pułapki, Problemy Ekologii Krajobrazu, 38, s. 217-236.
2. Affek A., 2016, Past Carpathian landscape recorded in the microtopography, Geographia Polonica, 89, s. 415-424. https://doi.org/10.7163/GPol.0062
3. Affek A., 2019, Wpływ gospodarki leśnej na terenach górskich na wybrane elementy środowiska - aktualny stan wiedzy, Przegląd Geograficzny, 91, 1, s. 63-81. https://doi.org/10.7163/PrzG.2019.1.3
4. Affek A., Zachwatowicz M., Sosnowska A., Gerlée A., Kiszka K., 2017, Impacts of modern mechanised skidding on the natural and cultural heritage of the Polish Carpathian Mountains, Forest Ecology and Management, 405, s. 391-403. https://doi.org/10.1016/j.foreco.2017.09.047
5. Anfodillo T., Carrer M., Valle E., Giacoma E., Lamedica S., Pettenella D., 2008, Programme Carpathian Project: Current State of Forest Resources in the Carpathians, Universita Delgi Studi Di Padova, Padova.
6. Antończyk S., Dzikowski J., 1984, Tabele optymalnych wskaźników gęstości dróg na powierzchni leśnej, Sylwan, 128, s. 23-34.
7. Avon C., Dumas Y., Bergès L., 2013, Management practices increase the impact of roads on plant communities in forests, Biological Conservation, 159, s. 24-31. https://doi.org/10.1016/j.biocon.2012.10.008
8. Azizi Z., Najafi A., Sadeghian S., 2014, Forest road detection using LiDAR data, Journal of Forestry Research, 25, s. 975-980. https://doi.org/10.1007/s11676-014-0544-0
9. Bank Danych o Lasach, 2018, https://www.bdl.lasy.gov.pl (03.03.2019).
10. Bygdén G., Eliasson L., Wästerlund I., 2004, Rut depth, soil compaction and rolling resistance when using bogie tracks, Journal of Terramechanics, 40, s. 179-190. https://doi.org/10.1016/j.jterra.2003.12.001
11. Cambi M., Certini G., Neri F., Marchi E., 2015, The impact of heavy traffic on forest soils: A review, Forest Ecology and Management, 338, s. 124-138. https://doi.org/10.1016/j.foreco.2014.11.022
12. Caterpillar, 2017, Industry solutions: forestry, http://www.cat.com/en_GB/by-industry/forestry.html (03.03.2019).
13. CIA, 2017, The World Factbook, https://www.cia.gov/library/publications/resources/the-worldfactbook/rankorder/2085rank.html (03.03.2019).
14. Coffin A., 2007, From roadkill to road ecology: A review of the ecological effects of roads, Journal of Transport Geography, 15, s. 396-406. https://doi.org/10.1016/j.jtrangeo.2006.11.006
15. Czerniak A. (red.), 2013, Wytyczne prowadzenia robót drogowych w lasach, Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu, Bedoń.
16. d'Oliveira M.V.N., Reutebuch S.E., McGaughey R.J., Andersen H.E., 2012, Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon, Remote Sensing of Environment, 124, s. 479-491. https://doi.org/10.1016/j.rse.2012.05.014
17. Dudek T., 2010, Badanie wydajności technologii zrywki drewna w lasach górskich. Część 1. Drzewostany przedrębne, Technika Rolnicza Ogrodnicza Leśna, 5.
18. Dudek T., Sosnowski J., 2011, Ocena środowiskooszczędności wybranych technologii zrywki drewna w lasach górskich, Sylwan, 155, s. 413-420.
19. Dzikowski J., Szarłowicz A., Burzyński S., Rajsman M., Satoła J., Wiązowski Z., 2006, Drogi leśne: poradnik techniczny, Dyrekcja Generalna Lasów Państwowych, Warszawa - Bedoń.
20. Eberhardt P., 2011, Political Migrations on Polish Territories (1939-1950), IGiPZ PAN, Warszawa.
21. Ellis P., Griscom B., Walker W., Gonçalves F., Cormier T., 2016, Mapping selective logging impacts in Borneo with GPS and airborne lidar, Forest Ecology and Management, 365, s. 184-196. https://doi.org/10.1016/j.foreco.2016.01.020
22. Encyklopedia Leśna, 2018, https://www.encyklopedialesna.pl/(03.03.2019).
23. ePoradnik RĘBNIE, 2003, http://rebnie.wl.sggw.pl (03.03.2019).
24. Fastnacht A., 1962, Osadnictwo ziemi sanockiej w latach 1340-1650, Ossolineum, Wrocław.
25. Ferraz A., Mallet C., Chehata N., 2016, Large-scale road detection in forested mountainous areas using airborne topographic lidar data, ISPRS Journal of Photogrammetry and Remote Sensing, 112, s. 23-36. https://doi.org/10.1016/j.isprsjprs.2015.12.002
26. FOREST EUROPE, 2015, State of Europe's Forests 2015, https://www.foresteurope.org/docs/fullsoef2015.pdf (03.03.2019). https://doi.org/10.1146/annurev.ecolsys.29.1.207
28. Gil W., 2007, Badania porównawcze ciągników rolniczych jako środków zrywkowych w wybranych zakładach usług leśnych, Wydawnictwo AR, Kraków.
29. Gil W., Motyka J., 2014, Systemy linowe do zrywki drewna - wczoraj i dziś, Studia i Materiały CEPL w Rogowie, 39, s. 20-27.
30. Gołąb J., Plewniak J., 2014, Aktualne uwarunkowania kształtowania sieci dróg leśnych w górach, Infrastruktura i Ekologia Terenów Wiejskich, 2, s. 195-206.
31. Haze M. (red.), 2012, Zasady hodowli lasu, Centrum Informacyjne Lasów Państwowych, Warszawa.
32. Heinimann H., 2007, Forest operations engineering and management - the ways behind and ahead of a scientific discipline, Croatian Journal of Forest Engineering, 28, s. 107-121.
33. Ibisch P.L., Hoffmann M.T., Kreft S., Pe'er G., Kati V., Biber-Freudenberger L., DellaSala D.A., Vale M.M., Hobson P.R., Selva N., 2016, A global map of roadless areas and their conservation status, Science, 354. https://doi.org/10.1126/science.aaf7166
34. IBL, 2015, Stan zdrowotny lasów Polski w 2014 roku, Sękocin Stary.
35. Jansson K., Johansson J., 1998, Soil changes after traffic with a tracked and a wheeled forest machine: a case study on a silt loam in Sweden, Forestry, 71, s. 57-66. https://doi.org/10.1093/forestry/71.1.57
36. John Deere, 2017, Skidders, https://www.deere.co.uk/en/skidders/(03.03.2019).
37. Kocel J., 2005, Prywatny sektor usług leśnych w latach 1999-2003, Leśne Prace Badawcze, s. 17-34.
38. Kozak J., Kaim D. (red.), 2016, FORECOM: podręcznik użytkownika, Kraków, http://www.geo.uj.edu.pl/publikacje, 000222 (03.03.2019).
39. Kozioł C., 2007, National Policy on Forests in Poland and forest management in the Carpathians, [w:] First Meeting of the Carpathian Convention Working Group on SARD and Forestry 9-10 July 2007, VIC, Vienna.
40. Kucharzyk S., 2015, Dawne oraz współczesne drogi leśne i szlaki zrywkowe w waloryzacji naturalności ekosystemów leśnych w Bieszczadzkim Parku Narodowym, Roczniki Bieszczadzkie, 23, s. 95-109.
41. Leibundgut H., 2007, Naturalne odnowienie lasu, PWRiL, Warszawa.
42. Leitold V., Keller M., Morton D.C., Cook B.D., Shimabukuro Y.E., 2015, Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+, Carbon Balance Management, 10, 3. https://doi.org/10.1186/s13021-015-0013-x
43. LKT, 2017, Produkty, http://www.lkttrstena.sk/produkty (03.03.2019).
44. Marszałek E., 2011, Gospodarka leśna w karpackiej części Regionalnej Dyrekcji Lasów Państwowych w Krośnie i jej wpływ na ochronę przyrody, Roczniki Bieszczadzkie, 19, s. 59-75.
45. Maryański A., 1963, Współczesne migracje ludności w południowej części pogranicza polsko-radzieckiego i ich wpływ na rozmieszczenie sił wytwórczych tego obszaru, Wyższa Szkoła Pedagogiczna w Krakowie, Kraków.
46. Matuszkiewicz J.M., 2008, Potencjalna roślinność naturalna Polski, https://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/roslinnosc_potencjalna/prn_opracowanie.pdf (03.03.2019).
47. PGL LP, 2006, Drogi leśne: poradnik techniczny, Dyrekcja Generalna Lasów Państwowych, Warszawa - Bedoń.
48. PGL LP, 2014, Forests in Poland 2013, http://www.lasy. gov.pl/publikacje/in-english/forests-in-poland-2013 (03.03.2019).
49. PGL LP, 2015, Instrukcja wyznaczania docelowej sieci drogowej nadleśnictwa, Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu, Bedoń.
50. Piekutin J., Kłapeć B., Orzechowski M., 2015, Gęstość sieci dróg leśnych - ekonomiczny punkt widzenia, Sylwan, 159, 3, s. 179−187.
51. Quackenbush L.J., 2004, A review of techniques for extracting linear features from imagery, Photogrammetric Engineering and Remote Sensing, 70, s. 1383-1392. https://doi.org/10.14358/PERS.70.12.1383
52. Rist L., Shanley P., Sunderland T., Sheil D., Ndoye O., Liswanti N., Tieguhong J., 2012, The impacts of selective logging on non-timber forest products of livelihood importance, Forest Ecology and Management, 268, s. 57-69. https://doi.org/10.1016/j.foreco.2011.04.037
53. Riutta T., Slade E., Morecroft M., Bebber D., Malhi Y., 2014, Living on the edge: Quantifying the structure of a fragmented forest landscape in England, Landscape Ecology, 29, 6, s. 949-961. https://doi.org/10.1007/s10980-014-0025-z
54. Rogan J.E, Lacher T.E., 2018, Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity, Reference Module in Earth Systems and Environmental Sciences, Elsevier.
55. Roman A., Ursu T.M., Fărcaş S., Lăzărescu V.A., Opreanu C.H., 2017, An integrated airborne laser scanning approach to forest management and cultural heritage issues: a case study at Porolissum, Romania, Annals of Forest Research, 60, s. 127-143. https://doi.org/10.15287/afr.2016.755
56. Sadowski J., Moskalik T., Zastocki D., 2016, Ochrona gleby leśnej przy pozyskiwaniu i zrywce drewna, Studia i Materiały CEPL w Rogowie, 46, s. 172-180.
57. Schramm W., 1958, Lasy i zwierzyna Gór Sanockich, wyd. II, Olszanica.
58. Seixas F., McDonald T., 1997, Soil compaction effects of forwarding and its relationship with 6- and 8-wheel drive machines Forest Products Journal, 47, s. 46-52.
59. Shrestha S.P., Lanford B.L., Rummer R., Dubois M., 2008, Soil disturbances from horse/mule logging operations coupled with machines in the Southern United States, International Journal of Forest Engineering, 19, s. 17-23. https://doi.org/10.1080/14942119.2008.10702555
60. Sittler B., Weinacker H., Gültlinger M., Koupaliantz L., 2007, The potential of Lidar in assessing elements of cultural heritage hidden under forests [w:] Z. Bochenek (red.), New Developments and Challenges in Remote Sensing, Millpress, Rotterdam, s. 539-548.
61. Soja M., 2012, Demographic development and changes of land-use in the Beskid Niski Mountains, Poland, between 1869 and 2009, Bulletin of Geography. Socio-economic Series, 18, s. 109-116.
62. Soja R., 2002. Hydrologiczne aspekty antropopresji w Polskich Karpatach, Prace Geograficzne, 186, IGiPZ PAN, Warszawa.
63. Suwała M. (red.), 2000, Poradnik użytkowania lasu dla leśników praktyków, Wydawnictwo Świat, Warszawa.
64. Trombulak S.C., Frissell C.A., 2002, Review of ecological effects of roads on terrestrial and aquatic communities, Conservation Biology, 14, s. 18-30. https://doi.org/10.1046/j.1523-1739.2000.99084.x
65. UNEP, 2007, Carpathians Environment Outlook, United Nations Environment Programme, Geneva.
66. Ustawa z dnia 28 września 1991 r. o lasach. Dz.U. 1991 nr 101 poz. 444.
67. White R.A., Dietterick B.C., Mastin T., Strohman R., 2010, Forest roads mapped using LiDAR in steep forested terrain, Remote Sensing, 2, s. 1120-1141. https://doi.org/10.3390/rs2041120
68. Wolski J., 2007, Przekształcenia krajobrazu wiejskiego Bieszczadów Wysokich w ciągu ostatnich 150 lat, Prace Geograficzne, 214, IGiPZ PAN, Warszawa.
69. Zarządzenie nr 28 Dyrektora Generalnego Lasów Państwowych z dnia 27 kwietnia 2018 r. w sprawie wprowadzenia "Instrukcji wyznaczania docelowej sieci drogowej nadleśnictwa", Biuletyn Informacyjny Lasów Państwowych 6, 306, s. 5-11.
70. Zawadzki S. (red.), 1999, Gleboznawstwo, PWRiL, Warszawa.


Przegląd Geograficzny





Start page:


End page:


Resource type:


Detailed Resource Type:



File size 4,4 MB ; application/octet-stream

Resource Identifier:

2300-8466 (on-line) ; 2300-8466 (on-line) ; 10.7163/PrzG.2019.1.4


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at:

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.





Citation style: