Object structure
Title:

Effect of the north Atlantic oscillation on water level fluctuations in lakes of northern Poland

Subtitle:

Geographia Polonica Vol. 91 No. 2 (2018)

Creator:

Wrzesiński, Dariusz : Autor ; Ptak, Mariusz : Autor ; Plewa, Katarzyna : Autor

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2018

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

teleconnections ; water levels ; lakes ; NAO

Abstract:

The paper presents an analysis of correlations between water levels in Polish lakes and the rate of the North Atlantic Oscillation (NAO) in the years 1976-2010. The detailed analysis of the spatial variability of the effect of NAO on water levels in lakes concerned 19 lakes with statistically uniform hydrometric material. Two matrices were obtained for each of the lakes, composed of 156 coefficients of correlation calculated between monthly water stages and monthly and seasonal NAO indices. They provided the basis for performing two variants of classification of lakes by Ward’s method. Four typological classes were distinguished for each variant. It was determined that stronger correlations occur in the case of water stages in lakes with seasonal than those with monthly NAO indices. The strongest effect of NAO on water stages is observed in the winter-spring period. Spatial variability of the effect has been recorded, resulting from the climatic conditions of a given region. Lakes located in the south-western part of the studied area constitute an evidently separate group. In the negative phase of NAO, they are distinguished by higher water stages in the winter-spring period. This may be associated with more frequent thaws during winters, and increased supply to lakes in the period.

References:

1. Bednorz E., 2013. Synoptic conditions of heavy snowfalls in Europe. Geografiska Annaler, Series A: Physical Geography, vol. 95, no. 1, pp. 67-78. https://doi.org/10.1111/geoa.12001
2. Biron S., Assani A.A., Frenette J.-J., Massicotte P., 2014. Comparison of Lake Ontario and St. Lawrence River hydrologic droughts and their relationship to climate indices. Water Resources Research, vol. 50, no. 2, pp. 1396-1409. https://doi.org/10.1002/2012WR013441
3. Cantonati M., Guella G., Komárek J., Spitale D., 2014. Depth distribution of epilithic cyanobacteria and pigments in a mountain lake characterized by marked water-level fluctuations. Freshwater Science, vol. 33, no. 2, pp. 537-547. https://doi.org/10.1086/675930
4. Choiński A., 2006. Katalog jezior Polski. Poznań: Wydawnictwo Naukowe UAM.
5. Czarnecka M., Nidzgorska-Lencewicz J., 2013. The occurrence of atmospheric thaw in Poland over the last 50 years. Geographia Polonica, vol. 86, no. 4, pp. 327-340. https://doi.org/10.7163/GPol.2013.27
6. Dembkowski D.J., Chipps S.R., Blackwell B.G., 2014. Response of walleye and yellow perch to water-level fluctuations in glacial lakes. Fisheries Management and Ecology, vol. 21, no 2, pp. 89-95. https://doi.org/10.1111/fme.12047
7. George D.G., Maberly S.C., Hewitt D.P., 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology, vol. 49, no. 6, pp. 760-774. https://doi.org/10.1111/j.1365-2427.2004.01223.x
8. Górniak A., Piekarski K., 2002. Seasonal and multiannual changes of water levels in lakes of Northeastern Poland. Polish Journal of Environmental Studies, vol. 11, no. 4, pp. 349-354.
9. HURRELL J., NATIONAL CENTER FOR ATMOSPHERIC RESEARCH STAFF (eds.), Last modified 07 Nov 2017. The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). Retrieved from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based.
10. Ilnicki P., Farat R., Górecki K., Lewandowski P., 2014. Impact of climatic change on river discharge in the driest region of Poland. Hydrological Sciences Journal, vol. 59, no. 6, pp. 1117-1134. https://doi.org/10.1080/02626667.2013.831979
11. Jania J.A., Zwoliński Z., 2011. Extreme meteorological, hydrological and geomorphological events in Poland. Landform Analysis, vol. 15, pp. 51-64.
12. JAŃCZAK J., CHOIŃSKI A., 1988. Wahania poziomów wody wybranych jezior Polski w latach 1956-1985 [in:] Z. Churski (ed.), Naturalne i antropogeniczne przemiany jezior i mokradeł w Polsce, Toruń: UMK.
13. KONATOWSKA M., RUTKOWSKI P., 2008. Zmiany powierzchni i poziomu lustra wody Jeziora Kamińsko (Nadleśnictwo Doświadczalne Zielonka) na przestrzeni ostatnich 150 lat. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, vol. 10, no. 2 (18), pp. 205-217.
14. Kowalczak P., Farat R., Kępińska-Kasprzak M., Kuźnicka M., Mager P., 1997. Hierarchia potrzeb obszarowych małej retencji. Materiały badawcze, Seria: Gospodarka Wodna o Ochrona Wód, vol. 19, Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
15. Krasowska M., Banaszuk P., 2011. Wymywanie składników rozpuszczonych z małej zlewni rolniczej podczas wezbrania roztopowego. Woda-Środowisko-Obszary Wiejskie, vol. 11, no. 1, pp. 139-157.
16. Krupa E., Slyvinskiy G., Barinova S., 2014. The Effect of Climatic Factors on the Long-term Dynamics of Aquatic Ecosystem of the Balkhash Lake (Kazakhstan, Central Asia). Advanced Studies in Biology, vol. 6, no. 3, pp. 115-136. https://doi.org/10.12988/asb.2014.4523
17. Küçük M., Kahya E., Cengiz T.M., Karaca M., 2009. North Atlantic Oscillation influences on Turkish lake levels. Hydrological Processes, vol. 23, no. 6, pp. 893-906. https://doi.org/10.1002/hyp.7225
18. Molinos J.G., Viana M., Brennan M., Donohue I., 2015. Importance of long-term cycles for predicting water level dynamics in natural lakes. PLoS ONE, vol. 10, no. 3: e0119253. https://doi.org/10.1371/journal.pone.0119253
19. Niewiarowski W., 1978. Fluctuations of waterlevel in the Gopło Lake and their reasons. Polish Archives of Hydrobiology, vol. 25, pp. 301-306.
20. Nõges T., Nõges P., Laugaste R., 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia vol. 506-509, pp. 257-263. https://doi.org/10.1023/B:HYDR.0000008540.06592.48
21. Norcliffe G.B., 1986. Statystyka dla geografów. Wprowadzenie. Warszawa: Państwowe Wydawnictwo Naukowe.
22. Pasławski Z, 1973. Long-term fluctuations and trends in water level changes in the outflow lakes in Northern Poland. Hydrological Sciences Bulletin, vol. 18 no. 3, pp. 295-301. https://doi.org/10.1080/02626667309494039
23. Pociask-Karteczka J., 2006. River hydrology and the North Atlantic Oscillation: A general review. Ambio, vol. 35, no. 6, pp. 312-314. https://doi.org/10.1579/05-S-114.1
24. Ptak M., Wrzesiński D., Choiński A. 2017. Longterm changes in the hydrological regime of high mountain lake Morskie Oko (Tatra Mountains, Central Europe). Journal of Hydrology and Hydromechanics, vol. 65, no. 2, pp. 146-153. https://doi.org/10.1515/johh-2017-0005
25. Ptak M., Tomczyk A.M., Wrzesiński D., 2018. Effect of teleconnection patterns on changes in water temperature in Polish lakes. Atmosphere, vol. 9, no. 66, pp. 1-17.
26. Ríos-Cornejo D., Penas Á., Álvarez-Esteban R., Del Río S., 2015. Links between teleconnection patterns and precipitation in Spain. Atmospheric Research, vol. 156, pp. 14-28. https://doi.org/10.1016/j.atmosres.2014.12.012
27. Sheida J., Hamidi S.A., Ghanbari R.N., 2016. Climate variability and anthropogenic effects on Lake Urmia water level fluctuations, northwestern Iran. Hydrological Sciences Journal, vol. 61, no. 10, pp. 1759-1769.
28. Skibniewski L., 1954. Wahania poziomów zwierciadła wody większych jezior pojezierzy: Pomorskiego i Mazurskiego. Przegląd Meteorologiczny, vol. 7, no. 3-4, pp. 159-172.
29. Soja G., Züger J., Knoflacher M., Kinner P., Soja A.M., 2013. Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). Journal of Hydrology, vol. 480, pp. 115-124. https://doi.org/10.1016/j.jhydrol.2012.12.013
30. Stasik R., Szafrański C., Korytowski M., Liberacki D., 2007. Zmienność przepływów w ciekach małych zlewni nizinnych o zróżnicowanym zasilaniu i stopniu lesistości na tle warunków meteorologicznych. Acta Scientiarum Polonorum, Formatio Circumiectus, vol. 6, no. 1, pp. 15-25.
31. STEFANIDIS K., PAPASTERGIADOU E., 2013. Effects of a long term water level reduction on the ecology and water quality in an eastern Mediterranean lake. Knowledge and Management of Aquatic Ecosystems, no. 411, article no. 05, pp. 1-14.
32. Šikić Z., Pernar N., Yerkovich B.B., Rogošić J., Širac S., 2013. Influence of water levels of Vrana Lake and the Adriatic Sea to the water chemistry of Vrana Lake. Acta Adriatica, vol. 54, no. 2, pp. 199-211.
33. Twardosz R., Łupikasza E., Niedźwiedź T., Walanus A., 2012. Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Climatic Change, vol. 11, no. 3-4, pp. 623-638. https://doi.org/10.1007/s10584-011-0352-x
34. Tomczyk A.M., 2015. Impact of macro-scale circulation types on the occurrence of frosty days in Poland. Bulletin of Geography. Physical Geography Series, vol. 9, no. 1, pp. 55-65.
35. Ward J.H., 1963. Hierarchical grouping to optimise an objective function. Journal of the American Statistical Association, vol. 58, no. 301, pp. 236-244. https://doi.org/10.1080/01621459.1963.10500845
36. Weyhenmeyer G.A., 2009. Do warmer winters change variability patterns of physical and chemical lake conditions in Sweden? Aquatic Ecology, vol. 43, no. 3, pp. 653-659. https://doi.org/10.1007/s10452-009-9284-1
37. Wrzesiński D., 2011. Regional differences in the influence of the North Atlantic Oscillation on seasonal river runoff in Poland. Quaestiones Geographicae, vol. 30, no. 3, pp. 127-136. https://doi.org/10.2478/v10117-011-0032-y
38. Wrzesiński D., 2013. Entropia odpływu rzek w Polsce. Studia i Prace z Geografii i Geologii, no. 33, Poznań: Bogucki Wydawnictwo Naukowe.
39. Wrzesiński D., Choiński A., Ptak M., 2015. Effect of the North Atlantic Oscillation on the thermal characteristics of lakes in Poland. Acta Geophysica, vol. 63, no. 3, pp. 863-883. https://doi.org/10.1515/acgeo-2015-0001
40. Wrzesiński D., Choiński A., Ptak M., Skowron R., 2015. Effect of the North Atlantic Oscillation on the Pattern of Lake Ice Phenology in Poland. Acta Geophysica, vol. 63, no. 6, pp. 1664-1684. https://doi.org/10.1515/acgeo-2015-0055
41. Wrzesiński D., Choiński A., Ptak M., 2016. Effect of North Atlantic Oscillation on the hydrological conditions of Lake Morskie Oko (Carphatian Mountains). Bulletin of Geography. Physical Geography Series, vol. 10, no. 1, pp. 95-105.
42. Wrzesiński D., Ptak M., 2016. Water level changes in Polish lakes during 1976-2010. Journal of Geographical Sciences, vol. 26, no. 1, pp. 83-101. https://doi.org/10.1007/s11442-016-1256-5
43. Wrzesiński D., Ptak M., 2017. An investigation of water level fluctuations in Polish lakes in various phases of the winter North Atlantic Oscillation. Geology, Geophysics and Environment, vol. 43, no 2, pp. 151-163. https://doi.org/10.7494/geol.2017.43.2.151
44. Zveryaev I.I., Wibig J., Allan R.P., 2008. Contrasting interannual variability of atmospheric moisture over Europe during cold and warm seasons. Tellus, Series A: Dynamic Meteorology and Oceanography, vol. 60, no. 1, pp. 32-41. https://doi.org/10.1111/j.1600-0870.2007.00283.x

Relation:

Geographia Polonica

Volume:

91

Issue:

2

Start page:

243

End page:

259

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 4,6 MB ; application/pdf

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0119

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: