Object structure


Kształtowanie się odpływu rzecznego w dorzeczu Parsęty w świetle modelowania hydrologicznego = Shaping of river outflow in the Parsęta basin in the light of hydrological modelling


Przegląd Geograficzny T. 89 z. 1 (2017)


Gudowicz, Joanna ; Zwoliński, Zbigniew



Place of publishing:


Date issued/created:



24 cm

Type of object:


Subject and Keywords:

river outflow ; hydrological modelling ; Parsęta river ; Pomerania


The aim of the work described here was to assess the temporal variability and spatial differentiation characterising the outflow of a river, using integrated geoinformation methods and hydrological modelling. The study was conducted in the Parsęta drainage basin, whose internal structure is considered representative of young-glacial lowlands in the temperate climatic zone. The simulations of water balance were carried out using a hydrological and water quality model called the Soil and Water Assessment Tool (SWAT), as integrated into a geographical information system. SWAT is a basin-scale, continuous-time model. It was designed to predict the impact of watershed management changes on outflows of water, sediment and chemical components. The spatial data analysis is based on concerns a digital elevation model, lithology, hydrography, soil, land cover and land use. The simulations included meteorological data for the period 1966-2010 from 4 meteorological stations of the Institute of Meteorology and Water Management. Selected from among available methods were: the Soil Conservation Service Curve Number method (SCS-CN) to estimate surface runoff, the Penman-Monteith method to estimate potential evapotranspiration, and the Muskingum river routing method for a channel network. Models required calibration, which was achieved using SWAT-CUP4 software. Within the SWAT-CUP4 framework, the Sequential Uncertainty Fitting (SUFI-2) calibration procedure was selected. Calibration and validation were performed on data collected at three water-gauge stations in Tychówko, Białogard and Bardy, for the years 1966-2010 (these measurement data were obtained from the Institute of Meteorology and Water Management). The results were assessed by reference to such statistics as the R2 determination coefficient, Nash-Sutcliffe efficiency coefficient (NSE) and percentage bias coefficient (PBIAS). The results with an annual time step were characterised by high values for the statistical evaluation coefficients. The values for the percentage bias coefficient were in the 3-13% range for the calibration, and of 4-17% in the case of the validation period. Found to be most consistent with the observed data were modelling results obtained for the closing profile of the basin. A reduction in the area of catchment considered was associated with lower values being obtained for the statistical coefficients, in respect of the evaluation of the results. In comparing results in relation to the period of calibration and validation, only very small differences as regards assessment factors were to be found. Application of the SWAT model in the case of a lowland river flowing through a young-glacial landscape confirmed that model’s universal applicability to catchments characterised by widely different environmental conditions and river regimes.


1. Abbaspour K.C., Johnson A., van Genuchten M.Th., 2004, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone Journal, 3, 4, s. 1340-1352.
2. Abbaspour K.C., 2012, SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs – A User Manual, Eawag.
3. Aksoy H., Kavvas M.L., 2005, A review of hillslope and watershed scale erosion and sediment transport models, Catena, 64, s. 247-271.
4. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998, Large area hydrologic modeling and assessment: Part I. Model development, Journal of American Water Resources Association, 34, 1, s. 73-89.
5. Berezowski T., Szcześniak M., Kardel I., Michałowski R., Okruszko T., Mezghani A., Piniewski M., 2016, CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins, Earth System Science Data, 8, s. 127-139.
6. Beven K., 2001, Rainfall-Runoff Modelling. The Primer, John Wiley and Sons, Chichester.
7. Bogdanowicz R., Olszewska A., Drwal J., Woźniak E., 2010, Zastosowanie Systemów Informacji Geograficznej (GIS) do oceny hydrograficznych uwarunkowań wielkości dostawy zanieczyszczeń w zlewniach młodoglacjalnych na przykładzie zlewni Borucinki, [w:] T. Ciupa, R. Suligowski (red.), Woda w badaniach geograficznych, Uniwersytet Jana Kochanowskiego, Kielce, s. 91-97.
8. Brzozowski J., Miatkowski Z., Śliwiński D., Smarzyńska K., Śmietanka M., 2011, Application of SWAT model to small agricultural catchment in Poland, Journal of Water and Land Development, 15, s. 157-166.
9. Choiński A., 1998, Warunki obiegu wody w dorzeczu Parsęty, [w:] A. Kostrzewski (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Środowisko przyrodnicze dorzecza Parsęty – stan badań, zagospodarowanie, ochrona, Wydawnictwo Naukowe Bogucki, Poznań, s. 36-51.
10. Crawford N.H., Linsley R.K., 1966, Digital Simulation in Hydrology: Stanford Watershed Model IV, Technical Report No. 39, Department of Civil Engineering, Stanford University.
11. Daniel E.B., Camp J.V., LeBoeuf E.J., Penrod J.R., Dobbins J.P. Abkowitz M.D., 2011, Watershed modeling and its applications: A state-of-the-art review, The Open Hydrology Journal, 5, s. 26-50.
12. Dynowska I., 1971, Typy reżimów rzecznych w Polsce, Zeszyty Naukowe UJ, Prace Geograficzne, 28.
13. Fac-Beneda J., 2011, Młodoglacjalny system hydrograficzny, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
14. Gassman P.W., Reyes M.R., Green C.H., Arnold J.G., 2007, The soil and water assessment tool: historical development, applications, and future research directions, Transactions of the American Society of Agricultural and Biological Engineers, 50, 4, s. 1211-1250.
15. Gassman P.W., Sadeghi A.M., Srinivasan R., 2014, Applications of the SWAT model special section: Overview and insights, Journal of Environmental Quality, 43, s. 1-8.
16. Geethalakshmi V., Kitterød N.O., Lakshmanan A., 2008, A literature review on modeling of hydrological processes and feedback mechanisms on climate, CLIMARICE Report No. 2, The Norwegian Institute for Agriculture and Environmental Research (Bioforsk), Norway.
17. Green W.H., Ampt G.A., 1911, Studies on soil physics, 1. The flow of air and water through soils, Journal of Agricultural Science, 4, s. 1-24.
18. Gutry-Korycka M., 1999, Zlewnia jako geoekosystem dynamiczny, [w:] A. Kostrzewski (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Powodzie rzek Przymorza Bałtyku i innych regionów Polski – uwarunkowania, przebieg, skutki w środowisku przyrodniczym, Wydawnictwo Naukowe Bogucki, Poznań, s. 17-32.
19. Hargreaves G.L., Hargreaves G.H., Riley J.P., 1985, Agricultural benefits for Senegal River basin, Journal of Irrigation and Drainage Engineering, 108, 3, s. 225-230.
20. Ignar S., 1988, Metoda SCS i jej zastosowanie do wyznaczania opadu efektywnego, Przegląd Geofizyczny, 33, 4, s. 451-455.
21. Jenks G.F., 1967, The data model concept in statistical mapping, International Yearbook of Cartography, 7, s. 186-190.
22. Karczewski A., 1998, Układ przestrzenny stref morfologicznych dorzecza Parsęty, [w:] A. Kostrzewski (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Środowisko przyrodnicze dorzecza Parsęty – stan badań, zagospodarowanie, ochrona, Wydawnictwo Naukowe Bogucki, Poznań, s. 15-20.
23. Kondracki J., 2000, Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa.
24. Kostrzewski A., 1998, Struktura krajobrazowa dorzecza Parsęty w oparciu o dotychczasowe podziały fizyczno-geograficzne, [w:] A. Kostrzewski (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Środowisko przyrodnicze dorzecza Parsęty – stan badań, zagospodarowanie, ochrona, Wydawnictwo Naukowe Bogucki, Poznań, s. 131-141.
25. Kostrzewski A., 2003, Obieg wody i jego wpływ na powstanie i funkcjonowanie struktur krajobrazowych, [w:] A. Kostrzewski (red.), Funkcjonowanie geoekosystemów zlewni rzecznych. Obieg wody – uwarunkowania i skutki w środowisku przyrodniczym, Wydawnictwo Naukowe Bogucki, Poznań, s. 17-20.
26. Kostrzewski A., Mazurek M., Zwoliński Z., 1994, Dynamika transportu fluwialnego górnej Parsęty jako odbicie funkcjonowania systemu zlewni, Stowarzyszenie Geomorfologów Polskich, Wydawnictwo Naukowe Bogucki, Poznań.
27. Krysanova V., White M., 2015, Advances in water resources assessment with SWAT – an overview, Hydrological Sciences Journal, doi: 10.1080/02626667.2015.1029482.
28. Monteith J.L., 1965, Evaporation and the environment & in the state and movement of water in living organisms, [w:] Proceedings of the Society of Experimental Biology, Symposium No 19, Swansea, U.K, Cambridge University Press, Cambridge, s. 205-234.
29. Moriasi D.N., Wilson B.N., Douglas-Mankin K.R., Arnold J.G., Gowda P.H., 2012, Hydrologic and water quality models: use, calibration, and validation, Transactions of the ASABE, 55, 4, s. 1241-1247.
30. MPHP [Mapa Podziału Hydrograficznego Polski], 2010, Rastrowa Mapa Podziału Hydrograficznego Polski, Instytut Meteorologii i Gospodarki Wodnej, Krajowy Zarząd GospodarkiWodnej; http://www.kzgw.gov.pl/pl/rastrowa-mapa-podzialu-hydrograficznego-polski.html (10.03.2016).
31. Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R., 2011, Soil and Water Assessment Tool Theoretical Documentation, Version 2009, Temple, Texas: USDA ARS Grassland, Soil and Water Research Laboratory.
32. Newham L.T.H., Letcher R.A., Jakeman A.J., Kobayashi T., 2004, A framework for integrated hydrologic, sediment and nutrient export modelling for catchment-scale management, Environmental Modelling & Software, 19, s. 1029-1038.
33. O'Callaghan J.F., Mark D.M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision Graphics and Image Processing, 28, s. 323-344.
34. Pechlivanidis I.G., Jackson B.M., McIntyre N.R., Wheater H.S., 2011, Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications, Global NEST Journal, 13, 3, s. 193-214.
35. Piniewski M., 2012, Impacts of Natural and Anthropogenic Conditions on the Hydrological Regime of Rivers: A Narew River Basin Case Study, Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
36. Piniewski M., Marcinkowski P., Kardel I., Giełczewski M, Izydorczyk K., Frątczak W., 2015, Spatial quantification of non-point source pollution in a meso-scale catchment for an assessment of buffer zones efficiency, Water, 7, s. 1889-1920.
37. Piniewski M., Okruszko T., 2011, Multi-site calibration and validation of the hydrological component of SWAT in a large lowland catchment, [w:] D. Świątek, T. Okruszko (red.), Modelling of Hydrological Processes in the Narew Catchment, Geoplanet: Earth and Planetary Sciences, Springer, Berlin, Germany, s. 15-41.
38. Priestly C.H.B., Taylor R.J., 1972, On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weather Review, 100, 2, s. 81-92.
39. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991, RUSLE: Revised Universal Soil Loss Equation, Journal of Soil and Water Conservation, 46, 1.
40. Sarma P.B.S., Delleur J.W., Rao A.R., 1973, Comparison of rainfall-runoff models for urban areas, Journal of Hydrology, 18, 3-4, s. 329-347.
41. Singh J., Knapp H.V., Demissie M., 2004, Hydrological modeling of the Iroquois river watershed using HSPF and SWAT, Journal of American Water Resources Association, 41, s. 343-360.
42. Surfleet C.G., Tullos D., Chang H., Jung I.W., 2012, Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures, Journal of Hydrology, 464-465, s. 233-248.
43. https://doi.org/10.1016/j.jhydrol.2012.07.012 -
44. USDA Soil Conservation Service, 1972, Section 4. Hydrology, [w:] National Engineering Handbook, US. Department of Agriculture-Soil Conservation Service, Washington.
45. Walczykiewicz T. (red.), 2010, Zrównoważone gospodarowanie wodą, zasobami geologicznymi i leśnymi kraju, [w:] KLIMAT – Wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo (zmiany, skutki i sposoby ich ograniczania, wnioski dla nauki, praktyki inżynierskiej i planowania gospodarczego); http://klimat.imgw.pl/ (12.03.2016).
46. Winchell M., Srinivasan R., Di Luzio M., Arnold J., 2011, ArcSWAT Interface for SWAT2009. User's Guide, Blackland Research and Extension Center Texas Agrilife Research, s. 464.
47. Zwoliński Z., 1986, Kooperacja przepływowa jako miernik zmian reżimu rzecznego, [w:] Materiały Ogólnopolskiej Konferencji Hydrograficznej, Hydrologia regionalna i procesy hydrologiczne w zlewniach, Poznań, s. 221-225.
48. Zwoliński Z., 1989, Geomorficzne dostosowywanie się koryta Parsęty do aktualnego reżimu rzecznego, Dokumentacja Geograficzna, 3-4, IGiPZ PAN.


Przegląd Geograficzny





Start page:


End page:


Resource type:


Detailed Resource Type:



File size 1,8 MB ; application/pdf

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.1.3


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund





Citation style: