Object structure

The role of habitat heterogenity in the relationships between soil properties nad earthworm assembleges: a case study in Pomerania (Northern Poland)


Geographia Polonica Vol. 89 No. 3 (2016)


Regulska, Edyta ; Kołaczkowska, Ewa



Place of publishing:


Date issued/created:



24 cm

Type of object:


Subject and Keywords:

soil properties ; earthworms ; landscape structure ; biological monitoring


The vastness of the research on earthworm assemblages in agricultural lands focus on the comparison of agricultural treatments of different intensity. Consequently, spatial complexity of the landscape is less emphasised. Our study addresses this knowledge gap. The field study taken in West Pomeranian Lake District in Poland during four campaigns (spring and autumn) revealed that the mosaic of fields (MF) supported higher earthworm abundance than the similarly managed but homogeneous field (HF). Number and biomass of earthworm individuals both reflect the relationships with electrical conductivity, pH and in some situations also soil organic carbon and soil moisture effectively. We argue that autumn sampling is more preferable for biomonitoring.


1. Blackshaw R.P., Donovan S.E., Hazarika S., Bol R., Dixon E.R., 2007. Earthworm responses to long term agricultural management practices: Spatial relationships with soil properties. European Journal of Soil Biology, vol. 43, suppl. 1, pp. 171-175.
http://dx.doi.org/10.1016/j.ejsobi.2007.08.014 -
2. Breiman L., 2001. Random forests. Machine Learning, vol. 45, no. 1, pp. 5-32.
http://dx.doi.org/10.1023/A:1010933404324 -
3. Braun B., 2010. Właściwości gleb użytkowanych rolniczo w pasie Pojezierza Pomorskiego. Problemy Ekologii Krajobrazu, vol. 26, pp. 231-243.
4. Chan K.Y., Barchia I., 2007. Soil compaction controls the abundance, biomass and distribution of earthworms in a single dairy farm in southeastern Australia. Soil & Tillage Research, vol. 94, no. 1, pp. 75-82.
http://dx.doi.org/10.1016/j.still.2006.07.006 -
5. CONCEPCIÓN E.D., DÍAZ M., KLEIJN D., BÁLDI A., BATÁRY P., CLOUGH Y., GABRIEL D., HERZOG F., HOLZSCHUH A., KNOP E., MARSHALL E.J.P., TSCHARNTKE T., VERHULST J., 2012. Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. Journal of Applied Ecology, vol. 49, no. 3, pp. 695-705.
http://dx.doi.org/10.1111/j.1365-2664.2012.02131.x -
6. Decaëns T., Margerie P., Aubert M., Hedde M., Bureau F., 2008. Assembly rules within earthworm communities in North-Western France – A regional analysis. Applied Soil Ecology, vol. 39, no. 3, pp. 321-335.
http://dx.doi.org/10.1016/j.apsoil.2008.01.007 -
7. Edwards C.A., Bohlen P.J., 1996. Biology and Ecology of Earthworms. London: Chapman and Hall.
8. Hernández P., Gutiérrez M., Ramajo M., Trigo D., Díaz Cosín D.J., 2003. Horizontal distribution of an earthworm community at El Molar, Madrid (Spain). Pedobiologia, vol. 47, no. 5-6, pp. 568-573.
http://dx.doi.org/10.1078/0031-4056-00230 -
9. Hubbard V.C., Jordan D., Stecker J.A., 1999. Earthworm response to rotation and tillage in a Missouri claypan soil. Biology and Fertility of Soils, vol. 29, no. 4, pp. 343-347.
http://dx.doi.org/10.1007/s003740050563 -
10. Huerta E., Rodriguez-Olan J., Evia-Castillo I., Montejo-Meneses E., De La Cruz-Mondragon M., Garcia-Hernandez R., Uribe S., 2007. Earthworms and soil properties in Tabasco, Mexico. European Journal of Soil Biology, vol. 43, suppl. 1, pp. 190-195.
http://dx.doi.org/10.1016/j.ejsobi.2007.08.024 -
11. Iordache M., Borza I., 2010. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil and Environment, vol. 56, no. 9, pp. 401-407.
12. Ivask M., Kuu A., Sizov E., 2007. Abundance of earthworm species in Estonian arable soils. European Journal of Soil Biology, vol. 43, suppl. 1, pp. 39-42.
http://dx.doi.org/10.1016/j.ejsobi.2007.08.006 -
13. Jänsch S., Steffens L., Höfer H., Horak F., Rossnickoll M., Russell D., Burkhardt U., Toschki A., Römbke J., 2013. State of knowledge of earthworm communities in German soils as a basis for biological soil quality assessment. Soil Organisms, vol. 85, no. 3, pp. 215-233.
14. Johnson-Maynard J.L., Umiker K.J., Guy S.O., 2007. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil & Tillage Research, vol. 94, no. 2, pp. 338-345.
http://dx.doi.org/10.1016/j.still.2006.08.011 -
15. Joschko M., Fox C.A., Lentzsch P., Kiesel J., Hierold W., Krück S., Timmer J., 2006. Spatial analysis of earthworm biodiversity at the regional scale. Agriculture, Ecosystems & Environment, vol. 112, no. 4, pp. 367-380.
http://dx.doi.org/10.1016/j.agee.2005.08.026 -
16. Kasprzak K., 1986. Skąposzczety glebowe, III. Rodzina: Dżdżownice (Lumbricidae), ser. Klucze do oznaczania bezkręgowców Polski, 6, Warszawa: Państwowe Wydawnictwo Naukowe.
17. Keith A.M., Boots B., Hazard C., Niechoj R., Arroyo J., Bending G.D., Bolger T., Breen J., Clipson N., Doohan F.M., Griffin C.T., Schmidt O., 2012. Cross-taxa congruence, indicators and environmental gradients in soils under agricultural and extensive land management. European Journal of Soil Biology, vol. 49, pp. 55-62.
http://dx.doi.org/10.1016/j.ejsobi.2011.08.002 -
18. Kovács-Hostyánszki A., Elek Z., Balázs K., Centeri C., Falusi E., Jeanneret P., Penksza K., Podmaniczky L., Szalkovszki O., Báldi A., 2013. Earthworms, spiders and bees as indicators of habitat quality and management in a lowinput farming region – A whole farm approach. Ecological Indicator, vol. 33, pp. 111-120.
http://dx.doi.org/10.1016/j.ecolind.2013.01.033 -
19. Liaw A., Wiener M., 2002. Classification and Regression by randomForest. R News, vol. 2/3, pp. 18-22.
20. Marcinkowska A., Ochtyra A., Olędzki J.R., Wołk-Musiał E., Zagajewski B., 2013. Mapa geomorfologiczna województw pomorskiego oraz warmińsko-mazurskiego z wykorzystaniem metod geoinformatycznych. Teledetekcja Środowiska, vol. 49, pp. 43-79.
21. Mcgarigal K., Marks B.J., 1995. FRAGSTAT: spatial pattern analysis program for quantifying landscape structure. General Technical Reports, PNW-351, Portland: USDA Forest Service, Pacific Northwest Research Station.
http://dx.doi.org/10.2737/PNW-GTR-351 -
22. Metzke M., Potthoff M., Quintern M., Hess J., Joergensen R.G., 2007. Effect of reduced tillage systems on earthworm communities in a 6-year organic rotation. European Journal of Soil Biology, vol. 43, suppl. 1, pp. 209-215.
http://dx.doi.org/10.1016/j.ejsobi.2007.08.056 -
23. Metzke M., Potthoff M., Quintern M., Hess J., Joergensen R.G., 2007. Effect of reduced tillage systems on earthworm communities in a 6-year organic rotation. European Journal of Soil Biology, vol. 43, suppl. 1, pp. 209-215.
24. Ouellet G., Lapen D.R., Topp E., Sawada M., Edwards M., 2008. A heuristic model to predict earthworm biomass in agroecosystems based on selected management and soil properties. Applied Soil Ecology, vol. 39, no. 1, pp. 35-45.
http://dx.doi.org/10.1016/j.apsoil.2007.11.003 -
25. Paoletti M.G., 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment, vol. 74, no. 1-3, pp. 137-155.
http://dx.doi.org/10.1016/S0167-8809(99)00034-1 -
26. Plisko J.D., 1973. Lumbricidae – dżdżownice (Annelida: Oligochaeta). Warszawa: Państwowe Wydawnictwo Naukowe.
27. Regulska E., 2008. Ocena stanu środowiska przyrodniczego krajobrazów z zastosowaniem wskaźników faunistycznych. Problemy Ekologii Krajobrazu, vol. 21, pp. 193-205.
28. Regulska E., Kołaczkowska E., 2015. Landscape patch pattern effect on relationships between soil properties and earthworm assemblages: a comparison of two farmlands of different spatial structure. Polish Journal of Ecology, vol. 63, no. 4, pp. 549-558.
http://dx.doi.org/10.3161/15052249PJE2015.63.4.007 -
29. Riley H., Pommeresche R., Eltun R., Hansen S., Korsaeth A., 2008. Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agriculture, Ecosystems & Environment, vol. 124, no. 3-4, pp. 275-284.
http://dx.doi.org/10.1016/j.agee.2007.11.002 -
30. Roarty S., Schmidt O., 2013. Permanent and new arable field margins support large earthworm communities but do not increase in-field populations. Agriculture, Ecosystems & Environment, vol. 170, pp. 45-55.
http://dx.doi.org/10.1016/j.agee.2013.02.011 -
31. Schmidt O., Clements R.O., Donaldson G., 2003. Why do cereal-legume intercrops support large earthworm populations? Applied Soil Ecology, vol. 22, no. 2, pp. 181-190.
http://dx.doi.org/10.1016/S0929-1393(02)00131-2 -
32. Schmidt O., Curry J.P., Hackett R.A., Purvis G., Clements R.O., 2001. Earthworm communities in conventional wheat monocropping and low-input wheat-clover intercropping systems. Annals of Applied Biology, vol. 138, no. 3, pp. 377-388.
http://dx.doi.org/10.1111/j.1744-7348.2001.tb00123.x -
33. Valckx J., Cockx L., Wauters J., Van Meirvenne M., Govers G., Hermy M., Muys B., 2009. Within-field spatial distribution of earthworm populations related to species interactions and soil apparent electrical conductivity. Applied Soil Ecology, vol. 41, no. 3, pp. 315-328.
http://dx.doi.org/10.1016/j.apsoil.2008.12.005 -
34. Valckx J., Hermy M., Muys B., 2006. Indirect gradient analysis at different spatial scales of prorated and non-prorated earthworm abundance and biomass data in temperate agro-ecosystems. European Journal of Soil Biology, vol. 42, suppl. 1, pp. 341-347.
http://dx.doi.org/10.1016/j.ejsobi.2006.09.002 -
35. Wolters V., 2001. Biodiversity of soil animals and its function. European Journal of Soil Biology, vol. 37, no. 4, pp. 221-227.
http://dx.doi.org/10.1016/S1164-5563(01)01088-3 -


Geographia Polonica





Start page:


End page:


Resource type:


Detailed Resource Type:



File size 1 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0061


CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link




Creative Commons Attribution BY-SA 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-SA 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-SA 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure





Citation style: