Object structure

Topographical factors, meteorological variables and human factors in the control of the main snow avalanche events in the Făgăraş Massif (Southern Carpathians - Romanian Carpathians): Case studies


Geographia Polonica Vol. 89 No. 1 (2016)


Voiculescu, Mircea ; Ardelean, Florina ; Török-Oance. Marcel ; Milian, Narcisa



Place of publishing:


Date issued/created:



24 cm

Type of object:


Subject and Keywords:

topographical parameters ; climate variables ; human factors ; avalanche accidents ; Făgăraş massif ; Romanian Carpathians


Snow avalanches are a common geomorphic process and natural hazard in the Southern Carpathians (Romanian Carpathians). The spatial distribution of avalanches is controlled by topographical factors, meteorological variables and human factors. This study examines the occurrence of avalanches in two glacial areas in the Făgăraş massif, Bâlea (on the northern slope) and Capra (on the southern slope). During the period from 1963 to 2015 a total of 27 serious avalanche accidents were recorded in the months November-June in the Făgăraş massif resulting in 76 fatalities and 50 burials/injuries. From these avalanches, we examined five major avalanche accidents: the avalanche of June, 1974 which caused 6 fatalities and 8 burials/injuries; the avalanche of April 17, 1977 which caused 23 fatalities; the avalanche of December 23, 1988 which caused 3 fatalities; the avalanche of December 28, 2002 which caused 4 fatalities and the avalanche of February 20, 2010 which caused one fatality and 2 burials/injuries. Our results indicate a good correlation between some topographical factors. On the other hand, an increase in snowfall and snowstorms in particular are factors responsible for one avalanche event; early snowfall and a sudden increase in temperature are factors responsible for two avalanche events and snowfall and a sudden increase in temperature are factors responsible for one avalanche event. Using the weather scenarios we found high snowstorm frequency in one case, early-season weak layers of faceted crystals and depth hoar in two cases and well above-average total snowfall for one case.


1. Ancey C., Gervasoni C., Meunier M., 2004. Computing extreme avalanches. Cold Regions Science and Technology, vol. 39, no. 2-3, pp. 161-180.
2. Birkeland W.K., Mock J.C., 1996. Atmospheric circulation patterns associated with heavy snowfall events Bridger Bowl Montana. Mountain Resarch and Development, vol. 16, no. 3, pp. 281-286.
3. Birkeland W.K., Mock J.C., 2001. The major snow avalanche cycle of February 1986 in the Western United States. Natural Hazards, vol. 24, no. 1, pp. 75-95.
4. Birkeland W.K., Mock J.C., Shinker J.J., 2001. Avalanche extremes and atmospheric circulation patterns. Annals of Glaciology, vol. 32, no. 1, pp. 135-140.
5. Butler D.R., 1986. Snow avalanche hazards in Glacier National Park, Montana: Meteorologic and climatologic aspects. Physical Geography, vol. 7, no. 1, pp. 72-87.
6. Butler D.R., Malanson G.P., 1992. Effects of terrain on excessive travel distance by snow avalanches. Northwest Science, vol. 66, pp. 77-85.
7. Castebrunet H., Eckert N., Giraud G., 2011. Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Climate of the Past Discussions, vol. 7, no. 6, pp. 4173-4221.
8. EAWS, 2013. European avalanche size classification. European Avalanche Warning Services, http://www.avalanches.org. [15 November 2015].
9. Eckerstorfer M., Christiansen H.H., 2011. Relating meteorological variables to the natural slab avalanche regime in High Arctic Svalbard. Cold Regions Science and Technology, vol. 66, no. 2, pp. 184-193.
10. Eckerstorfer M., Christiansen H.H., 2011. Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006-2009. Geomorphology, vol. 134, no. 3-4, pp. 186-196.
11. Eckerstorfer M., Christiansen H.H., 2012. Meteorology, topography and snowpack conditions causing two extreme mid-winter slush and wet slab avalanche periods in High Arctic Maritime Svalbard. Permafrost and Periglacial Processes, vol. 23, no. 1, pp. 15-25.
12. Esteban P., Jones P.D., MARTÍN -VIDE J., MASES M., 2005. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees International Journal of Climatology, vol. 25, no. 3, pp. 319-329.
13. Fuchs S., Bründl M., 2005. Damage potential and losses resulting from snow avalanches in settlements of the Canton of Grisons Switzerland, Natural Hazards, vol. 34, no. 1, pp. 53-69.
14. Fuchs S., Bründl M., Stötter J., 2004. Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland. Natural Hazards and Earth System Sciences, vol. 4, no. 2, pp. 263-275.
15. Gabl K., 1988. Meteorologie der Lawinen [in:] K. Grabl (ed.), Lawinenhandbuch, Insbruck: Tyrolia-Verlag, pp. 13-38.
16. Germain D., Filion L., Hétu B., 2009. Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Climatic Change, vol. 92, no. 1-2, pp. 141-167.
17. Germain D., Voiculescu M., 2007. Les avalanches de neige dans les Chic-Choc (Canada) et les Carpates Méridionales (Roumanie). Bilan des connaissances et perspectives futures. Revista de Geomorfologie, vol. 9, pp. 17-33.
18. Grímsdóttir H., Mcclung D.M., 2006. Avalanche risk during backcountry skiing: An analysis of risk factors. Natural Hazards, vol. 39, no. 1, pp. 127-153.
19. HÖLLER P., 2007. Avalanche hazards and mitigationin Austria: A review. Natural Hazards,vol. 43, no. 1, pp. 81-101.
20. Höller P., 2009. Avalanche cycles in Austria: An analysis of the major events in the last 50 years. Natural Hazards, vol. 48, no. 3, pp. 399-424.
21. Jamieson B., Stethem C., 2002. Snow avalanche hazards and management in Canada: Challenges and progress. Natural Hazards, vol. 26, no. 1, pp. 35-53.
22. Jarry F., Sivardière F., 2000. Characteristics of fatal avalanche accidents in France 1989-1999. Proceedings of the International Snow Science Workshop, Big Sky (Montana): Montana State University, pp. 8-15.
23. Jomelli J., Brunstein D., Grancher D., Pech P., 2007. Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Climatic Change, vol. 85, no. 1-2, pp. 119-137.
24. Keiler M., 2004. Development of the damage potential resulting from avalanche risk in the period 1995-2000: Case study Galtür. Natural Hazards and Earth System Sciences, vol. 4, no. 2, pp. 249-256.
25. Keiler M., Zischg A., Fuchs S., Hama M., Stötter J., 2005. Avalanche related damage potential – changes of persons and mobile values since the mid-twentieth century, case study Galtür. Natural Hazards and Earth System Sciences, vol. 5, no. 1, pp. 49-58.
26. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Koeppen-Geiger climate classification updated. Meteorologische Zeitschrift, vol. 15, no. 3, pp. 259-263.
27. Lachapelle E.R., 1966. Avalanche forecasting: A modern synthesis. International Association of Hydrological Sciences Publications, 69, pp. 350-356.
28. Laternser M., Schneebeli M., 2002. Temporal trend and spatial distribution of avalanche activity during the last 50 Years in Switzerland. Natural Hazards, vol. 27, no. 3, pp. 201-230.
29. Laute K., Beylich A., 2014. Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway. Geomorphology, 218, pp. 16-34.
30. Luckman B.H., 1977. The geomorphic activity of snow avalanches. Geografiska Annaler. Series A. Physical Geography, vol. 59, no. 1-2, pp. 31-48.
31. Luckman B.H., 1978. Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arctic and Alpine Research, vol. 10, no. 2, pp. 261-276.
32. Mcclung D.M., 2003. Magnitude and frequency of avalanches in relation to terrain and forest cover. Arctic, Antarctic, and Alpine Research, vol. 35, no. 1, pp. 82-90.
33. Mcclung D.M., Schaerer P., 2006. The avalanche handbook. Seattle: Mountaineers Books.
34. Micu D., 2009. Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorology and Atmospheric Physics, vol. 105, no. 1-2, pp. 1-16.
35. Mock C.J., 1995. Avalanche climatology of the continental zone in the southern Rocky Mountains. Physical Geography, vol. 16, no. 3, pp. 165-187.
36. Mock C.J., 1996. Avalanche climatology of Alyeska, Alaska, U.S.A. Arctic and Alpine Research, vol. 28, no. 4, pp. 502-508.
37. Mock C.J., Birkeland W.K., 2000, Snow avalanche climatology of the Western United States Mountain Rangers. Bulletin of American Meteorological Society, vol. 81, no. 10, pp. 2367-2390.
38. Schaerer P.A., 1977. Analysis of snow avalanche terrain. Canadian Geotechnical Journal, vol. 14, no. 3, pp. 281-287.
39. Schweizer J., Jamieson B., Schneebeli M., 2003. Snow avalanche formation. Reviews of Geophysics, vol. 41, no. 4, pp. 2-25.
40. Smith M.J., Mcclung D.M., 1997. Avalanche frequency and terrain characteristics at Rogers Pass, British Columbia, Canada. Journal of Glaciology, vol. 43, no. 143, pp. 165-171.
41. Spencer J.M., Ashley W.S., 2011. Avalanche fatalities in the western United States: A comparison of three databases, Natural Hazards, vol. 58, no. 1, pp. 31-44.
42. STETHEM C., JAMIESON B., SCHAERER P., LIVERMAN D., GERMAIN D., WALKER S., 2003. Snow avalanche hazard in Canada – a review, Natural Hazards, vol. 28, 2-3, pp. 487-515.
43. Sturm M., Holmgren J., 1995. A seasonal snow cover classification system for local to global applications. Journal of Climate, vol. 8, no. 5, pp. 1261-1283.
44. Techel F., Zweifel B., 2013. Recreational avalanche accidents in Switzerland: Trends and patterns with an emphasis on burial, rescue methods and avalanche danger. International Snow Science Workshop, Grenoble-Chamonix Mont-Blanc, pp. 1106-1112.
45. Teich M., Marty C., Gollut C., Grêt-Regamey A., Bebi P., 2012. Snow and weather conditions associated with avalanche releases in forests Rare situations with decreasing trends during the last 41 years. Cold Regions Science and Technology, vol. 83-84, pp. 77-88.
46. Voiculescu M., 2014. Patterns of the dynamics of human-triggered snow avalanches at the Făgăraş massif (Southern Carpathians), Romanian Carpathians, Area, vol. 46, no. 3, pp. 328-336.
47. Voiculescu M., 2002. Studiul potenţialului geoecologic al Masivului Făgăraş şi protecţia mediului înconjurător. Timişoara: Editura Mirton.
48. Voiculescu M., Ardelean F., 2012. Snow avalanche – disturbance of high mountain environment. Case study – the Doamnei glacial valley the Făgăraş massif-Southern Carpathians, Romanian Carpathians. Carpathian Journal of Earth and Environmental Sciences, vol. 7, no. 1, pp. 95-108.
49. Voiculescu M., Ardelean F., Onaca A., Törökoance M., 2011. Analysis of snow avalanche potential in Bâlea glacial area – Făgăraş massif, (Southern Carpathians – Romanian Carpathians). Zeitschrift für Geomorphologie, vol. 55, no. 3, pp. 291-316.
50. Walsh S.J., Butler D.R., Brown D.G., Bian L., 1990. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana. Photogrammetric Engineering and Remote Sensing, vol. 56, no. 5, pp. 615-621.
51. Walsh J.S., Weiss J.D., Butler R.D., Malanson P.G., 2004. An assessment of snow avalanche paths and forest dynamics using Ikonos Satellite Data. Geocarto International, vol. 19, no. 2, pp. 85-93.


Geographia Polonica





Start page:


End page:


Resource type:


Detailed Resource Type:



File size 3,3 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0045


CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link




Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure





Citation style: