Object structure
Title:

Not only temperature: Interacting drivers of treeline change in Europe

Subtitle:

Geographia Polonica Vol. 89 No. 1 (2016)

Creator:

Kulakowski, Dominik ; Barbeito, Ignacio ; Casteller, Alejandro ; Kaczka, Ryszard J. ; Bebi, Peter

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2016

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

Picea ; Larix ; disturbance interactions ; subalpine forests ; climate ; climate change ; topography ; pollution ; snow avalanche

Abstract:

Treelines have long been recognized as important ecotones and likely harbingers of climate change. However, over the last century many treelines have been affected not only by global warming, but also by the interactions of climate, forest disturbance and the consequences of abrupt demographic and economic changes. Recent research has increasingly stressed how multiple ecological, biophysical, and human factors interact to shape ecological dynamics. Here we highlight the need to consider interactions among multiple drivers to more completely understand and predict treeline dynamics in Europe.

References:

1. Allen C.D., Macalady A.K., Chenchouni H. BACHELET D., MCDOWELL N., VENNETIER M., KITZBERGER T., RIGLING A., BRESHEARS D.D., HOGG E.H., GONZALEZ P., FENSHAM R., ZHANG Z., CASTRO J., DEMIDOVA N., LIM J.H., ALLARD G., RUNNING S.W., SEMERCI A., COB N., 2010. Drought-induced forest mortality: A global overview reveals emerging climate change risks. Forest Ecology and Management, vol. 259, no. 4, pp. 660-684.
http://dx.doi.org/10.1016/j.foreco.2009.09.001 -
2. Ameztegui A., Brotons L., Coll L., 2010. Landuse changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Global Ecology and Biogeography, vol. 19, no. 5, pp. 632-641.
3. Aulitzky H., Turner H., Mayer H., 1982. Bioklimatische Grundlagen einer standortsgemaessen Bewirtschaftung des subalpinen LaerchenArvenwaldes. Mitteilungen, Eidgenö ssische Anstalt fü r das Forstliche Versuchswesen, vol. 58, no. 4. pp. 327-580.
4. Barbeito I., Brücker R.L., Rixen C., Bebi P., 2013. Snow fungi-induced mortality of Pinus cembra at the alpine treeline: evidence from plantations. Arctic, Antarctic and Alpine Research, vol. 45, no. 4, pp. 455-470.
http://dx.doi.org/10.1657/1938-4246-45.4.455 -
5. Barbeito I., Dawes M.A., Rixen C., Senn J., Bebi P., 2012. Factors driving mortality and growth at treeline: 30-year experiment of 92 000 conifers. Ecology, vol. 93, no. 2, pp. 389-401.
http://dx.doi.org/10.1890/11-0384.1 -
6. Bebi P., Kulakowski D., Rixen C., 2009. Snow avalanche disturbances in forest ecosystems – State of research and implications for management. Forest Ecology and Management, vol. 257, no. 9, pp. 1883-1892.
http://dx.doi.org/10.1016/j.foreco.2009.01.050 -
7. Berthel N., Schwörer C., Tinner W., 2012. Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Review of Palaeobotany and Palynology, vol. 174, no. 4, pp. 91-100.
http://dx.doi.org/10.1016/j.revpalbo.2011.12.007 -
8. Carlson B.Z., Renaud J., Biron P.E., Choler P., 2014. Long-term modeling of the forest-grassland ecotone in the French Alps: implications for land management and conservation. Ecological Applications, vol. 24, no. 5, pp. 1213-1225.
http://dx.doi.org/10.1890/13-0910.1 -
9. Case B.S., Duncan R.P., 2014. A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography, vol. 37, no. 9, pp. 838-851.
http://dx.doi.org/10.1111/ecog.00280 -
10. Coop J.D., Givinish T.J., 2007. Gradient analysis of reversed treelines and grasslands of the Valles Caldera, New Mexico. Journal of Vegetation Science, vol. 18, no. 1, pp. 43-54.
http://dx.doi.org/10.1111/j.1654-1103.2007.tb02514.x -
11. Czajka B., Łajczak A., Kaczka R.J., Nicia P., 2015. Timberline in the Carpathians: An overview. Geographia Polonica, vol. 88, no. 2, pp. 7-34.
http://dx.doi.org/10.7163/GPol.0013 -
12. Czajka B., Łajczak A., Kaczka, R.J. 2015. Geographical characteristics of the timberline in the Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 35-54.
http://dx.doi.org/10.7163/GPol.0014 -
13. Daniels L.D., Veblen T.T., 2003. Regional and local effects of disturbance and climate on altitudinal treelines in northern Patagonia. Journal of Vegetation Science, vol. 14, no. 5, pp. 733-742.
http://dx.doi.org/10.1111/j.1654-1103.2003.tb02205.x -
14. Dawes M.A., Hagedorn F., Handa I.T., Streit K., Ekblad A., Rixen C., Körner C., Hättenschwiler S., 2013. An alpine treeline in a carbon dioxide-rich world: Synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia, vol. 171, no. 3, pp. 623-637.
http://dx.doi.org/10.1007/s00442-012-2576-5 -
15. Dawes M.A., Hättenschwiler S., Bebi P., Hagedorn F., Handa I.T., Körner C., Rixen C., 2011. Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. Journal of Ecology, vol. 99, no. 2, pp. 383-394.
16. Dufour-Tremblay G., Boudreau S., 2011. Black spruce regeneration at the treeline ecotone: Synergistic impacts of climate change and caribou activity. Canadian Journal of Forest Research, vol. 41, no. 3, pp. 460-468.
http://dx.doi.org/10.1139/X10-183 -
17. Dullinger S., Dirnböck T., Grabherr G., 2004. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, vol. 92, no. 2, pp. 241-252.
http://dx.doi.org/10.1111/j.0022-0477.2004.00872.x -
18. Erdle L., 2013. 40 Years of treeline expansion in a valley of the Swiss Alps. SLF Davos-INRA Nancy, [Masterthesis].
19. Garbarino M., Weisberg P.J., Motta R., 2009. Interacting effects of physical environment and anthropogenic disturbances on the structure of European larch (Larix decidua Mill.) forests. Forest Ecology and Management, vol. 257, no. 8, pp. 1794-1802.
http://dx.doi.org/10.1016/j.foreco.2008.12.031 -
20. Gehrig-Fasel J., Guisan A., Zimmermann N.E., 2007. Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, vol. 18, no. 4, pp. 571-582.
http://dx.doi.org/10.1111/j.1654-1103.2007.tb02571.x -
21. Grace J., Allen S.J., Wilson C., 1989. Climate and the meristem temperatures of plant communities near the tree-line. Oecologia, vol. 79, no. 2, pp. 198-204.
http://dx.doi.org/10.1007/BF00388479 -
22. Grau O., Ninot J.M., Blanco-Moreno J.M., Van Logtestijn R.S., Cornelissen J.H., Callaghan T.V., 2012. Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos, vol. 121, no. 10, pp. 1680-1690.
http://dx.doi.org/10.1111/j.1600-0706.2011.20032.x -
23. Hagedorn F., Shiyatov S.G., Mazepa V.S., Devi N.M., GRIGOR'EV A., BARTISH A.A., FOMIN V.V., KAPRALOV D.S., TERENT'EV M., BUGMANN H., RIGLING A., MOISEEV P.A., 2014. Treeline advances along the Urals mountain range – driven by improved winter conditions? Global Change Biology, vol. 20, no. 11, pp. 3530-3543.
http://dx.doi.org/10.1111/gcb.12613 -
24. Hallinger M., Manthey M., Wilmking M., 2010. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist, vol. 186, no. 4, pp. 890-899.
http://dx.doi.org/10.1111/j.1469-8137.2010.03223.x -
25. Harsch M.A., Hulme P.E., Mcglone M.S., Duncan R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, vol. 12, no. 10, pp. 1040-1049.
http://dx.doi.org/10.1111/j.1461-0248.2009.01355.x -
26. Herrero A., Zamora R., Castro J., Hódar J.A., 2012. Limits of pine forest distribution at the treeline: Herbivory matters. Plant Ecology, vol. 213, no. 3, pp. 459-469.
http://dx.doi.org/10.1007/s11258-011-9993-0 -
27. Hofgaard A., 1997. Inter-relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Global Ecology and Biogeography Letters, vol. 6, no. 6, 419-429.
http://dx.doi.org/10.2307/2997351 -
28. Holtmeier F.K., Broll G., 2012. Landform influences on treeline patchiness and dynamics in a changing climate. Physical Geography, vol. 33, no. 5, pp. 403-437.
29. Johansson M.U., Granstrom A., 2014. Fuel, fire and cattle in African highlands: Traditional management maintains a mosaic heathland landscape. Journal of Applied Ecology, vol. 51, no. 5, pp. 1396-1405.
http://dx.doi.org/10.1111/1365-2664.12291 -
30. Kaczka R.J., Lempa M., Czajka B., Janecka K., Rączkowska Z., Hreško J., Bugar G., 2015. The recent timberline changes in the Tatra Mountains: A case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geographia Polonica, vol. 88, no. 2, pp. 71-83.
http://dx.doi.org/10.7163/GPol.0016 -
31. Kaczka R.J., Czajka B., Łajczak A., Szwagrzyk J., Nicia P., 2015. The timberline as result of the interactions among forest, abiotic environment and human activity in the Babia Góra Mt., Western Carpathians. Geographia Polonica, vol. 88, no. 2, pp. 177-191.
http://dx.doi.org/10.7163/GPol.0023 -
32. Kharuk V.I., Ranson K.J., Im S.T., Vdovin A.S., 2010. Spatial distribution and temporal dynamics of high-elevation forest stands in southern Siberia. Global Ecology and Biogeography, vol. 19, no. 6, pp. 822-830.
http://dx.doi.org/10.1111/j.1466-8238.2010.00555.x -
33. Knorn J., Kuemmerle T., Radeloff V.C., Szabo A., Mindrescu M., Keeton W.S., Abrudan I.V., Griffiths P., Gancz V., Hostert P., 2012. Forestre stitution and protected area effectiveness in post-socialist Romania. Biological Conservation, vol. 146, no. 1, pp. 204-212.
http://dx.doi.org/10.1016/j.biocon.2011.12.020 -
34. Körner C., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, vol. 115, no. 4, pp. 445-459.
http://dx.doi.org/10.1007/s004420050540 -
35. Körner C., 2012. Alpine treelines: Functional ecology of the global high elevation tree limits. Basel: Springer Science & Business Media.
http://dx.doi.org/10.1007/978-3-0348-0396-0 -
36. Körner C., Paulsen J., 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, vol. 31, no. 5, pp. 713-732.
http://dx.doi.org/10.1111/j.1365-2699.2003.01043.x -
37. Kuemmerle T., Chaskovskyy O., Knorn J., Radeloff V.C., Kruhlov I., Keeton W., Hostert P., 2009. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, vol. 113, no. 6, 1194-1207.
http://dx.doi.org/10.1016/j.rse.2009.02.006 -
38. Kulakowski D., Bebi P., Rixen C., 2011. The interacting effects of land use change, climate change, and suppression of disturbances on landscape forest structure in the Swiss Alps. Oikos, vol. 120, no. 2, pp. 216-225.
http://dx.doi.org/10.1111/j.1600-0706.2010.18726.x -
39. Kulakowski D., Rixen C., Bebi P., 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management, vol. 223, no. 1-3, pp. 66-74.
http://dx.doi.org/10.1016/j.foreco.2005.10.058 -
40. Kullman L., 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: Implications for treeline theory and climate change ecology. Journal of Ecology, vol. 95, no. 1, pp. 41-52.
http://dx.doi.org/10.1111/j.1365-2745.2006.01190.x -
41. Li M.H., Yang J., 2004. Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, vol. 61, no. 4, pp. 319-325.
http://dx.doi.org/10.1051/forest:2004025 -
42. Macias-Fauria M., Johnson E.A., 2013. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proceedings of the National Academy of Sciences, vol. 110, no. 20, pp. 8117-8122.
http://dx.doi.org/10.1073/pnas.1221278110 -
43. Mathisen I.E., Mikheeva A., Tutubalina O.V., Aune S., Hofgaard A., Rocchini D., 2013. Fifty years of tree line change in the Khibiny Mountains, Russia: Advantages of combined remote sensing and dendroecological approaches. Applied Vegetation Science, vol. 17, no. 1, pp. 6-16.
http://dx.doi.org/10.1111/avsc.12038 -
44. Mazurski K.R., 1986. The destruction of forests in the Polish Sudetes mountains by industrial emissions. Forest Ecology and Management, vol. 17, no. 4, pp. 303-315.
http://dx.doi.org/10.1016/0378-1127(86)90158-1 -
45. Mihai B., Savulescu I., Sandric I., 2007. Change detection analysis (1986-2002) of vegetation cover in Romania. A study of Alpine, Subalpine, and forest landscapes in the Iezer Mountains, Southern Carpathians. Mountain Research and Development, vol. 2, no. 3, pp. 250-258.
http://dx.doi.org/10.1659/mred.0645 -
46. Motta R., Morales M., Nola P., 2006. Human land-use, forest dynamics and tree growth at the treeline in the Western Italian Alps. Annals of Forest Science, vol. 63, no. 7, pp. 739-747.
http://dx.doi.org/10.1051/forest:2006055 -
47. MUNIER A., HERMANUTZ L., LEWIS K., JACOBS J.D., 2014. Erratum to The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: Implications for treeline advance with climate warming (Plant Ecol, (2010), 210, (19-30), 10.1007/s11258-010-9724-y). Plant Ecology, vol. 215, no. 4, pp. 479-479.
48. Ohse B., Jansen F., Wilmking M., 2012. Do limiting factors at Alaskan treelines shift with climatic regimes? Environmental Research Letters, vol. 7, no. 1, 015505.
http://dx.doi.org/10.1088/1748-9326/7/1/015505 -
49. Paulsen J., Koerner C., 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany, vol. 124, no. 1, pp. 1-12.
http://dx.doi.org/10.1007/s00035-014-0124-0 -
50. Piermattei A., Renzaglia F., Urbinati C., 2012. Recent expansion of Pinus nigra Arn. above the timberline in the central Apennines, Italy. Annals of Forest Science, vol. 69, no. 4, pp. 509-517.
http://dx.doi.org/10.1007/s13595-012-0207-2 -
51. Renner E., 2002. The Black Triangle area--fit for Europe? Numerical air quality studies for the Black Triangle area. Ambio, vol. 31, no. 3, pp. 231-235.
http://dx.doi.org/10.1579/0044-7447-31.3.231 -
52. Rey F., Schwörer C., Gobet E., Colombaroli D., Van Leeuwen J.F., Schleiss S., Tinner W., 2013. Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. Holocene, vol. 23, no. 10, pp. 1415-1427.
http://dx.doi.org/10.1177/0959683613489585 -
53. Schulze E.D., 1989. Air pollution and forest decline in a Spruce (Picea abies) forest. Science, vol. 244, no. 4906, pp. 776-783.
http://dx.doi.org/10.1126/science.244.4906.776 -
54. Schuster R., Oberhuber W., 2013. Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixedconiferous forest in the Alps. Canadian Journal of Forest Research, vol. 43, no. 7, pp. 609-618.
http://dx.doi.org/10.1139/cjfr-2012-0426 -
55. Schwörer C., Kaltenrieder P., Glur L., Berlinger M., Elbert J., Frei S., Gilli A., Hafner A., Anselmetti F.S., Grosjean M., Tinne W., 2014. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Vegetation History and Archaeobotany, vol. 23, no. 5, pp. 479-496.
http://dx.doi.org/10.1007/s00334-013-0411-5 -
56. Smith W.K., Germino M.J., Johnson D.M., Reinhardt K., 2009. The altitude of alpine treeline: A bellwether of climate change effects. Botanical Review, vol. 75, no. 2, pp. 163-190.
http://dx.doi.org/10.1007/s12229-009-9030-3 -
57. Spatz G., 1980. Succession patterns on mountain pastures. Vegetatio, vol. 43, no. 1-2, pp. 39-41.
http://dx.doi.org/10.1007/BF00121015 -
58. Speed J.D., Austrheim G., Hester A.J., Mysterud A., 2011. Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. Forest Ecology and Management, vol. 261, no. 7, pp. 1344-1352.
http://dx.doi.org/10.1016/j.foreco.2011.01.017 -
59. Stanhill G., Cohen S., 2001. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, vol. 107, no. 4, pp. 255-278.
http://dx.doi.org/10.1016/S0168-1923(00)00241-0 -
60. Stevens G.C., Fox J.F., 1991. The causes of treeline. Annual Review of Ecology and Systematics, 22, pp. 177-191.
http://dx.doi.org/10.1146/annurev.es.22.110191.001141 -
61. Treml V., Migoń P., 2015. Controlling factors limiting timberline position and shifts in the Sudetes: A review. Geographia Polonica, vol. 88, no. 2, pp. 55-70.
http://dx.doi.org/10.7163/GPol.0015 -
62. Troll C., 1973. The upper timberlines in different climatic zones. Arctic and Alpine Reserche, vol. 5, no.3, pp. 3-18.
63. Wild M., Gilgen H., Roesch A., Ohmura A., Long C.N., Dutton E.G., Forgan B., Kallis A., Russak V., Tsvetkov A., 2005. From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, vol. 308, no. 5723, pp. 847-850.
http://dx.doi.org/10.1126/science.1103215 -

Relation:

Geographia Polonica

Volume:

89

Issue:

1

Start page:

7

End page:

15

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 1,2 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0042

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: