Object structure
Title:

Controlling factors limiting timberline position and shifts in the Sudetes: A review

Subtitle:

Geographia Polonica Vol. 88 No. 2 (2015)

Creator:

Treml, Vaclav ; Migoń, Piotr ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2015

Description:

24 cm

Type of object:

Journal/Article

Subject and Keywords:

treeline ecotone ; Karkonosze Mountains ; Hruby Jesenik ; Śnieżnik Massif ; mountain ecology

Abstract:

Three isolated massifs in the Sudetes, Central Europe, are elevated sufficiently high to allow for the development of the treeline ecotone. These are the Karkonosze/Krkonoše in the West Sudetes and Hruby Jeseník and MasywŚnieżnika/Králický Sněžnik in the East Sudetes. The upper limit of closed tree stands (i.e. timberline) is located at c. 1250 m a.s.l. on average in the Krkonoše, but with significant variability spanning more than 500 m. In theEast Sudetes the respective elevation is higher, above 1300 m a.s.l., and the variability is smaller. While temperature is the primary factor governing the uppermost tree stands, second-order climatic factors play an importantrole in shaping treeline ecotone position, particularly wind and snow accumulation patterns. Active surface processes such as debris flows and snow avalanches force the timberline to descend and account for its locallyvery irregular course. There is a history of long-term human impact on the position of the timberline, with its peak in the 17-19th centuries when high-mountain meadows were extensively used for grazing and haymaking.In the last century the overall trend of timberline ascent associated with abandonment of agricultural land and temperature rise has been interrupted by the episode of catastrophic forest decline due to air pollution.

References:

1. ALBLOVÁ B., 1970. Die Wald- und Baumgrenze im Gebirge Hrubý Jeseník (Hohes Gesenke), Tschechoslowakei. Folia Geobotanica and Phytotaxonomica, vol. 5, no. 1, pp. 1-42.
2. Błaś M., Sobik M., 2000. Mgła w Karkonoszach i wybranych masywach górskich Europy. Opera Corcontica, 37, pp. 35-46.
3. BŁAŚ M., SOBIK M., QUIEL F., NETZEL P., 2002. Temporal and spatial variations of fog in the Western Sudety Mts., Poland. Atmospheric Research, vol. 64, no. 1, pp. 19-28.
4. Cairns D.M., Moen J., 2004. Herbivory influences tree lines. Journal of Ecology, vol. 92, no. 6, pp. 1019-1024.
http://dx.doi.org/10.1111/j.1365-2745.2004.00945.x -
5. Callaway R.M., Brooker R.W., Choler P., Kikvidze Z., Lortie C.J., Michalet R., Paolino L., Pugnaire F.I., Newingham B., Aschehoug E.T., Armas C., Kikodze D., Cook B.J., 2002. Positive interactions among alpine plants increase with stress. Nature, 417, pp. 844-848.
http://dx.doi.org/10.1038/nature00812 -
6. Czudek T., 1997. Reliéf Moravy a Slezska v kvartéru. Tišnov: Sursum.
7. Demek J., 1975. Planation surfaces and their significance for the morphostructural analysis of the Czech Socialist Republic (ČSR). Studia Geographica ČSAV, 54, pp. 133-164.
8. Demek J., Kirchner K., Mackovčin P., Slavík P., 2007. The map of morphostructures of the Czech Republic. Geomorphologia Slovaca et Bohemica, vol. 7, no. 1, pp. 5-14.
9. DUDOVÁ L., HÁJKOVÁ P., BUCHTOVÁ H., OPRAVILOVÁ V., 2013. Formation, succession and landscape history of Central-European summit raised bogs: A multiproxy study from the Hrubý Jeseník Mountains. The Holocene, vol. 23, no. 2, pp. 230-242.
http://dx.doi.org/10.1177/0959683612455540 -
10. Dudová L., Hájková P., Opravilová V., Hájek M., 2014. Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies. Quaternary Research, vol. 82, no. 1, pp. 107-120.
http://dx.doi.org/10.1016/j.yqres.2014.04.017 -
11. Engel Z., Nývlt D., Křížek M., Treml V., Jankovská V., Lisá L., 2010. Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quaternary Science Reviews, vol. 29, no. 7, pp. 913-927.
http://dx.doi.org/10.1016/j.quascirev.2009.12.008 -
12. Fabiszewski J., 1985. Szata roślinna [in:] A. Jahn (ed.), Karkonosze polskie, Wrocław: Ossolineum, pp. 191-235.
13. Flousek J., Hartmanová O., Štursa J., Potocki J. (eds), 2007. Krkonoše: Příroda, historie, život. Praha: Baset.
14. Głowicki B., 1997. Wieloletnia seria pomiarów temperatury powietrza na Śnieżce [in:] J. Sarosiek, J. Štursa (eds), Geoekologiczne problemy Karkonoszy, vol. 1, Poznań: Acarus, pp. 117-124.
15. Harsch M.A., Bader M., 2011. Treeline form – a potential key to understanding treeline dynamics. Global Ecology and Biogeography, vol. 20, no. 4, pp. 582-596.
http://dx.doi.org/10.1111/j.1466-8238.2010.00622.x -
16. Holtmeier F.K., 2009. Mountain timberlines. Ecology, patchiness and dynamics. New York: Springer.
http://dx.doi.org/10.1007/978-1-4020-9705-8 -
17. Hošek E., 1973. Vývoj dosavadního hospodaření v nejvyšších polohách Jeseníků a jeho vliv na horní hranici lesa. Campanula, 4, pp. 69-81.
18. HUETTEMANN H., BORTENSCHLAGER S., 1987. Beitrage zur Vegetationsgeschichte Tirols VI: Riesengebirge, Hohe Tatra – Zillertal, Kühtai. Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck, 74, pp. 81-112.
19. Jeník J., 1961. Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: teorie anemo-orografických systémů. Praha: Nakladatelství ČSAV.
20. Jeník J., Hampel R., 1991. Die waldfreien Kammlagen des Altvatergebirges (Geschichte und Ökologie). Stuttgart: MSSGV.
21. Jeník J., Lokvenc T., 1962. Die alpine Waldgrenze im Krkonoše Gebirge. Rozpravy Ceskoslovenské akademie vě d. Ř ada matematický eh a př í rodní ch vé d, vol. 72, no. 1, Praha: Nakladatelství Č eskoslovenské akademie vě d, pp. 1-65.
22. Knapik R., Raj A. (eds.), 2013. Przyroda Karkonoskiego Parku Narodowego. Jelenia Góra: Karkonoski Park Narodowy.
23. Kociánová M., Spusta V., 2000. Vliv lavinové aktivity na horní hranici lesa. Opera Corcontica, 37, pp. 473-480.
24. Körner C., 2007. Climatic treelines: Conventions, global patterns, causes. Erdkunde, vol. 61, no. 4, pp. 316-324.
http://dx.doi.org/10.3112/erdkunde.2007.04.02 -
25. Körner C., 2012. Alpine treelines: Functional ecology of the global high elevation tree limits. Basel: Springer.
http://dx.doi.org/10.1007/978-3-0348-0396-0 -
26. Körner C., Paulsen J., 2004. A world wide study of high altitude treeline temperatures. Journal of Biogeography, vol. 31, no. 5, pp. 713-732.
http://dx.doi.org/10.1111/j.1365-2699.2003.01043.x -
27. KRÁL K., 2009. Classification of current vegetation cover and alpine treeline ecotone in the Praděd reserve (Czech Republic), using remote sensing. Mountain Research and Development, vol. 29, no. 2, pp. 177-183.
http://dx.doi.org/10.1659/mrd.1077 -
28. Křížek M. 2007. Periglacial landforms above alpine timberline in the High Sudetes [in:] A.S. Goudie, J. Kalvoda (eds.), Geomorphological variations, Praha: Nakladatelství P3K, pp. 313–337.
29. Květoň V., 2001. Climatological normals of air temperature of the Czech Republic in the period 1961-1990 and selected air temperature characteristics of the period 1961-2000. Prague: Czech Hydrometeorological Institute.
30. Lokvenc T., 1995. Analýza antropogenně podmíněných změn porostů dřevin klečového stupně v Krkonoších. Opera Corcontica, 32, pp. 99-114.
31. Migała K., Liebersbach J., Sobik M., 2002. Rime in the Giant Mts. (The Sudetes, Poland). Atmospheric Research, vol. 64, no. 1-4, pp. 63-73.
http://dx.doi.org/10.1016/S0169-8095(02)00080-7 -
32. Migoń P., 2008. Main features of geomorphology of the Sudetes re-assessed in the light of digital elevation model. Geografie. Sborník České Geografické Společnosti, vol. 113, no. 4, pp. 400-416.
33. Migoń P., 2011. Geomorphic diversity of the Sudetes– Effects of global change and structure superimposed. Geographia Polonica, vol. 84, Special Issue Part 2, pp. 93-105.
34. Migoń P., Parzóch K., 2008. Geomorfologiczne uwarunkowania przebiegu górnej granicy lasu w Karkonoszach polskich [in:] A. Mazur, A. Raj, R. Knapik (eds.), Monitoring ekosystemów leśnych w Karkonoskim Parku Narodowym. Jelenia Góra: Wydawnictwo KPN, pp. 29-38.
35. Novák J., Petr L., Treml V., 2010. Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. The Holocene, vol. 20, no. 6, pp. 895-905.
http://dx.doi.org/10.1177/0959683610365938 -
36. Roštínský P., 2010. Svahové deformace v oblasti Keprníku, Hrubý Jeseník. Zprávy o geologických výzkumech v roce 2009, Praha: Česká geologická služba, pp. 120-123.
37. Rybníček K., Rybníčková E., 2004. Pollen Analyses of Sediments from the Summits of the Praděd Range in the Hrubý Jeseník Mts. (Eastern Sudetes). Preslia, vol. 76, no. 4, pp. 331-348.
38. Soukupová L., Jeník J., Sekyra J., Kociánová M., 1995. Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcontica, 32, pp. 5-88.
39. Speranza A., Hanke J., van Geel B., Fanta J., 2000. Late-Holocene human impact and peat development in the Černa hora bog, Krkonoše Mountains, Czech Republic. The Holocene, vol. 10, no. 5, pp. 575-585.
http://dx.doi.org/10.1191/095968300668946885 -
40. Šenfeldr M., Maděra P., 2011. Population structure and reproductive strategy of Norway spruce (Picea abies L.Karst) above the former pastoral timberline in the Hrubý Jeseník mountains,Czech Republic. Mountain Research and Development, vol. 31, no. 2, pp. 131-143.
http://dx.doi.org/10.1659/MRD-JOURNAL-D-10-00073.1 -
41. Šenfeldr M., Treml V., Maděra P., Volařík D., 2014. Effects of Prostrate Dwarf Pine on Norway spruce clonal groups in the treeline ecotone of the Hrubý Jeseník Mountains, Czech Republic. Arctic, Antarctic, and Alpine Research, vol. 46, no. 2, pp. 430-440.
http://dx.doi.org/10.1657/1938-4246-46.2.430 -
42. Treml V., 2007a. The effect of terrain morphology and geomorphic processes on the position and dynamics of the alpine timberline. A case study from the High Sudetes [in:] A.S. Goudie, J. Kalvoda (eds.), Geomorphological variations, Prague: Nakladatelství P3K, pp. 339-359.
43. Treml V., 2007b. Dynamika alpinské hranice lesa ve Vysokých Sudetech. Department of Physical Geography and Geoecology. Faculty of Science. Charles University in Prague, [dissertation].
44. Treml V. (ed.), 2007c. The effect of Pinus mugo plantations on alpine biodiversity. Final report of VAV SM project, Prague: Czech Ministry of Environment.
45. Treml V., Banaš J., 2003. Alpine timberline in the High Sudetes. Acta Universitatis Carolinae Geographica, vol. 35, no. 2, pp. 83-99.
46. Treml V., Chuman T., 2015. Ecotonal dynamics of the altitudinal forest limit are affected by terrain and vegetation structure variables: An example from the Sudetes Mountains in Central Europe. Arctic, Antarctic, and Alpine Research, vol. 47, no. 1, pp. 133-146.
http://dx.doi.org/10.1657/AAAR0013-108 -
47. Treml V., Jankovská V., Petr L., 2006. Holocene timberline fluctuations in the mid-mountains of Central Europe. Fennia, vol. 184, no. 2, pp. 107-119.
48. Treml V., Jankovská V., Petr L., 2008. Holocene dynamics of the alpine timberline in the High Sudetes. Biologia, vol. 63, no. 1, pp. 73-80.
http://dx.doi.org/10.2478/s11756-008-0021-3 -
49. Treml V., Ponocná T., Büntgen U. 2012. Growth trends and temperature responses of treeline Norway spruce in the Czech-Polish Sudetes Mountains. Climate Research, vol. 55, no.2, pp. 91-103.
http://dx.doi.org/10.3354/cr01122 -
50. Treml V., Ponocná T., King G., Büntgen U. 2014. A new tree-ring-based summer temperature reconstruction over the last three centuries for east-central Europe. International Journal of Climatology [article first published online: 27 Nov 2014].
http://dx.doi.org/10.1002/joc.4201 -
51. Treml V., Kašpar J., Kuželová H., Gryc V., 2015. Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees: Structure and Function, vol. 29, no. 2, pp. 515-526.
http://dx.doi.org/10.1007/s00468-014-1129-4 -
52. Vacek S., 1990. Analýza autochtonních smrkových populací na Strmé stráni v Krkonoších. Opera Corcontica, 37, pp. 59-103.
53. Vacek S., Hejcman M., 2012. Natural layering, foliation, fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts., Czech Republic. European Journal of Forest Research, vol. 131, no. 3, pp. 799-810.
http://dx.doi.org/10.1007/s10342-011-0553-x -
54. Vacek S., Hejcmanová P., Hejcman M., 2012. Vegetative reproduction of Picea abies by artificial layering at the ecotone of the alpine timberline in the Giant (Krkonoše) Mountains, Czech Republic. Forest Ecology and Management, 263, pp. 199-207.
http://dx.doi.org/10.1016/j.foreco.2011.09.037 -
55. Vágner T., 2013. Historical position of alpine timberline in the Krkonoše Mts. derived from antique maps and photographs. Department of Physical Geography and Geoecology. Charles University in Prague [Master thesis].
56. Zeidler M., Banaš M., Ženatá M., 2009. Ecological conditions and the distribution of alpine juniper (Juniperus communis subsp. alpina) in the Hrubý Jeseník Mts. Biologia, vol. 64, no. 4, pp. 687-693.
http://dx.doi.org/10.2478/s11756-009-0068-9 -
57. Zeidler M., Duchoslav M., Banaš M., Lešková M., 2012. Impacts of introduced dwarf pine (Pinus mugo) on the diversity and composition of alpine vegetation. Community Ecology, vol. 13, no. 2, pp. 213-220.
http://dx.doi.org/10.1556/ComEc.13.2012.2.11 -
58. Zientarski J., 1993. Zmiana przebiegu górnej granicy lasu w Karkonoskim Parku Narodowym [in:] J. Tomaszewski, J. Sarosiek, S. Szymański (eds.), Geoekologiczne problemy Karkonoszy: Materiały z sesji naukowej w Karpaczu 11-13 X 1991, Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, pp. 329-333.
59. Zuchiewicz W., Badura J., Jarosiński M., 2007. Neotectonics of Poland: An overview of active faulting. Studia Quaternaria, 24, pp. 5-20.

Relation:

Geographia Polonica

Volume:

88

Issue:

2

Start page:

55

End page:

70

Resource type:

Text

Detailed Resource Type:

Article

Format:

File size 3,2 MB ; application/pdf

Resource Identifier:

0016-7282 ; 10.7163/GPol.0015

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Rights:

Creative Commons Attribution BY-ND 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-ND 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-ND 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: