Metadata language
Przegląd Geograficzny T. 86 z. 3 (2014)
Creator: Publisher: Place of publishing: Date issued/created: Description: Type of object: Subject and Keywords:dendrochronology ; air pollution ; air bioindication
Abstract:The aim of this review has been to describe the phenomenon of the dendrochronological recording of air pollution. Special emphasis was placed on: (1) summarising relevant studies conducted previously both in Poland and abroad, (2) highlighting the research techniques applied most commonly, and (3) presenting the basic physiological and morphological consequences of the exposure of plants to harmful chemical substances present in the air. Although the problem of growth–ring reductions to industrial emissions has gained frequent investigation (e.g. Danek, 2007; Szychowska-Krąpiec, 2009; Malik et al., 2011, 2012), this paper would seem to represent a first attempt to review the achievements of the method in the Polishliterature.The dendrochronological method is widely regarded as the most precise dating technique in the Earth Sciences (e.g. Gärtner, 2007). As the final width of a single tree-ring refl ects both genetics and certain external factors, it is possible to make reference to rings in studying the spatial and temporal differentiation characteristic of various environmental phenomena. Since the 1970s, it has become clear that air pollution episodes may be recorded effectively in tree-ring series. Such chemical substances as sulphur dioxide, oxides of nitrogen, fluorides and ozone are all toxic to plants, inasmuch as that they individually and collectively exert a negative influence on key physiological processes. They are thus responsible for patterns of reduced growth that can be dated with the year-to-year accuracy by means of dendrochronological techniques.Over the last forty years, much work around the world has been devoted to the above problem. Most has focused on study of the impact of harmful gaseous substances emitted from such point sources as smelters (e.g. Sutherland and Martin, 1990; Nojd and Reams, 1996) or fertiliser factories (e.g. Evertsen et al., 1986; Stravinskiene et al., 2013). Beyond that, some works haverepresented a broader approach researching air pollution impacts on a regional or international scale (e.g. Danek, 2007; Elling et al., 2009). In each case, the results reveal a more or less serious reduction of tree-rings corresponding well with periods of low air quality.The range of techniques gaining application in the studies described has been wide, though in the main it is the more complex ones that have generated more precise and reliable results. The simplest method is based on visual assessment of a curve showing the width of tree-rings over time. Visible, persisting low values combined with knowledge of the activity of some factory in the vicinity can lead to the drawing of conclusions as regards the causal relationship. Much fi eldwork is tailored to the sampling of reference (control) sites, not affected by air pollutants. Data from the study and the reference site are then compared using different statistical methods. Narrower rings formed by trees growing at the study site are taken to confirm thepresence of a phenomenon reflecting emissions from local industry. Another method, proposed by Schweingruber et al. (1985), is based on the analysis of characteristic years and abrupt growth changes.
References:
1. Ashby W.C., Fritts H.C., 1972, Tree growth, air pollution, and climate near LaPorte, Ind., Bulletin American Meteorological Society, 53, 3, s. 246-251.
2. Ashmore M.R, 2004, Wpływ utleniaczy na poziomie organizmu i zbiorowiska roślinnego, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 101-132.
3. Bell J.N.B., Treshow M. (red.), 2004, Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa.
4. Bräuning A., 1995, Zur Anwendung der dendrochronologie in den geowissenschaften, Die Erde, 126, s. 189-204.
5. Bytnerowicz A., 1996, Physiological aspects of air pollution stress in forests, Phyton-Horn, 36, s. 15-22.
6. Cook E.R., 1987, The decomposition of tree-ring series for environmental studies, Tree-Ring Bulletin, 47, s. 37-59.
7. Danek M., 2007, The influence of industry on Scots Pine stands in the south-eastern part of the Silesia-Krakow Upland (Poland) on the basis of dendrochronological analysis, Water Air Soil Pollution, 185, s. 265-277.
8. Eckstein D., 1990, Quantitative assessment of past environmental changes, [w:] E.R. Cook, L.A. Kairiukstis (red.), Methods of Dendrochronology. Application in the Environmental Sciences, Kluwer Academic Publishers, Dordrecht, s. 220-223.
9. Elling W., Dittmar C., Pfaffelmoser K., Rötzer T., 2009, Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany, Forest Ecology and Management, 257, s. 1175-1187.
10. Emberson L., 2003, Air pollution impacts on crops and forests: an introduction, [w:] L. Emberson, M. Ashmore, F. Murray (red.), Air Pollution Impacts on Crops and Forests: A Global Assessment, Imperial College Press, London, s. 3-29.
11. Evertsen J.A., Mac Siurtain M.P., Gardiner J.J., 1986, The effect of industrial emission on wood quality in norway spruce (Picea abies), IAWA Bulletin, 7, 4, s. 399-404.
12. Farmer A., 2004, Wpływ zanieczyszczeń pyłowych, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 209-222.
13. Feliksik E., 1995, Próba oceny zagrożenia lasów beskidzkich przez emisje przemysłowe w oparciu o analizy dendrochronologiczne, [w:] Materiały konferencyjne Ekologiczne i ekonomiczne uwarunkowania rozwoju gospodarczego Karpat płd.-wsch.", Bieszczady 1995, Centrum Edukacji Ekologicznej Wsi, Krosno, s. 117-124.
14. Feliksik E., Wilczyński S., 2003, Tree Rings as Indicators of Environmental Change, Electronic Journal of Polish Agricultural Universities, 6, 2.
15. Ferretti M., Innes J. L., Jalkanen R., Saurer M., Schäffer J., Spiecker H., Wilpert K. von, 2002, Air pollution and environmental chemistry – what role for tree-ring studies?, Dendrochronologia, 20, 1-2, s. 159-174.
16. Fowler D., 2004, Depozycja zanieczyszczeń i przyswajanie ich przez rośliny, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 51-75.
17. Fritts H.C., Swetnam T.W., 1989, Dendroecology: A Tool for Evaluating Variation in Past and Present Forest Environments, Advances in Ecological Research, 19, s. 111-188.
18. Gärtner H., 2007, Glacial landforms, tree rings: dendrogeomorphology, [w:] S.A. Elias (red.), Encyclopedia of Quaternary Science, Elsevier Scientific, s. 979-988.
19. Godek M., Migała K., Sobik M., 2009, Air pollution and forest disaster in the Western Sudetes in the light of high elevation spruce tree-ring data, TRACE – Tree Rings in Archeology Climatology and Ecology, 7, s. 121-126.
20. Godzik S., 1981, Oddziaływanie zanieczyszczeń powietrza na rośliny – aktualne problemy i poglądy, Wiadomości Botaniczne, 25, 3, s. 197-208.
21. Hirano T., Morimoto K., 1999, Growth reduction of the Japanese black pine corresponding to an air pollution episode, Environmental Pollution, 106, s. 5-12.
22. Ivshin A.P., Shiyatov S.G., 1995, The assessment of subtundra forest degradation by dendrochronological methods in the Norils industrial area, Dendrochronologia, 13, 1, s. 113-126.
23. Jadczyk P., 1994, Przyczyny zniszczenia lasów w Górach Izerskich i Karkonoszach. I. Warunki środowiska i czynniki antropogeniczne, Sylwan, 12, s. 39-47.
24. Jadczyk P., 1999, Przyczyny zniszczenia zachodniosudeckich lasów, Pielgrzymy, Informator Krajoznawczy, SKPS, Wrocław, s. 75-89.
25. Jadczyk P., 2009, Natural effects of large-area forest decline in the Western Sudeten, Environment Protection Engineering, 35, 1, s. 49-56.
26. Juknys R., Stravinskiene V., Vencloviene J., 2002, Tree-ring analysis for the assessment of anthropogenic changes and trends, Environmental Monitoring and Assessment, 77, s. 81-97.
27. Krąpiec M., Szychowska-Krąpiec E., 2001, Tree-ring estimation of the effect of industrial pollution on pine (Pinus sylvestris) and fir (Abies alba) in the Ojców National Park (Southern Poland), Nature Conservation, 58, 1, s. 33-42.
28. Kurczyńska E.U., Dmuchowski W., Włoch W., Bytnerowicz A., 1997, The influence of air pollutants on needles and stems of Scots Pine (Pinus sylvestris L.) trees, Environmental Pollution, 98, 3, s. 325-334.
29. L'Hirondelle S.J., Addison P.A., 1985, Effects of S02 on leaf conductance, Xylem tension, Fructose and sulphur levels of Jack pine seedlings, Environmental Pollution, 39, seria A, s. 373-386.
30. Legge A.H., Krupa S.V., 2004, Wpływ dwutlenku siarki, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 151-173.
31. Lisok J., 2012, Wpływ depozycji zanieczyszczeń na kondycję drzewostanu lasów sudeckich w świetle modeli EMEP i FRAME, Instytut Geografii i Rozwoju Regionalnego, Uniwersytet Wrocławski, Wrocław, maszynopis powielony.
32. Malik I., Danek M., Krąpiec M., 2010, Air pollution recorded in Scots Pine growing near a chemical plant, preliminary results and perspective (Upper Silesia, southern Poland), TRACE – Tree Rings in Archeology Climatology and Ecology, 8, s. 41-45.
33. Malik I., Danek M., Marchwińska-Wyrwał E., Danek T., Wistuba M., Krąpiec M., 2012a, Scots Pine (Pinus sylvestris L.) growth suppression and adverse effects on human health due to air pollution in the Upper Silesian Industrial District (USID), Southern Poland, Water Air Soil Pollution, 223, s. 3345-3364.
34. Malik I., Danek M., Marchwińska-Wyrwał E., Danek T., Wistuba M., Krąpiec M., Woskowicz-Ślęzak B., 2012b, Czasowe relacje pomiędzy redukcjami przyrostów rocznych sosny zwyczajnej (Pinus sylvestris L.) oraz śmiertelnością niemowląt pod wpływem zanieczyszczeń atmosferycznych – przykład z województwa śląskiego, Ochrona Środowiska i Zasobów Naturalnych, 54, s. 248-260.
35. Malik I., Wistuba M., Danek M., Danek T., Krąpiec M., 2011, Wpływ emisji zanieczyszczeń atmosferycznych przez zakłady chemiczne w Tarnowskich Górach (północna część Wyżyny Śląskiej) na szerokość przyrostów rocznych sosny zwyczajnej (Pinus sylvestris L.), Ochrona Środowiska i Zasobów Naturalnych, 47, s. 9-21.
36. Mansfield T.A., 2004, Tlenki azotu: stare problemy i nowe wyzwania, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 133-149.
37. Mazurski K.R., 2008, Destruction of forests in the Sudetes – thirty years later, [w:] Výroční konference ČGS, Liberec 25-29.08.2008, s. 30-41, http://mazurski.eu/
38. McCune D.C., Weinstein L. H., 2004, Wpływ fluorków, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 181-190.
39. McLaughlin S.B., Shortle W.C., Smith K.T., 2002, Dendroecological applications in air pollution and environmental chemistry: research needs, Dendrochronologia, 20, 1-2, s. 133-157
http://dx.doi.org/10.1078/1125-7865-00013 -
40. Muzika R.M, Guyette R.P., Zielonka T., Liebhold A.M., 2004, The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains, Environmental Pollution, 130, 1, s. 65-71.
41. Nash T.H., Fritts H.C., Stokes M.A., 1975, A technique for examining nonclimatic variation in widths of annual tree rings with special reference to air pollution, Tree-Ring Bulletin, 35, s. 15-24.
42. Novak K., Cherubini P., Saurer M., Fuhrer J., Skelly J.M., Kräuchi N., Schaub M., 2007, Ozone air pollution effects on tree-ring growth, δ13C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species, Tree Physiology, 27, 7, s. 941-949.
43. Nöjd P., Reams G.A., 1996, Growth variation of Scots pine across a pollution gradient on the Kola Peninsula, Russia, Environmental Pollution, 93, 3, s. 313-325.
44. Percy K.E., Ferretti M., 2004, Air pollution and forest health: toward new monitoring concepts, Environmental Pollution, 130, 1, s. 113-126.
45. Schweingruber F.H., 1996, Tree Rings and Environment. Dendroecology, Paul Haupt AG, Bern.
46. Schweingruber F.H., Kontic R., Niederer M., Nippel C.A., Winkler-Seifert A., 1985, Diagnosis and distribution of conifer decay in the Swiss Rhone Valley, a dendrological study, Eidgenössische Anstalt für das Fortliche Versuchswesen, 270, s. 189-192.
47. Smith K.T., 2008, An organismal view of dendrochronology, Dendrochronologia, 26, 3, s. 185-193.
48. Smith D., Lewis D., 2007, Dendrochronology, [w:] S.A. Elias (red.), Encyclopedia of Quaternary Science, Elsevier Scientific, Amsterdam, s. 459-465.
49. Stöckhardt J.A., 1871, Untersuchungen uber die schadliche Einwirkung des Hutten- und Steinkohlenrauches auf das Wachsthum der Pflanzen, insbesondere der Fichte und Tanne, Tharandter forstliches Jahrbuch, 21, s. 218-254.
50. Stravinskiene V., Bartkevicius E., Plausinyte E., 2013, Dendrochronological research of Scots pine (Pinus sylvestris L.) radial growth in vicinity of industrial pollution, Dendrochronologia, 31, s. 179-186.
51. Sutherland E. K., Martin B., 1990, Growth response of Pseudotsuga menziesii to air pollution from copper smelting, Canadian Journal of Forest Research, 20, 7, s. 1020-1030.
52. Szychowska-Krąpiec E., 2009, Monitoring drzewostanów zagrożonych przez emisje przemysłowe, [w:] A. Zielski, M. Krąpiec (red.), Dendrochronologia, Wydawnictwo Naukowe PWN, Warszawa, s. 243-250.
53. Szychowska-Krąpiec E., Wiśniewski Z., 1996, Zastosowanie analizy przyrostów rocznych sosny zwyczajnej (Pinus sylvestris) do oceny wpływu zanieczyszczeń przemysłowych na przykładzie zakładów chemicznych Police" (woj. szczecińskie), Kwartalnik Akademii Górniczo-Hutniczej, Geologia, 22, 3, s. 281-299.
54. The World's Worst Polluted Places, 2007, Blacksmith Institute, New York.
55. Treshow M., Bell J.N.B., 2004, Rys historyczny, [w:] J.N.B. Bell, M. Treshow (red.), Zanieczyszczenie powietrza a życie roślin, Wydawnictwa Naukowo-Techniczne, Warszawa, s. 7-27.
56. Vaičys M., Armolaitis K., 1986, Gas resistance and regeneration of forests damaged by industrial emission, [w:] E. Donaubauer (red.), Forest Plants and Forest Protection. Proceedings of 18th IUFRO World Congress, Division 2, 1, s. 360-367.
57. Warren W. G., 1989, Tree rings and pollution: trend removal or trend estimation?, [w:] D.R. Pelz (red.), Proceedings of the IUFRO Conference on Forest Statistics, Abteilung für Forstliche Biometrie, Universitat Freiburg, s. 304-316.
58. Wertz B., 2012, Dendrochronologiczna ocena wpływu imisji przemysłowych na główne gatunki drzew iglastych z Wyżyny Kieleckiej, Sylwan, 156, 5, s. 379-390.
59. Wimmer R., 2002, Wood anatomical features in tree-rings as indicators of environmental change, Dendrochronologia, 20, 1-2, s. 21-36.
60. Zielski A., Krąpiec M., 2009, Dendrochronologia, Wydawnictwo Naukowe PWN, Warszawa.
File size 1,3 MB ; application/pdf
Resource Identifier:0033-2143 ; 10.7163/PrzG.2014.3.2
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Language: Language of abstract: Rights: Terms of use:Copyright-protected material. May be used within the limits of statutory user freedoms
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Access: