Metadata language
Geographia Polonica Vol. 98 No. 2 (2025)
Creator:
Hama Karim, Peshang
:
Autor
;
Kalinowska, Monika
:
Autor
;
Ziemińska-Stolarska, Aleksandra
:
Autor
;
Magnuszewski, Artur
:
Autor
eutrophication ; phytoplankton blooms ; Sentinel-2 ; hydrodynamic modelling ; Pilica River ; Sulejów Reservoir ; NDC ; CCHE2D
Abstract:
Reservoirs created by damming rivers significantly modify abiotic and biotic environmental components. A major consequence is the accumulation of sediments and nutrients, degrading water quality through eutrophication. This study focused on the Sulejów Reservoir in Central Poland, examining nutrient balance, phytoplankton blooms using Sentinel-2 satellite data, and wind-driven surface currents with the CCHE2D hydrodynamic model. Eight Sentinel-2 images from the 2020 vegetation season and the Normalized Difference Chlorophyll Index (NDCI) were used to assess phytoplankton distribution. Results indicate the reservoir mainly acts as a nutrient sink, but under low-flow and intense bloom conditions, it can become a nutrient source. Coupling remote sensing with hydrodynamic modeling effectively interpreted flow patterns and nutrient dynamics. For the first time, the influence of eddy structures and wind on phytoplankton distribution in the lacustrine zone was demonstrated.
Altinakar, M., Czernuszenko, W., Rowiński, P., & Wang, S. (2005). Computational Modeling for the Development of Sustainable Water-Resources Systems in Poland. Institute of Geophysics, Polish Academy of Sciences, E-5, 387
Ansper, A., & Alikas, K. (2018). Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sensing, 11(1), 64. https://doi.org/10.3390/rs11010064
Bresciani, M., Cazzaniga, I., Austoni, M., Sforzi, T., Buzzi, F., Morabito, G., & Giardino, C. (2018). Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia, 824(1), 197-214. https://doi.org/10.1007/s10750-017-3462-2
Carrick, H. J., Worth, D., & Marshall, M. L. (1994). The influence of water circulation on chlorophyll-turbidity relationships in Lake Okeechobee as determined by remote sensing. Journal of Plankton Research, 16(9), 1117-1135. https://doi.org/10.1093/plankt/16.9.1117
Dall'Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results - erratum. Applied Optics, 44(16), 3342. https://doi.org/10.1364/AO.44.003342
European Space Agency. (2020). Sentinel-2: Multispectral Imager (MSI) Overview. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
European Space Agency (Sentinel-2). (2015). [Dataset]. https://www.esa.int/
Ginzburg, A. I., Kostianoy, A. G., Sheremet, N. A., & Lavrova, O. Yu. (2024). Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer--Autumn Period According to Satellite Data. Remote Sensing, 16(13), 2285. https://doi.org/10.3390/rs16132285
Glibert, P. M., Anderson, D. A., Gentien, P., Graneli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography Society, 182(136-147). https://agris.fao.org/search/en/providers/122415/records/64736847e17b74d22254c85e
Godlewska, M., Balk, H., Kaczkowski, Z., Jurczak, T., Izydorczyk, K., Długoszewski, B., Jaskulska, A., Gągała-Borowska, I., & Mankiewicz-Boczek, J. (2018). Night fish avoidance of Microcystis bloom revealed by simultaneous hydroacoustic measurements of both organisms. Fisheries Research, 207, 74-84. https://doi.org/10.1016/j.fishres.2018.05.025
Gons, H. J. (2002). A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. Journal of Plankton Research, 24(9), 947-951. https://doi.org/10.1093/plankt/24.9.947
Gons, H. J., Auer, M. T., & Effler, S. W. (2008). MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sensing of Environment, 112(11), 4098-4106. https://doi.org/10.1016/j.rse.2007.06.029
Hadjimitsis, D. G., & Clayton, C. (2009). Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Environmental Monitoring and Assessment, 159(1-4), 281-292. https://doi.org/10.1007/s10661-008-0629-3
Hama Karim, P., Ziemińska-Stolarska, A., & Magnuszewski, A. (2024). Hydraulic properties of Sulejów Reservoir in Poland as a driving factor of sedimentation processes. In M. B. Kalinowska, M. M.Mrokowska, P. M. Rowiński (Eds.), Advances in Hydraulic Research. ISH 2023. GeoPlanet: Earth and Planetary Sciences). Springer International Publishing. https://doi.org/10.1007/978-3-031-56093-4_17
Hama Karim, P., Ziemińska-Stolarska, A., & Magnuszewski, A. (2024). Hydraulic control on sedimentation processes and bottom sediments chemistry of Sulejów Reservoir in Poland. Miscellanea Geographica. Regional Studies on Development, 28(1), 39-46. https://doi.org/10.2478/mgrsd-2023-0029
Harper, D. M. (1992). Eutrophication of freshwaters: Rinciples, problems, and restoration (1st ed). Chapman & Hall.
IMGW-PIB. (2024). [Dataset]. https://hydro.imgw.pl/#/
Jaskulski, M., Szmidt, A., Zbiciński, I., Ziemińska-Stolarska, A., & Adamiec, J. (2018). Konstrukcja mapy batymetrycznej na podstawie badań sonarowych sztucznego zbiornika wodnego na przykładzie Zalewu Sulejowskiego. Teledetekcja Środowiska, 59(2), 5-12.
Jensen, J. R., Kjerfve, B., Ramsey, E. W., Magill, K. E., Medeiros, C., & Sneed, J. E. (1989). Remote sensing and numerical modeling of suspended sediment in Laguna de terminos, Campeche, Mexico. Remote Sensing of Environment, 28, 33-44. https://doi.org/10.1016/0034-4257(89)90103-X
Jia, Y & Wang, S. (2001). CCHE2D : Two-dimensional Hydrodynamic and Sediment Transport Model for Unsteady Open Channel Flows over Loose Bed, Technical Report No. NCCHE-TR-2001-1. School of Engineering The University of Mississippi. http://www.ncche.olemiss. edu/sites/default/les/les/docs/cche2d/techmanual.pdf
Kalinowska, M. B., & Rowiński, P. M. (2012). Uncertainty in computations of the spread of warm water in a river - lessons from Environmental Impact Assessment case study. Hydrology and Earth System Sciences, 16(11), 4177-4190. https://doi.org/10.5194/hess-16-4177-2012
Kalinowska, M. B., Rowiński, P. M., Kubrak, J., & Mirosław-Świątek, D. (2012). Scenarios of the spread of a waste heat discharge in a river - Vistula River case study. Acta Geophysica, 60(1), 214-231. https://doi.org/10.2478/s11600-011-0045-x
Kawara, O., Yura, E., Fujii, S., & Matsumoto, T. (1998). A Study on the role of hydraulic retention time in eutrophication of the asahi river dam reservoir. Water Science and Technology, 37(2). https://doi.org/10.1016/S0273-1223(98)00030-4
Komárek, J., & Anagnostidis, K. (1999). Süsswasserflora von Mitteleuropa. Cyanoprokaryota 1. Chroococcales. Jena: Gustav Fischer.
Kouts, T., Sipelgas, L., Savinits, N., & Raudsepp, U. (2006). Environmental monitoring of water quality in coastal sea area using remote sensing and modeling. In 2006 IEEE US/EU Baltic International Symposium (pp. 1-8). https://doi.org/10.1109/BALTIC.2006.7266166
Kumar, A., Mishra, D. R., & Ilango, N. (2020). Landsat 8 Virtual Orange Band for Mapping Cyanobacterial Blooms. Remote Sensing, 12(5). https://doi.org/10.3390/rs12050868
Le, C., Li, Y., Zha, Y., Sun, D., Huang, C., & Lu, H. (2009). A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sensing of Environment, 113(6), 1175-1182. https://doi.org/10.1016/j.rse.2009.02.005
Magnuson, A., Harding, L. W., Mallonee, M. E., & Adolf, J. E. (2004). Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight. Estuarine, Coastal and Shelf Science, 61(3), 403-424. https://doi.org/10.1016/j.ecss.2004.06.020
Magnuszewski, A., Kiedrzyńska, E., Kiedrzyński, M., & Moran, S. (2014). Gis approach to estimation of the total phosphorous transfer in the Pilica River lowland catchment. Quaestiones Geographicae, 33(3), 101-110. https://doi.org/10.2478/quageo-2014-0033
Magnuszewski, A., Moran, S., & Yu, G. (2010). Modelling lowland reservoir sedimentation conditions and the potential environmental consequences of dam removal: Wloclawek Reservoir, Vistula River, Poland. IAHS Publication, 337, 345-352.
Magnuszewski, A., Sabat, A., Jarocińska, A., & Sławik, Ł. (2018). Application of the AISA Hyperspectral Image for Verification of Sediment Transport Results Obtained from CCHE2D Hydrodynamic Model - Zegrze Reservoir Case Study, Poland. In M. B. Kalinowska, M. M. Mrokowska, & P. M. Rowiński (Eds.), Free Surface Flows and Transport Processes (pp. 103-112). Springer International Publishing. https://doi.org/10.1007/978-3-319-70914-7_4
Mankiewicz-Boczek, J., Jaskulska, A., Pawełczyk, J., Gągała, I., Serwecińska, L., & Dziadek, J. (2016). Cyanophages infection of Microcystis bloom in lowland dam reservoir of Sulejów, Poland. Microbial Ecology, 71(2), 315-325. https://doi.org/10.1007/s00248-015-0677-5
Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and nearcoastal transitional waters. International Journal of Remote Sensing, 32(21), 6855-6899. https://doi.org/10.1080/01431161.2010.512947
Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394-406. https://doi.org/10.1016/j.rse.2011.10.016
Mohn, C., & White, M. (2007). Remote sensing and modelling of bio-physical distribution patterns at Porcupine and Rockall Bank, Northeast Atlantic. Continental Shelf Research, 27(14), 1875-1892. https://doi.org/10.1016/j.csr.2007.03.006
Moses, W. J., Gitelson, A. A., Berdnikov, S., & Povazhnyy, V. (2009). Satellite estimation of chlorophyll-α concentration using the red and NIR bands of MERIS - The Azov Sea case study. IEEE Geoscience and Remote Sensing Letters, 6(4), 845-849. https://doi.org/10.1109/LGRS.2009.2026657
Paerl, H. W. (1988). Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography, 33(4part2), 823-843. https://doi.org/10.4319/lo.1988.33.4part2.0823
Palmer, S. C. J., Kutser, T., & Hunter, P. D. (2015). Remote sensing of inland waters: Challenges, progress and future directions. Remote Sensing of Environment, 157, 1-8. https://doi.org/10.1016/j.rse.2014.09.021
Pieron, Ł., Absalon, D., Habel, M., & Matysik, M. (2021). Inventory of reservoirs of key significance for water management in Poland - Evaluation of changes in their capacity. Energies, 14(23). https://doi.org/10.3390/en14237951
Ryan, J., Greenfield, D., Marin, R. I., Preston, C., Roman, B., Jensen, S., … & Scholin, C. (2011). Harmful phytoplankton ecology studies using an autonomous molecular analytical and ocean observing network. Limnology and Oceanography, 56(4), 1255-1272. https://doi.org/10.4319/lo.2011.56.4.1255
Sabat-Tomala, A., Jarocińska, A. M., Zagajewski, B., Magnuszewski, A. S., Sławik, Ł. M., Ochtyra, A., … & Lechnio, J. R. (2018). Application of HySpex hyperspectral images for verification of a two-dimensional hydrodynamic model. European Journal of Remote Sensing, 51(1), 637-649. https://doi.org/10.1080/22797254.2018.1470905
Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4322-4333. https://doi.org/10.1098/rspb.2012.1032
Soontiens, N., Binding, C., Fortin, V., Mackay, M., & Rao, Y. R. (2019). Algal bloom transport in Lake Erie using remote sensing and hydrodynamic modelling: Sensitivity to buoyancy velocity and initial vertical distribution. Journal of Great Lakes Research, 45(3), 556-572. https://doi.org/10.1016/j.jglr.2018.10.003
Szczukocki, D., Krawczyk, B., Dałkowski, R., Juszczak, R., Miekoś, E., Zieliński, M., … & Jereczek-Korzeniewska, K. (2014). Monitoring hydrochemiczny zbiorników zaporowych województw łódzkiego. In Problemy badań wody w XX I XXI wieku. Wydawnictwo Uniwersytetu Gdańskiego.
Tarczyńska, M., Osiecka, R., Kątek, R., Błaszczyk, A., & Zalewski, M. (1997). Przyczyny i konsekwencje powstawania toksycznych zakwitów sinicowych w zbiornikach. In M. Zalewski, M., & R. J. Wiśniewski (Eds.), Zastosowanie biotechnologii ekosystemalnych do poprawy jakości wód (51-72). Instytut Ekologii PAN.
Tufford, D. L., & McKellar, H. N. (1999). Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain. Ecological Modelling, 114(2-3), 137-173. https://doi.org/10.1016/S0304-3800(98)00122-7
Tzortziou, M., Subramaniam, A., Herman, J. R., Gallegos, C. L., Neale, P. J., & Harding, L. W. (2007). Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay. Estuarine, Coastal and Shelf Science, 72(1-2), 16-32. https://doi.org/10.1016/j.ecss.2006.09.018
Urbaniak, M., Kiedrzyńska, E., & Zalewski, M. (2012). The role of a lowland reservoir in the transport of micropollutants, nutrients and the suspended particulate matter along the river continuum. Hydrology Research, 43(4), 400-411. https://doi.org/10.2166/nh.2012.108
Verkhozina, V. A., Kozhova, O. M., & Kusner, Yu. S. (2000). Hydrodynamics as a limiting factor in the Lake Baikal ecosystem. Aquatic Ecosystem Health & Management, 3(2), 203-210. https://doi.org/10.1080/14634980008657015
0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0300
Source:CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Access: