Metadata language
Geographia Polonica Vol. 98 No. 2 (2025)
Creator:
Sołtysiak, Marek
:
Autor
;
Różkowski, Jacek
:
Autor
mining waste dumps ; water reservoirs ; Upper Silesian Coal Basin ; environmental hazards
Abstract:
This article presents research results on the water chemistry of 16 reservoirs adjacent to post-mining waste landfills in the Upper Silesian Coal Basin, sampled in 2022 and 2023. The waters of these reservoirs are anthropogenically modified; in terms of hydrochemical type, they are multi-ionic waters. The Comprehensive Pollution Index (CPI) was also used to assess the degree of water pollution. Calculations indicated that the waters are either moderately (0.47 < CPI < 1.92) or heavily polluted (CPI > 2). Research has also shown that areas reclaimed with mining waste are informal post-mining waste dumps and should be treated as potential sources of groundwater pollution. In nearby reservoirs, there is a potential threat to shallow (0-10 m) groundwater of the first aquifer, which is especially important when the first aquifer is being used.
Bielewicz, R., & Suszka, G. (2013). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 969 - Tychy. Warsaw: The Polish Geological Institute - National Research Institute
Bojarska, K., & Bzowski, Z. (2012). Wyniki badań wyciągów wodnych odpadów wydobywczych z kopalń węgla Górnośląskiego Zagłębia Węglowego w aspekcie wpływu na środowisko. Górnictwo i Geologia, 7(12), 101-113.
Brožová, K., Halfar, J., Čabanová, K., Motyka, O., Drabinová, S., Hanus, P., & Heviánková, S. (2023). The first evidence of microplastic occurrence in mine water: The largest black coal mining area in the Czech Republic. Water Research, 244(1). https://doi.org/10.1016/j.watres.2023.120538
Chmura, D., & Molenda, T. (2012). Influence of thermally polluted water on the growth of helophytes in the vicinity of a colliery waste tip. Water, Air, & Soil Pollution, 223(9), 5877-5884. https://doi.org/10.1007/s11270-012-1323-1
Dzhangi, T. R., & Atangana, E. (2024). Evaluation of the impact of coal mining on surface water in the Boesmanspruit, Mpumalanga. South Africa. Environmental Earth Sciences, 83(6), 159. https://doi.org/10.1007/s12665-024-11431-6
Fabiańska, M. J., Ciesielczuk, J., Szczerba, M., Nisz-Kennan, M., Więcław, D., Szram, E., Nadudvari, A., & Ciesielska, Z. (2024). Weathering alterations of coal mining wastes geochemistry, petrography, and mineralogy, a case study from the Janina and Marcel Coal Mines, Upper Silesian Coal Basin (Poland). International Journal of Coal Geology, 281. https://doi.org/10.1016/j.coal.2023.104407
Filar, S. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 941 - Gliwice. Warsaw: The Polish Geological Institute - National Research Institute.
Filar, S. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 968 - Rybnik. Warsaw: The Polish Geological Institute - National Research Institute.
Filar, S. (2007). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 941 - Gliwice. Warsaw: The Polish Geological Institute - National Research Institute
Gandy, C. J., & Younger, P. L. (2018). Predicting long-term contamination potential of perched groundwater in a mine-waste heap using a random-walk method. Hydrogeology Journal, 16(3), 447-459. https://doi.org/10.1007/s10040-007-0243-4
Gawor, Ł. (2009). Uregulowania prawne w Polsce i Niemczech. Gospodarka odpadami górniczymi. Odpady i Środowisko 1(10), 32-36.
Geoportal. https://www.geoportal.gov.pl/
Gołębiowski, T., Marcak, H., Tomecka-Suchoń, S., Zdechlik, R., Zuberek, W., & Żogała, B. (2010). Use of geophysical methods for the assessment of migration of contaminants from the coal-mining waste dumps. In A. Zuber, J. Kania, E. Kmiecik (Eds.), Abstract book, Vol. 2, XXXVIII IAH Congress: Groundwater quality sustainability. Katowice: University of Silesia Press.
Google.Maps. https://www.google.pl/maps/
Górnik, M. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 969 - Tychy. Warsaw: The Polish Geological Institute - National Research Institute.
Górnik, M. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 970 - Oświęcim. Warsaw: The Polish Geological Institute - National Research Institute.
Gruszewicz, P., Gąsior, Ł., & Miś, D. (2013). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 970 - Oświęcim. Warsaw: The Polish Geological Institute - National Research Institute.
Hard coal. (2022). Polish Geological Institute - National Research Institute. https://www.pgi.gov.pl/surowce/energetyczne/wegiel-kamienny.html#2022
Jasser, I. (2023). Raport z badań fitoplanktonu Wisły w kierunku zidentyfikowania obecności Prymnesium parvum. (Typescript). Uniwersytet Warszawski.
Kempa, J., & Bielewicz, R. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 991 - Zebrzydowice. Warsaw: The Polish Geological Institute - National Research Institute
Kempa, J., & Pękała, Z. (2006). GIS Database of the Hydrogeological Map of Poland, First aquifer. Occurrence and hydrodynamics, sheet 993 - Kęty. Warsaw: The Polish Geological Institute - National Research Institute
Kondracki, J. (Ed.), (1998). Geografia regionalna Polski. Warszawa: PWN
Krieger, W., Sroga, C. (2002). Odpady z górnictwa i przeróbki kopalin w Krajowym Planie Gospodarki Odpadami. Przegląd Geologiczny, 50(12), 1189-1194.
Lutyński, A. (2010). Foresight w zakresie priorytetowych i innowacyjnych technologii zagospodarowania odpadów pochodzących z górnictwa węgla kamiennego. Górnictwo i Geoinżynieria, 34(4/1), 145-153.
Łaganowska, N. (2019). Wpływ składowiska odpadów górniczych "Pochwacie" na środowisko gruntowo-wodne na podstawie badań monitoringowych. Acta Geographica Silesiana, 13/2(34), 75-94.
Liu, S., Zhu, J. P., & Jiang, H. H. (1999). Comparison of several methods of environment quality evaluation using complex indices. Environmental Monitoring in China, 15(5), 33-37.
Madej, B., & Kujawski, P. (2023). Gospodarowanie odpadami wydobywczymi oraz masami ziemnym lub skalnymi przemieszczanymi w związku z wydobywaniem kopalin ze złóż. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, 1, 2-7.
Marove, C. A., Sotozono, R., Tangviroon, P., Tabelin, C. B., & Igarashi, T. (2022). Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environmental Advances, 8. https://doi.org/10.1016/j.envadv.2022.100215
Matta, G., Kumar, A., Uniyal, D. P., Singh, P., Kumar, A., Dhingra, G. K,. Ajendra, K., … & Shrivastva, N. G. (2017). Temporal assessment using WQI of River Henwal, a tributary of River Ganga in Himalayan Region. International Journal for Environmental Rehabilitation and Conservation, 8(1), 187-204.
Matysik, M. (2018). Wpływ zrzutów wód kopalnianych na odpływ rzek Górnośląskiego Zagłębia Węglo-wego. Wydawnictwo Uniwersytetu Śląskiego.
Mele, L. M., Prodan, P. F., & Schubert, J. P. (1982). Characterization of runoff water from coal-waste disposal sites in southwestern Illinois. Mine water and the Environment, 1, 1-14. https://doi.org/10.1007/BF02506201
Mineral deposits. (2017). Polish Geological Institute - National Research Institute. Retrieved from https://geoportal.pgi.gov.pl/midas-web/pages/index.jsf?conversationContext=2
Molenda, T., & Chmura, D. (2011). Seasonal changes in selected physicochemical parameters of saline water bodies. Ecological Chemistry and Engineering. A, 18(2), 225-233.
Molenda, T. (2014). Analysis of concentrations heavy metals (Zn, Pb, Cu, Cd) in spoil tip leachate from coal mining. In International Multidisciplinary Scientific Geoconferences SGEM, Albena (Bulgaria). Conference Proceedings, Vol. 1 - Hydrology and Water Resources (pp. 35-42)
Molenda, T. (2014). Impact of saline mine water: Development of a Meromictic Reservoir in Poland. Mine Water and the Environment, 33, 327-334. https://doi.org/10.1007/s10230-014-0262-z
Molenda, T. (2018). Impact of a saline mine water discharge on the development of a Meromictic Pond, the Rontok Wielki Reservoir, Poland. Mine Water and the Environment, 37(4), 807-814. https://doi.org/10.1007/s10230-018-0544-y
Movo, A., Parbhakar-Fox, A., Meffre, S., Cooke, D. (2023). Geoenvironmental characterisation of legacy mine wastes from Tasmania - Environmental risks and opportunities for remediation and value recovery. Journal of Hazardous Materials, 454. https://doi.org/10.1016/j.jhazmat.2023.131521
Nádudvari, A., & Fabiańska, M. J. (2015). Coal-related sources of organic contamination in sediments and water from the Bierawka River (Poland). International Journal of Coal Geology, 152, Part B, 94-109. https://doi.org/10.1016/j.coal.2015.11.006
Odipe, O. E., Adewoye, S. O., & Sawyerr, H. O. (2020). Statistical and Pollution index assessment of water quality parameters in Ilorin metropolis, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 14(6), 01-06. https://doi.org/10.9790/2402-1406030106
ORSIP. https://geoportal.orsip.pl/
Rakwic, B. (2011). Modelowanie hydrochemiczne jako element oceny przydatności odpadów z górnictwa podziemnego w budownictwie drogowym. Gliwice: Wydawnictwo Instytutu Techniki Górniczej KOMAG
Reczek, D., Biedroński, G. (2013). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 993 - Kęty. Warsaw: The Polish Geological Institute - National Research Institute.
Regulation of the Minister of Environment of 11 February 2004 on the classification for presenting the condition of surface and groundwaters, the method of conducting monitoring and the method of interpreting the results and presenting the condition of these waters. Journal of Laws No. 32 of 2004, item 284.
Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies, as well as environmental quality standards for priority substances. Journal of Laws of 2021, item 1475.
Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and the conditions that must be met when introducing sewage into water or soil, as well as when discharging rainwater or meltwater into water or water facilities. Journal of Laws of 2019, item 1311.
Różkowski, A., Chmura, A., & Siemiński, A. (Eds.), (1997). Użytkowe wody podziemne Górnośląskiego Zagłębia Węglowego i jego obrzeżenia. Prace Państwowego Instytutu Geologicznego.
Różkowski, A. (2004). Środowisko hydrogeochemiczne karbonu produktywnego Górnośląskiego Zagłębia Węglowego. Katowice: Wydawnictwo Uniwersytetu Śląskiego.
Rubin, K., Rubin, H. (2010). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 968 - Rybnik. Warsaw: The Polish Geological Institute - National Research Institute.
Rubin, K., Rubin, H. (2013). GIS Database of the Hydrogeological Map of Poland, First aquifer. Vulnerability to pollution, sheet 991 - Zebrzydowice. Warsaw: The Polish Geological Institute - National Research Institute.
Sołtysiak, M., Dąbrowska, D, Krzykawski, T. (2018). Environmental effects of using mining waste for reclamation gravel pit in Rajsko (Sola valley, southern Poland). In 8th International Multidisciplinary Scientific Geoconference SGEM, Albena (Bulgaria). Conference Proceedings, Vol. 18, Ecology, Economics, Education and Legislation, Issue 5.2 (pp. 347-354). https://doi.org/10.5593/sgem2018/5.2/S20.047
Sołtysiak, M., Dąbrowska, D., & Slosarczyk, K. (2018). Natural and formal-legal aspect of the environmental impact assessment of the planned reclamation of mining damage in the Szotkowka valley (Southern Poland). In 18th International Multidisciplinary Scientific Geoconference SGEM, Albena (Bulgaria). Conference Proceedings, Vol. 18, Ecology, Economics, Education and Legislation, Issue 5.4 (pp. 501-508). https://doi.org/10.5593/sgem2018/5.4/S23.064
Sołtysiak, M. (2024). Assessment of leachability of pollutants from commercial aggregate using a lysimeter; report on research carried out for the Society for the Earth. Katowice: SPINUS, University of Silesia (Unpublished report).
Son, C. T., Giang, N. T. H., Thao, T. P., Nui, N. H., Lam, N. T., Cong, V. H. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply: Research and Technology - AQUA, 69(2), 160-172. https://doi.org/10.2166/aqua.2020.122
Statistical Yearbook of Industry – Poland. (2007). Warsaw: Statistics Poland
Statistical Yearbook of Industry – Poland. (2011). Warsaw: Statistics Poland
Statistical Yearbook of Industry – Poland. (2015). Warsaw: Statistics Poland
Statistical Yearbook of Industry – Poland. (2020). Warsaw: Statistics Poland
Statistical Yearbook of Industry – Poland. (2022). Warsaw: Statistics Poland
Su, D., Almpanis, A., & Power, C. (2024). Complex electrical measurements of waste rock during acid mine drainage generation and release: Kinetic column tests. Journal of Environmental Management, 351. https://doi.org/10.1016/j.jenvman.2023.119996
Stefaniak, S., & Twardowska, I. (2006). Przemiany chemiczne w odpadach górniczych na przykładzie zwałowiska w Czerwionce - Leszczynach. Górnictwo i Geologia, 1(3), 89-100
Szczepańska, J. (1987). Zwałowiska odpadów górnictwa węgla kamiennego jako ogniska zanieczyszczeń środowiska wodnego. Kraków: Akademia Górniczo-Hutnicza im. Stanisława Staszica.
Tanjung, R. H., & Hamuna, B. (2019). Assessment of water quality and pollution index in coastal waters of Mimika, Indonesia. Journal of Ecological Engineering, 20(2), 87-94. https://doi.org/10.12911/22998993/95266
Tao, M., Daoming, Lu D., Shi, Y., Liu, K., Yan, D., & Memon, M. B. (2024). Life cycle assessment of coal mines of diverse scales over time in China. Science of The Total Environment, 912. https://doi.org/10.1016/j.scitotenv.2023.169236
Twardowska, I., Szczepańska, J., & Witczak, S. (1988). Wpływ odpadów górnictwa węgla kamiennego na środowisko wodne: Ocena zagrożenia, prognozowanie, zapobieganie. Wrocław: Ossolineum.
Voros, D., Rimacova, D., Medvecka, L., Gerślova, E., & Diaz-Somoano, M. (2021). The impact of saline mine water on fate of mineral elements and organic matter: The case study of the Upper Silesian Coal Basin. Chemosphere, 284. https://doi.org/10.1016/j.chemosphere.2021.131397
Weber, Ł., Krawczyk, Ł, Kuś, P., Mazur-Marzec, H., Pasztaleniec, A., & Cimoch, M. (2024). Wpływ amoniaku na rozwój Prymnesium parvum. Analiza danych środowiskowych z kanału gliwickiego testy laboratoryjne i terenowe. Warszawa: Instytut Ochrony Środowiska - Państwowy Instytut Badawczy
Woś, A. (2010). Klimat Polski w drugiej połowie XX wieku. Poznań: Wydawnictwo Naukowe Uniwersytetu A. Mickiewicza
Zdechlik, R., Gołębiowski, T., Tomecka-Suchoń, S., Żogała, B. (2011). Wykorzystanie metod hydrogeochemicznych i geofizycznych do oceny wpływu składowisk odpadów górniczych na środowisko wodne. Biuletyn Państwowego Instytutu Geologicznego, 445(445-2), 725-736
0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0299
Source:CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure
Access: