Object structure
Title:

Surface temperature extremes in urban areas: distribution, morphological drivers and air temperature patterns

Subtitle:

Geographia Polonica Vol. 98 No. 2 (2025)

Creator:

Czarnecka, Kaja : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2025

Description:

24 cm

Subject and Keywords:

cold spot ; hot spot ; land surface temperature ; air temperature ; land cover ; local climate zones ; spatial development

Abstract:

The expansion of cities, alongside increasing climate-related risks, requires a better understanding of urban thermal patterns for sustainable planning. This study identifies thermal hot and cold spots in Warsaw using 25 land surface temperature (LST) images (2002-2018), air temperature data from 21 sites, spatial development indicators, CORINE Land Cover, and local climate zones. Spatial autocorrelation (Getis-Ord Gi*) and correlation analyses reveal that LST extremes are related to land cover, spatial development, and city centre proximity. Cluster analysis highlights distinct seasonal and diurnal air temperature regimes in hot/cold spots,emphasizing the need for integrated approaches in urban climate research.

References:

Ai, X., Zheng, X., Zhang, Y., Liu, Y., Ou, X., Xia, C., & Liu, L. (2024). Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. Science of The Total Environment, 944. https://doi.org/10.1016/j.scitotenv.2024.173828 DOI
Anders, J., Schubert, S., Maronga, B., & Salim, M. (2025). Simplifying heat stress assessment: Evaluating meteorological variables as single indicators of outdoor thermal comfort in urban environments. Building and Environment, 274. https://doi.org/10.1016/j.buildenv.2025.112658 DOI
Aram, F., Higueras Garcí a, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01339 DOI
Cao, J., Zhou, W., Zheng, Z., Ren, T., & Wang, W. (2021). Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature. Landscape and Urban Planning, 206. https://doi.org/10.1016/j.landurbplan.2020.103979 DOI
Chang, C.-R., & Li, M.-H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry & Urban Greening, 13(4), 672-681. https://doi.org/10.1016/j.ufug.2014.08.001 DOI
Cheval, S., Micu, D., Dumitrescu, A., Irimescu, A., Frighenciu, M., Iojă, C., Tudose, N. C., Davidescu, Ș., & Antonescu, B. (2020). Meteorological and Ancillary Data Resources for Climate Research in Urban Areas. Climate, 8(3), 37. https://doi.org/10.3390/cli8030037 DOI
Chief Inspectorate for Environmental Protection. (accessed: 1.05.2024). Corine Land Cover 2018 [Dataset]. https://clc.gios.gov.pl/index.php/clc-2018/udostepnianie
Chief Inspectorate for Environmental Protection. (accessed: 1.08.2024). Corrected database CORINE Land Cover 2000 [Dataset]. https://clc.gios.gov.pl/index.php/clc-2006/udostepnianie
Copernicus Land Monitoring Service. (accessed: 3.09.2024). CORINE Land Cover. https://land.copernicus.eu/en/products/corine-land-cover
Coutts, A. M., Harris, R. J., Phan, T., Livesley, S. J., Williams, N. S. G., & Tapper, N. J. (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 186, 637-651. https://doi.org/10.1016/j.rse.2016.09.007 DOI
Czarnecka, K., Kuchcik, M., & Baranowski, J. (2024). Spatial development indicators as a tool to determine thermal conditions in an urban environment. Sustainable Cities and Society, 100. https://doi.org/10.1016/j.scs.2023.105014 DOI
Dąbrowska-Zielińska, K., Gurdak, R., Grzybowski, P., & Olszewski, D. (2019). Opracowanie końcowe określające stan ekosystemu m.st. Warszawy w kontekście zmian klimatu w ramach projektu LIFE_ADAPTCTY_PL. Warsaw: Institute of Geodesy and Cartography, The Remote Sensing Center.
Dąbrowska-Zielińska, K., Hościło, A., Tomaszewska, M., & Kiryła, W. (2015). LIFE ADAPTCITY PL - Przygotowanie strategii adaptacji do zmian klimatu miasta metropolitarnego przy wykorzystaniu mapy klimatycznej i partycypacji społecznych. Sprawozdanie z realizacji projektu. Warsaw: Institute of Geodesy and Cartography, The Remote Sensing Center.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., & Bechtel, B. (2022). A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, 14(8), 3835-3873. https://doi.org/10.5194/essd-14-3835-2022 DOI
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., Vliet, J. van, & Bechtel, B. (2023). Global map of Local Climate Zones (3.0.0) (Version 3.0.0) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.8419340
Feyisa, G. L., Meilby, H., Darrel Jenerette, G., & Pauliet, S. (2016). Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sensing of Environment, 175, 14-31. https://doi.org/10.1016/j.rse.2015.12.026 DOI
Gawuć, L., Jefimow, M., Szymankiewicz, K., Kuchcik, M., Sattari, A., & Strużewska, J. (2020). Statistical modeling of urban heat island intensity in Warsaw, Poland using simultaneous air and surface temperature observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2716-2728. https://doi.org/10.1109/JSTARS.2020.2989071 DOI
Geletič, J., Lehnert, M., & Dobrovolný, P. (2016). Land surface temperature differences within local climate zones, based on two Central European cities. Remote Sensing, 8(10), 788. https://doi.org/10.3390/rs8100788 DOI
Geletič, J., Lehnert, M., Resler, J., Krč, P., Bureš, M., Urban, A., & Krayenhoff, E. S. (2023). Heat exposure variations and mitigation in a densely populated neighborhood during a hot day: Towards a people-oriented approach to urban climate management. Building and Environment, 242. https://doi.org/10.1016/j.buildenv.2023.110564 DOI
Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32. https://doi.org/10.1016/j.buildenv.2019.04.011 DOI
Greene, C. S., & Kedron, P. J. (2018). Beyond fractional coverage: A multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands. Applied Geography, 95, 45-53. https://doi.org/10.1016/j.apgeog.2018.04.004 DOI
Grigoraș, G., & Urițescu, B. (2018). Spatial hotspot analysis of Bucharest's Urban Heat Island (UHI) using modis data. Annals of Valahia University of Targoviste Geographical Series, 18, 14-22. https://doi.org/10.2478/avutgs-2018-0002 DOI
Grimmond, S. (2007). Urbanization and global environmental change: Local effects of urban warming. The Geographical Journal, 173(1), 83-88. https://doi.org/10.1111/j.1475-4959.2007.232_3.x DOI
Guerri, G., Crisci, A., Congedo, L., Munafò, M., & Morabito, M. (2022). A functional seasonal thermal hotspot classification: Focus on industrial sites. Science of The Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.151383 DOI
Guerri, G., Crisci, A., Messeri, A., Congedo, L., Munafò, M., & Morabito, M. (2021). Thermal summer diurnal hot-spot analysis: The role of local urban features layers. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030538 DOI
Guo, Y., Unger, J., Khabibolla, A., Tian, G., He, R., Li, H., & Gál, T. (2024). Modeling urban air temperature using satellite-derived surface temperature, meteorological data, and local climate zone pattern - A case study in Szeged, Hungary. Theoretical and Applied Climatology, 155(5), 3841-3859. https://doi.org/10.1007/s00704-024-04852-7 DOI
Gupta, R. K. (2024). Identifying urban hotspots and cold spots in Delhi using the biophysical landscape framework. Ecology, Economy and Society-the INSEE Journal, 7. https://doi.org/10.37773/ees.v7i1.954 DOI
He, T., Zhou, R., Ma, Q., Li, C., Liu, D., Fang, X., Hu, Y., & Gao, J. (2023). Quantifying the effects of urban development intensity on the surface urban heat island across building climate zones. Applied Geography, 158. https://doi.org/10.1016/j.apgeog.2023.103052 DOI
Hebbert, M. (2014). Climatology for city planning in historical perspective. Urban Climate, 10, 204-215. https://doi.org/10.1016/j.uclim.2014.07.001 DOI
Hidalgo-Garcí a, D., & Arco-Dí az, J. (2022). Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain). Sustainable Cities and Society, 87. https://doi.org/10.1016/j.scs.2022.104166 DOI
Huang, X., & Wang, Y. (2019). Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 119-131. https://doi.org/10.1016/j.isprsjprs.2019.04.010 DOI
Hussain, N., Ahmed, S. M. S., & Shumi, A. M. (2023). Remote sensing-based geostatistical hot spot analysis of Urban Heat Islands in Dhaka, Bangladesh. Singapore Journal of Tropical Geography, 44(3), 438-458. https://doi.org/10.1111/sjtg.12507 DOI
Jamei, Y., Rajagopalan, P., & Sun, Q. (Chayn). (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of The Total Environment, 659, 1335-1351. https://doi.org/10.1016/j.scitotenv.2018.12.308 DOI
Jin, L., Schubert, S., Fenner, D., Salim, M. H., & Schneider, C. (2022). Estimation of mean radiant temperature in cities using an urban parameterization and building energy model within a mesoscale atmospheric model. Meteorologische Zeitschrift, 31(1), 31-52. https://doi.org/10.1127/metz/2021/1091 DOI
Kleerekoper, L., van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30-38. https://doi.org/10.1016/j.resconrec.2011.06.004 DOI
Krayenhoff, E. S., & Voogt, J. A. (2016). Daytime thermal anisotropy of urban neighbourhoods: Morphological causation. Remote Sensing, 8(2), 108. https://doi.org/10.3390/rs8020108 DOI
Kuchcik, M., & Czarnecka, K. (2023). A general thermal characterisation of the Vistula Valley in Warsaw. Przegląd Geograficzny, 95(3). https://doi.org/10.7163/PrzG.2023.3.6 DOI
Kuchcik, M., Czarnecka, K., & Błażejczyk, K. (2024). Urban heat island in Warsaw (Poland): Current development and projections for 2050. Urban Climate, 55. https://doi.org/10.1016/j.uclim.2024.101901 DOI
Květoňová, V., Pánek, J., Geletič, J., Šimáček, P., & Lehnert, M. (2024). Where is the heat threat in a city? Different perspectives on people-oriented and remote sensing methods: The case of Prague. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e36101 DOI
Lehnert, M., Geletič, J., & Jurek, M. (2023). Traditional and novel approaches to studying the human thermal environment in urban areas: A critical review of the current state of the art. Geografie, 128(3), 351-377. https://doi.org/10.37040/geografie.2023.012 DOI
Liu, W., Zhao, H., Sun, S., Xu, X., Huang, T., & Zhu, J. (2022). Green space cooling effect and contribution to mitigate heat island effect of surrounding communities in Beijing Metropolitan Area. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.870403 DOI
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili, N., Burlando, P., Katul, G., & Zeid, E. B. (2020). Reply to Martilli et al. (2020): Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction. OSF Preprints. https://doi.org/10.31219/osf.io/mwpna DOI
Martilli, A., Roth, M., Chow, W. T. L., Demuzere, M., Lipson, M., Krayenhoff, E. S., … & Hart, M. A. (2020). Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction. Research Collection School of Social Sciences, Paper 3391. https://doi.org/10.31219/osf.io/8gnbf DOI
Matias, M., & Lopes, A. (2020). Surface radiation balance of urban materials and their impact on air temperature of an urban canyon in Lisbon, Portugal. Applied Sciences, 10(6). https://doi.org/10.3390/app10062193 DOI
Mavrakou, T., Polydoros, A., Cartalis, C., & Santamouris, M. (2018). Recognition of thermal hot and cold spots in urban areas in support of mitigation plans to counteract overheating: Application for Athens. Climate, 6(1). https://doi.org/10.3390/cli6010016 DOI
Naserikia, M., Hart, M. A., Nazarian, N., Bechtel, B., Lipson, M., & Nice, K. A. (2023). Land surface and air temperature dynamics: The role of urban form and seasonality. Science of The Total Environment, 905. https://doi.org/10.1016/j.scitotenv.2023.167306 DOI
Office of Architecture and Spatial Planning of the Capital City of Warsaw City Hall. (2018). Atlas Ekofizjograficzny Miasta Stołecznego Warszawy.
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. https://doi.org/10.1002/qj.49710845502 DOI
Oke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and Applied Climatology, 84(1), 179-190. https://doi.org/10.1007/s00704-005-0153-0 DOI
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Kö ppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007 DOI
Ramani, V., Arjunan, P., Poolla, K., & Miller, C. (2024). Semantic segmentation of longitudinal thermal images for identification of hot and cool spots in urban areas. Building and Environment, 249. https://doi.org/10.1016/j.buildenv.2023.111112 DOI
Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by world maps of the Kö ppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135-141. https://doi.org/10.1127/0941-2948/2010/0430 DOI
Sameen, M. I., & Kubaisy, M. A. A. (2014). Automatic surface temperature mapping in ArcGIS using Landsat-8 TIRS and ENVI tools, case study: Al Habbaniyah Lake. Journal of Environment and Earth Science, 4(12).
Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35. https://doi.org/10.1016/j.uclim.2020.100751 DOI
Sheng, L., Tang, X., You, H., Gu, Q., & Hu, H. (2017). Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators, 72, 738-746. https://doi.org/10.1016/j.ecolind.2016.09.009 DOI
Sismanidis, P., Keramitsoglou, I., & Kiranoudis, C. T. (2017). Identifying and characterizing the diurnal evolution of urban land surface temperature patterns. 2017 Joint Urban Remote Sensing Event (JURSE), 1-4. https://doi.org/10.1109/JURSE.2017.7924598 DOI
Smid, M., Russo, S., Costa, A. C., Granell, C., & Pebesma, E. (2019). Ranking European capitals by exposure to heat waves and cold waves. Urban Climate, 27, 388-402. https://doi.org/10.1016/j.uclim.2018.12.010 DOI
Statistics Poland. (accessed: 14.08.2024). M.st. Warszawa. Categories: Population, Territorial division. Years: 2001, 2018. https://bdl.stat.gov.pl/bdl/dane/teryt/jednostka#
Středová, H., Chuchma, F., Rožnovský, J., & Středa, T. (2021). Local climate zones, land surface temperature and air temperature interactions: Case study of Hradec Králové, the Czech Republic. ISPRS International Journal of Geo-Information, 10(10). https://doi.org/10.3390/ijgi10100704 DOI
USGS. (accessed: 31.07.2024). Frequently Asked Questions. https://www.usgs.gov/faqs/
Walawender, J. P., Szymanowski, M., Hajto, M. J., & Bokwa, A. (2014). Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ data. Pure and Applied Geophysics, 171(6), 913-940. https://doi.org/10.1007/s00024-013-0685-7 DOI
Yuan, B., Zhou, L., Dang, X., Sun, D., Hu, F., & Mu, H. (2021). Separate and combined effects of 3D building features and urban green space on land surface temperature. Journal of Environmental Management, 295, 113116. https://doi.org/10.1016/j.jenvman.2021.113116 DOI
Zhao, K., Qi, M., Yan, X., Li, L., & Huang, X. (2023). Dynamic impact of urban built environment on land surface temperature considering spatio-temporal heterogeneity: A perspective of local climate zone. Land, 12(12). https://doi.org/10.3390/land12122148 DOI

Relation:

Geographia Polonica

Volume:

98

Issue:

2

Start page:

149

End page:

169

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0297

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: