Metadata language
Przegląd Geograficzny T. 97 z. 2 (2025)
Creator:
Sikora, Patryk
:
Autor
;
Falarz, Małgorzata
:
Autor
cloudiness ; Altocumulus lenticularis ; atmospheric circulation ; Silesian Upland
Abstract:
The aim of this paper is to analyse the annual and long-term variability in the occurrence of these clouds in the Silesian Upland (on the example of Katowice) as well as to indicate its causes related to atmospheric circulation. The source material comes from the IMGW-PIB. The paper uses data on mid-level cloud cover in Katowice in the years 1971-2020. Altocumulus lenticularis (Ac len) clouds, coded CM = 4, were analysed for eight time points a day (every 3 hours) during the study period. The study also used data on air masses, weather fronts, and types of atmospheric circulation based on the Calendar of atmospheric circulation types for southern Poland compiled by Niedźwiedź (2024). Most occurrences of Ac len were observed in autumn, and least in summer. The highest average number of days and number of cases of Ac len were recorded in October and November, while the lowest in April. In terms of the diurnal distribution, these clouds occurred most frequently between 6:00 and 15:00 UTC. Based on a 50-year dataset, a statistically significant decreasing trends for both number of cases and number of days were found for this type of cloud cover (-2.7 days per 10 years). The maximum number of occurrences was found in 1975, and the minimum in 2016. The highest conditional probability of occurrence of a lenticular cloud in Upper Silesia was found for advection of air masses from the south and southwest in cyclonic pressure systems (>25%) and for advection of a warm polar maritime air mass over southern Poland (20%).
Bartok, B., Mika, J., Imecs, Z., & Tar, K. (2012). Spatial distribution of cloudiness tendencies over Europe, comparing visual and satellite observations. International Multidisciplinary Scientific GeoConference: SGEM, 4, 419.
Bartoszek, K., Matuszko, D., & Soroka, J. (2020). Relationships between cloudiness, aerosol optical thickness, and sunshine duration in Poland. Atmospheric Research, 245, 105097.
Bielec-Bąkowska, Z. (2022). Long-term changes in circulation conditions over southern Poland for the period 1874-2020. Miscellanea Geographica, 26(4), 237-248.
Clark, M. (2019). A bright corona and iridescence in altocumulus lenticularis clouds, as viewed from Exeter, Devon, at 1400 UTC on 30 August 2019. Royal Meteorological Society, 75(4).
Filipiak, J. (2021). Change of Cloudiness. In: M. Falarz (ed.), Climate Change in Poland. Past, present, future (pp. 217-274). Cham, Switzerland: Springer.
Filipiak, J., & Miętus, M. (2009). Spatial and temporal variability of cloudiness in Poland, 1971-2000. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9), 1294-1311.
Henderson-Sellers, A., Seze, G., Drake, F., & Desbois, M. (1987). Surface-observed and satellite-retrieved cloudiness compared for the 1983 ISCCP Special Study Area in Europe. Journal of Geophysical Research: Atmospheres, 92(D4), 4019-4033.
IMGW-PIB. (2024). Dane archiwalne. Retrieved from: https://danepubliczne.imgw.pl
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [V. Mas son-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Gold farb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
IPCC. (2023). Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. pp. 35-115.
Koch, H. (1971). Maritime and continental traits in annual course of cloudiness over Europe and northern atlantic. Petermanns Geographische Mitteilungen, 115(4), 248-261.
Kotarba, A.Z. (2010). Satellite-derived cloud climatology over high elevation areas based on circu lation types: A 2007 analysis of the Tatra Mountains. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 462-468.
Łapeta, B., Dyras, I., Serafin-Rek, D., & Ustrnul, Z. (2006). Comparison of cloudiness derived fromMSG satellite data with standard surface observations: preliminary results for Poland. RemoteSensing of Clouds and the Atmosphere XI, 6362, 457-463.
Marsz, A.A., Matuszko, D., & Styszyńska, A. (2024). Multiyear variability of cloud genera in Krakow in the context of changes in the thermal state of the North Atlantic. International Journal of Climatology, 44(4), 1154-1170.
Matuszko, D. (2003). Cloudiness changes in Cracow in the 20th century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(8), 975-984.
Matuszko, D., & Węglarczyk, S. (2018). Long-term variability of the cloud genera and their relationship with circulation (Kraków, Poland): changes in cloudiness depending on circulation (Kraków, Poland). International Journal of Climatology, 38(51), 1205-1220.
Matuszko, D., Bartoszek, K., & Soroka, J. (2022). Long-term variability of cloud cover in Poland (1971-2020).Atmospheric Research, 268, 106028.
Miś, F. (2024). Effect of teleconnection patterns on cloudiness in winter in Poland. Quarterly Journal of the HungaroMet Hungarian Meteorological Service, 128(1), 27-39.
Niedźwiedź, T. (1981). Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły. Rozprawy habilitacyjne UJ nr 58, Kraków.
Niedźwiedź, T. (1988). Kalendarz sytuacji synoptycznych dla dorzecza górnej Wisły (1951-1985), (Catalogue of synoptic situations in the Upper Vistula River Basin (1951-1985). Zeszyty Naukowe UJ, Prace Geograficzne 71, 37-86, Kraków.
Niedźwiedź, T., & Ustrnul, Z. (2021). Change of Atmospheric Circulation. In: M. Falarz (ed.), Climate Change in Poland. Past, present, future (pp. 123-150). Cham, Switzerland: Springer.
Niedźwiedź, T., Twardosz, R., & Walanus, A. (2009). Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theoretical and Applied Climatology, 98, 337-350.
Nowak, M., & Czarnecki, K. (2023). Analiza zachmurzenia na zobrazowaniach Landsat 8 w latach 2013-2020 jako ocena stopnia ich przydatności w monitoringu arktycznych lodowców. Przegląd Geograficzny, 95(2), 127-147.
Scholbrock, A. (2011). Altocumulus Lenticularis Clouds in San Luis Valley, Colorado. University of Colorado at Boulder.
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Charbudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Tepiłowski, S., & Ziaja, W. (2018). Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica, 91(2), 143-170.
Szyga-Pluta, K. (2022). Cloudiness and cloud genera variability at the turn of the 21st century in Poznań (Poland). Quarterly Journal of the HungaroMet Hungarian Meteorological Service, 126(1), 109-125.
Twardosz, R., & Niedźwiedź, T. (2001). Influence of synoptic situations on the precipitation in Kraków (Poland). International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(4), 467-481.
Ustrnul, Z. (1992). Potencjalne warunki występowania wiatrów fenowych w Karpatach Polskich. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Geograficzne, 97-112.
Ustrnul, Z. (1992). Influence of foehn winds on air temperature and humidity in the Polish Carpathians. Theoretical and Applied Climatology, 45(1), 43-47.
WMO. (2017). International Cloud Atlas. Manual on the observation of clouds and other meteors. Geneva, Switzerland: World Meteorological Organization. Retrieved from: https://cloudatlas. wmo.int/ (29.05.2024).
Wojciechowska, I., Kotarba, A.Z., & Żmudzka, E. (2023). Cloud type frequency over Poland (2003-2021) revealed by independent satellite-based (MODIS) and surface-based (SYNOP) observations. International Journal of Climatology, 43(11), 5208-5226.
0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2025.2.2
Source:CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link
Language: Language of abstract: Rights:Creative Commons Attribution BY 4.0 license
Terms of use:Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -
Digitizing institution:Institute of Geography and Spatial Organization of the Polish Academy of Sciences
Original in: Projects co-financed by:Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund
Access: