Object structure
Title:

Long-term variability of Altocumulus lenticularis clouds in Katowice and atmospheric circulation conditions

Subtitle:

Przegląd Geograficzny T. 97 z. 2 (2025)

Creator:

Sikora, Patryk : Autor Affiliation ORCID ; Falarz, Małgorzata : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2025

Description:

24 cm

Subject and Keywords:

cloudiness ; Altocumulus lenticularis ; atmospheric circulation ; Silesian Upland

Abstract:

The aim of this paper is to analyse the annual and long-term variability in the occurrence of these clouds in the Silesian Upland (on the example of Katowice) as well as to indicate its causes related to atmospheric circulation. The source material comes from the IMGW-PIB. The paper uses data on mid-level cloud cover in Katowice in the years 1971-2020. Altocumulus lenticularis (Ac len) clouds, coded CM = 4, were analysed for eight time points a day (every 3 hours) during the study period. The study also used data on air masses, weather fronts, and types of atmospheric circulation based on the Calendar of atmospheric circulation types for southern Poland compiled by Niedźwiedź (2024). Most occurrences of Ac len were observed in autumn, and least in summer. The highest average number of days and number of cases of Ac len were recorded in October and November, while the lowest in April. In terms of the diurnal distribution, these clouds occurred most frequently between 6:00 and 15:00 UTC. Based on a 50-year dataset, a statistically significant decreasing trends for both number of cases and number of days were found for this type of cloud cover (-2.7 days per 10 years). The maximum number of occurrences was found in 1975, and the minimum in 2016. The highest conditional probability of occurrence of a lenticular cloud in Upper Silesia was found for advection of air masses from the south and southwest in cyclonic pressure systems (>25%) and for advection of a warm polar maritime air mass over southern Poland (20%).

References:

Bartok, B., Mika, J., Imecs, Z., & Tar, K. (2012). Spatial distribution of cloudiness tendencies over Europe, comparing visual and satellite observations. International Multidisciplinary Scientific GeoConference: SGEM, 4, 419. DOI
Bartoszek, K., Matuszko, D., & Soroka, J. (2020). Relationships between cloudiness, aerosol optical thickness, and sunshine duration in Poland. Atmospheric Research, 245, 105097. DOI
Bielec-Bąkowska, Z. (2022). Long-term changes in circulation conditions over southern Poland for the period 1874-2020. Miscellanea Geographica, 26(4), 237-248. DOI
Clark, M. (2019). A bright corona and iridescence in altocumulus lenticularis clouds, as viewed from Exeter, Devon, at 1400 UTC on 30 August 2019. Royal Meteorological Society, 75(4). DOI
Filipiak, J. (2021). Change of Cloudiness. In: M. Falarz (ed.), Climate Change in Poland. Past, present, future (pp. 217-274). Cham, Switzerland: Springer. DOI
Filipiak, J., & Miętus, M. (2009). Spatial and temporal variability of cloudiness in Poland, 1971-2000. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9), 1294-1311. DOI
Henderson-Sellers, A., Seze, G., Drake, F., & Desbois, M. (1987). Surface-observed and satellite-retrieved cloudiness compared for the 1983 ISCCP Special Study Area in Europe. Journal of Geophysical Research: Atmospheres, 92(D4), 4019-4033. DOI
IMGW-PIB. (2024). Dane archiwalne. Retrieved from: https://danepubliczne.imgw.pl
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [V. Mas son-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Gold farb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 2391 pp. DOI
IPCC. (2023). Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. pp. 35-115. DOI
Koch, H. (1971). Maritime and continental traits in annual course of cloudiness over Europe and northern atlantic. Petermanns Geographische Mitteilungen, 115(4), 248-261.
Kotarba, A.Z. (2010). Satellite-derived cloud climatology over high elevation areas based on circu lation types: A 2007 analysis of the Tatra Mountains. Physics and Chemistry of the Earth, Parts A/B/C, 35(9-12), 462-468. DOI
Łapeta, B., Dyras, I., Serafin-Rek, D., & Ustrnul, Z. (2006). Comparison of cloudiness derived fromMSG satellite data with standard surface observations: preliminary results for Poland. RemoteSensing of Clouds and the Atmosphere XI, 6362, 457-463. DOI
Marsz, A.A., Matuszko, D., & Styszyńska, A. (2024). Multiyear variability of cloud genera in Krakow in the context of changes in the thermal state of the North Atlantic. International Journal of Climatology, 44(4), 1154-1170. DOI
Matuszko, D. (2003). Cloudiness changes in Cracow in the 20th century. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(8), 975-984. DOI
Matuszko, D., & Węglarczyk, S. (2018). Long-term variability of the cloud genera and their relationship with circulation (Kraków, Poland): changes in cloudiness depending on circulation (Kraków, Poland). International Journal of Climatology, 38(51), 1205-1220. DOI
Matuszko, D., Bartoszek, K., & Soroka, J. (2022). Long-term variability of cloud cover in Poland (1971-2020).Atmospheric Research, 268, 106028. DOI
Miś, F. (2024). Effect of teleconnection patterns on cloudiness in winter in Poland. Quarterly Journal of the HungaroMet Hungarian Meteorological Service, 128(1), 27-39. DOI
Niedźwiedź, T. (1981). Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły. Rozprawy habilitacyjne UJ nr 58, Kraków.
Niedźwiedź, T. (1988). Kalendarz sytuacji synoptycznych dla dorzecza górnej Wisły (1951-1985), (Catalogue of synoptic situations in the Upper Vistula River Basin (1951-1985). Zeszyty Naukowe UJ, Prace Geograficzne 71, 37-86, Kraków.
Niedźwiedź, T., & Ustrnul, Z. (2021). Change of Atmospheric Circulation. In: M. Falarz (ed.), Climate Change in Poland. Past, present, future (pp. 123-150). Cham, Switzerland: Springer. DOI
Niedźwiedź, T., Twardosz, R., & Walanus, A. (2009). Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theoretical and Applied Climatology, 98, 337-350. DOI
Nowak, M., & Czarnecki, K. (2023). Analiza zachmurzenia na zobrazowaniach Landsat 8 w latach 2013-2020 jako ocena stopnia ich przydatności w monitoringu arktycznych lodowców. Przegląd Geograficzny, 95(2), 127-147. DOI
Scholbrock, A. (2011). Altocumulus Lenticularis Clouds in San Luis Valley, Colorado. University of Colorado at Boulder.
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Charbudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Tepiłowski, S., & Ziaja, W. (2018). Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica, 91(2), 143-170. DOI
Szyga-Pluta, K. (2022). Cloudiness and cloud genera variability at the turn of the 21st century in Poznań (Poland). Quarterly Journal of the HungaroMet Hungarian Meteorological Service, 126(1), 109-125. DOI
Twardosz, R., & Niedźwiedź, T. (2001). Influence of synoptic situations on the precipitation in Kraków (Poland). International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(4), 467-481. DOI
Ustrnul, Z. (1992). Potencjalne warunki występowania wiatrów fenowych w Karpatach Polskich. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Geograficzne, 97-112.
Ustrnul, Z. (1992). Influence of foehn winds on air temperature and humidity in the Polish Carpathians. Theoretical and Applied Climatology, 45(1), 43-47.
WMO. (2017). International Cloud Atlas. Manual on the observation of clouds and other meteors. Geneva, Switzerland: World Meteorological Organization. Retrieved from: https://cloudatlas. wmo.int/ (29.05.2024).
Wojciechowska, I., Kotarba, A.Z., & Żmudzka, E. (2023). Cloud type frequency over Poland (2003-2021) revealed by independent satellite-based (MODIS) and surface-based (SYNOP) observations. International Journal of Climatology, 43(11), 5208-5226. DOI

Relation:

Przegląd Geograficzny

Volume:

97

Issue:

2

Start page:

149

End page:

163

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2025.2.2

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: