Object structure
Title:

Implementation of the AdH hydrodynamic model on the Włocławek Reservoir

Subtitle:

Geographia Polonica Vol. 95 No. 4 (2022)

Creator:

Tutro, Magdalena : Autor Affiliation ORCID ; Hachaj, Paweł S. : Autor Affiliation ORCID ; Szlapa, Monika : Autor Affiliation ORCID ; Gierszewski, Piotr : Autor Affiliation ; Habel, Michał : Autor Affiliation ORCID ; Juśkiewicz, Włodzimierz : Autor Affiliation ORCID ; Mączka, Natalia : Autor Affiliation

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2022

Description:

24 cm

Subject and Keywords:

2D hydrodynamic modelling ; dam reservoir ; model calibration ; velocity map ; AdH model ; VistulaRiver ; Włocławek Reservoir

Abstract:

The variation of water velocity in an artificial dam reservoir is influenced not only by the inflow discharge, but also by the bathymetry of the reservoir and the water level at the dam. The depiction of spatially complex variations in flow velocity through a reservoir would not be possible without the use of hydrodynamic models. A reliable hydrodynamic model of the reservoir is an effective tool for predicting and analyzing changes in the reservoir geoecosystem in an age of changing climate and risk of water stress. A depth-averaged two-dimensional AdH model was used to visualize the hydrodynamics of the Włocławek Reservoir. Running the model for eight different hydrological conditions delivered consistent results and allowed to calibrate the model parameters. Additionally, it provided a way to verify the data regarding the rating curve of the Vistula River upstream the reservoir.

References:

Ahearn, D. S., Sheibly, R. W. & Dahlgren, R. A. (2005). Effects of river regulation on water quality in the lower Mekolumne River, California. River Research and Applications, 21(6), 651-670. https://doi.org/10.1002/rra.853 DOI
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17-21. DOI
AQUAVEO. (2018). The Surface Water Modeling System - User Manual (v12.1).
Avakân, A. B., Kočarân, A. G., Majranovskij, F. G. (1994). Vliânie vodohraniliŝ na transformaciû himičeskogo stoka rek. Vodnye Resursy, 21(2), 144-153.
Babiński, Z. (1994). Transport rumowiska unoszonego i wleczonego dolnej Wisły w okresie eksploatacji stopnia wodnego Włocławek. Przegląd Geograficzny, 67(3-4), 285-308.
Berger, R. C., Tate, J. N., Brown, G. L., & Savant, G. (2013). Adaptive Hydraulics. USACE.
Błędzki, L. A., & Ellison, A. M. (2000). Effects of water retention time on zooplankton of shallow rheolimnic reservoirs. Verhandlungen des Internationalen Verein Limnologie, 27(5), 2865-2869. https://doi.org/10.1080/03680770.1998.11898192 DOI
Bogucka, M., & Magnuszewski, A. (2006). The sedimentation processes in Włocławek Reservoir. Miscellanea Geographica. Regional Studies on Development, 12, 95-101. DOI
Bogucka-Szymalska, M., & Magnuszewski, A. (2007). Zastosowanie modelu NCCHE2D do oceny warunków sedymentacji w Jeziorze Włocławskim. Prace i Studia Geograficzne, 38, 105-116.
ranets, L. V., Ghai, S. S., Lyons, S. L., & Wu, X. H. (2009). Challenges and technologies in reservoir modeling. Communications in Computational Physics, 6(1), 1. DOI
Brown, G. L., Savant, G., Berger, R. C., & Smith, D. S. (2009). Considerations for stationary ice covered flows in Adaptive Hydraulics (ADH). Vicksburg, Miss.: U.S. Army Engineer Research and Development Center.
Burgan, H. I., & Icaga, Y. (2019). Flood analysis using adaptive hydraulics (AdH) model in Akarcay Basin. Teknik Dergi, 30(2), 9029-9051. https://doi.org/10.18400/tekderg.416067 DOI
Cunha-Santino, M. B., Fushitaa, A. T., Peret, A. C., & Bianchini-Juniora, I. (2016). Morphometry and retention time as forcing functions to establishment and maintenance of aquatic macrophytes in a tropical reservoir. Brazilian Journal of Biology, 76(3), 673-685. https://doi.org/10.1590/1519-6984.24214 DOI
Detrembleur, S. et al. (2009). A 2D vertical finite volume solver using a level set approach for simulating free surface incompressible flows. European Journal of Mechanical and Environmental Engineering, 3, 4-9.
DHI, MIKE 21C, 2011. Curvilinear Model, Scientific Documentation, DHI Water & Environment.
Dubnyak, S., & Timchenko, V. (2000). Ecological role of hydrodynamic processes in the Dnieper reservoirs. Ecological Engineering, 16(1), 181-188. https://doi.org/10.1016/S0925-8574(00)00103-8 DOI
Dutta, R. K., & Das, B. (2020). Modeling curtain weirs for controlling algal blooms in the largest tributary of the Three Gorges Reservoir, China. Alexandria Engineering Journal, 59(1), 323-332. https://doi.org/10.1016/j.aej.2019.12.044 DOI
Erpicum, S., Archambeau, P., Dewals, B., Detrembleur, S., & Pirotton, M. (2006). 1D and 2D solvers coupling for free surface flow modelling. In 7th International Conference on Hydroinformatics. https://hdl.handle.net/2268/2632
Friedl, G., & Wüest, A. (2002). Disrupting biogeochemical cycles - Consequences of damming. Aquatic Sciences, 64(1), 55-65. https://doi.org/10.1007/s00027-002-8054-0 DOI
Garcia-Feal, O., Cea, L., Gonzalez-Cao, J., Domínguez, J. M., & Gomez-Gesteira, M. (2020). IberWQ: A GPU accelerated tool for 2D water quality modeling in rivers and estuaries. Water, 12(2), 413. https://doi.org/10.3390/w12020413 DOI
Ghanem, A., Steffler, P., Hicks, F., & KATOPODIS, C. (1996). Two-dimensional hydraulic simulation of physical habitat conditions in flowing streams. Regulated Rivers: Research & Management, 12(2-3), 185-200. https://doi.org/10.1002/(SICI)1099-1646(199603)12:2/3<185::AID-RRR389>3.0.CO;2-4 DOI
Gierszewski, P. (2006). Warunki przepływu wód Wisły przez zbiornik Włocławski. In A., Olszewski, K., Chutkowski (Eds.), Drogami wędrówek i badań Profesora Rajmunda Galona w 100-ną rocznicę urodzin (1906-2006), przewodnik sesji terenowych (pp. 250-254). Toruń: Wydawnictwo Turpress.
Gierszewski, P. (2018). Hydromorfologiczne uwarunkowania funkcjonowania geoekosystemu Zbiornika Włocławskiego = Hydromorphological conditions of the functioning of the Włocławek Reservoir geoecosystem. Prace Geograficzne, 268. Warszawa: IGiPZ PAN.
Gierszewski, P., Szmańda, J., Luc M. (2006). Distribution of the bottom deposits and accumulation dynamics in the Włocławek Reservoir (central Poland). Wseas Transaction on Environment and Development, 5(2), 543-549.
Hachaj, P. S. (2018). Preliminary Results of Applying 2D Hydrodynamic Models of Water Reservoirs to Identify their Ecological Potential. Polish Journal of Environmental Studies, 27(5). https://doi.org/10.15244/pjoes/78675 DOI
Hachaj, P. S. (2019). Analiza hydrodynamiki zbiorników zaporowych na potrzeby gospodarki wodnej: model i jego zastosowania. Kraków: Politechnika Krakowska im. Tadeusza Kościuszki. https://repozytorium.biblos.pk.edu.pl/resources/45579
Hachaj, P. S., & Szlapa, M. (2017). Impact of a thermocline on water dynamics in reservoirs -Dobczyce reservoir case. Archive of Mechanical Engineering, 64(2). https://doi.org/10.1515/meceng-2017-0012 DOI
Hachaj, P. S., & Tutro, M. (2014). Flow patterns for drying and wetting of a retention reservoir bed-numerical modeling. Infrastruktura i Ekologia Terenów Wiejskich, (IV/3). https://doi.org/10.14597/infraeco.2014.4.3.106
Hayes, N. M., Deemer, B. R., Corman, J. R., Razavi, N. R., & Strock, K. E. (2017). Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnology and Oceanography Letters, 2(2), 47-62. https://doi.org/10.1002/lol2.10036 DOI
IMGW-PIB. (2022). https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne
Kajak, Z. (1998). Hydrobiologia-limnologia. Ekosystemy wód śródlądowych. Warszawa: Wydawnictwo Naukowe PWN.
Kennedy, R. H. (2005). Toward integration in reservoir management. Lake and Reservoir Management, 21(2), 128-138. https://doi.org/10.1080/07438140509354422 DOI
Kimmel, B. L., & Groeger, A. W. (1984). Factors controlling primary production in lakes and reservoirs: a perspective. Lake and reservoir management, 1(1), 277-281. https://doi.org/10.1080/07438148409354524 DOI
Lee, S., Wolberg, G., Shin, S. Y. (1997). Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics, 3(3), 228-244. https://doi.org/10.1109/2945.620490 DOI
Liermann, C. R., Nilsson, C., Robertson, J., & Ng, R. Y. (2012). Implications of dam obstruction for global freshwater fish diversity. BioScience, 62(6), 539-548. https://doi.org/10.1525/bio.2012.62.6.5 DOI
Litvinov, A. S. (2000). Ènergo- i massoobmen v vodohraniliŝah Volžskogo kaskada. Yaroslavl: Yaroslav State University Publishers.
MacDonald, N. J., Davies, M. H., Zundel, A. K., Howlett, J. D., Demirbilek, Z., Gailani, J. Z., … & Smith, J. (2006). PTM: particle tracking model. Report 1: Model theory, implementation, and example applications. Engineer Research and Development Center Vicksburg MS Coastal and Hydraulics Lab.
Magnuszewski, A., Moran, S., & Yu, G. (2010). Modelling lowland reservoir sedimentation conditions and the potential environmental consequences of dam removal: Wloclawek Reservoir, Vistula River, Poland. (Proceedings of the ICCE Symposium Held at Warsaw University of Life Sciences-SGGW, Poland, 14-18 June 2010). IAHS Publ., 337, 345-352.
Majewski, W. (1987). Wpływ pokrywy lodowej na charakterystykę hydrauliczną zbiorników przepływowych na rzekach nizinnych na przykładzie zbiornika Włocławek. Gdańsk: Prace IBW PAN, 15.
Matta, E., Selge, F., Gunkel, G., & Hinkelmann, R. (2017). Three-dimensional modeling of wind- and temperature-induced flows in the Icó-Mandantes Bay. Itaparica Reservoir, NE Brazil. Water 9(10), 772. https://doi.org/10.3390/w9100772 DOI
McAlpin, J., Ross, C., & McKnight, J. (2019). Houston Ship Channel and Vicinity Three-Dimensional Adaptive Hydraulics (AdH) Numerical Model Calibration/Validation Report. ERDC Vicksburg United States. DOI
Morianou, G. G., Kourgialas, N. N., & Karatzas, G. P. (2016). Comparison between curvilinear and rectilinear grid based hydraulic models for river flow simulation. Procedia Engineering, 162, 568-575. https://doi.org/10.1016/j.proeng.2016.11.102 DOI
O'Brien, J. D. (2006). FLO-2D user's manual, version 2006.01. FLO Engineering: Nutrioso.
Pasternack, G. B., Gilbert, A. T., Wheaton, J. M., & Buckland, E. M. (2006). Error propagation for velocity and shear stress prediction using 2D models for environmental management. Journal of Hydrology, 328(1-2), 227-241. https://doi.org/10.1016/j.jhydrol.2005.12.003 DOI
Pasternack, G. B., & Senter, A. (2011). 21st Century Instream Flow Assessment Framework for Mountain Streams: Final Project Report. California Energy Commission.
Pevey, K. C., Savant, G., Moritz, H. R., & Childs, E. O. (2020). Lower Columbia River Adaptive Hydraulics (AdH) Model: Development, Water Surface Elevation Validation, and Sea Level Rise Analysis. Engineer Research and Development Coastal and Hydraulics Laboratory Vicksburg. DOI
Phillips, J. D. (2003). Toledo Bend reservoir and geomorphic response in the lower Sabine River. River Research and Applications, 19, 137-159. https://doi.org/10.1002/rra.702 DOI
Ryu, I., Yu, S., & Chung, S. (2020). Characterizing density flow regimes of three rivers with different physicochemical properties in a run-of-the-river reservoir. Water, 12(3), 717. https://doi.org/10.3390/w12030717 DOI
Savant, G., & Berger, R. C. (2012). Adaptive time stepping-operator splitting strategy to couple implicit numerical hydrodynamic and water quality codes. Journal of Environmental Engineering, 138(9), 979-984. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000547 DOI
Shen, Y., & Diplas, P. (2008). Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows. Journal of Hydrology, 348(1-2), 195-214. https://doi.org/10.1016/j.jhydrol.2007.09.060 DOI
Shivers, S. D., Golladay, S. W., Waters, M. N., Wilde, S. B., & Covich, A. P. (2018). Rivers to reservoirs: Hydrological drivers control reservoir function by affecting the abundance of submerged and floating macrophytes. Hydrobiologia, 815(1), 21-35. https://doi.org/10.1007/s10750-018-3532-0 DOI
Sirokov, V. M., & Lopuch, P. S. (1986). Formirovanie malyh vodohraniliŝ gidroèlektrostancij. Moskva: Energoatomizdat.
Soares, M. C. S., Marinho, M. M., Huszar, V. L. M., Branco, C. W. C., & Azevedo, S. M. F. O. (2008). The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes & Reservoirs: Research and Management, 13(4), 257-269. https://doi.org/10.1111/j.1440-1770.2008.00379.x DOI
Straskraba, M., & Tundisi, J. G. (1999). Guidelines of lake management (Volume 9): Reservoir water quality management. International Lake Environment Committee, 1-60.
Szlapa, M. (2019). Conditions for creation and change of a dam reservoir backwater region morphodynamics - a case study of Dobczyce Reservoir on the Raba River. Cracow University of Technology (PhD thesis). https://repozytorium.biblos.pk.edu.pl/resources/43212
SYME, B. (2016). TUFLOW User Manual.
Timčenko, V. M. (1989). Gidrologičeskie processy v vodohraniliŝah dneprovskogo kaskada. In A. I. Denisova (Eds.), Gidrologiâ i gidrohimiâ Dnepra i ego vodohraniliŝ (pp. 19-58). Kiev: Naukova Dumka.
Tu, T., Carr, K. J., Ercan, A., Trinh, T., Kavvas, M. L., & Nosacka, J. (2017). Assessment of the effects of multiple extreme floods on flow and transport processes under competing flood protection and environmental management strategies. Science of the Total Environment, 607-608, 613-622. https://doi.org/10.1016/j.scitotenv.2017.06.271 DOI
Wagner, I., & Zalewski, M. (2000). Effect of hydrological patterns of tributaries on biotic processes in a lowland reservoir-consequences for restoration. Ecological Engineering, 16(1), 79-90. https://doi.org/10.1016/S0925-8574(00)00092-6 DOI
Walling, D. E., & Fang, D. (2003). Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change, 39(1-2), 111-126. https://doi.org/10.1016/S0921-8181(03)00020-1 DOI
Wei, G. L., Yang, Z. F., Cui, B. S., Li, B., Chen, H., Bai, J. H. & Dong, S. K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23(9), 1763-1780. https://doi.org/10.1007/s11269-008-9351-8 DOI
Whipple, K. (2004). Flow Mechanics. In MIT course 12.163: Surface Processes and Landscape Evolution. https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-163-surface-processes-andlandscape-evolution-fall-2004/lecture-notes/1_flow_mech.pdf
Wierzbicki, J., & Ujda, K. (1986). Metodyka i technika pomiaru rozkładu przepływu wody na zbiorniku włocławskim. Budownictwo wodne, gospodarka wodna-Informator Projektanta, Hydroprojekt, 1, 13-16.
Wilk, P., Szlapa, M., Hachaj, P. S., Orlińska-Woźniak, P., Jakusik, E., & Szalińska, E. (2022). From the source to the reservoir and beyond-tracking sediment particles with modeling tools under climate change predictions (Carpathian Mts.). Journal of Soils and Sediments, 22(11), 2929-2947. https://doi.org/10.1007/s11368-022-03287-9 DOI
Witek, K. (2013). Symulacje przepływu wody w zbiorniku retencyjnym Tresna za pomocą modelu numerycznego ADH. Kraków: Politechnika Krakowska.
Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P., & Syvitski, J. P. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and planetary change, 39(1-2), 169-190. https://doi.org/10.1016/S0921-8181(03)00023-7 DOI
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. Reidy, & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440 DOI
Xu, Y., Cai, Q., Shao, M., Han, X., & Cao, M. (2009). Seasonal dynamics of suspended solids in a giant subtropical reservoir (China) in relation to internal processes and hydrological features. Quaternary International, 208(1-2),138-144. https://doi.org/10.1016/j.quaint.2008.12.019 DOI
Ye, L., Han, X. Q., Xu, Y. Y., & Cai, Q. H. (2007). Spatial analysis for spring bloom and nutrient limitation in Xiangxi Bay of Three Gorges Reservoir. Environmental monitoring and assessment, 127(1), 135-145. https://doi.org/10.1007/s10661-006-9267-9 DOI
Zamani, B., & Koch, M. (2020). Comparison between two hydrodynamic models in simulating physical processes of a reservoir with complex morphology: Maroon Reservoir. Water, 12(3), 814. https://doi.org/10.3390/w12030814 DOI
Zhang, M., Shao, M., Xu, Y., & Cai, Q. (2010). Effect of hydrological regime on the macroinvertebrate community in Three-Gorges Reservoir, China. Quaternary International, 226(1-2), 129-135. https://doi.org/10.1016/j.quaint.2009.12.019 DOI
Zhao, P., Tang, X., & Tang, J. (2013). Assessing water quality of Three Gorges reservoir, China, over a five-year period from 2006 to 2011. Water Resources Management, 27(13), 4545-4558. https://doi.org/10.1007/s11269-013-0425-x DOI

Relation:

Geographia Polonica

Volume:

95

Issue:

4

Start page:

371

End page:

386

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

doi:10.7163/GPol.0241 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0241

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: