Object structure
Title:

Ocena przydatności disdrometru laserowego i radaru meteorologicznego do szacowania wielkości opadów deszczu = Assessment of the suitability of the laser disdrometer and meteorological radar for rainfall estimation

Subtitle:

Przegląd Geograficzny T. 94 z. 4 (2022)

Creator:

Barszcz, Mariusz Paweł : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2022

Description:

24 cm

Subject and Keywords:

tipping-bucket rain gauge ; laser disdrometer ; meteorological radar ; hydrology ; rainfall intensity and totals ; correlation of rainfall data

Abstract:

Measurements of precipitation conducted at the WULS-SGGW meteorological station in Warsaw in 2012-2014 and 2019-2020 using a tipping-bucket rain gauge and the laser disdrometer (Parsivel) as well as data obtained from the meteorological radar allowed to collect data enabling the assessment of the usefulness of the disdrometer and radar for estimating rainfalls. The data for the entire study period were used for analysis the correlation relationship between the 24-hour rainfall depths estimated on the basis of the rain gauge and the disdrometer. From the data set for the years 2012-2014, 21 individual events were selected for further analysis, for which rainfall data estimated on the basis of radar in the form of a PAC hydrological product were also available. The rainfall data from the disdrometer and radar were used for analysis the correlation relationships between them and corresponding measurements from the rain gauge. The scope of the study also included a comparison of the values of rainfall totals estimated for 21 single events using the disdrometer and radar in relation to data measured with the rain gauge. The simple method of adjusting the depths of rainfall estimated on the basis of the disdrometer proposed in this paper, was able to reduce significantly the differences in the values of rainfall totals for single events between the data from the disdrometer and the rain gauge.

References:

Atencia, A., Mediero, L., Llasat, M.C., & Garrote, L. (2011). Effect of radar rainfall time resolution on the predictive capability of distributed hydrologic model. Hydrology and Earth System Sciences, 15, 3809‑3827. DOI
Barszcz, M. (2018). Radar Data Analyses for a Single Rainfall Event and Their Application for Flow Simulation in an Urban Catchment Using the SWMM Model. Water, 10(8), 1‑18. https://doi/org/10.3390/w10081007 DOI
Barszcz, M. (2019). Quantitative rainfall analysis and flow simulation for an urban catchment using input from a weather radar. Geomatics, Natural Hazards and Risk, 10(1), 2129‑2144. https://doi/org/10.1080/19475705.2019.1682065 DOI
Berne, A., Delrieu, G., Creutin, J.-D., & Obled, C. (2004). Temporal and spatial resolution of rainfall measurements required for urban hydrology. Journal of Hydrology, 299(3‑4), 166‑179. DOI
Biniak-Pieróg, M. (2017). Monitoring of atmospheric precipitation and soil moisture as basis for the estimation of effective supply of soil profile with water. Monografie 207. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego.
Biniak-Pieróg, M., Biel, G., Szulczewski, W., & Żyromski, A. (2015). Evaluation of methods of comparative analysis of sums of atmospheric precipitation measured with the classical method and with a contact-less laser rain gauge. Annals of Warsaw University of Life Sciences - SGGW Land Reclamation, 47, 371‑382. https://doi/org/10.1515/sggw-2015-0038 DOI
Burszta-Adamiak, E. (2012). Analysis of Stormwater Retention on Green Roofs/Badania Retencji Wód Opadowych Na Dachach Zielonych. Archives of Environmental Protection, 38, 3‑13. https://doi/org/10.2478/v10265-012-0035-3 DOI
Cha, J.W & Yum, S.S. (2021). Characteristics of precipitation particles measured by Parsivel disdrometer at a mountain and a coastal site in Korea. Asia-Pacific Journal of Atmospheric Sciences, 57, 261‑276. https://doi/org/10.1007/s13143-020-00190-6 DOI
Conti, F.L., Francipane, A., Pumo, D., & Noto, L.V. (2015). Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications. Journal of Hydrology, 531, 508‑522. https://doi/org/10.1016/j.jhydrol.2015.10.071 DOI
Delrieu, G., Bonnifait, L., Kirstetter, P.-E., & Boudevillain, B. (2014). Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59(7), 1308‑1319. DOI
Giszterowicz, M., Ośródka, K., & Szturc, J. (2018). Nowcasting of rainfall based on extrapolation and evolution algorithms. Preliminary results. Acta Scientiarum Polonorum Formatio Circumiectus, 17(4), 59‑67. https://doi.org/10.15576/ASP.FC/2018.17.4.59 DOI
Jaffrain, J. & Berne. A. (2011). Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. Journal of Hydrometeorology, 12, 352‑370. https://doi/org/10.1175/2010JHM1244.1 DOI
Jakubiak, B., Licznar, P., & Malinowski, Sz.P. (2014). Rainfall estimates from radar vs. raingauge mea‑ surements. Warsaw case study. Environment Protection Engineering, 40(2), 159‑170. https://doi/org/10.5277/epel140212 DOI
Johannsen, L.L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., Cochrane, T.A., Blöschl,G., & Klik, A. (2020). Comparison of three types of laser optical disdrometers under natural rainfall conditions. Hydrological Sciences Journal, 65(4), 524‑535. https://doi/org/10.1080/02626667.2019.1709641 DOI
Jurczyk, A., Szturc, J., Otop, I., Ośródka, K., & Struzik, P. (2020). Quality-Based Combination of MultiSource Precipitation Data. Remote Sensing, 12, 1709. https://doi/org/10.3390/rs12111709 DOI
Krajewski, W.F., Kruger, A., Caracciolo, C., Golé, P., Barthes, L., Creutin, J-D., Delahaye, J-Y., Nikolopoulos, E.I., Ogden, F., & Vinson, J-P. (2006). DEVEX-Disdrometer Evaluation Experiment: Basic results and implications for hydrologic studies. Advances in Water Resources, 29, 311‑325. https://doi/org/10.1016/j.advwatres.2005.03.018 DOI
Krajewski, W.F. & Smith, J.A. (2002). Radar hydrology: rainfall estimation. Advances in Water Resources, 25, 1387‑1394. DOI
Krajewski, W.F., Villarini, G., & Smith, A. (2010). Radar-rainfall uncertainties. Bulletin of the American Meteorological Society, 91, 87‑94. DOI
Lanza, L., Leroy, M., Alexandropoulus, C., Stagi, L., & Wauben, W. (2005). WMO laboratory intercomparison of rainfall intensity gauges. Final report, IOM Report 84, WMO/TD 1304.
Licznar, P. (2009). Wstępne wyniki porównawczych testów polowych elektronicznego deszczomierza wagowego OTT Pluvio2 i disdrometru laserowego Parsivel. Instal, 7/8, 43‑50.
Licznar, P. (2018). Analiza opadów atmosferycznych na potrzeby projektowania systemów odwodnienia. Monografia 137. Wrocław: Polska Akademia Nauk, Komitet Inżynierii Środowiska.
Licznar, P., & Krajewski, W.F. (2016). Precipitation Type Specific Radar Reflectivity-rain Rate Relationship for Warsaw, Poland. Acta Geophysica, 64(5), 1840‑1857. DOI
Licznar, P., Łomotowski, J., & Rojek, M. (2005). Methods of rainfall intensity measurement for the Leeds of Urban drainage systems' design and exploitation. Woda-Środowisko-Obszary Wiejskie, 5, 209‑2019.
Licznar, P., & Siekanowicz-Grochowina, K. (2015). Wykorzystanie disdrometru laserowego do kalibracji obrazów pochodzących z radarów opadowych na przykładzie Warszawy. Ochrona Środowiska, 37(2), 11‑16.
Löwe, R., Thorndahl, S., Mikkelsen, P.S., Rasmussen, M.R., & Madsen, H. (2014). Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar. Journal of Hydrology, 512, 397‑407. DOI
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885‑900. https://doi/org/10.13031/2013.23153 DOI
Moszkowicz, S., & Tuszyńska, I. (2006). Meteorologia radarowa. Podręcznik użytkownika informacji radarowej IMGW. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Niemi, T.J., Warsta, L., Taka, M., Hickman, B., Pulkkinen, S., Krebs, G., Moisseev, D.N., Koivusalo, H., & Kokkonen, T. (2017). Applicability of open rainfall data to event-scale urban rainfall-runoff modeling. Journal of Hydrology, 547, 143‑155. https://doi/org/10.1016/j.jhydrol.2017.01.056 DOI
Ośródka, K., Szturc, J., Jakubiak, B., & Jurczyk, A. (2014). Processing of 3D weather radar data with application for assimilation int He NWP model. Miscellanea Geographica - Regional Studies on Development, 18(3), 31‑39. https://doi/org/10.2478/mgrsd-2014-0023 DOI
Otop, I., Szturc, J., Ośródka, K., & Djaków, P. (2018). Automatic quality control of telemetric rain gauge data for operational applications at IMGW-PIB. ITM Web of Conference 23, 00028. https://doi/org/10.1051/itmconf/20182300028 DOI
Rafieeinasab, A., Norouzi, A., Kim, S., Habibi, H., Nazari, B., Seo, D.-J., Lee, H, Cosgrove, B., & Cui, Z. (2015). Toward high-resolution flash flood prediction in large urban areas - analysis of sensitivity to spatiotemporal resolution of rainfall input and hydrologic modeling. Journal of Hydrology, 531, 370‑388. DOI
Somorowska, U. (2012). Annual and seasonal precipitation patterns across lowland catchment derived from rain gauge and weather radar data. Journal of Water and Land Development, 17(7‑12), 3‑10. DOI
Szewrański, S. (2009). Rozbryzg jako forma erozji wodnej gleb lessowych. Monografie 78. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
Szturc, J., Jurczyk, A., Ośródka, K., Wyszogrodzki, A., & Giszterowicz, M. (2018). Precipitation estimation and nowcasting at IMGW-PIB (SEiNO system). Meteorology Hydrology and Water Management, 6(1), 3‑12. https://doi/org/10.26491/mhwm/76120 DOI
Tapiador, F.J., Navarro, A., Moreno, R., Jiménez-Alcázar, A., Marcos, C., Tokay, A., Durán, L., Bodoque, J.M., Martín, R., Petersen, W., & de Castro, M. (2017). On the optima measuring area for pointwise rainfall estimation: a dedicated experiment with 14 laser disdrometers. Journal of Hydrometeorology, 18(3), 753‑760. https://doi/org/10.1175/JHM-D-16-0127.1 DOI
Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J.E., Veldhuis, M.-C., Arnbjerg-Nielsce, K., Rasmussen, M.R., & Molnar, P. (2017). Weather radar rainfall data in urban hydrology. Hydrology and Earth System Sciences, 21, 1359‑1380. DOI
Tokay, A., Wolff, D.B., & Petersen, W.A. (2014). Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2 . Journal of Atmospheric and Oceanic Technology, 31, 1276‑1288. https://doi/org/10.1175/JTECH-D-13-00174.1 DOI
Tuszyńska, I. (2011). Charakterystyka produktów radarowych. Warszawa: Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy.

Relation:

Przegląd Geograficzny

Volume:

94

Issue:

4

Start page:

451

End page:

470

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

doi:10.7163/PrzG.2022.4.3 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2022.4.3

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: