Object structure
Title:

Roślinność wieloletnich nieużytków miejskich – systematyka zbiorowisk, ich struktura i pełnione usługi ekosystemowe = Vegetation of perennial urban wastelands – syntaxonomy, structure and ecosystem services

Subtitle:

Przegląd Geograficzny T. 93 z. 3 (2021)

Creator:

Archiciński, Piotr : Autor ORCID ; Sikorski, Piotr : Autor ORCID ; Sikorska, Daria : Autor ORCID ; Przybysz, Arkadiusz : Autor ORCID

Affiliation:

Archiciński, Piotr : Szkoła Główna Gospodarstwa Wiejskiego Instytut Inżynierii Środowiska ; Sikorski, Piotr : Szkoła Główna Gospodarstwa Wiejskiego Instytut Inżynierii Środowiska ; Sikorska, Daria : Szkoła Główna Gospodarstwa Wiejskiego Instytut Inżynierii Środowiska ; Przybysz, Arkadiusz : Szkoła Główna Gospodarstwa Wiejskiego Instytut Nauk Ogrodniczych

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2021

Description:

24 cm

Subject and Keywords:

Class Robinietea ; novel ecosystems ; urban spontaneous vegetation

Abstract:

There is wide recognition that urban green space provides city residents with considerable benefits, inter alia of an environmental, economic and health-related profile. However, the different types of urban greenery include a rather large proportion taking the form of vegetation on abandoned sites that remain uncultivated, to the extent that a plant cover develops without much active human involvement. Almost by definition, there is only a poor level of recognition of the ecological potential such sites (here referred to as “informal green spaces” – IGS) enjoy, or of their capacity to render a variety of different ecosystem services. Against that background, the work presented here entailed in-depth study of the flora and plant communities present in Warsaw’s informal green spaces, the aim being to better ascertain their role in preserving biodiversity and delivering ecosystem services. Specifically, we identified the plant species composition present at 75 different locations within the urban green space of Poland’s capital city. To qualify for consideration, these sites had to be identified as entirely bereft of vegetation maintenance, or else only minimally subject to it, to the extent that it is largely processes of natural succession that are ongoing. The sites in fact range from wastelands with stabilised vegetation, via urban scrub and forest, through to non-forest habitats, sporadically cultivated and established over 20 years. We determined the density of vegetation present, and examined its structure in relation to various known classes of green space. We further determined the role of various vegetation types in rendering ecosystem services, be that surface cooling, substrate moisture maintenance or a capacity to remove particulate matter from the air. The informal green spaces we investigated are in fact found to comprise mainly-stable forest communities dominated by invasive species of tree (phytosociological Classes Robinietea and Salicetea purpureae), as well as non-forest communities (of Classes Molinio-Arrhenatheretea, Epilobietea and Artemisietea) again largely dominated by invasive plant species. The level of biodiversity here is average, it mostly being common forest and non-forest species that are preserved. However, in exceptional cases, the habitats constituted here do support species rare on a regional scale. It emerges that the forest vegetation is of weakly-diversified structure, as a reflection of the specific strategy invasive species pursue as they form monospecific communities. As noted already, the vegetation of the informal green spaces is seen to be largely dominated by such invasive species. Nevertheless, despite their evidently limited role in preserving biodiversity, these sites represent such a high density and volume of vegetation that their provisioning of ecosystem services is on a high level, especially where forest plant communities are involved. Sites that have come to be dominated by invasive plant species are shown to render ecosystem services comparable with (or sometimes even surpassing) those provided by native species, and this is especially the case when it comes to the removal of particulate matter from air and the exerting of a cooling effect.

References:

Adamczak, A. (2007). Acer negundo L. i Padus serotina (Ehrh.) Borkh. jako kenofity inicjujące rozwój formacji drzewiastej na odłogach. Przegląd Przyrodniczy, 18, 243‑253.
Anderson, E.C., & Minor, E.S. (2019). Assessing social and biophysical drivers of spontaneous plant diversity and structure in urban vacant lots. Science of the Total Environment, 653, 1272‑1281. https://doi.org/10.1016/j.scitotenv.2018.11.006 DOI
Batanjski, V., Kabaš, E., Kuzmanović, N., Vukojičić, S., Lakušić, D., & Jovanović, S. (2015). New invasive forest communities in the riparian fragile habitats-the case study from Ramsar site Carska bara (Vojvodina, Serbia). Šumarski List, 139, 155‑168.
Bencatová, B., & Bencat, T. (2005). The black Locust Communities in the Northen Part of "Pohronská pahorkatina" Hills. Thaiszia, 15, 191‑195.
Benesperi, R., Giuliani, C., Zanetti, S., Gennai, M., Lippi, M. M., Guidi, T.,... & Foggi, B. (2012). Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodiversity and Conservation, 21, 3555‑3568. https://doi.org/10.1007/s10531‑012‑0380‑5 DOI
Bonthoux, S., Brun, M., Di Pietro, F., Greulich, S., & Bouché-Pillon, S. (2014). How can wastelands promote biodiversity in cities? A review. Landscape and urban planning, 132, 79‑88. https://doi.org/10.1016/j.landurbplan.2014.08.010 DOI
Bottollier-Curtet, M., Charcosset, J.Y., Poly, F., Planty-Tabacchi, A.M., & Tabacchi, E. (2012). Light interception principally drives the understory response to boxelder invasion in riparian forests. Biological Invasions, 14, 1445‑1458. https://doi.org/10.1007/s10530‑011‑0170‑0 DOI
Braun-Blanquet, J. (1964). Pflanzensoziologie. Wien, New York: Springer. DOI
Chytrý, M., Douda, J., Roleček, J., Sádlo, J., Boublík, K., Hédl, R.,... & Kočí, M. (2013). Vegetace České republiky 4. Lesní a křovinná vegetace. Praha: Academia.
Ćwikliński, E. (1970). Notatki florystyczne z województwa szczecińskiego. Bad. Fizjogr. Pol. Zach., Ser. B, Biol, 23, 261‑263.
Del Tredici, P. (2010). Spontaneous urban vegetation: reflections of change in a globalized world.Nature and Culture, 5(3), 299‑315. https://doi.org/10.3167/nc.2010.050305 DOI
Derkzen, M.L., van Teeffelen, A.J., & Verburg, P.H. (2015). Quantifying urban ecosystem services based on high‐resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52(4), 1020‑1032. https://doi.org/10.1111/1365‑2664.12469 DOI
Doomi, M.B., Aldayaflah, O., & Hazaymeh, K. (2016). The effects of land cover changes on land surface temperature in Amman; an urban climate change study. Dirasat: Human and Social Sciences, 43(2).
Dyderski, M.K., & Jagodziński, A.M. (2014). Synantropizacja zbiorowisk łęgowych ze związku Salicion albae w południowej części Poznania. Acta Botanica Silesiaca, 10, 41‑69.
Dyderski, M.K., & Jagodziński, A.M. (2019). Context-dependence of urban forest vegetation invasion level and alien species' ecological success. Forests, 10(1), 26. https://doi.org/10.3390/f10010026 DOI
Dyderski, M.K., & Jagodziński, A.M. (2019). Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests, 10(11), 951. https://doi.org/10.3390/f10110951 DOI
Dzierżanowski, K., Popek, R., Gawrońska, H., Sæbø, A., & Gawroński, S. W. (2011). Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International journal of phytoremediation, 13(10), 1037‑1046. https://doi.org/10.1080/15226514.2011.552929 DOI
Dzwonko, Z., & Loster, S. (2001). Wskaźnikowe gatunki roślin starych lasów i ich znaczenie dla ochrony przyrody i kartografii roślinności. Prace Geograficzne, 178, 119‑132.
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, Göttingen.
Endler, Z., Duriasz, J., & Juskiewicz, B. (1999). Fitocenozy Chelidonio-Robinietum Jurko 1963 w parkach Olsztyna. Biuletyn Naukowy. Uniwersytet Warmińsko-Mazurski w Olsztynie, 5, 99‑108.
Farahani, L.M., & Maller, C. (2019). Investigating the benefits of 'leftover'places: Residents' use and perceptions of an informal greenspace in Melbourne. Urban Forestry & Urban Greening, 41, 292‑302. https://doi.org/10.1016/j.ufug.2019.04.017 DOI
Fijałkowski, D. (1963). Zbiorowiska roślin synantropijnych miasta Chełma. Lublin: UMCS.
Fischer, L.K., Honold, J., Cvejić, R., Delshammar, T., Hilbert, S., Lafortezza, R., Nastran, M., Busse Nielsen, A., Pintar, M., van der Jagt, A.P.N. & Kowarik, I. (2018). Beyond green: Broad support for biodiversity in multicultural European cities. Global Environmental Change, 49, 35‑45. https://doi.org/10.1016/j.gloenvcha.2018.02.001 DOI
Fukarek, F. (1967). Fitosocjologia. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne.
Gilicka, I. (1988). Chelidonio-Robinietum Jurko 1963 w parkach Poznania. Badania Fizjograficzne nad Polską Zachodnią Ser. B, 39, 87‑104.
GUS. (2020). Bank Danych Lokalnych. Pobrano z: https://bdl.stat.gov.pl/BDL/start (15.02.2021).
Hadač, E., & Sofron, J. (1980). Notes on syntaxonomy of cultural forest communities. Folia Geobotanica et Phytotaxonomica, 15(3), 245‑258. DOI
Hejný, S., Kopecký, K., Jehlik, V., Krippelová, T. (1979). Prehled ruderalnich rostlinnych spolecenstev Ceskoslovenska. Praha: Rozpravy Ceskoslovenske Akademie VED Rocnik 89, Sesit2.
Hobbs, R.J., Higgs, E., & Harris, J.A. (2009). Novel ecosystems: implications for conservation and restoration. Trends in ecology & evolution, 24(11), 599‑605. https://doi.org/10.1016/j.tree.2009.05.012 DOI
Hofmann, M., Westermann, J. R., Kowarik, I., & van der Meer, E. (2012). Perceptions of parks and urban derelict land by landscape planners and residents. Urban Forestry & Urban Greening, 11(3), 303‑312. https://doi.org/10.1016/j.ufug.2012.04.001 DOI
Hwang, Y.H., Yue, Z.E.J., Ling, S.K., & Tan, H.H.V. (2019). It's ok to be wilder: Preference for natural growth in urban green spaces in a tropical city. Urban Forestry & Urban Greening, 38, 165‑176. https://doi.org/10.1016/j.ufug.2018.12.005 DOI
Ishbirdina, L.M. & Ishbirdin, A.R. (1991). Synantropic tree communities in Ufa. Botanicheskii Zhurnal, 76, 548‑555.
Jurko, A. (1963). Zmena pôvodných lesných fytocenóz introdukciou agáta. Čs. Ochr. Prir, 1, 56‑75.
Kącki, Z., Czarniecka, M., & Swacha, G. (2013). Statistical determination of diagnostic, constant and dominant species of the higher vegetation units of Poland. Monographiae Botanicae, 103, 1‑267. https://doi.org/10.5586/mb.2013.001 DOI
Kim, K.H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment international, 74, 136‑143. https://doi.org/10.1016/j.envint.2014.10.005 DOI
Kleinbauer, I., Dullinger, S., Peterseil, J., & Essl, F. (2010). Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biological conservation, 143(2), 382‑390. https://doi.org/10.1016/j.biocon.2009.10.024 DOI
Kobendza, R. (1949). Roślinność ruderalna na gruzach miast polskich. Sprawozdania Towarzystwa Naukowego Warszawy, 42, 49‑60.
Kostuch, R. (1960). Roślinność ruin, zgliszcz i gruzowisk miasta Wrocławia. Roczniki Nauk Rolniczych, A, 83, 403‑442.
Kotzeva, M.M., & Brandmüller, T. (red.). (2016). Urban Europe: statistics on cities, towns and suburbs. Luxemburg: Publications office of the European Union.
Kremer, P., Hamstead, Z.A., & McPhearson, T. (2013). A social-ecological assessment of vacant lots in New York City. Landscape and Urban Planning, 120, 218‑233. https://doi.org/10.1016/j.landurbplan.2013.05.003 DOI
Kühn, I., Durka, W., & Klotz, S. (2004). BiolFlor: a new plant-trait database as a tool for plant invasion ecology. Diversity and Distributions, 10(5/6), 363‑365. DOI
Kutyna, I., Czerwinski, Z., & Mlynkowiak, E. (2010). Zbiorowiska roślinne na obszarze zrekultywowanego wyrobiska Szczecin-Żydowce. Folia Pomeranae Universitatis Technologiae Stetinensis. Agricultura, Alimentaria, Piscaria et Zootechnica, 16, 31-62.
Lamarque, L.J., Delzon, S., Sloan, M.H., & Lortie, C.J. (2012). Biogeographical contrasts to assess local and regional patterns of invasion: a case study with two reciprocally introduced exotic maple trees. Ecography, 35(9), 803‑810. DOI
Lososová, Z., Horsák, M., Chytrý, M., Čejka, T., Danihelka, J., Fajmon, K., Hájek, O., Juřičková, L., Kintrová, K., Láníková, D., Otýpková, Z., Řehořek, V. & Tichý, L. (2011). Diversity of Central European urban biota: effects of human‐made habitat types on plants and land snails. Journal of Biogeography, 38(6), 1152‑1163. https://doi.org/10.1111/j.1365‑2699.2011.02475.x DOI
Macedo, M.O., Resende, A.S., Garcia, P.C., Boddey, R.M., Jantalia, C.P., Urquiaga, S., Campello, E.F.C., & Franco, A.A. (2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management, 255(5‑6), 1516‑1524. https://doi.org/10.1016/j.foreco.2007.11.007 DOI
Magurran, A.E. (2013). Measuring biological diversity. Oxford: Blackwell Publishing.
Marozas, V., Cekstere, G., Laivins, M., & Straigyte, L. (2015). Comparison of neophyte communities of Robinia pseudoacacia L. and Acer negundo L. in the eastern Baltic Sea region cities of Riga and Kaunas.Urban Forestry & Urban Greening, 14, 826‑834. https://doi.org/10.1016/j.ufug.2015.08.003 DOI
Matuszkiewicz, W., (2014). Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: PWN.
Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C., & Pinho, P. (2018). Ecosystem services: Urban parks under a magnifying glass. Environmental research, 160, 469‑478. https://doi.org/10.1016/j.envres.2017.10.023 DOI
Mirek, Z., Piękoś-Mirkowa, H., Zając, A., & Zając, M. (2002). Flowering plants and pteridophytes of Poland. A checklist. Kraków: W. Szafer Institute of Botany, PAN.
Mlynkowiak, E., Malinowska, K., & Kutyna, I. (2014). Występowanie Calamagrostis epigejos L.(Roth) w zbiorowiskach roślinnych różnych biotopów. Folia Pomeranae Universitatis Technologiae Stetinensis. Agricultura, Alimentaria, Piscaria et Zootechnica, 29, 85‑100.
Morse, N.B., Pellissier, P.A., Cianciola, E.N., Brereton, R.L., Sullivan, M.M., Shonka, N.K., Wheeler, T.B., & McDowell, W. H. (2014). Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecology and Society, 19(2), 12. https://doi: 10.5751/es-06192‑190212 DOI
Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J. P., Raus, T., Čarni, A.,... & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19, 3‑264. https://doi.org/10.1111/avsc.12257 DOI
Murcia, C., Aronson, J., Kattan, G.H., Moreno-Mateos, D., Dixon, K., & Simberloff, D. (2014). A critique of the 'novel ecosystem'concept. Trends in ecology & evolution, 29(10), 548‑553. https://doi.org/10.1016/j.tree.2014.07.006 DOI
Nascimbene, J., Lazzaro, L., & Benesperi, R. (2015). Patterns of β-diversity and similarity reveal biotic homogenization of epiphytic lichen communities associated with the spread of black locust forests. Fungal Ecology, 14, 1‑7. https://doi.org/10.1016/j.funeco.2014.10.006 DOI
Olaczek, R. (1974). Kierunki degeneracji fitocenoz leśnych i metody ich badania. Phytocoenosis, 3. 179‑190.
Passarge, H. (1990). Ortsnahe Ahorn-Gehölze und Ahorn-Parkwaldgesellschaften. Tuexenia, 10, 369‑384.
Poeplau, C., Marstorp, H., Thored, K., & Kätterer, T. (2016). Effect of grassland cutting frequency on soil carbon storage-a case study on public lawns in three Swedish cities. Soil, 2(2), 175‑184. https://doi.org/10.5194/soil-2‑175‑2016 DOI
Pollet, C., Verheyen, C., Hebert, J., & Jourez, B. (2012). Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium. Canadian Journal of Forest Research, 42, 831‑840. https://doi.org/10.1139/x2012‑037 DOI
Porté, A.J., Lamarque, L.J., Lortie, C.J., Michalet, R., & Delzon, S. (2011). Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity. BMC Ecology, 11, 1‑13. https://doi.org/10.1186/1472‑6785‑11‑28 DOI
Przybysz, A., Wińska-Krysiak, M., Małecka-Przybysz, M., Stankiewicz-Kosyl, M., Skwara, M., Kłos, A., Kowalczyk, S., Jarocka, K., & Sikorski, P. (2020). Urban wastelands: On the frontline between air pollution sources and residential areas. Science of The Total Environment, 721, 137695. https://doi.org/10.1016/j.scitotenv.2020.137695 DOI
Pyšek, P., Chocholousková, Z., Pyšek, A., Jarošík, V., Chytrý, M., & Tichý, L. (2004). Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science, 15, 781‑788. https://doi.org/10.1111/j.1654‑1103.2004.tb02321.x DOI
Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpenter, S.R., Chopra, K.,... & Zurek, M.B. (2005). Ecosystems and human well-being-Synthesis: A report of the Millennium Ecosystem Assessment. Washington: Island Press.
Sapek, A., & Sapek, B. (1999). Wykorzystanie fosforu z osadów ściekowych w rolnictwie. Folia Universitatis Agriculturae Stetinensis. Agricultura, 77, 331‑335.
Sikorska, D., Sikorski, P., Archiciński, P., Chormański, J., & Hopkins, R.J. (2019). You can't see the woods for the trees: Invasive acer negundo L. in urban riparian forests harms biodiversity and limits recreation activity. Sustainability, 11(20), 5838. https://doi.org/10.3390/su11205838 DOI
Sikorska, D., Łaszkiewicz, E., Krauze, K., & Sikorski, P. (2020). The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environmental science & policy, 108, 144‑154. https://doi.org/10.1016/j.envsci.2020.03.007 DOI
Sikorska, D., Ciężkowski, W., Babańczyk, P., Chormański, J., & Sikorski, P. (2021). Intended wilderness as a Nature-based Solution: Status, identification and management of urban spontaneous vegetation in cities. Urban Forestry & Urban Greening, 62, 127155. https://doi.org/10.1016/j.ufug.2021.127155 DOI
Sikorski, P. (2018). Roślinność rzeczywista. W: Atlas ekofizjograficzny Warszawy (s. 36‑37). Pobrano z: https://architektura.um.warszawa.pl/-/atlas-ekofizjograficzny-warszawy (16.02.2021).
Sikorski, P., Sudnik-Wójcikowska, B., Rutkowski, L., Cwener, A., Wierzba, M., Krechowski, J., Sikorska, D. (2019). Atlas turzyc. Warszawa: Multico.
Smahliuk, O.Y. (2017). Classification of deciduous group of Robinietea Jurko ex Hadac et Sofron 1980 class of Low Sula Basin. Cherkasy University Bulletin: Biological Sciences Series, 2, 89‑98.
Sukopp, H. (1972). Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluβ des Menschen. Berichte Landwirtschaft, 50, 112‑139.
Sukopp, H. (red.) 1990. Stadtökologie. Berlin: Das Beispiel Berlin.
Świerkosz, K. (1993). Nowe zespoły roślinności synantropijnej we Wrocławiu. Acta Universitatis Wratislaviensis. Prace Botaniczne, 53, 59‑94.
Święs, F. (1995). A Survey of Ruderal Vegetation in Poland: Phytocenoses wilh Rudbeckia laciniata L., Solidago canadensis L. and S. gigantea Aiton. Annales Universitatis Mariae Curie-Sklodowska. Sectio C, Biologia 50, 173‑197.
Talal, M.L., & Santelmann, M.V. (2020). Vegetation management for urban park visitors: a mixed methods approach in Portland, Oregon. Ecological Applications, 30(4), e02079. https://doi.org/10.1002/eap.2079 DOI
Tüxen, R. (1950). Grundriss einer Systematik der nitrophilen Unkrautgesell schaften in der Eurosibirischen Region Europas. Mitt. flor.-soz. Arb. gem., 2, 94‑175.
Veselkin, D.V., & Dubrovin, D.I. (2019). Diversity of the grass layer of urbanized communities dominated by invasive Acer negundo. Russian Journal of Ecology, 50(5), 413‑421. https://doi.org/10.1134/S1067413619050114 DOI
Vítková, M., & Kolbek, J. (2010). Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40, 205‑241. DOI
Vítková, M., Tonika, J., & Müllerová, J. (2015). Black locust - Successful invader of a wide range of soil conditions. Science of the Total Environment, 505, 315‑328. https://doi.org/10.1016/j.scitotenv.2014.09.104 DOI
Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., & Pyšek, P. (2017). Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384, 287‑302. https://doi.org/10.1016/j.foreco.2016.10.057 DOI
Wanic, T., Brożek, S., Lasota, J., & Zwydak, M. (2011). Różnorodność gleb olsów i łęgów. Roczniki Gleboznawcze, 62(4), 109‑123.
Wolak, J. (1969). Industrioklimaks, nowe pojęcie w teorii sukcesji. Ekologia Polska, seria B, 15(1), 41‑44.
Yeremenko, N. (2019). Ruderal vegetation in Kryvyi Rih (Ukraine) the class of Robinietea. Hacquetia, 18, 75‑86. DOI
Zanowa, M. (1964). Roślinność synantropijna Warszawy ze szczególnym uwzględnieniem gruzowisk, Praca doktorska, Warszawa: Uniwersytet Warszawski.
Ziarnek, M. (2009). Zróżnicowanie zbiorowisk z klasy Agropyretea intermedio-repentis w przestrzeni miejskiej Szczecina. Acta Scientiarum Polonorum. Formatio Circumiectus, 8, 47‑60.

Relation:

Przegląd Geograficzny

Volume:

93

Issue:

3

Start page:

341

End page:

363

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.3.2

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

×

Citation

Citation style: