Object structure
Title:

The influence of air temperature diversity in Central Europe on the occurrence of very strong and extreme cold stress in Poland in winter months

Subtitle:

Geographia Polonica Vol. 94 No. 2 (2021)

Creator:

Owczarek, Małgorzata : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2021

Description:

24 cm

Subject and Keywords:

bioclimate ; Poland ; cold stress ; UTCI ; air temperature ; canonical correlation

Abstract:

The aim of this research was to illustrate the relationship between the occurrence of very strong and extreme cold stress among human beings under the Universal Thermal Climate Index (UTCI) across Poland and largescale near-surface air temperature over the central part of Europe. The statistical downscaling procedure of canonical correlation analysis (CCA) with respect to the period between 1971 and 2000 was applied to extract the main modes of large-scale factors and their local responses. The greatest frequency of occurrence of the discussed cold stress exceeded 35% in January. Most of the variance (39-44%) of the local field in each winter month is explained by the first coupled canonical maps. T he main patterns of large-scale field show negative anomalies of monthly mean air temperature in central Europe from -1°C up to -3°C. It can indicate an increase in frequency of the occurrence of analysed cold stress categories throughout the entire area of Poland, by 2% to even over 10%, depending on the region. The best quality model was obtained in eastern Poland, especially in the north-east and south-west of Poland.

References:

Barne tt, T.P., Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115, 1825-1850. https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2 DOI
Bartoszek, K., Wereski, S., Krzyżewska, A., Dobek, M. (2017). The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography, Physical Geography Series, 12, 41-49. https://doi.org/10.1515/bgeo-2017-0004 DOI
Benestad, R.E. (2002). Empirically downscaled temperature scenarios for northern Europe. Climate Research, 21, 105-125. https://doi.org/10.3354/cr021105 DOI
Błażejczyk, K. (2005). MENEX_2005 − the updated version of man - environment heat exchange model. https://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf [1 February 2021]
Błażejczyk, K., Baranowski, J., Błażejczyk, A. (2015). Wpływ klimatu na stan zdrowia w Polsce: stan aktualny oraz prognoza do 2100 roku. Warsaw: Wydawnictwo Akademickie SEDNO.
Błażejczyk, K., Baranowski, J., Jendritzky, G., Błażejczyk, A., Bröde, P., Fiala, D. (2015). Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonica, 88(3), 439-453. https://doi.org/10.7163/GPol.0027 DOI
Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102. https://doi.org/10.2478/mgrsd-2010-0009 DOI
Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2 DOI
Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1), 5-10. https://doi.org/10.7163/GPol.2013.1 DOI
Błażejczyk, K., Kuchcik, M., Dudek, W., Kręcisz, B., Błażejczyk, A., Milewski, P., Szmyd, J., Pałczyński, C. (2016). Urban heat island and bioclimatic comfort in Warsaw. In F. Musco (Ed.) Counteracting urban heat island effects in a global climate change scenario. Springer International Publishing. https://doi.org/10.1007/978-3-319-10425-6_11 DOI
Błażejczyk, K., Kunert, A. (2011). Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce. Monografie, 13, Warsaw: IGiPZ PAN.
Błażejczyk, K., Nejedlik, P., Skrynyk, O., Halaś, A., Błażejczyk, A., Mikulova, K. (2020). Influence of geographical factors on thermal stress in northern Carpathians. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02011-x DOI
Błażejczyk, M., Błażejczyk, K. (2006). Bioklima ver. 2.6. Software (2010). https://www.igipz.pan.pl/Bioklima-zgik.html [1 February 2021]
Bröde, P., Fiala, D., Błażejczyk, K., Holmer, I., Jendritzky, G., Kampmann, B., Tinz, B., Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56(3), 481-449. https://doi.org/10.1007/s00484-011-0454-1 DOI
Bröde, P., Krüger, E.L., Fiala, D. (2013). UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, 86(1), 11-20. https://doi.org/10.7163/GPol.2013.2 DOI
Bryś, K., Ojrzyńska, H. (2016). Bodźcowość warunków biometeorologicznych we Wrocławiu (Stimulating qualities of biometeorological conditions in Wrocław). Acta Geographica Lodziensia, 104, 193-200.
Busuioc, A., Tomozeiu, R., Cacciamani, C. (2008). Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International Journal of Climatology, 28, 449-464. https://doi.org/10.1002/joc.1547 DOI
Cattiaux, J., Vautard, R., Cassou, C., You, P., Masson-Delmotte, V., Codron, F. (2010). Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical Research Letters, 37, L20704. https://doi.org/10.1029/2010GL044613 DOI
Chen, YC., Matzarakis, A. (2018). Modified physiologically equivalent temperature-basics and applications for western European climate. Theoretical and Applied Climatology, 132, 1275-1289. https://doi.org/10.1007/s00704-017-2158-x DOI
Di Napoli, C., Pappenberger, F., Cloke, H.L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 62(7), 1155-1165. https://doi.org/10.1007/s00484-018-1518-2 DOI
Domonokos, P., Kysely, J., Piotrowicz, K., Petrovic, P., Likso, T. (2003). Variability of extreme temperature events in southcentral Europe during the 20th century and its relationship with large-scale circulation. International Journal of Climatology, 23, 987-1010. https://doi.org/10.1002/joc.929 DOI
Fiala, D., Havenith, G., Bröde, P., Kampmann, B., Jendritzky, G. (2012). UTCI Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, 56, 429-441. https://doi.org/10.1007/s00484-011-0424-7 DOI
Fröhlich, D., Matzarakis, A. (2020). Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geoscientific Model Development, 13, 3055-3065. DOI
Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M.L., Guo, Y.L.L., Wu, Ch., Kan, H., Yi, S-M., de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P.H.N.,… Armstrong, B. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 386, 369-375. https://doi.org/10.1016/S0140-6736(14)62114-0 DOI
Ge, Q., Kong, Q., Xi, J., Zheng, J. (2017). Application of UTCI in China from tourism perspective. Theoretical and Applied Climatology, 128, 551-561. https://doi.org/10.1007/s00704-016-1731-z DOI
Geletič, J., Lehnert, M., Krč, P., Resler, J., Krayenhoff, E.S. (2021). High-resolution modelling of thermal exposure during a hot spell: A case study using PALM-4U in Prague, Czech Republic. Atmosphere, 12(2), 175. https://doi.org/10.3390/atmos12020175 DOI
Głogowski, A., Bryś, K., Perona, P. (2020). Bioclimatic conditions of the Lower Silesia region (South-West Poland) from 1966 to 2017. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01970-5 DOI
Holmér, I. (1988). Assessment of cold stress in terms of required clothing insulation - IREQ. International Journal of Industrial Ergonomics, 3(2),159-166. https://doi.org/10.1016/0169-8141(88)90017-0 DOI
Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI - why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/ s00484-011-0513-7 DOI
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woolen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorology Society, 77, 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 DOI
Keatinge, W.R. (2002). Winter mortality and its causes. International Journal of Circumpolar Health, 61(4), 292-299. https://doi.org/10.3402/ijch.v61i4.17477 DOI
Kolendowicz, L., Półrolniczak, M., Szyga-Pluta, K., Bednorz, E. (2018). Human biometeorological conditions in the southern Baltic coast based on the Universal Thermal Climate Index (UTCI). Theoretical and Applied Climatology, 134, 363-379. https://doi.org/10.1007/s00704-017-2279-2 DOI
Krüger, E.L., Vieira Silva, T.J., da Silveira Hirashima, S.Q., Grala da Cunha, E., Alcântara, R.L. (2020). Calibrating UTCI'S comfort assessment scale for three Brazilian cities with different climatic conditions. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01897-x DOI
Krzyżewska, A., Wereski, S., Dobek, M. (2020). Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01965-2 DOI
Kuchcik, M. (2017). Warunki termiczne w Polsce na przełomie XX I XXI wieku i ich wpływ na umieralność. Prace Geograficzne, 263, Warsaw: IGiPZ PAN.
Kuchcik, M. (2020). Mortality and thermal environment (UTCI) in Poland - long-term, multi-city study. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications https://doi.org/10.1007/s00484-020-01995-w DOI
Kuchcik, M., Błażejczyk, K., Halaś, A. (2021). Long-term changes in hazardous heat and cold stress in humans: multi-city study in Poland. International Journal of Biometeorology, Special Issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-02069-7 DOI
Kyselý, J. (2008). Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Global and Planetary Change, 62, 147-163. https://doi.org/10.1016/j.gloplacha.2008.01.003 DOI
Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091Laschewski, G., Jendritzky, G. (2002). Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21(1), 91-103. doi:10.3354/cr021091 DOI
Lehnert, M., Tokar, V., Jurek, M., Geletič, J. (2020). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology. https://doi.org/10.1007/s00484-020-02010-y DOI
Lhotka, O., Kyselý, J. (2015). Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 35(7),1232-1244. https://doi.org/10.1002/joc.4050 DOI
Maak, K., von Storch, H. (1997). Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany International Journal of Biometeorology, 41, 5-12. https://doi.org/10.1007/s004840050046 DOI
Matulla, C., Scheifinger, H., Menzel, A., Koch, E. (2003). Exploring two methods for statistical downscaling of Central European phenological time series. International Journal of Biometeorology, 48(2), 56-64. https://doi.org/10.1007/s00484-003-0186-y DOI
Matzarakis, A., Mayer, H., Iziomon, M.G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 76-84. https://doi.org/10.1007/s004840050119 DOI
Matzarakis, A., Muthers, S., Rutz, F. (2014). Application and comparison of UTCI and PET in temperate climate conditions. Finisterra, 49(98), 21-31. http://dx.doi.org/10.18055/Finis6453 DOI
Matzarakis, A., Rutz, F., Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54, 131-139. https://doi.org/10.1007/s00484-009-0261-0 DOI
Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland's Ziemia Kłodzka region. Geographia Polonica, 86, 47-54. https://doi.org/10.7163/GPol.2013.6 DOI
Novak, M. (2013). Use of the UTCI in the Czech Republic. Geographia Polonica, 86, 21-28. https://doi.org/10.7163/GPol.2013.3 DOI
Nowosad, M., Rodzik, B., Wereski, S., Dobek, M. (2013). The UTCI index in Lesko and Lublin and its circulation determinants. Geographia Polonica, 86, 29-36. https://doi.org/10.7163/GPol.2013.4 DOI
Okoniewska, M. (2020). Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: an example from Warsaw. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01997-8 DOI
Owczarek, M., Fi lipiak, J. (2016). Contemporary changes of thermal conditions in Poland, 1951-2015. Bulletin of Geography. Physical Geography Series, 10, 31-50. https://doi.org/10.1515/bgeo-2016-0003 DOI
Owczarek, M. (2019). The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology, 137(1-2), 855-869. https://doi.org/10.1007/s00704-018-2633-z DOI
Petralli, M., Massetti, L., Pearlmutter, D., Brandani, G., Messeri, A., Orlandini, S. (2020). UTCI field measurements in an urban park in Florence (Italy). Miscellanea Geographica, 24(3), 111-117. https://doi.org/10.2478/mgrsd-2020-0017 DOI
Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14, 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014 DOI
Plavcová, E., Kyselý, J. (2016). Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Climate Dynamics, 46(9-10), 2805-2820. https://doi.org/10.1007/s00382-015-2733-8 DOI
Porębska, M., Zdunek, M. (2013). Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorolologische Zeitschrift, 22(5), 533-540. https://doi.org/10.1127/0941-2948/2013/0455 DOI
Półrolniczak, M., Szyga-Pluta, K., Kolendowicz, L. (2016). Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Acta Geographica Lodziensia, 104, 147-161.
Provençal, S., Bergeron, O., Leduc, R., Barrette, N. (2016). Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. International Journal of Biometeorology, 60(4), 591-603. https://doi.org/10.1007/s00484-015-1054-2 DOI
Santos, J., Corte-Real, J., Ulbrich, U., Palutikof, J. (2007). European winter precipitation extremes and large-scale circulation: A coupled model and its scenarios. Theoretical and Applied Climatology, 87, 85-102. https://doi.org/10.1007/s00704-005-0224-2 DOI
Santos, J.A., Malheiro, A.C., Pinto, J.G., Jones, G.V. (2012). Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Climate Research, 51, 89-103. https://doi.org/10.3354/cr01056 DOI
Staiger, H., Laschewski, G., Matzarakis, A. (2019). Selection of appropriate thermal indices for applications in human biometeorological studies. Atmosphere,10(1), 18. https://doi.org/10.3390/atmos10010018 DOI
Tomczyk, A.M., Bednorz, E., Półrolniczak, M., Kolendowicz, L. (2019). Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137(3-4), 1909-1923. https://doi.org/10.1007/s00704-018-2715-y DOI
Tomczyk, A.M., Bednorz, E., Sulikowska, A. (2019). Cold spells in Poland and Germany and their circulation conditions. International Journal of Climatology, 39, 4002-4014. https://doi.org/10.1002/joc.6054
Tomczyk, A.M., Bednorz, E., Szyga-Pluta, K. (2021). Changes in air temperature and snow cover in winter in Poland. Atmosphere, 12(1), 68. https://doi.org/10.3390/atmos12010068 DOI
Tomczyk, A.M., Owczarek, M. (2020). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139(3-4), 893-905. https://doi.org/10.1007/s00704-019-02998-3 DOI
Tomozeiu, R., Pasqui, M., Quaresima, S. (2018). Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021-2050 and 2071-2100 periods. Meteorology and Atmospheric Physics, 130, 543-563. https://doi.org/10.1007/s00703-017-0536-7 DOI
Urban, A., Kyselý, J. (2014). Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 11, 952-967. https://doi.org/10.3390/ijerph110100952 DOI
Ustrnul, Z., Czekierda, D., Wypych, A. (2010). Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Physics and Chemistry of the Earth, 35, 429-436. https://doi.org/10.1016/j.pce.2009.12.012 DOI
Vinogradova, V. (2020). Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia. International Journal of Biometeorology, Special issue: UTCI - 10 years of applications. https://doi.org/10.1007/s00484-020-01901-4 DOI
von Storch, H., Zwiers, F.W. (1999). Statistical analysis in climate research. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511612336 DOI
Wereski, S., Krzyżewska, A., Dobek, M. (2020). Winter UTCI variability in Poland in the 21st century. Miscellanea Geographica, 24(3), 128-137. https://doi.org/10.2478/mgrsd-2020-0021 DOI
Werner, P.C., von Storch, H. (1993). Interannual variability of Central European mean temperature in January-February and its relation to large-scale circulation. Climate Research, 3, 195-207. DOI
Wibig, J. (2007). Fale ciepła i chłodu w Środkowej Polsce na przykładzie Łodzi. Acta Universitatis Lodziensis, Folia Geographica Physica, 8, 27-61. http://hdl.handle.net/11089/2852
Wibig, J., Podstawczyńska, A., Rzepa, M., Piotrowski, P. (2009). Cold waves in Poland - frequency, trends, and relationships with atmospheric circulation. Geographia Polonica, 82, 47-59. DOI
Wilks, D.S. (2005). Statistical methods in the atmospheric sciences. International Geophysics Series. Burlington: Elsevier.
Wójcik, R., Miętus, M. (2012). Rola cyrkulacji atmosferycznej w kształtowaniu długookresowych zmian temperatury powietrza w Polsce. In Z. Bielec-Bąkowska, E. Łupikasza, A. Widawski (Eds.), Rola cyrkulacji atmosfery w kształtowaniu klimatu (pp. 385-397), Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego.

Relation:

Geographia Polonica

Volume:

94

Issue:

2

Start page:

251

End page:

266

Resource type:

Text

Detailed Resource Type:

Article

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0204

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: