Object structure

The assessment of human bioclimate of Vranje health resort (Serbia) based on Universal Thermal Climate Index (UTCI) with the focus on extreme biothermal conditions


Geographia Polonica Vol. 94 No. 2 (2021)


Pecelj, Milica : Autor ORCID ; Błażejczyk, Anna : Autor ; Vagić, Nemanja : Autor ORCID ; Ivanović, Peca : Autor ORCID


Pecelj, Milica : Geographical Institute “Jovan Cvijić” Serbian Academy of Science and Arts ; Pecelj, Milica : Department of Geography, Faculty of Philosophy University of East Sarajevo ; Pecelj, Milica : Institute of Sports, Tourism and Service South Ural State University ; Błażejczyk, Anna : Laboratory of Bioclimatology and Environmental Ergonomics ; Vagić, Nemanja : Faculty of Geography University of Belgrade ; Ivanović, Peca : School of Electrical Engineering University of Belgrade



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

biothermal conditions ; UTCI ; very strong heat stress ; very strong cold stress ; Vranje


The study deals with an assessment and interpretation of the bioclimatic conditions in Vranje (southern Serbia). The study aims at temporal distributions of bioclimatic conditions focussing on extreme thermal stress based on the Universal Thermal Climate Index (UTCI). The meteorological data required for the calculation of UTCI concern hourly (7 and 14 CET) weather data collected for the period 2000-2017. The frequency of very strong heat stress (VSHS), very strong cold stress (VSCS) and extreme cold stress (ECS) for both morning and midday hours. Furthermore, the daily difference of the UTCI hourly values (diurnal UTCI change) are specified, giving the daily variance of heat and cold stress. The results revealed the frequency of days in which thermal stress prevails for the studied period. The obtained results show an increase in extreme heat biothermal conditions, while extreme cold biothermal conditions are in decline, especially in the last 10 years. However, the frequency (the number of days) of very strong heat stress (VSHS) increased since 2007. A spectacular increase in heat stress was observed in the month of September, particularly in 2015.


Anagnostopoulou, C., Tolika, K., Lazoglou, G., Machairas, P. (2017). The Exceptionally cold January of 2017 over the Balkan Peninsula: A climatological and synoptic analysis. Atmosphere, 8(12), 252. https://doi.org/10.3390/atmos8120252 DOI
Basarin, B., Lukić, T., Matzarakis, A. (2016). Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. International Journal of Biometeorology, 60, 139-150. https://doi.org/10.1007/s00484-015-1012-z DOI
Basarin, B., Lukić, T., Mesaroš, M., Pavić, D., Djordjević, J., Matzarakis, A. (2018). Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Northern Serbia. International Journal of Climatology, 38, 142-157. https://doi.org/10.1002/joc.5166 DOI
BioKlima, 1994. BioKlima 2.6 (version 2.6) - Universal tool for bioclimatic and thermophysiological studies. https://www.igipz.pan.pl/Bioklima-zgik.html
Bleta, A., Nastos, P., Matzarakis, A. (2014). Assessment of bioclimatic conditions on Crete Island, Greece. Regional Environmental Changes, 14, 1967-1981. https://doi.org/10.1007/s10113-013-0530-7 DOI
Błażejczyk, K., Błażejczyk, A. (2014). Assessment of bioclimatic variability on regional and local scales in central Europe using UTCI. Scientific Annals of "Alexandru Ioan Cuza" University of IASI, 60(1), S. II C., Geography Series, AL.I. Cuza University Press, 67-82.
Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B., Kunert, A. (2010). Principles of the new universal thermal climate index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102. https://doi.org/10.2478/mgrsd-2010-0009 DOI
Błażejczyk, K., Bröde, P., Fiala, D., Havenith, G., Jendritzky, G., Kampmann, B. (2010). UTCI - New index for assessment of heat stress in man. Przegląd Geograficzny, 82, 49-72. https://doi.org/10.7163/PrzG.2010.1.2 DOI
Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515-535. https://doi.org/10.1007/s00484-011-0453-2 DOI
Błażejczyk, K., Jendritzky, G., Brode, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., Kampmann, B. (2013). An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86(1), 5-10. http://doi.org/10.7163/GPol.2013.1 DOI
Błażejczyk, K., Kunert, A. (2011). Bioclimatic principles of recreation and tourism in Poland. 2nd edition. Monografie IGiPZ PAN, 13, Warsaw.
Błażejczyk, K., Twardosz, R. (2010). Long-term changes of bioclimatic conditions in Cracow (Poland). In R. Przybylak, R. Majorowicz, J. Brázdil, M. Kejna (Eds.), The Polish Climate in the European Context: An Historical Overview. pp. 235-246. Springer, Science + Business Media B.V. https://doi.org/10.1007/978-90-481-3167-9_10 DOI
Bröde, P., Krüger, E.L., Rossi, F.A., Fiala, D. (2012). Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. International Journal of Biometeorology, 56(3), 471-480. https://doi.org/10.1007/s00484-011-0452-3 DOI
Burkart, K., Meier, F., Schneider, A., Breitner, S., Canário, P., Alcoforado, M.J. Scherer, D., Endlicher, W. (2016). Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives, 124, 927-934. https://doi.org/10.1289/ehp.1409529 DOI
Cheung, C.S.C., Hart, M.A. (2012). Climate change and thermal comfort in Hong Kong. International Journal of Biometeorology, 58(2), 137-148. https://doi.org/10.1007/s00484-012-0608-9 DOI
Coutts, A.M., White, E.C., Tapper, N.J., Beringer, J., Livesley, S.J. (2016). Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, 124(1-2), 55-68. https://doi.org/10.1007/s00704-015-1409-y DOI
Croitorua, A.E., Piticarb, A. (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology, 33, 1987-2001. https://doi.org/10.1002/joc.3567 DOI
Denda, S.LJ, Micić, J.M. Milanović Pešić, A.Z., Brankov, J.J., Bjeljac, Ž.N. (2019). Utilization of geothermal springs as a renewable energy source: Vranjska Banja case study. Thermal Science, 23(6B), 4083-4093. https://doi.org/10.2298/TSCI190816391D DOI
Di Napoli, C., Pappenberger, F., Cloke, H.L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal Biometeorology, 62(7), 1155-1165. https://doi.org/10.1007/s00484-018-1518-2 DOI
Di Napoli, C., Pappenberger, F., Cloke, H.L. (2019). Verification of heat stress thresholds for a healthbased heat-wave definition. Journal of Applied Meteorology and Climatology, 58(6), 1177-1194. https://doi.org/10.1175/JAMC-D-18-0246.1 DOI
Djekić, T., Ristić, S., Stamenković, S., Šajn, R., Engelman, M. (2020). Lichens as indicators of air quality in balneological center Prolom Banja (Southern Serbia). Journal of the Geographical Institute "Jovan Cvijić" SASA, 70(2), 101-113. https://doi.org/10.2298/IJGI2002101D DOI
Drljača, V., Tošić, I., Unkašević, M. (2009). An analysis of heat waves in Belgrade and Niš using the climate index. Journal of Geographical Institute Jovan Cvijić SASA, 59(1), 49-62. https://doi.org/10.2298/IJGI0959049D DOI
Farajzadeh, H., Saligheh, M., Alijani, B., Matzarakis, A. (2015). Comparison of selected thermal indices in the northwest of Iran. Natural Environment Change, 1(1), 1-20.
Hartz, D.A., Brazel, A.J., Golden, J.S. (2013). A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois and Phoenix, Arizona USA 2003 to 2006. International Journal of Biometeorology, 57(5), 669-678. https://doi.org/10.1007/s00484-012-0593-z DOI
Havenith, G., Fiala, D., Błazejczyk, K., Richards, M., Bröde, P., Holmér, I., Rintamaki, H., Benshabat, Y., Jendritzky, G. (2012). The UTCI clothing model. International Journal of Biometeorology, 56(3), 461-470. https://doi.org/10.1007/s00484-011-0451-4 DOI
Honjo, T., Seo, Y., Yamasaki, Y., Tsunematsu, N., Yokoyama, H., Yamato, H., Mikami, T. (2018). Thermal comfort along the marathon course of the 2020 Tokyo Olympics. International Journal of Biometeorology, 62(8), 1407-1419. https://doi.org/10.1007/s00484-018-1539-x DOI
Hundecha, Y, Bardossy, A. (2005). Trends in daily precipitation and temperature extremes across Western Germany in the second half of the 20th century. International Journal of Climatology, 25, 1189-1202. https://doi.org/10.1002/joc.1182] DOI
IPCC. 2007. In Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Jendritzky, G., de Dear, R., Havenith, G. (2012). UTCI - why another thermal index? International Journal of Biometeorology, 56(3), 421-428. https://doi.org/10.1007/s00484-011-0513-7 DOI
Kolendowicz, L., Półrolniczak, M., Szyga-Pluta, K., Bednorz, E. (2018). Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theoretical and Applied Climatology, 134, 363-379. https://doi.org/10.1007/s00704-017-2279-2 DOI
Kostopoulou, E., Jones, P. (2005). Assessment of climate extremes in Eastern Mediterranean. Meteorological and Atmospherical Physics, 89, 69-85. https://doi.org/10.1007/s00703-005-0122-2 DOI
Kottek, M., Greiser, J., Beck, C., Rudolf, B., Rubel, F. (2006). World Map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrif, 15(3), 259-263. https://doi.org/10.1127/0941-90 2948/2006/0130 DOI
Kuchcik, M. (2017). Zmiany warunków termicznych w Polsce na przełomie XX i XXI wieku i ich wpływ na umieralność. Prace Geograficzne, 263, Warsaw: IGiPZ PAN.
Malinović-Milićević, S., Mijatović, Z., Arsenić, I., Podrašćanin, Z., Firanj Sremac, A., Radovanović, M., Drešković, N. (2020). The importance of ground-based and satellite observations for monitoring and estimation of UV radiation in Novi Sad (Serbia). Journal of the Geographical Institute "Jovan Cvijić" SASA, 70(1), 57-70. https://doi.org/10.2298/IJGI2001057M DOI
Matzarakis, A., Muthers, S., Rutz, F. (2014). Application and comparison of UTCI and PET in temperate climate conditions. Finisterra, 49, 21-31. https://doi.org/10.18055/Finis6453 DOI
Mąkosza, A., Nidzgorska-Lencewicz, J. (2017). Selected thermal and biothermal aspects of cities in Poland. Polish Journal of Natural Science, 32(4), 771-782.
McGregor, G., Vanos, J. (2018). Heat: A primer for public health researchers. Public Health, 161, 138-146. https://doi.org/10.1016/j.puhe.2017.11.005 DOI
Meteorological Yearbook, 2000-2018. Republic Hydrometeorological Service of Serbia. http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php
Milewski, P. (2013). Application of the UTCI to the local bioclimate of Poland's Ziemia Kłodzka Region. Geographia Polonica, 86(1), 47-54. https://doi.org/10.7163/GPol.2013.6 DOI
Milivojevic, M., Krunic, O., Martinovic, M. (2005). Serbian spas as a base for tourism development. In Proceedings World Geothermal Congress, Antalya, Turkey, 24-29 April 2005. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/2110.pdf
Milovanović, B., Radovanović, M., Stanojević , G., Pecelj, M., Nikolić , J. (2017). Klima Srbije. In M. Radovanović (Ed.), Geografija Srbije (pp. 94-105). Belgrade, Serbia: Geographical Institute Jovan Cvijić SASA.
Milovanović, B., Ducić, V., Radovanović, M., Milivojević, M. (2017). Climate regionalisation of Serbia according to Köppen climate classification. Journal of the Geographical Institute "Jovan Cvijić" SASA, 67(2), 103-114. https://doi.org/10.2298/IJGI1702103M DOI
Milovanović, B., Schuster, P., Radovanović, M., Ristić Vakanjac, V., Schneider, C., Milivojević, M. (2018). Spatial-Temporal variabilitz of air temperatures in Serbia in the period 1961-2010. Journal of Geographical Institute Jovan Cvijić SASA, 68(2), 157-175. https://doi.org/10.2298/IJGI1802157M DOI
NASA. 2000. N42E021.SRTMGL1; N42E022.SRTMGL1 (Shuttle Radar Topography Mission - SRTM). http://earthexplorer.usgs.gov/(November, 2019)
Nassiri, P., Monazzam, M.R., Golbabaei, F., Farhang Dehghan, S., Rafieepour, A., Mortezapour, A.R., Asghari, M. (2017). Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines. Industrial Health, 55(5), 437-443. https://doi.org/10.2486/indhealth.2017-0018 DOI
Nastos, P., Matzarakis, A. (2012). The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology, 108, 591-599. https://doi.org/10.1007/s00704-011-0555-0 DOI
Nemeth, A. (2011). Changing thermal bioclimate in some Hungarian cities. Acta Climatologica Chorologica, 44-45, 93-101.
Pecelj, M., Đordđević, A., Pecelj, M.R., Pecelj-Purković, J., Filipović, D., Šećerov, V. (2017). Biothermal conditions on Mt. Zlatibor based on thermophysiological indices. Archive of Biological Sciences, 69(3), 455-461. https://doi.org/10.2298/ABS151223120P DOI
Pecelj, M.M., Lukić, M.Z., Filipović, D.J., Protić, B.M., Bogdanović, U. (2020). Analysis of the Universal Thermal Climate Index during heat waves in Serbia. Natural Hazards and Earth System Science, 20, 2021-2036. https://doi.org/10.5194/nhess-20-2021-2020 DOI
Pecelj, M., Lukić, M., Vučičević, A., De Una-Alvarez, E., Esteves da Silva, CGJ., Freinkin, I., Ciganović, S., Bogdanović, U. (2018). Geoecological evaluation of local surroundings for the purposes of recreational tourism. Journal of Geographic Institute Jovan Cvijic SASA, 68(2), 215-231. https://doi.org/10.2298/IJGI1802215P DOI
Pecelj, M.M., Trbić, G., Pecelj, M.R. (2013). Biothermal condition based on the Bioclimatic Index Heat Load. In Proceeding of the 6th International Conference on Climate Change, Global Warming and Biological Problems, Recent Advances in Environmental Science (pp. 250-254). Frederick University, Cyprus, Limassol.
Potchter, O., Cohen, P., Lin, TP., Matzarakis, A. (2018). Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631-632, 390-406. https://doi.org/10.1016/j.scitotenv.2018.02.276 DOI
Radinović, D., Ćurić, M. (2011). Criteria for heat and cold wave duration indexes. Theoretical and Applied Climatology, 107(3-4), 505-510. https://doi.org/10.1007/s00704-011-0495-8 DOI
Roshan, G., Yousefi, R., Błażejczyk, K. (2018). Assessment of the climatic potential for tourism in Iran trough biometeorology clustering. International Journal of Biometeorology, 62(4), 525-542. https://doi.org/10.1007/s00484-017-1462-6 DOI
Stamenković, S. (1995). Vranje, geneza i naseobinska evolucija. Beograd: Geografski fakultet Univerziteta u Beogradu.
Stanojević, G.B., Miljanović, D.N., Doljak, D. Lj., Ćurčić, N.B., Radovanović, M.M., Malinović-Milićević, S.B., Hauriak, O. (2019). Spatio-temporal variability of annual PM2.5 concentrations and population exposure assessment in Serbia for the period 2001-2016. Journal of the Geographical Institute "Jovan Cvijić" SASA, 69(3), 197-211. https://doi.org/10.2298/IJGI1903197S DOI
Stevanović, V. (2019). Elements of bioclimatological characteristics of Vranjska spa. The University Thought-Public in Natural Sciences, 9(1), 45-48. https://doi.org/10.5937/univtho9-22125 DOI
Theoharatos, G., Pantavou, K., Mavrakis, A., Spanou, A., Katavoutas, G., Efstathiou, P., Mpekas, P., Asimakopoulos, D. (2010). Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research, 110, 152-161. https://doi.org/10.1016/j.envres.2009.12.002 DOI
Tolika, K., Maheras, P., Pytharoulis, I., Anagnostopoulou, C. (2014). The anomalous low and high temperatures of 2012 over Greece - An explanation from a meteorological and climatological perspective. Natural Hazards and Earth System Sciences, 14(3), 501-507. https://doi.org/10.5194/nhess-14-501-2014 DOI
Tomczyk, A.M., Owczarek, M. (2019). Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology, 139, 893-905. https://doi.org/10.1007/s00704-019-02998-3 DOI
Tomczyk, A.M., 2016. Impact of atmospheric circulation on the occurrence of heat waves in southeastern Europe. Idojárás, 120(4), 395-414.
Unkašević, M., Tošić, I. (2011). The maximum temperatures and heat waves in Serbia during the summer of 2007. Climate Change, 108(1-2), 207-223. https://doi.org/10.1007/s10584-010-0006-4 DOI
Unkašević, M., Tošić, I. (2015). Seasonal analysis of cold and heat waves in Serbia during the period 1949-2012. Theoretical and Applied Climatology, 120(1-2), 29-40. https://doi.org/10.1007/s00704-014-1154-7 DOI
Urban, A., Kyselý, J. (2014). Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research Public Health, 11(1), 952-967. https://doi.org/10.3390/ijerph110100952 DOI
Vissine, W., Houssou, S.C., Błażejczyk, K. (2013). Application de l'indice universel de charge thermique dans le contexte Africain: Exemple de Cotonou (Repiblique du Benin). In Conference paper: XXVIème colloque de l'Association Internationale de Climatologie (pp. 105-109).


Geographia Polonica





Start page:


End page:


Resource type:


Detailed Resource Type:


Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0201


CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.





Citation style: