Object structure
Title:

Zmienność przepływów niżówkowych w wybranych zlewniach pogórskich i beskidzkich w latach 1988‑2017 = Variability of low flow in Polish Carpathians (foothills and Beskidy Mountains) catchments in the period 1988‑2017

Subtitle:

Przegląd Geograficzny T. 93 z. 1 (2021)

Creator:

Bochenek, Witold : Autor Affiliation ORCID ; Kijowska-Strugała, Małgorzata : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2021

Description:

24 cm

Subject and Keywords:

low flow ; threshold level method ; aridity index ; land use and land cover changes ; Polish Carpathians

Abstract:

Water flow in the Polish Carpathians was exemplified by long-term (1988‑2017) analysis of two foothill catchments (of the Skawinka and Stobnica) and two catchments in the Beskidy Mountains (of the Soła and Osława). The work allowed for the determination of the duration of low flows and outflow deficits in relation to changes in thermal and precipitation conditions, as well as land use and land cover. In the selected catchments, the 30-year period brought a decrease in the area of arable land and an increase in the area of grassland and forest. In addition built-up areas increased by 495% between 1990 and 2018. A greater susceptibility to the occurrence of total drought was noted for the Beskidy Mountains catchments, in which the duration of low flows and outflow deficit was greater than in the foothill catchments. At the same time, the mountain catchments proved less susceptible to the emergence of deep drought, on account of their higher levels of forest cover and levels of soil permeability. In regional terms, the durations of low flows and outflow deficits were greater in the catchments located in the eastern part of the Carpathians (those of the Stobnica and Osława), in line with this area’s intensified features of a continental climate.

References:

Baessler, C., & Klotz, S. (2006). Effects of changes in agricultural land-use on landscape structure and cultivated weed vegetation over the last 50 years. Agriculture, Ecosystems & Environment, 115(1), 43‑50. https://doi.org/10.1016/j.agee.2005.12.007 DOI
Bagley, J.E., Desai, A.R., Harding, K.J., Snyder, P.K., & Foley, J.A. (2014). Drought and Deforestation: Has Land Cover Change Influenced Recent Precipitation Extremes in the Amazon? Journal of Climate, 27, 345‑361. https://doi.org/10.1175/JCLI-D-12‑00369.1 DOI
Bochenek, W. (2017). Niżówki w korycie Bystrzanki w wieloleciu 1991‑2015. Monitoring Środowiska Przyrodniczego, 19, 61‑68.
Bochenek, W. (2019). Flood in a mountain stream of the Western Carpathians (SE Poland). W: 5-th International Scientific Conference Geobalcanica, 13‑14 June, 2019 Sofia, Republic of Bulgaria. Proceedings, Geobalcanica Society (s. 145‑152). Skopje. http://dx.doi.org/10.18509/GBP.2019.20 DOI
Bochenek, W. (2020). Prawidłowości obiegu wody na obszarze beskidzko-pogórskim Karpat Zachodnich na przykładzie zlewni Bystrzanki w świetle zmian klimatu i działalności człowieka. Prace Geograficzne, 271. Warszawa: IGiPZ PAN. DOI
Bochenek, W., & Kijowska-Strugała, M. (2018). Long-term droughts changes in a small Carpathian stream channel (Poland). W: 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4‑13 April, 2018 in Vienna, Austria, s. 4577.
Bochenek, W., Kijowska-Strugała, M., & Kiszka, K. (2018). Wieloletnie tendencje warunków klimatycznych w Szymbarku na podstawie wybranych wskaźników. Przegląd Geograficzny, 90(1), 35‑52. https://doi.org/10.7163/PrzG.2018.1.2 DOI
Bucała-Hrabia, A. (2018). Land use changes and their catchment-scale environmental impact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geographia Polonica, 91(2), 171‑196. https://doi.org/10.7163/GPol.0116 DOI
Caruso, B.S. (2002). Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. Journal of Hydrology, 257(1‑4), 115‑133. https://doi.org/10.1016/S0022-1694(01)00546-7 DOI
Clausen, B., & Pearson, C.P. (1995). Regional frequency analysis of annual maximum streamflow drought. Journal of Hydrology, 173(1‑4), 111‑130. https://doi.org/10.1016/0022‑1694 (95)02713-Y DOI
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52‑58. https://doi.org/10.1038/nclimate1633 DOI
Damborská, I., Gera, M., Melo, M., Lapin, M., & Nejedlík, P. (2016). Changes in the daily range of the air temperature in the mountainous part of Slovakia within the possible context of global warming. Meteorologische Zeitschrift, 25, 17‑35. https://doi.org/10.1127/metz/2015/0569 DOI
Douville, H., Ribes, A., Decharme, B., Alkama, R., & Sheffield, J. (2013). Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nature Climate Change, 3(1), 59‑62. https://doi.org/10.1038/nclimate1632 DOI
European Environment Agency. (2019). Dane publiczne EEA. Pobrane z: https://eea.europa.eu/data-and-maps/data/ (20.04.2019).
Fal, B. (2007). Niżówki na górnej i środkowej Wiśle. Gospodarka Wodna, 2, 72‑81.
Fleig, A.K., Tallaksen, L.M., Hisdal, H., & Hannah, D.M. (2011). Regional hydrological drought in north-western Europe: linking a new Regional Drought Area Index with weather types. Hydrological Processes, 25(7), 1163‑1179. https://doi.org/10.1002/hyp.7644 DOI
Hisdal, H., Tallaksen, L.M., Clausen, B., Peters, E., & Gustard, A. (2004). Hydrological Drought Characteristics. W: L.M. Tallaksen, & H.A.J. van Lanen (red.), Hydrological Drought, Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Science (s. 139‑198). Amsterdam: Elsevier.
Hundecha, Y., & Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292, 281‑295. https://doi.org/10.1016/j.jhydrol.2004.01.002 DOI
Huntington, T.J. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83‑95. https://doi.org/10.1016/j.jhydrol.2005.07.003 DOI
IMGW. (2018). Dane publiczne IMGW-PIB. Pobrane z: https://dane.imgw.pl (01.03.2018).
IPCC. (2018). Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C approved by governments.
Jania, J.A., & Zwoliński, Z. (2011). Ekstremalne zdarzenia meteorologiczne, hydrologiczne i geomorfologiczne w Polsce. Landform Analysis, 15, 51‑64.
Kijowska-Strugała, M. (2015). Transport zawiesiny w warunkach zmieniającej się antropopresji w zlewni Bystrzanki (Karpaty Fliszowe). Prace Geograficzne, 247, Warszawa: IGiPZ PAN.
Kijowska-Strugała, M. (2019). Sediment variability in a small catchment of the Polish Western Carpathians during transition from centrally planned to free-market economics. Geomorphology, 325, 119‑129. https://doi.org/10.1016/j.geomorph.2018.10.008 DOI
Kijowska-Strugała, M., & Bucała-Hrabia, A. (2019). Floods types in a mountain catchment: The Ochotnica River, Poland. Acta geographica Slovenica, 59(1), 23‑36. https://doi.org/10.3986/AGS.2250 DOI
Kijowska-Strugała, M., Wiejaczka, Ł., Gil, E., Bochenek, W., & Kiszka, K. (2017). The impact of extreme hydro-meteorological events on the transformation of mountain river channels (Polish Flysch Carpathians). Zeitschrift für Geomorphologie, 61(1), 75‑89. https://: doi.org/10.1127/zfg/2017/0434 DOI
Koleva, E., & Alexandrov, V. (2008). Drought in the Bulgarian low regions during the 20th century. Theoretical and Applied Climatology, 92, 113‑120. https://doi.org/10.1007/s00704‑007‑0297‑1 DOI
Kopcińska, J., Skowera, B., Wojkowski, J., Zając, E., & Ziernicka-Wojtaszek, A. (2018). Identyfikacja miesięcy suchych i wilgotnych w województwie opolskim na podstawie wybranych wskaźników klimatycznych (1981‑2010). Infrastruktura i Ekologia Terenów Wiejskich, 2(1), 421‑434.
Kozak, J. (2005). Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata, Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego.
Kroczak, R., Bryndal, T., Bucała, A., & Fidelus, J. (2016). The development, temporal evolution and environmental influence of an unpaved road network on mountain terrain: an example from the Carpathian Mts. (Poland). Environmental Earth Sciences, 75(3), 2561‑2578. https://: doi.org/10.1007/s12665‑015‑5055‑6 DOI
Kulikowski, R. (2001). Przemiany rolnictwa Polski w latach dziewięćdziesiątych. Daleko czy blisko do Unii Europejskiej?. Studia Obszarów Wiejskich, 1, 71‑81.
Lambor, J. (1971). Hydrologia inżynierska. Warszawa: Arkady.
van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. J., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640‑4656. DOI
van Loon, A.F., & Laaha, G. (2015). Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 526, 3‑14. https://doi.org/10.1002/2013JD020383 DOI
Lopez-Nicolas, A., Pulido-Velazquez, M., & Macian-Sorribes, H. (2017). Economic risk assessment of drought impacts on irrigated agriculture. Journal of Hydrology, 550, 580‑589. https://doi.org/10.1016/j.jhydrol.2017.05.004 DOI
Löschner, L., Herrnegger, M., Apperl, B., Senoner, T., Seher, W., & Nachtnebel, H.P. (2016). Flood risk, climate change and settlement development: a micro-scale assessment of Austrian municipalities. Regional Environmental Change, 17, 311‑322. https://doi.org/10.1007/s10113‑016‑1009‑0 DOI
Marszelewski, W., Pius, B., Pawłowski, B., & Kubiak-Wójcicka, K. (2017). Przebieg rekordowej niżówki Wisły w Toruniu w 2015 roku na tle niżówek z okresu 1951‑2015. W: W. Marszelewski (red.), Zasoby i perspektywy gospodarowania wodą w dorzeczu Wisły. Monografie Komisji Hydrologicznej PTG, 4, 151‑164.
Merz, R., & Bloschl, G. (2009). A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resources Research, 45, W01405. https://doi.org/10.1029/2008WR007163 DOI
Miler, A.T. (2012). Wpływ zmian użytkowania terenu na odpływy wezbraniowe z obszarów o znacznym zalesieniu Roztocza Środkowego. Infrastruktura i Ekologia Terenów Wiejskich, 2(1), 173‑182.
Munteanu, C., Kuemmerle, T., Boltiziar, M., Butsic, V., Gimmi, U., Halada, L., & Lieskovský, J. (2014). Forest and agricultural land change in the Carpathian region - a meta-analysis of long-term patterns and drivers of change. Land Use Policy, 38, 685‑697. https://doi.org/10.1016/j.landusepol.2014.01.012 DOI
Niedźwiedź, T., Twardosz, R., & Walanus, A. (2009). Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theoretical and Applied Climatology, 98(3‑4), 337‑350. https://doi.org/10.1007/s00704‑009‑0122‑0 DOI
Ozga-Zielińska, M., & Brzeziński, J. (1997). Hydrologia stosowana. Warszawa: PWN.
Ped, D.A. (1977). The analysis of two summer seasons with different weather conditions. Trudy GNIe, 171, 3‑19.
Podstawczyńska, A. (2010). Temperatura powietrza i opady atmosferyczne w regionie łódzkim w ostatnim stuleciu. W: J. Twardy, S. Żurek, & J. Forysiak (red.) Torfowisko Żabieniec: warunki naturalne i zapis zmian paleoekologicznych w jego osadach (s. 63‑74). Poznań: Bogucki Wydawnictwo Naukowe.
Punzet, J. (1996). Niskie przepływy i czas ich trwania w górnych biegach rzek zachodniej części Karpat. Gospodarka Wodna, 11, 331‑334.
Roo-Zielińska, E., Solon, J., & Degórski, M. (2007). Evaluation of natural environment based on geobotanical, landscape and soil indicators. Warszawa: IGiPZ PAN.
Seneviratne, S.I., (2012). Climate science: Historical drought trends revisited. Nature, 491, 338‑339. https://doi.org/10.1038/491338a DOI
Shabalova, M.V., Van Deursen, W.P.A., & Buishand, T.A. (2003). Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Climate Research, 23, 233‑246. https://doi.org/10.3354/cr023233 DOI
Sheffield, J., & Wood, E. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31, 79‑105. https://doi.org/10.1007/s00382‑007‑0340-z DOI
Skowera, B., Wojkowski, J., & Ziernicka-Wojtaszek, A. (2016). Warunki termiczno-opadowe na obszarze województwa opolskiego w latach 1981‑2010. Infrastruktura i Ekologia Terenów Wiejskich, 3(2), 919‑934.
Soja, R. (2002). Hydrologiczne aspekty antropopresji w polskich Karpatach. Prace Geograficzne, 186. Warszawa: IGiPZ PAN.
Spinoni, J., Antofie, T., Barbosa, P., Bihari, Z., Lakatos, M., Szalai, S., & Vogt, J. (2013). An overview of drought events in the Carpathian Region in 1961‑2010. Advances in Science and Research, 10, 21‑32. https://doi.org/10.5194/asr-10‑21‑2013 DOI
Starkel, L. (1972). Charakterystyka rzeźby Polskich Karpat (i jej znaczenie dla gospodarki ludzkiej). Problemy Zagospodarowania Ziem Górskich, 10, 75‑91.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P.M. (2013). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
Tallaksen, L.M., Hisdal, H., & Van Lanen, H.A. (2009). Space-time modelling of catchment scale drought characteristics. Journal of Hydrology, 375(3‑4), 363‑372. https://doi.org/10.1016/j.jhydrol.2009.06.032 DOI
Tomaszewski, E. (2007). Pora koncentracji odpływu podziemnego w środkowej Polsce. W: Z. Michalczyk (red.) Obieg wody w środowisku naturalnym i przekształconym (s. 537‑547). Lublin: UMCS.
Tomaszewski, E. (2012). Wieloletnia i sezonowa dynamika niżówek w rzekach środkowej Polski. Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Tomaszewski, E. (2018). Low-flow discharge deficits assessment, applying constant and variable low-flow threshold levels, as illustrated with the example of selected catchments in the Vistula River basin. Acta Scientiarum Polonorum Formatio Circumiectus, 18(3), 205‑216. DOI
Turc, L. (1964). Evapotranspitation potentielle mensuelle et décadaire. Son eevaluation en fontion donneés météorologiques. Polsko-Francuskie Sympozjum Gospodarki Wodnej, Warszawa: Wydawnictwo Komunikacji i Łączności.
Unrug, R. (red.). (1969). Przewodnik geologiczny po zachodnich Karpatach fliszowych. Warszawa: Wydawnictwa Geologiczne.
USGS. (2017). Dane publiczne SRTM. Pobrane z: https://srtm.csi.cgiar.org/srtmdata (06.07.2017).
Wanders, N., Wada, Y., & Van Lanen, H.A.J. (2015). Global hydrological droughts in the 21st century under a changing hydrological regime. Earth System Dynamics, 6, 1‑15. https://doi.org/10.5194/esd-6‑1-2015 DOI
Wang, G., Yang, H., Wang, L., Xu, Z., & Xue, B. (2014). Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrological Processes, 28(3), 1032‑1042. https://doi.org/10.1002/hyp.9645 DOI
Wypych, A., Ustrnul, Z., & Schmatz, D.R. (2018). Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. Journal of Mountain Science, 15(2), 237‑253. https://doi.org/10.1007/s11629‑017‑4374‑3 DOI
Yevjevich, V. (1964). An objective approach to definitions and investigations of continental hydrologic drought. Hydrology Paper, 23. Fort Collins: Colorado State University.
Zielińska, M. (1964). Metody obliczania i prognozowania niżówek w ujęciu probabilistycznym. Wiadomości Służby Hydrolologicznej i Meteorolologicznej, 58, 31‑57.
Ziemońska, Z. (1973). Stosunki wodne w polskich Karpatach Zachodnich. Prace Geograficzne, 103. Warszawa: IGiPZ PAN.
Żmudzka, E. (2010). Changes in thermal conditions in the high mountain areas and contemporary warming in the central Europe. Miscellanea Geographica, 14(1), 59‑70. https://doi.org/10.2478/mgrsd-2010‑0006 DOI
Żytko, K., Gucik, S., & Ślączka, A. (1973). Przewodnik po wschodnich Karpatach fliszowych. Warszawa: Wydawnictwo Geologiczne.

Relation:

Przegląd Geograficzny

Volume:

93

Issue:

1

Start page:

5

End page:

25

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.1.1

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: