Projekty RCIN i OZwRCIN

Obiekt

Tytuł: Granica państwa a spójność danych dla potrzeb analiz hydrologicznych. Studium przypadku dla zlewni Wiaru na pograniczu polsko-ukraińskim = A state border and the integrity of data for hydrological analysis. A case study of the River Wiar catchment on the Poland-Ukraine borderland

Inny tytuł:

Przegląd Geograficzny T. 92 z. 1 (2020)

Wydawca:

IGiPZ PAN

Miejsce wydania:

Warszawa

Opis:

24 cm

Typ obiektu:

Czasopismo/Artykuł

Abstrakt:

Badania hydrologiczne wymagają opracowania baz danych geograficznych (BDG) pozwalających na obliczanie np. parametrów fizjograficznych zlewni oraz ocenę zmian w wielkości zasobów wodnych. Budowa tego typu baz wymaga korzystania z różnych zbiorów danych hydrometeorologicznych i kartograficznych, które powinny być ze sobą spójne i porównywalne. Spełnienie tego warunku jest trudne zwłaszcza w zlewniach transgranicznych położonych na granicy Unii Europejskiej. W pracy dokonano przeglądowej analizy zasobów danych, które mogą być wykorzystane w budowie BDG dla potrzeb prowadzenia badań hydrologicznych w zlewniach na pograniczu polsko-ukraińskim (rzeka Wiar). Ustalono, że istnieją duże różnice w dostępności i możliwości pozyskania odpowiednich danych. Dotyczą one przede wszystkim danych kartograficznych, udostępnianych w formacie umożliwiającym prowadzenie analiz z użyciem narzędzi GIS. W związku z wymogami dyrektyw UE, zasoby danych o środowisku geograficznym dla polskiej części zlewni są dosyć obszerne i powszechnie dostępne, w przeciwieństwie do danych dla części ukraińskiej. Fakt ten implikuje wiele problemów natury metodologicznej już na etapie gromadzenia danych. Oprócz przeglądu zasobów zaproponowano rozwiązania mające na celu ujednolicenie danych dla obu części zlewni.

Bibliografia:

Affek A., 2014, Lotnicze skanowanie laserowe (ALS) w modelowaniu rzeźby terenu - nowe możliwości i pułapki, Problemy Ekologii Krajobrazu, 38, s. 217-236.
Affek A., 2016, Dynamika krajobrazu: uwarunkowania i prawidłowości na przykładzie dorzecza Wiaru w Karpatach (XVIII-XXI wiek), Prace Geograficzne, 251, IGiPZ PAN, Warszawa.
Affek A., 2016, Past Carpathian landscape recorded in the microtopography, Geographia Polonica, 89, 3, s. 415-424. https://doi.org/10.7163/GPol.0062
Akça E., Álvarez A.G., Bialousz S., Berger B., Bielek P., Blum W., Breuning-Madsen H., Buivydaite V.V., Cangir C., Daroussin J., De Alba S., Dinç U., Dudal R., Düwel O., Eckelmann W., Freudenschuß A., Fritz S., Hartley A., Hartwich R., Hiederer R., Hollis J., Houskova B., Huber S., Jamagne M., Jasinskas J., Kapur S., Karklins A., Kibblewhite M., King D., Kolev N., Kozak J., Bas C. Le, Magaldi C., Marti J.J.I., Micheli E., Nachtergaele F., Nemecek J., Nyborg Å., Olazabal C., Presler J., Reintam L., Ritz K., Ruiz J.M.G., Spaargaren O., Stolbovoi V., Thompson D., van den Akker J.J.H., van Ranst E., Várallyay G., Wösten H., Zdruli P., 2005, Soil atlas of Europe, European Soil Bureau Network, Luxembourg.
Bakuła K., 2014, Efektywne wykorzystanie danych Lidar w dwuwymiarowym modelowaniu hydraulicznym, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 26, s. 23-37.
Banach W., Szczepanek R., 2015, Zmiany parametru CN metody SCS w dorzeczu górnej Wisły, na podstawie danych rastrowych Corine Land Cover z lat 1990-2012, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 62, 3, 1, s. 7-17. https://doi.org/10.7862/rb.2015.91
Baranowski M., Ciołkosz A., 1997, Opracowanie bazy danych "pokrycie terenu Polski", Prace Instytutu Geodezji i Kartografii, 44, 95, s. 7-25.
Barszczyńska M., Borzuchowski J., Kubacka D., Piórkowski P., Rataj C., Walczykiewicz T., Woźniak Ł., 2013, Mapa Podziału Hydrograficznego Polski w skali 1: 10 000 - nowe hydrograficzne dane referencyjne, Roczniki Geomatyki, 11, s. 15-29.
Biały S., Chrobak A., Struś P., Zarychta R., 2019, Geodiversity maps in the light of the new terrain model Tandem-X, [w:] Kartografìâ ta viŝa škola: Sučasnij stan ì strategìâ rozvitku, Kiïvskij nacìonalnij universitet imeni Tarasa Ševčenka, Geografìčnij fakul'tet, Kiïv, s. 27-28.
Bielecka E., Ciołkosz A., 2004, Metodyczne i realizacyjne aspekty aktualizacji bazy Corine Land Cover, Prace Instytutu Geodezji i Kartografii, 50, 108, s. 73-92.
Błaszczyk M., Drzewiecki W., 2006, Wstępna ocena możliwości wykorzystania obrazów satelitarnych ASTER w monitorowaniu lodowców Svalbardu, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 16, s. 23-29.
Bossard M., Feranec J., Otahel J., 2000, CORINE land cover technical guide: Addendum 2000, European Environment Agency.
Deržavna naukovo-tehnìčna programa rozvitku topografo-geodezičnoï dìâl'nostì ta nacìonal'nogo kartografuvannâ na 2003-1010 roki, 2018, https://zakon.rada.gov.ua/laws/show/37-2003%D0%BF (13.12.2018).
Dynowska I., Dobija A., 1975, Znaczenie parametrów fizjograficznych zlewni dla ustalenia wielkości odpływu rzecznego, Folia Geographica. Series Geographica-Physica, 9, s.77-129.
Dyrektywa 2007/60/WE Parlamentu Europejskiego i Rady z dn. 23 października 2007 r. w sprawie oceny ryzyka powodziowego i zarządzania nim, L 288/27, 2007.
Feranec J., Soukup T., Hazeu G., Jaffrain G. (red.), 2016, European landscape dynamics: CORINE land cover data, CRC Press. https://doi.org/10.1201/9781315372860
Figuła K., 1966, Badania nad gospodarką wodną zlewni górskich zalesionych i niezalesionych. Kształtowanie się odpływów w zlewniach potoków Biała Woda i Czarna Woda, Roczniki Nauk Rolniczych, 118-D, s. 51-87.
Geoportal Krajowy, 2019, geoportal.gov.pl (02.02.2019).
GIOŚ, 2019, http://www.gios.gov.pl (15.04.2019).
GIS across the border - wspólna platforma zarządzania przestrzenią w Euroregionie Bug, 2018, http://euroregionbug.maps.arcgis.com (25.04.2018).
Gotlib D., 2015, Analiza różnic pomiędzy modelem danych BDTOT10k a TBD, Biuletyn Stowarzyszenia Kartografów Polskich, 26, Stowarzyszenie Kartografów Polskich, Wrocław, s. 11-12.
Gotlib D., Olszewski R., 2006. Co z trzecim wymiarem? O modelowaniu rzeźby terenu w referencyjnych bazach danych, Geodeta, 131, 4, s. 31-34.
Gucik S., Jankowski L., Rączkowski W., Żytko K., 1989, Szczegółowa Mapa Geologiczna Polski 1: 50 000. 1043 - Rybotycze, 1044 - Dobromil, Państwowy Instytut Geologiczny.
Hajnsek I., Busche T., 2016, TanDEM-X Digital Elevation Models. Announcement of Opportunity, German Aerospace Center (DLR), Microwaves and Radar Institute, s. 1-22, https://tandemx-science.dlr.de/pdfs/TD-PD-AO-0033_DEM_Announcement_of_Opportunity.pdf (12.12.2017).
IMiGW-PIB, 2018, http://monitor.pogodynka.pl (02.02.2018).
Jania J.A., Zwoliński Z., 2011, Ekstremalne zdarzenia meteorologiczne, hydrologiczne i geomorfologiczne w Polsce, Landform Analysis, 15, s. 51-64.
Karwel A.K., 2007, Ocena dokładności NMT na obszarze Polski na podstawie danych wysokościowych projektu LPIS, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 17a, s. 357-362.
Karwel A.K., Kraszewski B., Kurczyński Z., Ziółkowski D., 2015, Integracja satelitarnych modeli wysokościowych, Biuletyn Wojskowej Akademii Technicznej, 64, 2, s. 123-133. https://doi.org/10.5604/12345865.1157319
Karwel A., 2012, Ocena dokładności modelu SRTM-X na obszarze Polski, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 23, s. 139-144.
Kowalczyk A., Kuźniar A., Kostuch M., 2014, Zmiany jakości wód transgranicznej rzeki Wisznia w latach 1990-2012, Woda-Środowisko-Obszary Wiejskie, 14, 3, s. 75-88.
Kroczak R., Bryndal T., 2017, Wykorzystanie numerycznych modeli terenu do generowania systemu drenażu powierzchniowego, funkcjonującego podczas opadów nawalnych. Podstawy metodyczne na podstawie studium przypadku zlewni Zalasówki (Pogórze Ciężkowickie), Przegląd Geograficzny, 89, 1, s. 67-85. https://doi.org/10.7163/PrzG.2017.1.4
Kroczak R., Bryndal T., 2018, Sieć drenażu powierzchniowego funkcjonująca w czasie ekstremalnych zjawisk pluwialnych w zlewniach karpackich - próby rekonstrukcji, [w:] W. Bochenek, M. Kijowska-Strugała (red.), Zintegrowany monitoring środowiska przyrodniczego. Ocena funkcjonowania i kierunków zmian środowiska przyrodniczego Polski na podstawie wieloletnich badań stacjonarnych, Instytut Geografii i Przestrzennego Zagospodarowania PAN - Stacja Badawcza w Szymbarku, Centrum Zintegrowanego Monitoringu Środowiska Przyrodniczego, Główny Inspektorat Ochrony Środowiska, s. 165-174.
Kuemmerle T., Chaskovskyy O., Knorn J., Radeloff V.C., Kruhlov I., Keeton W.S., Hostert P., 2009, Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007, Remote Sensing of Environment, 113, 6, s. 1194-1207. https://doi.org/10.1016/j.rse.2009.02.006
Kuemmerle T., Hostert P., Radeloff V.C., Perzanowski K., Kruhlov I., 2007, Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine, Ecological Applications, 17, 5, s. 1279-1295. https://doi.org/10.1890/06-1661.1
Kuźniar A., Twardy S., Kowalczyk A., 2008, Przyczyny zmian stężenia azotu i fosforu w wodach powierzchniowych górnej zlewni Sanu (po przekrój w Przemyślu) w latach 1990-2005, Woda-Środowisko-Obszary Wiejskie, 8, s. 185-196.
Lanfranc M., Van Dijk P., Jetten V., Schwob M., Payraudeau S., 2017, Improving runoff prediction using agronomical information in a cropped, loess covered catchment, Hydrological Processes, 31, 6, s. 1408-1423. https://doi.org/10.1002/hyp.11115
Lis E., 2016, Ochrona wód zlewni Bugu-poprawa czystości rzeki międzynarodowym wyzwaniem, Kontrola Państwowa, 61, 4, s. 65-74.
Ludwig R., Schneider P., 2006, Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling, ISPRS Journal of Photogrammetry and Remote Sensing, 60, 5, s. 339-358. https://doi.org/10.1016/j.isprsjprs.2006.05.003
Moore I.D., Grayson R.B., Ladson A.R., 1991, Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, 5, 1, s. 3-30. https://doi.org/10.1002/hyp.3360050103
MPHP50, 2010, Rastrowa Mapa Podziału Hydrograficznego Polski 1: 50 000, Instytut Meteorologii i Gospodarki Wodnej, Krajowy Zarząd Gospodarki Wodnej, http://www.kzgw.gov.pl/pl/rastrowa-mapa-podzialu-hydrograficznego-polski.html (10.10.2017).
Munteanu C., Kuemmerle T., Boltiziar M., Butsic V., Gimmi U., Halada L., Kaim D., Kiraly G., Konkoly-Gyuruo E., Kozak J., Lieskovsky J., Mojses M., Muller D., Ostafin K., Ostapowicz K., Shandra O., Stych P., Walker S., Radeloff V.C., 2014, Forest and agricultural land change in the Carpathian region. A meta-analysis of long-term patterns and drivers of change, Land Use Policy, 38, s. 685-697. https://doi.org/10.1016/j.landusepol.2014.01.012
Nacìonalna ìnfrastruktura geoprostorovih danih Ukraïni, 2018, Naukovo-Doslìdnij Institut Geodezìï ì Kartografìï, http://gki.com.ua/ua/nacionalna-infrastruktura-geoprostorovih-danih-ukraiini (13.12.2018).
O'Callaghan J.F., Mark D.M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28, 3, s. 323-344. https://doi.org/10.1016/S0734-189X(84)80011-0
Olszewski R., Berezowski T., Świtaj K., 2008, System zarządzania danymi wysokościowymi LPIS, TBD i SMOK zgromadzonymi w PZGiK, Roczniki Geomatyki, 6, 4, s. 83-88.
Ortyl B., Ćwik A., Kasprzyk I., 2018, What happens in a Carpathian catchment after the sudden abandonment of cultivation? Catena, 166, s. 158-170. https://doi.org/10.1016/j.catena.2018.04.002
Panagos P., Jones A., Bosco C., Senthil Kumar P.S., 2011, European digital archive on soil maps (EuDASM): preserving important soil data for public free access, International Journal of Digital Earth, 4, 5, s. 434-443. https://doi.org/10.1080/17538947.2011.596580
Potapov P.V., Turubanova S.A., Tyukavina A., Krylov A.M., McCarty J.L., Radeloff V.C., Hansen M.C., 2015, Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote Sensing of Environment, 159, s. 28-43. https://doi.org/10.1016/j.rse.2014.11.027
Przybyła C., Pyszny K., 2013, Porównanie numerycznych modeli terenu SRTM i ASTER GDEM oraz ocena możliwości ich wykorzystania w modelowaniu hydrologicznym w obszarach o małych deniwelacjach, Rocznik Ochrona Środowiska, 15, s. 1489-1510.
Pylypovych O., Andreychuk Y., Rutar A., Petrovska M., 2019, Ocìnka âkostì poverhnevih vod transkordonnoï rički V'âr, Hidrolohiia, hidrokhimiia i hidroekolohiia, 52, 1, s. 75-88.
Pyszny K., Przybyła C., 2016, Systemy informacji przestrzennej w strategicznych ocenach oddziaływania na środowisko, Regionalna Dyrekcja Ochrony Środowiska w Poznaniu, Poznań.
Raspisanije Pogodi Ltd., 2019, http://rp5.ua (02.02.2019).
Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 17 listopada 2011 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych, 2011, Dziennik Ustaw Rzeczpospolitej Polskiej nr 279 poz. 1642.
Schellekens J., Brolsma R.J., Dahm R.J., Donchyts G.V., Winsemius H.C., 2014, Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model, Environmental Modelling & Software, 61, s. 98-105. https://doi.org/10.1016/j.envsoft.2014.07.006
Smoleński J., 1926, Przyrodzony obszar Polski i jego granice w świetle nowoczesnych poglądów, Przegląd Geograficzny, 6, s. 33-44.
Soczyńska U., Gutry-Korycka M., Buza J., 2003, Ocena zdolności retencyjnej zlewni [w:] M. Gutry-Korycka, B. Nowicka, U. Soczyńska (red.), Rola retencji zlewni w kształtowaniu wezbrań opadowych, Uniwersytet Warszawski, Warszawa, s. 77-104.
Stan środowiska województwa podkarpackiego na obszarze przygranicznym z Ukrainą w 2017 roku, 2018, Wojewódzki Inspektorat Ochrony Środowiska w Rzeszowie, Przemyśl.
Śleszyński P., 2009, Wykorzystanie danych georadarowych SRTM-3 w analizie zróżnicowania ukształtowania terenu Polski, Przegląd Kartograficzny, 41, 3, s. 237-252.
Śleszyński P., 2012, A geomorphometric analysis of Poland based on the SRTM-3 data, Geographia Polonica, 85, 4, s. 45-59.https://doi.org/10.7163/GPol.2012.4.24
Technical Guide. CORINE Land Cover, 1997-1999, European Environment Agency, European Commission, Joint Research Centre, Space Applications Institute, Agriculture and Regional Information Systems Unit, http://image2000.jrc.ec.europa.eu/reports/technical_guide.pdf (13.12.2017).
Thomas I.A., Jordan P., Shine O., Fenton O., Mellander P.E., Dunlop P., Murphy P.N.C., 2017, Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography, International Journal of Applied Earth Observation and Geoinformation, 54, s. 38-52. https://doi.org/10.1016/j.jag.2016.08.012
UNECE, 2009, River basin commissions and other institutions for transboundary water cooperation. Capacity for water cooperation in Eastern Europe, Caucasus and Central Asia, New York, Geneva, United Nations.
Wałęga A., Cupak A., Miernik W., 2011, Wpływ parametrów wejściowych na wielkość przepływów maksymalnych uzyskanych z modelu NRCS-UH, Infrastruktura i Ekologia Terenów Wiejskich, PAN o/Kraków, 7, s. 85-95.
Wiatkowski M., Kózka K., Wiatkowska B., 2016, Analiza stanu świadomości zagrożenia zjawiskiem powodzi na obszarze zlewni rzeki Biała Głuchołaska, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 461, s. 201-220.
Wojtasik M., Szatten D., 2014, Bilans dostawy rumowiska w wyniku erozji wodnej dla zlewni rzeki Brdy określony za pomocą modelu USLE, https://repozytorium.ukw.edu.pl/handle/item/1176 (06.01.2019).
Woroszkiewicz M., 2015, Numeryczne dane wysokościowe misji TanDEM-X, Biuletyn Wojskowej Akademii Technicznej, 64, 1, s. 33-46. https://doi.org/10.5604/12345865.1145420

Czasopismo/Seria/cykl:

Przegląd Geograficzny

Tom:

92

Zeszyt:

1

Strona pocz.:

69

Strona końc.:

92

Szczegółowy typ zasobu:

Artykuł

Format:

Rozmiar pliku 1,6 MB ; application/octet-stream

Identyfikator zasobu:

oai:rcin.org.pl:125088 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2020.1.5

Źródło:

CBGiOŚ. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; kliknij tutaj, żeby przejść

Język:

pol

Język streszczenia:

eng

Prawa:

Licencja Creative Commons Uznanie autorstwa 4.0

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitalizacja:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Program Operacyjny Polska Cyfrowa, lata 2014-2020, Działanie 2.3 : Cyfrowa dostępność i użyteczność sektora publicznego; środki z Europejskiego Funduszu Rozwoju Regionalnego oraz współfinansowania krajowego z budżetu państwa

Dostęp:

Otwarty

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

25 mar 2021

Data dodania obiektu:

26 maj 2020

Liczba pobrań / odtworzeń:

854

Wszystkie dostępne wersje tego obiektu:

https://www.rcin.org.pl/igipz/publication/157244

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie RDFa:

RDFa

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji