RCIN and OZwRCIN projects

Object

Title: Floodplain forms along the lowland Maros River, Hungary

Subtitle:

Geographia Polonica Vol. 93 No. 1 (2020)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Type of object:

Journal/Article

Abstract:

The floodplain forms of lowland rivers act as fluvial archives, as their morphology, material and spatial characteristics refer to the hydromorphological changes of the river and (dis)connectivity of the alluvial system. The aims of the research are (1) to identify natural levees, crevasses, and point-bars on the Hungarian floodplain section of the Maros River, (2) to measure their morphometric parameters, and (3) to analyse their spatial and temporal variations in connection with various human impacts. Six genetic types of natural levees and pointbar systems developed as the result of various human impacts, thus the development of the forms terminated or became laterally limited.

References:

Allen, J.R.L. (1965). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89-191. https://doi.org/10.1111/j.1365-3091.1965.tb01561.x
Asselman, N.E.M., Middelkoop, H. (1998). Temporal variability of contemporary floodplain sedimentation in the Rhine-Meuse Delta, the Netherlands. Earth Surface Processes and Landforms, 23, 595-609. https://doi.org/10.1002/(sici)1096-9837(199807)23:7<595::aid-esp869>3.0.co;2-y
Blanka, V., Kiss, T. (2006). Case study on meander development of the downstream section of River Maros. Hidrológiai Közlöny 86(4), 19-22. [in Hungarian]
Blanka, V., Sipos, Gy., Kiss, T. (2006). Spatial and temporal changes of meander formation on the Hungarian section of the River Maros. In Kertész, Á., Dövényi, Z., Kocsis, K., (Eds.), III. Magyar Földrajzi Konferencia (pp. 1-10), Budapest: MTA-FKI. [in Hungarian]
Bogárdi, J. (1971). Sediment transport of rivers. Budapest, Hungary: Akadémiai Kiadó. [In Hungarian].
Bown, T.M., Kraus, M.J. (1987). Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57, 587-601. https://doi.org/10.1306/212f8bb1-2b24-11d7-8648000102c1865d
Branß, T., Dittrich, A., Núñez-González, F. (2016). River flow. In Constantinescu G., Garcia M., Hanes D. (Eds.), Reproducing natural levee formation in an experimental flume (pp. 1122-1128.), London: Taylor & Francis Group. https://doi.org/10.1201/9781315644479-178
Bridge, J.S. (2003). Rivers and floodplain: Form, processes, and sedimentary record. Oxford: Blackwell.
Brierley, G.J., Ferguson, R.J., Woolfe, K.J. (1997). What is a fluvial levee? Sedimentary Geology, 114(1-4), 1-9. https://doi.org/10.1016/S0037-0738(97)00114-0
Brierley, G.J., Hickin, E.J. (1992). Floodplain development based on selective preservation of sediments, Squamish River, British Columbia. Geomorphology 4, 381-391. https://doi.org/10.1016/0169-555X(92)90033-K
Brown, A.G. (1983). An analysis of overbank deposits of a flood at Blandford-Forum, Dorset, England. Revue Geomorphologie Dynamique, 32(3), 95-99.
Cazanacli, D., Smith, N.D. (1998). A study of morphology and texture of natural levees, Cumberland Marshes, Saskatchewan, Canada. Geomorphology, 25, 43-55. https://doi.org/10.1016/S0169-555X(98)00032-4
Chalov, R.S. (2004). Morphological expressions of river sediment transport and their role in channel processes. IAHS Publication, 288, 205-211.
Coleman, J.M. (1969). Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, 3, 129-239. https://doi.org/10.1016/0037-0738(69)90010-4
Dietrich, W.E., Wilson, C.J., Reneau, S.L. (1986). Hollows, colluvium, and landslides in soil-mantled landscapes. In Abrahams, A.D. (Ed.), Hillslope processes (pp. 361-388). Boston: Allen and Unwin.
Falkowski, E. (1990). Morphogenetic classification of river valleys developing in formerly glaciated areas for the needs of mathematical and physical modelling in hydrotechnical projects. Geographia Polonica, 77(2), 55-68.
Fisk, H.N. (1947). Fine-grained alluvial deposits and their effects on Mississippi River activity. Vicksburg, Miss.: Waterways Experiment Station, Mississippi River Commission.
Fryirs, K.A., Brierley, G.J. (2012). Geomorphic analysis of river systems: An approach to reading the landscape. In K. Fryirs, G. J., Brierley, Geomorphic analysis of river systems (pp. 1-8). Chichester: Wiley-Blackwell. https://doi.org/10.1002/9781118305454
Gábris, Gy., Telbisz, T., Nagy, B., Belardinelli, E. (2002). Accumulation of the floodplain of the Tisza and its geomorphological background. Vízügyi Közlemények, 84, 305-318. [in Hungarian]
Gomez, B., Phillips, D., Magilligan, F.J., James, L.A. (1997). Floodplain sedimentation and sensitivity: Summer 1993 flood, Upper Mississippi Valley. Earth Surface Processes and Landforms, 22, 923-936. https://doi.org/10.1002/(sici)1096-9837(199710)22:10<923::aid-esp763>3.0.co;2-e
Gregory, K.J. (2004). Human activity transforming and designing river landscapes: A review perspective. Geographia Polonica, 77(2), 5-20.
Happ, S., Rittenhouse, G., Dobson, G. (1940). Some principles of accelerated stream and valley sedimentation. Technical Bulletin, 695, US Department of Agriculture.
Hudson, P.F., Heitmuller, F.T. (2003). Local and watershed-scale controls on the spatial variability of natural levee deposits in a large fine-grained floodplain: lower Pánuco Basin, Mexico. Geomorphology, 56, 255-269. https://doi.org/10.1016/s0169-555x(03)00155-7
Ihrig, D. (1973). History of the river regulations in Hungary. Budapest: Országos Vízügyi Hivatal. [in Hungarian]
Keen-Zebert, A., Tooth, S., Rodnight, H., Duller, G.A.T., Roberts, H.M., Grenfell, M. (2013). Late Quaternary floodplain reworking and the preservation of alluvial sedimentary archives in unconfined and confined valleys in the eastern interior of South Africa. Geomorphology, 185, 54-66. https://doi.org/10.1016/j.geomorph.2012.12.004
Kiss, T. (2014). Alterations of fluvial processes due to anthropogenic impacts: Study on Equilibrium and sensitivity in fluvial environment. University of Szeged, Hungary. (Doctoral dissertation, in Hungarian
Kiss, T., Balogh, M., Fiala, K., Sipos, Gy. (2018). Morphology of fluvial levee series along a river under human influence, Maros River, Hungary. Geomorphology, 303, 309-321. https://doi.org/10.1016/j.geomorph.2017.12.014
Kiss, T., Blanka, V. (2012). River channel response to climate- and human-induced hydrological changes: Case study on the meandering Hernád River, Hungary. Geomorphology, 175-176, 115-125. https://doi.org/10.1016/j.geomorph.2012.07.003
Kiss, T., Nagy, Z., Balogh, M. (2017). Floodplain level development induced by human activity - case study in the Lower Maros/Mures River, Romania and Hungary. Carpathian Journal of Earth and Environmental Sciences, 12 (1), 83-93.
Kiss, T., Oroszi, V.G., Sipos, G., Fiala, K., Benyhe, B. (2011). Accelerated overbank accumulation after nineteenth century river regulation works: A case study on the Maros River, Hungary. Geomorphology 135, 191-202. https://doi.org/10.1016/j.geomorph.2011.08.017
Kiss, T., Sándor, A., Gresó, Zs. (2004). Investigations on the rate of floodplain sediment accumulation in the Mártély embayment of the Lower Tisza. Acta Universitatis Szegediensis Acta Geographica, 38, 15-26.
Klasz, G., Reckendorfer, W., Gabriel, H., Baumgartner, C., Schmalfuss, R., Gutknecht, D. (2014). Natural levee formation along a large and regulated river: The Danube in the National Park Donau-Auen, Austria. Geomorphology, 215, 20-33. https://doi.org/10.1016/j.geomorph.2013.12.023
Laczay, I. (1975). River system of the Maros. In Vízrajzi Atlasz, 19 (pp. 4-23). Budapest: VITUKI. [in Hungarian]
Lane, S.N., Westaway, R.M., Hicks, D.M. (2003). Estimation of erosion and deposition volumes in a large gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms 28, 249-271. https://doi.org/10.1002/esp.483
Lóczy, D. (2013). Geomorphological classifications of floodplains in international scientific papers. Földrajzi Közlemények, 137, 105-120. (in Hungarian)
Łajczak, A., Plit, J., Soja, R., Starkel, L., Warowna, J. (2006). Changes of the Vistula River channel and floodplain in the last 200 Years. Geographia Polonica 79(2), 65-88.
Nanson, G.C. (1986). Episodes of vertical accretion and catastrophic stripping: A model of disequilibrium flood-plain development. Geological Society of America Bulletin, 97, 1467-1475. https://doi.org/10.1130/0016-7606(1986)97<1467:eovaac>2.0.co;2
Nanson, G.C., Croke, J.C. (1992). A genetic classification of floodplains. Geomorphology, 4, 459-486. https://doi.org/10.1016/0169-555x(92)90039-q
Notebaert, B., Verstraeten, G., Govers, G., Poesen, J. (2009). Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology. Earth Surface Processes and Landforms, 34, 217-231. https://doi.org/10.1002/esp.1705
Radecki-Pawlik, A., Wyżga, B., Czech, W., Mikuś, P., Zawiejska, J., & Ruiz-Villanueva, V. (2016). Modelling hydraulic parameters of flood flows for a Polish Carpathian river subjected to variable human impacts. In Kundzewicz Z., Stoffel M., Niedźwiedź T., Wyżga B. (Eds.), Flood Risk in the Upper Vistula Basin. GeoPlanet: Earth and Planetary Sciences. Springer, Cham GeoPlanet: Earth and Planetary Sciences (pp. 127-151). Cham: Springer. https://doi.org/10.1007/978-3-319-41923-7_7
Sagar, S.D. (2013). Improved Floodplain Delineation Method Using High-Density LiDAR Data. ComputerAided Civil and Infrastructure Engineering, 28(1), 68-79. https://doi.org/10.1111/j.1467-8667.2012.00774.x
Sándor, A. (2011). Review on the process of floodplain accumulation: case study on the Middle- and Lower-Tisza. (PhD dissertation), Szeged: SZTE. [in Hungarian]
Schweitzer, F., Nagy, I., Alföldi, L. (2002). Recent point-bar formation and floodplain accumulation on the Middle-Tisza. Földrajzi Értesítő, 51(3-4), 257-278. [in Hungarian]
Sipos, Gy. (2006). Review on the dynamic of the riverbed: case study on the Hungarian section of the River Maros. (PhD dissertation), Szeged: SZTE. (in Hungarian)
Sipos, Gy., Kiss, T., Fiala, K. (2007). Morphological alterations due to channelization along the Lower Tisza and Maros Rivers (Hungary). Geografia Fisica e Dinamica Quarternaria, 30, 239-247.
Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R. (1989). Anatomy of an avulsion. Sedimentology, 36, 1-23. https://doi.org/10.1111/j.1365-3091.1989.tb00817.x
Smith, N.D., Pérez-Arlucea, M. (2008). Natural levee deposition during the 2005 flood of the Saskatchewan River. Geomorphology, 101, 583-594. https://doi.org/10.1016/j.geomorph.2008.02.009
Sorrells, R.M. (2012). Hydrogeomorphology of alluvial benches in an anabranching reach of the upper Yadkin River, North Carolina. (PhD dissertation), Greensboro: University of North Carolina.
Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D., Peiry, J.L. (2005). Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: A review for the temperate zone. River Research and Applications, 21, 719-737. https://doi.org/10.1002/rra.879
Taylor, C. (2002). Recognising channel and floodplain forms. Water & Rivers Commision, Report No. RR17. Perth, Australia.
Urdea, P., Sipos, Gy., Kiss, T., Onaca, A. (2012). River Maros. In Sipos, Gy. (Ed.), A Maros folyó múltja, jelene, jövője (pp. 9-32). Szeged: SZTE.
Wierzbicki, G., Ostrowski, P., Mazgajski, M., Bujakowski, F. (2013). Using VHR multispectral remote sensing and LIDAR data to determine the geomorphological effects of overbank flow on a floodplain (the Vistula River, Poland). Geomorphology, 183, 73-81. https://doi.org/10.1016/j.geomorph.2012.06.020
Wolfert, H.P., Hommel, P.W.F.M., Prins, A.H., Stam, M.H. (2002). The formation of natural levees as a disturbance process significant to the conservation of riverine pastures. Landscape Ecology, 17(1), 47-57. https://doi.org/10.1023/A:1015229710294
Wolman, M.G., Leopold, L.B. (1957). River floodplains: Some observations on their formation. USGS Professional Papers, 282C, 87-107. https://doi.org/10.3133/pp282C
Zwoliński, Z. (1992). Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology, 4(6), 367-379. https://doi.org/10.1016/0169-555X(92)90032-J

Relation:

Geographia Polonica

Volume:

93

Issue:

1

Start page:

51

End page:

68

Detailed Resource Type:

Article

Format:

File size 0,7 MB

Resource Identifier:

oai:rcin.org.pl:118508 ; 0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0162

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

Object collections:

Last modified:

Mar 25, 2021

In our library since:

Mar 25, 2020

Number of object content hits:

145

All available object's versions:

https://www.rcin.org.pl/igipz/publication/146823

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects

Similar
×

Citation

Citation style:

This page uses 'cookies'. More information