TY - GEN N1 - 24 cm N2 - Several potential Polish locations for the occurrence of fossil pingos were determined on the basis of analyses of a digital terrain model. Subsequent field reconnaissance connected with drilling into the geological structure, confirmed that one form located NW of Gdańsk, was indeed a fossil pingo. The aforementioned forms occur in a moraine plateau area related to the last ice-sheet retreat towards the Gardno phase moraine. This surface of the plateau is noticeably inclined south-north, at elevations of between 170 and 110 metres. It in fact proved possible to identify more than 80 very well-developed fossil pingos in the area investigated, with each found to consist of a central depression of average diameter 60‒80 m, as surrounded by a rampart 3–7 m high. By drilling into the central parts of the fossil pingos, we found them to be filled with organic sediments up to 6 or 7 m deep. The bottom layer of infill has carbonate and mineral-carbonate gyttjas up to 2 m thick. These are overlain by a peat layer up to 4 m thick, while these organic sediments are underlain by gley till sand. The ramparts are of sandy till frequently intercalated with silty sand. The established sequence of infilling of the central parts of the fossil pingos indicates that, in the immediate aftermath of ice-core melting, these played host to small ponds in which the accumulation of gyttja was able to take place. The gradual accumulation of lake-bottom sediments resulted in a shallowing of the ponds and the development of peat bogs. The morphological image of the above forms and initial drilling in the studied area suggest an association between their genesis and the presence of an ice-cored mound of the pingo type, experiencing subsequent degradation in the direction of the current, fossil pingo, form. Besides the classical, literal morphology of these forms, a decisive argument for acceptance of the above concept is provided by rampart lithology indicating how essential slow processes were in their accumulation. The nature and thickness of the organic infilling in the central part of a post-pingo prove equally important, suggesting an extended period of lake and peat-bog accumulation, probably lasting for the entire Holocene. The aforementioned arguments allow for the precluding of any origin linked with direct human activity (ground construction, bomb craters). The high density and close proximity and morphological similarity of the forms are likewise inimical to an identification as craters caused by above-ground meteorite explosions. Likewise, comparative analysis of the studied forms and kettle holes (usually larger irregularly-shaped larger forms of varied bottom topography) fails to indicate that the ring forms under study here have somehow arisen through the melting of buried dead ice. Analysis of deep boreholes made previously may support a geological structure of the analysed area consisting of a sand layer over 90 metres thick covered by a discontinuous till moraine several metres thick. The thick sand layer in question consists of differently-aged glaciofluvial sediments. This is a hydrogeological window connecting three main Quaternary aquifers and offering a perfect location for the ascension of groundwater. In conditions of developing discontinuous permafrost, this movement led to the creation of pingo forms in open systems on the surface. It is clear that investigation work is not currently at a stage allowing for about as to age to be made, or all details regarding evolution provided. However, the results of planned geomorphological, hydrogeological and geochronological studies should provide for both the recognition and detailed definition of the forms, thereby prompting discussion as to the evolution of permafrost during the late Weichselian transgression and recession in Central Europe. L1 - http://www.rcin.org.pl/igipz/Content/83108/PDF/WA51_108233_r2019-t91-z3_Przeg-Geogr-Blaszkie.pdf M3 - Text J2 - Przegląd Geograficzny T. 91 z. 3 (2019) PY - 2019 IS - 3 EP - 419 KW - ring forms KW - open pingo systems KW - permafrost KW - Late Glacial KW - degradation KW - post-pingo KW - North Poland A1 - Błaszkiewicz, Mirosław. Autor A1 - Danel, Weronika. Autor PB - IGiPZ PAN VL - 91 CY - Warszawa SP - 405 T1 - Formy pierścieniowe w rejonie Wejherowa jako prawdopodobne pozostałości po-pingo i ich znaczenie dla paleogeografii późnego glacjału w północnej Polsce = Ring forms in the area of Wejherowo as likely remnants of pingos, and their significance for Late-Glacial paleogeography in Northern Poland UR - http://www.rcin.org.pl/igipz/dlibra/publication/edition/83108 ER - TY - GEN N1 - 24 cm N2 - The Ground Penetrating Radar (GPR) method potentially offers many possibilities for fast and reliable lithostratigraphic sediment models to be developed. From a cognitive point of view, this represents a major simplification and shortening of procedures with which information about sediments can be obtained. And from the point of view of the economy of operations, there can be a significant reduction in costs and time of research in shallow geology and the stratigraphy of areas where unconsolidated clastic sediments are of superficial occurrence. Also noteworthy is the possibility for the results of GPR surveys to be deployed in support of geological mapping, as well as in the shallow exploration of resources and hydrogeological studies.The most major advantage of the GPR method related to the possibility of the structure of forms being observed in full shape. In the absence of large outcrops, geophysical prospection of geomorphological forms is helpful, insofar as we are able to translate the results of geophysical surveys into the actual lithostratigraphic system of sediments building a specific form.Against that background, the research presented in this article forms part of the work to develop radar stratigraphy, as an important support for direct geological research (Huggenberger et al., 1994; Van Overmeeren, 1998; Beres et al., 1999, Overgaard and Jakobsen, 2001; Jakobsen and Overgaard, 2002; Neal, 2004; Lejzerowicz et al., 2014; Żuk and Sambrook Smith, 2015; Lejzerowicz et al., 2018). It also points to the research potential of the GPR method in determining the genesis of form. The discussion on the way kames form has been going on in the literature for years (Niewiarowski, 1959; 1961; Karczewski, 1971; Klajnert, 1978; Jaksa, 2003; Terpiłowski, 2008). The studies presented here do not suffice to allow the matter to be determined comprehensively, even though they do provide for verification of the opinions of previous researchers.The area forming the subject of this article is defined by Niewiarowski (1959) as the dead ice zone because of the characteristic set of forms (dead ice moraines, kames and eskers). Like modern researchers (Terpiłowski, 2008), Niewiarowski points to the importance of sub-Quaternary surface elevations in the formation of cracks in the ice sheet, with this leading on to the formation of kame hills above such elevations. This would also seem to have been one of the reasons for the formation in the mass of ice of lakes whose filling with sediment and melting ice walls took the form of kames.The great advantage of the GPR method lies in its ability to recognise macrostructural sediment patterns in glacilimic forms. This diagnosis allows for the high-probability assessment of the genesis of form, especially in the context of its position being determined in the marginal zone of the ice sheet. Also looking extremely promising is the capacity for the thickness of fine clastic sediments lying on till to be determined using GPR. It allows for the determination of the way in which a given form is rooted.Described as they are in brief only, test results for selected sites serve to confirm the great usefulness of the GPR method in the recognition of shallow lithostratigraphy of clastic sediments. Nevertheless, this should not be the only method used to recognise the geological structure of forms and sediments. Significant interpretation ambiguities mean that the GPR method should act in support of direct lithostratigraphic research, not merely serving as an alternative to it. GPR surveys offer a depiction particularly close to the real one – of sediment present in homogeneous sediments in relation to electrical parameters. Sediments ideal for GPR surveys would for example be fine dry sands or silts – and it is precisely these sediments that built most of the investigated kame forms. L1 - http://www.rcin.org.pl/igipz/Content/145850/PDF/WA51_180608_r2020-t92-z3_Przeg-Geogr-Lamparsk.pdf M3 - Text J2 - Przegląd Geograficzny T. 92 z. 3 (2020) PY - 2020 IS - 3 EP - 446 KW - kames KW - ground penetrating radar KW - geophysical research KW - clastic sediments KW - Polish Lowland A1 - Lamparski, Piotr. Autor PB - IGiPZ PAN VL - 92 CY - Warszawa SP - 423 T1 - Badania georadarowe kemów jako przykład możliwości zastosowania metod geofizycznych do badania form zbudowanych z drobnoziarnistych osadów klastycznych = GPR surveys of kame hills as an example of geophysical methods being applied to the study of forms built of fine grained clastic sediments UR - http://www.rcin.org.pl/igipz/dlibra/publication/edition/145850 ER -